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Image Reconstruction 

This talk: 
• Blurring 
• Regularization 
• Projection 
• CGLS 
• Other iterations 
• Noise propagation 
• Augmentation 
• Preconditioning 

Forward problem 

Test case: 
• Image deblurring 
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Sources of Blurred Images 
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Some Types of Blur and Distortion 

From the camera: 
 the lens is out of focus, 
 imperfections in the lens, and 
 noise in the CCD and the analog/digital converter. 

From the environments: 
 motion of the object (or camera), 
 fluctuations in the light’s path (turbulence), and 
 false light, cosmic radiation (in astronomical images). 

Given a mathematical/statistical model of the blur/distortion, 
we can deblur the image and compute a sharper reconstruction 
(as apposed to ”cosmetic improvements” by PhotoShop etc). 
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Top 10 Algorithms 

J. J. Dongarra, F. Sullivan et al., The Top 10 Algorithms, IEEE Computing 
in Science and Engineering, 2 (2000), pp. 22-79. 

1946: The Monte Carlo method (Metropolis Algorithm). 

1947: The Simplex Method for Linear Programming. 

1950: Krylov Subspace Methods (CG, CGLS, Arnoldi, etc.). 

1951: Decomposition Approach to matrix computations. 

1957: The Fortran Optimizing Compiler. 

1961: The QR Algorithm for computing eigenvalues and –vectors. 

1962: The Quicksort Algorithm. 

1965: The Fast Fourier Transform algorithm. 

1977: The Integer Relation Detection Algorithm. 

1987: The Fast Multipole Algorithm for N-body simulations. 

1946: The Monte Carlo method (Metropolis Algorithm). 

1947: The Simplex Method for Linear Programming. 

1950: Krylov Subspace Methods (CG, CGLS, Arnoldi, etc.). 

1951: Decomposition Approach to matrix computations. 

1957: The Fortran Optimizing Compiler. 

1961: The QR Algorithm for computing eigenvalues and –vectors. 

1962: The Quicksort Algorithm. 

1965: The Fast Fourier Transform algorithm. 

1977: The Integer Relation Detection Algorithm. 

1987: The Fast Multipole Algorithm for N-body simulations. 
Key algorithms in 
image deblurring. 



August 2014 6/61 P. C. Hansen – Krylov Subspace Methods 

The Point Spread Function – Linearity 
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The Deblurring Problem 
Fredholm integral equation of the ¯rst kind:

Z 1

0

Z 1

0

K(x; y; x0; y0) f(x; y) dx dy = g(x0; y0) ; 0 · x0; y0 · 1:

Think of f as an unknown sharp image, and g as the blurred version.

Think of K as a model for the point spread function.

Discretization yields a LARGE system of linear equations: A x = b.

Two important aspects related to this system:

² Use the right boundary conditions.

² The matrix A is very ill conditioned ! Do not solve A x = b !

out of focus motion Gaussian 

Examples of
point spread functions
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Boundary Conditions (BC) 

• Zero and periodic BC lead to artifacts at 
the boundaries. 

• Reflexive BC can lead to better images. 

Periodic BC Reflexive BC 

Sharp image 

Blurred image 
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Inverse Problem: Regularization is Needed! 

In the algebraic model, the matrix A is very ill conditioned, 
and we do not want to compute the “naive solution”: 

We must use regularization to compute a stable solution. 

xnaive = A¡1b = xexact + A¡1e; kA¡1ek À kxexactk

The inverse problem of image deblurring is an ill-posed problem, 
i.e, it violates one or more of the three Hadamard conditions for 
a well-posed problem: 
• the solution exists, 
• the solution is unique, 
• the solution is stable with respect to perturbations of data. 

Algebraic model: A x = b, b = A xexact + e.
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Setting the Stage for Regularization 

We need the SVD of the matrix A:

A = U § V T =

min(m;n)X

i=1

ui ¾i vTi :

The (minimum norm) least squares least squares solution is:

xLS = Ayb =

rank(A)X

i=1

uTi b

¾i
vi:

Regularized solutions (obtained by \spectral ¯ltering") are:

xreg =
nX

i=1

'i
uTi b

¾i
vi; 'i = ¯lter factors:
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The Need for Regularization 
Assume Gaussian noise:

b = bexact + e ; e » N
¡
0; ¾2

noiseI
¢
.

Then

xnaive ´ A¡1b = xexact + A¡1e,

and using the SVD we see that

xnaive =
Pn

i=1
uTi b
¾i

vi

=
Pn

i=1
uTi b

exact

¾i
vi +

Pn
i=1

uTi e
¾i

vi.

\inverted noise"

Picard condition:

juTi bj decays
faster than ¾i
for small i.

Noise:

juTi bj levels o®
for larger i.

Regularization: 
keep the “good” SVD components 
and discard the noisy ones! 
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Regularize! 
We must apply regularization in order to deal with the ill conditioning of the
problem and suppress the in°uence of the noise in the data.

The previous slide suggest a \brute force" approach { chop o® the most trou-
blesome components in the SVD expansion of the (least squars) solution.

Truncated SVD:

xk =

kX

i=1

uTi b

¾i
vi :

The truncation parameter k should be selected
to discard those SVD components that are dom-
inated by the noise in the right-hand side.

Note that k is determined from the behavor
of the right-hand side's SVD coe±cients uTi b {
and not from the size of the singular values ¾i.
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A Systematic View of Regularization 
We must apply regularization in order to deal with the ill conditioning of the
problem and suppress the in°uence of the noise in the data.

Tikhonov regularization:

min
x

©
kA x¡ bk22 + ¸2 kL xk22

ª

The choice of smoothing norm, together with the choice of ¸, forces x to be
e®ectively dominated by components in a low-dimensional subspace, determined
by the GSVD of (A; L) { or the SVD of A if L = I.

Regularization by projection:

min
x
kA x¡ bk2 subject to x 2 Wk

where Wk is a k-dimensional subspace.

This works well if \most of" xexact lies in a low-dimensional subspace; hence
Wk must be spanned by desirable basis vectors. Think of Truncated SVD:
Wk = spanfv1; v2; : : : ; vkg, vi = right singular vectors.
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The Projection Method 
A more practical formulation of regularization by projection.

We are given the matrix Wk = (w1; : : : ; wk) 2 Rn£k such that Wk = R(Wk).

We can write the requirement as x = Wk y, leading to the formulation

x(k) = Wk y(k); y(k) = argminy k(A Wk) y ¡ bk2:

Projected problem 
Example: 
DCT basis 

Operations
often do not
require Wk

explicitly.



August 2014 15/61 P. C. Hansen – Krylov Subspace Methods 

Some Thought on the Basis Vectors 

The DCT basis – and similar bases that define fast transforms: 
•   computationally convenient (fast) to work with, but 
•   may not be well suited for the particular problem. 

The SVD basis – or GSVD basis if L ≠ I – gives an “optimal” 
basis for representation of the matrix A, but ... 

•   it is computationally expensive (slow), and 
•   it does not involve information about the right- 
     hand side b. 

Is there a basis that is computationally attractive and also 
involves information about both A and b, and thus the 
complete given problem? 
    →   Krylov subspaces! 
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Krylov Subspaces 
Given a square matrix M and a vector v, the associated Krylov subspace
is de¯ned by

Kk(M; v) ´ spanfv; Mv; M 2v; : : : ; Mk¡1vg; k = 1; 2; : : :

with dim(Kk(M; v)) · k.

¡
¡
¡
¡
¡
¡
¡
¡

¡
¡
¡
¡
¡
¡
¡
¡

¶
¶
¶
¶7

»»»
»»»

»:

K2(M; v) = spanfv; Mvg

v

Mv

They are also important tools for regularization of large-scale discretizations
of inverse problems, which is the topic of this talk.

Krylov subspaces have many important
applications in scienti¯c computing:

² solving large systems of linear equations,

² computing eigenvalues,

² solving algebraic Riccati equations, and

² determining controllability in a control system.
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More about the Krylov Subspace 
The Krylov subspace, de¯ned as

Kk ´ spanfAT b; ATA AT b; (ATA)2AT b; : : : ; (ATA)k¡1AT bg;

always adapts itself to the problem at hand! But the \naive" basis,

pi = (ATA)i¡1AT b = k(ATA)i¡1AT bk2; i = 1; 2; : : :

are NOT useful: pi ! v1 as i !1.

Can use modi¯ed Gram-Schmidt:

w1 Ã AT b; w1 Ã w1=kw1k2
w2 Ã ATA w1; w2 Ã w2 ¡ wT

1 w2 w1; w2 Ã w2=kw2k2
w3 Ã ATA w2; w3 Ã w3 ¡ wT

1 w3 w1;

w3 Ã w3 ¡ wT
2 w3 w2; w3 Ã w3=kw3k2
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The Krylov Subspace – Example 
Normalized basis vectors pi (blue) and orthonormal basis wi (red).



August 2014 19/61 P. C. Hansen – Krylov Subspace Methods 

Regularizing Iterations 

Can we compute x(k) without forming and storing the Krylov basis in Wk?

Apply CG to the normal equations for the least squares problem

min kA x¡ bk2 , ATA x = AT b :

This stable stable and e±cient implementation of this algorithm is called CGLS,
and it produces a sequence of iterates x(k) which solve

min kA x¡ bk2 subject to x 2 Kk :

This use of CGLS to compute regularized solutions in the Krylov subspace Kk

is referred to as regularizing iterations.

! CGLS constructs a polynomial approximation to Ay = (ATA)¡1AT .

Iterative methods are based on multiplications with A and AT (blurring).

How come repeated blurings can lead to reconstruction?
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The CGLS Algorithm 

x(0) = starting vector (e.g., zero)

r(0) = b ¡A x(0)

d(0) = AT r(0)

for k = 1; 2; : : :

¹®k = kAT r(k¡1)k22=kA d(k¡1)k22
x(k) = x(k¡1) + ¹®k d(k¡1)

r(k) = r(k¡1) ¡ ¹®k A d(k¡1)

¹̄
k = kAT r(k)k22=kAT r(k¡1)k22

d(k) = AT r(k) + ¹̄
k d(k¡1)

end

Initialization 

Mult. with A Mult. with AT 
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The Behavior of CGLS 

CGLS algorithm solves the problem without forming the Krylov basis explicitly.

Finite precision: convergence slows down, but no deterioration of the solution.

The solution and residual norms are monotone functions of k:

kx(k)k2 ¸ kx(k¡1)k2; kA x(k) ¡ bk2 · kA x(k¡1) ¡ bk2; k = 1; 2; : : :

Same example as before: CGLS iterates 
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The CGLS Polynomials 

CGLS implicitly constructs a polynomial Pk such that

x(k) = Pk(ATA)AT b :

To minimize residual norm kr(k)k2:

! make Qk(¾
2
i ) small where (uTi b)2 is large

! force Qk(¾
2
i ) to have roots

near ¾i that corresp. to large (uTi b)2.

But how is Pk constructed? Consider the residual

r(k) = b¡A x(k) =
¡
I ¡APk(ATA) AT

¢
b

kr(k)k22 =
°°¡I ¡ §Pk(§2)§

¢
UT b

°°2

2

=
nX

i=1

¡
1¡ ¾2

iPk(¾2
i )
¢2

(uTi b)2 =
nX

i=1

Qk(¾
2
i )(u

T
i b)2
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Semi-Convergence 

During the ¯rst iterations, the Krylov subspace Kk captures the

\important" information in the noisy right-hand side b.

² In this phase, the CGLS iterate x(k) approaches the exact solution.

At later stages, the Krylov subspace Kk starts to capture undesired

noise components in b.

² Now the CGLS iterate x(k) diverges from the exact solution and

approach the undesired solution Ayb to the least squares problem.

The iteration number k (= the dimension of the Krylov subspace Kk)

plays the role of the regularization parameter.

This behavior is called semi-convergence.
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Illustration of Semi-Convergence 
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Illustration of Semi-Convergence 

Recall this illustration: 

The ”ideal” behavior of the error || x(k) – xexact ||2 and the associated L-curve: 
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Matlab Example – AIR Tools 
N = 128;     % Image size. 

eta = 0.04;  % Rel. noise. 

kmax = 30;   % No. Iterations. 

  

% Test problem from AIR Tools. 

[A,bex,xex] = fanbeamtomo(N); 

e = randn(size(bex)); 

e = eta*norm(bex)*e/norm(e); 

b = bex + e; 

nex = norm(xex); 

 

X = cglsAIR(A,b,1:kmax); 

Xp = X; 

Xp(Xp<0) = 0; 

Xp(Xp>1) = 1; 

for k=1:kmax 

    err(k,1) = norm(xex - X(:,k))/nex; 

    errp(k,1) = norm(xex - Xp(:,k))/nex; 

end 

 

 

Exact k = 15 k = 30 
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Advantages of the Krylov Subspace 

The SVD basis vectors v1; v2; : : : are well suited for representation of A.

But this basis \does not know all there is to know" about the given problem;
it can not utilize information about the right-hand side b.

Here µ
(k)
j are the Ritz values, i.e., the eigenvalues of the projection

of ATA on the Krylov subspace Kk. They converge to those ¾2
i

whose corresponding SVD components uTi b are large.

x(k) =
Pn

i=1 Á
(k)
i

uTi b
¾i

vi; Á
(k)
i = 1¡

Qk
j=1

µ
(k)
j ¡¾2

i

µ
(k)
j

S
V
D

 a
na

ly
si

s 

The Krylov subspaceKk \knows" about the right-hand side and therefore adapts
itself to the given problem, through the starting vector

AT b = ATA xexact + AT e =
Pn

i=1 ¾2
i (vTi xexact) vi +

Pn
i=1 ¾i (u

T
i e) vi:

Hence the Krylov basis vectors are rich in those directions that are needed.
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The CGLS Filter Factors 

A closer look at the ¯lter factors Á
(k)
i in the ¯ltered SVD expansion

x(k) =

nX

i=1

Á
(k)
i

uTi b

¾i
vi

= V ©k §yUT b

©k = Pk(§2) §2

Here Pk is a unique
polynomial such that

x(k) = Pk(ATA) AT b.

Filter factors Á
(k)
i
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CGLS Focuses on Significant Components 

CGLS suppresses noise better than TSVD in this case. 

Example: phillips from Regularization Tools.

Exact solution has many zero SVD coe±cients.

² The TSVD solution xk includes all coe±cients from 1 thru k.

² The CGLS solution x(k) includes only those coefs. we need.
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Another Story: CGLS for Tikhonov 

One could also use CGLS to solve the Tikhonov problem in the form

min
x

°°°°

µ
A
¸L

¶
¡
µ

b
0

¶°°°°
2

2

:

But this approach typically requires that the system is solved many times,
for many di®rent values of ¸.

Also, preconditioning is often necessary { but it can be di±cult to design a
good preconditioner for the Tikhonov problem.

We shall not pursue this aspect further in this talk.
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Other Krylov Subspace Methods 
Sometimes it is impractical to use
methods { such as CGLS { that need
AT , e.g, if A = AT or if we have a
black-box function that computes A x.

MINRES and GMRES come to mind if the matrix A is square { these methods
are based on the Krylov subspace:

Kk = spanfb; Ab; A2b; : : : ; Ak¡1bg:

Unfortunately it is a bad idea to include the noisy vector b in the subspace.

A is symmetric, e.g., 
if the PSF is ”doubly 
symmetric.” 

kCGLS = 70

kGMRES = 15

Fewer GMRES than
CGLS iterations
before noise enters.

GMRES tends to
give noisier images!
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Truncated SVD subspace = spanfv1; v2; v3; : : :g.

CGLS subspace = spanfAT b; (ATA)AT b; (ATA)2AT b; : : :g.

GMRES subspace = spanfb; Ab; A2b; : : :g.

GMRES and CGLS Basis Vectors 

The GMRES basis always includes a \noisy" basis vector, due to
the presence of b in the Krylov subspace.
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A better choice is the \shiftet" Krylov subspace:

~Kk = spanfAb; A2b; : : : ; Akbg:

The corresponding methods are called MR-II and RRGMRES (both are
now included in Regularization Tools).

Other Krylov Subspace Methods Continued 

Examples on next slides 
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Comparing Krylov Methods: MINRES, MR-II 

♥ The presence of b in the 
MINRES Krylov subspace 
gives very noisy solutions. 
♠ The absence of b in the 
MR-II Krylov subspace is 
essential for the noise 
reduction. 
♣ MR-II computes a filter-
ed SVD solution: 
 
 
 
 
♦ Negative eigenvalues of 
A do not inhibit the regu-
lalarizing effect of MR-II, 
but they can slow down 
the convergence. 

x(k) = V ©k §yV T b

©k = Pk(­§)­§

¤ = ­§; ­ = diag(§1)
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Comparing: GMRES, RRGMRES 
♥ The presence of b in the 
GMRES Krylov subspace 
gives very noisy solutions. 
♠ The absence of b in the 
RRGMRES Krylov subspace 
is essential for the noise 
reduction. 
♣ RRGMRES mixes the 
SVD components in each 
iteration and x(k) is not a 
filtered SVD solution: 
 
 
 
 
♦ RRGMRES works well if 
the mixing is weak (e.g., if 
A ≈ AT), or if the Krylov 
basis vectors are well suit-
ed for the problem. 
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MINRES / MR-II Case Study 

A = AT and PA = (PA)T ; P = reversal matrix.

Use CGLS, MINRES and MR-II to solve the two problems

A x = b and PA x = P b:

CGLS behaves identically on both problems because (PA)T (PA) = ATA.

MINRES and MR-II have di®erent Krylov subspaces = signal subspaces
and, therefore, di®erent convergence histories.
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MINRES / MR-II Case Study – Results 

Dashed lines: A x = b

Dotted lines: P A x = P b

• Permuted problem: approx. same convergence of MINRES and 
MR-II; slower than CGLS. 

• Original problem: MINRES converges faster than MR-II; both are 
faster han CGLS. 
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MINRES / MR-II Case Study – Insight 
Residual polynomials for MINRES solution x(k) and MR-II solution ¹x(k):

b¡A x(k) = Qk(A) b; b¡A ¹x(k) = ¹Qk(A) b

Must \kill" residual components corresp. to largest (in magnitude) eigenvalues

MINRES,  A x = b MR-II,  A x = b 

MINRES,  P A x = P b MR-II,  P A x = P b 

Fixed 
Fixed, 
with 
zero 
slope 
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GMRES and RRGMRES 

CGLS k = 4 GMRES k = 3 RRGMRES k = 3 

RRGMRES provides a better solution subspace than GMRES,
because the noisy b is not included in the Krylov subspace!

Solution coefs. 
in left and right 
SVD basis. 

The SVD's U basis gives a faster expansion of x than the V basis for
this problem. Hence RRGMRES produces better iterates than CGLS.
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Back to CGLS: The “Freckles” 

Initially, the image gets sharper – then ”freckles” start to appear. 
D

C
T 

sp
ec

tr
um

 
sp

at
ia

l 
do

m
ai

n 

”Freckles” are band- 
pass filtered noise. 

CGLS: 
k = 4, 10 
and 25 
iterations 

Low frequencies carry 
the main information. 

idct2 idct2 idct2 
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Noise Propagation 
Recall once again that we can write the CGLS solution as:

x(k) = Pk(ATA) AT b;

where Pk is the polynomium associated with the Krylov subspace
Kk(A

T b; ATA).

Thus Pk is ¯xed by A and b, and if b = bexact + e then

x(k) = Pk(ATA) AT bexact + Pk(ATA) AT e ´ x
(k)
bexact + x(k)

e :

Similarly for the other iterative methods.

Note that signal component x
(k)
bexact depends on the noise e via Pk.

Noise 
component 

Signal 
component 
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Signal and Noise Components 

Two different 
matrices A 

signal noise 
Note that the noise 
components (the 
freckles) are corre- 
lated with structures 
in the image! 

Tends to mask 
the appearance 
of the noise!! 
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Same Behavior in All Methods 

The noise components are always correlated with the image! 

x
(k)
bexact x

(k)
bexact

x
(k)
e x

(k)
e
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Yet Another Krylov Subspace Method 

If certain components (or features) are missing from the Krylov subspace, then
it makes good sense to augment the subspace with these components.

Augmented (RR)GMRES does precisely that:

Sk = spanfw1; : : : ; wpg+ spanfb; Ab; A2b; : : : ; Ak¡1bg:

~Sk = spanfw1; : : : ; wpg+ spanfAb; A2b; A3b; : : : ; Akbg:

Example: deriv2. 
 

All vectors in the 
Krylov subspace 
→ 0 at the ends. 
 

w1 = (1,1,...,1)T 

w2 = (1,2,...,n)T 
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Implementation Aspects, RRGMRES 

Baglama & Reichel (2007) proposed algorithm AugRRGMRES that uses
the simple formulation

A Wp = Vp H0 ! A
£
Wp ; Vk

¤
=
£
Vp ; Vk+1

¤
Hk :

But their algorithm actually solves the problem

min
x
kA x¡ bk22 s.t. x 2 Wp +Kj

¡
(I¡VpV

T
p )A; (I¡VpV

T
p )Ab

¢
:

Dong, Garde & H recently proposed an alternative algorithm R3GMRES
(Regularized RRGMRES) that uses the desired subspace

Wp +Kj(A; Ab) :

Their algorithm is a bit more complicated, but has the same complexity
as RRGMRES and AugRRGMRES.
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Test Problem: “deriv2” (Reg. Tools) 

First-kind Fredholm integral equation with kernel

K(s; t) =

½
s(t¡ 1) ; s < t
t(s¡ 1) ; s ¸ t

Augmentation basis { does not approach 0 at the ends of the interval:

w1 = ( 1; 1; : : : ; 1 )T ; w2 = ( 1; 2; : : : ; n )T :

Krylov basis W basis 
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Numerical Results 
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Test Problem: “gravity” with Discontinuity 
First-kind Fredholm integral equation with kernel

K(s; t) = d
¡
d2 + (s¡ t)2

¢¡3=2
:

Augmentation basis { allows a discontinuity at a known position:

w1 = ( 1; : : : ; 1; 0 : : : ; 0 )T ; w2 = ( 0; : : : ; 0; 1; : : : ; 1 )T :
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General-Form Tikhonov Regularization 

CGLS is linked to the SVD of A and thru the Krylov subspace, the Ritz poly-
nomium, and the convergence of the Ritz values.

Thus CGLS is also related to Tikhonov regularization in standard form

min
x

©
kA x¡ bk22 + ¸2 kxk22

ª

But occationally we prefer the general formulation

min
x

©
kA x¡ bk22 + ¸2 kL xk22

ª
; L 6= I:

But CGLS can only see the LS problem kA x¡ bk22 with no regularization term.

How do we modify CGLS such that it can incorporate the matrix L?

We must modify the Krylov subspace underlying the method!
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Standard-Form Transformation 

In the general case, use the standard-form transformation:

min
¹x
k ¹A ¹x¡ bk22 + ¸2k¹xk22 with ¹A = A L# and x = L#¹x + xN ;

where L# = oblique pseudoinverse of L and xN 2 N (L).

We are given:
min
x

©
kA x¡ bk22 + ¸2 kL xk22

ª
; L 6= I:

If L is invertible, we can rewrite the above as:

min
¹x
k(A L¡1) ¹x¡ bk22 + ¸2k¹xk22 with ¹x = L x , x = L¡1¹x:
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Subspace Preconditioning 

If we apply CGLS to the standard-form problem

min
¹x
k ¹A ¹x¡ bk22 + ¸2k¹xk22;

then the iterates, when transformed back via L#, lie in the a±ne space

spanfMAT b; (MATA) MAT b; (MATA)2MAT b; : : :g+ xN ;

where M = L#(L#)T .

Hence L is a preconditioner for CGLS that provides a better suited subspace.

The Krylov subspace methods are implemented such that ¹A is never formed.

How is the oblique pseudoinverse L# de¯ned? And why this particular matrix?

Outside scope 
of this talk. 

Next slide please ... 
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Splitting! 

Write x = xM + xN with xN 2 N (L) and xM being ATA{orthogonal to xN .

This corresponds to an oblique splitting of the subspace Rn.

Then the vector A x = A xM + A xN splits into two orthogonal components.

The Tikhonov problem reduces to two independent problems for xM and xN :

min kA xM ¡ bk22 + ¸2kxMk22 and min kA xN ¡ bk22:

Since xM = L#L x we get A xM = (A L#) (L x) ! the standard-form problem.
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More About Subspace Preconditioning 

To summarize the subspace preconditinong idea:

x = L# ¹x + xN ; solve k(A L#) ¹x¡ bk2

where xN 2 null(L) and L# = weighted pseudoinverse of L.

Compute ¹x(k) via regularizing iterations (Pk = polynomial):

¹x(k) = Pk
¡
(A L#)T (A L#)

¢
(A LyA)T b:

Insertion shows that

x(k) = L#¹x(k) + xN = Pk
¡
M ATA

¢
M AT b + xN ;

where M = L#(L#)T acts as a preconditioner that ensures a solution
in the desired subspace. See Reg. Tools for implementation details.
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Convergence Histories 
k x

e
x
a
c
t
¡

x
re

c
o
n
st
k 1

Standard methods are inferior to preconditioned versions! 

Example from tomography (reconstruction of smooth function). 
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Why Preconditioning is Necessary 

Exact smooth 
solution. Reconstruction with L = I, 

very noisy near boundaries. 

Smooth reconstruction 
with L ≠ I. 

Much fewer rays penetrate the 
domain near the boundaries. 
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Preconditioning for GMRES 
Preconditioning is easy if L is invertible:

Use GMRES to solve (A L¡1) z = b ! then set x = L¡1z.

A rectangular L can be augmented { but be careful!

Both choices of L have severe di±culites at the right end of the interval.

L =

µ
L1

10¡8en

¶
L = tridiag(¡1; 2;¡1)
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A Better Approach: Use a Square matrix 
1. Write

x = LyA y + N z =
¡

LyA ; N
¢µ y

z

¶
; range(N) = null(L):

2. Consider the square system

¡
LyA ; N

¢T
A
¡

LyA ; N
¢µ y

z

¶
=
¡

LyA ; N
¢T

b:

3. Precompute x0 = N z.

4. Use GMRES to solve the Schur complement system

¡
LyA
¢T

E A LyA y =
¡
LyA
¢T

E b

where E is the oblique projection on R(AN) along R(LT ).

All operations with LyA are done as for CGLS, cf. (H & Jensen, 2005).
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(P)CGLS and (P)RRGMRES 

Test problem deriv2 from Regularization Tools with L = L1.

P-CGLS and P-RRGMRES have similar convergence; they are faster
than CGLS and RRGMRES and give more accurate results.
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(P)CGLS and (P)RRGMRES – Matlab Code 

n = 64;  eta = 0.001;  k = 20;  reorth = 1;  % Set parameters. 

  

[A,bex,xex] = deriv2(n);  % Define the noisy test problem. 

e = randn(n,1); e = norm(bex)*eta*e/norm(e); 

b = bex + e; 

  

[L,W] = get_l(n,1);  % First derivative smoothing. 

  

Xcgls = cgls(A,b,k,reorth);         % (P)CGLS solutions. 

Xpcgls = pcgls(A,L,W,b,k,reorth); 

  

Xrrgmres = rrgmres(A,b,k);          % (P)RRGMRES solutions. 

Xprrgmres = prrgmres(A,L,W,b,k); 

  

for i=1:k   % Compute the errors. 

    ecgls(i,1) = norm(xex-Xcgls(:,i)); 

    epcgls(i,1) = norm(xex-Xpcgls(:,i)); 

    errgmres(i,1) = norm(xex-Xrrgmres(:,i)); 

    eprrgmres(i,1) = norm(xex-Xprrgmres(:,i)); 

end 
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Stopping Rules = Reg. Param. Choice 

The classical stopping rule for iterative methods is: 
• Stop when the residual norm || b – A x(k) ||2 is ”small.” 
It does not work for ill-posed problems: a small residual 
norm does not imply that x(k) is close to the exact solution! 
 
Must stop when all available information has been extracted 
from the right-hand side b, just before the noise start to 
dominate x(k). 
• discrepancy principle, 
• generalized cross validation (GCV), 
• L-curve criterion (?), 
• normalized cumulative periodogram (NCP), 
• and probably perhaps others ... 
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Conclusion 

• Deblurring is an ill-posed problem 
• Regularization by projection is suited for large-scale problems 
• CGLS = projection on Krylov subspace 
• CGLS = spectral filtering method (SVD basis) 
• Another Krylov subspace: span{Ab,A2b,A3b,…} 
• The noise component is correlated with the signal component 
• Augmentation → improved subspace 
• Subspace preconditioning → improved subspace. 
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