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Topics Covered Today 

• Tomography, inverse problems, and direct inversion 
• An alternative: the algebraic formulation 
• Iterative methods: row action methods (ART & SIRT) 
• Convergence and semi-convergence 
• Choice of the relaxation parameter 
• Stopping rules 
• AIR Tools – a new MATLAB® package 

Forward problem 
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What is Tomography? 
Image reconstruction from projections 

Medical tomography 

Seismic tomography 

Tomography is the science of 
seeing inside objects. 
Signals – e.g., waves, particles, 
currents – are sent through an ob-
ject from many different angles.  
The response of the object to the 
signal is measured (projections). 
We use the data + a mathematical 
”forward model” to compute a 3D 
image of the object's interior.  

Projections 

Object 
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The Origin of Tomography 

Johan Radon, Über die Bestimmung von Funktionen 
durch ihre Integralwerte Längs gewisser Mannings-
faltigkeiten, Berichte Sächsische Akadamie der 
Wissenschaften, Leipzig, Math.-Phys. Kl., 69, pp. 
262-277, 1917. 

Main result: 
An object can be perfectly reconstructed from a full set of projections. 

NOBELFÖRSAMLINGEN KAROLINSKA INSTITUTET 
THE NOBEL ASSEMBLY AT THE KAROLINSKA INSTITUTE 
11 October 1979 
The Nobel Assembly of Karolinska Institutet has decided today to 
award the Nobel Prize in Physiology or Medicine for 1979 jointly to 
 
Allan M Cormack and Godfrey Newbold Hounsfield 
 
for the "development of computer assisted tomography". 
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Inverse Problems 

Goal: use measured data to compute “hidden” information. 
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Inverse Problem – Ill-Posed Problem 

Hadamard’s conditions for 
a well-posed problem 

K f = g 
Existence 
The problem must have a 
solution. 
Uniqueness 
The must be only one 
solution to the problem. 
Stability 
The solution must depend 
continuously on the data. 

 
The discretized problem 

A x = b 
→ Reformulation 
Replace “=″ with min||·||2 → 
consistent system A x = PR(A)b. 
→ Add more requirements 
Add additional constraint, e.g., 
minimum 2-norm → x = A† b. 
→ Sensitivity is the problem 
cond(A) ≈ ∞ → solution x and 
rank(A) very sensitive to pert. 
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Some Reconstruction Algorithms 

Direct Inversion Methods 
The forward problem is formulated as a certain transform 
 → formulate a stable way to compute the inverse transform. 
Examples: inverse Radon transform, filtered back projection. 
Algebraic Iterative Methods – Row Action Methods 
Write the forward problem as an algebraic model A x = b 
 → reconstruction amounts to solving A x = b iteratively. 
Examples: ART, Landweber, Cimmino, conjugate gradients. 
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Filtered Back Projection 
The steps of the inverse Radon transform: 

Advantages 
• Fast because it relies on FFT computations! 
• Low memory requirements. 
• Lots of experience with this method from many years of use. 

Choose a ¯lter: F(!) = j!j ¢ Flow¡pass(!).

Apply ¯lter for each angle Á in the sinogram: GÁ(½) = i®t
¡
F ¢ ®t(gÁ)

¢
.

Back projection to image: f(x; y) =
R 2¼

0 GÁ(x cos Á + y sin Á) dÁ.

Interpolation to go from polar to rectanglar coordinates (pixels).

Drawbacks 
• Needs many projections for accurate reconstructions. 
• Difficult to apply to non-uniform distributions of rays. 
• Filtering is “hard wired” into the algorithm (low-pass filter). 
• Difficult to incorporate prior information about the solution. 
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Setting Up the Algebraic Model 

Damping of i-th X-ray through domain: 

bi =
R
rayi

Â(s) d`; Â(s) = attenuation coef.

This leads to a large linear system: 

A x = b

“Geometry” 

Image 

Projections Noise 

b¤ = A x¤

b = b¤ + e

Assume χ(s)  is a constant xj  in pixel j, leading to: 

bi =
P

j aij xj ; aij = length of ray i in pixel j:

Â(s) xj



June 2014 10/58 P. C. Hansen – Row Action Methods 

More About the Coefficient Matrix, 3D Case 

bi =
P

j aij xj ; aij = length of ray i in voxel j:

To compute the matrix element aij we simply
need to know the intersection of ray i with
voxel j. Let ray i be given by the line

0

@
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y
z

1

A =

0

@
x0

y0

z0

1

A+ t

0

@
®
¯
°

1

A ; t 2 R.

The intersection with the plane x = p is given by
µ

yj
zj

¶
=

µ
y0

z0

¶
+ p¡x0

®

µ
¯
°

¶
; p = 0; 1; 2; : : :

with similar equations for the planes y = yj and z = zj.

From these intersetions it is easy to compute the ray length in voxel j..

Siddon (1985) presented a fast method for these computations.
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The Matrix is Sparse 

Each ray intersects only a few cells, hence A is very sparse. 

Many rows are structurally orthogonal. 
This sparsity plays a role in the convergence and the success 
of some of the iterative methods. 
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Analogy: the “Sudoku” Problem – 数独 
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Some Row Action Methods 
ART – Algebraic Reconstruction Techniques 
 Kaczmarz’s method + variants. 
 Sequential row-action methods that update the solution using 

one row of A at a time. 
 Good semiconvergence observed, but lack of underlying 

theory of this important phenomenon. 

SIRT – Simultaneous Iterative Reconstruction Techniques 
 Landweber, Cimmino, CAV, DROP, SART, ... 
 These methods use all the rows of A simultaneously in one 

iteration (i.e., they are based on matrix multiplications). 
 Slower semiconcergence, but otherwise good understanding 

of convergence theory. 

Krylov subspace methods 
 CGLS, LSQR, GMRES, ... 
 These methods are also based on matrix multiplications 
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Projection on a Hyperplane 

The ith row aTi of A and the corresponding element bi of the
rhs b de¯ne the hyperplane

Hi = fx 2 Rn j aTi x = big:

The orthogonal projection of z 2 Rn on Hi is given by

Pi(z) = z +
bi ¡ aTi z

kaik22
ai:

Rn
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The Geometry of ART 

But after some initial iterations
the convergence can be very slow.

ART has fast initial convergence, and has therefore been
a method of choice when only a few iterations can be
a®orded cf. Gordon, Bender & Herman (1970),
Houns¯eld (1973), Herman & Meyer (1993).
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Formulation of ART Methods 

The typical step in these methods involves the ith row aTi
of A in the following update of the iteration vector:

x Ã x + ¸
bi ¡ aTi x

kaik22
ai;

where ¸ is a relaxation parameter (¸ = 1 ! projection).

Di®erent sweeps of the m rows of A:

Kaczmarz: i = 1; 2; : : : ; m:
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Convergence and Condition Number 

With random selection of the rows, the expected behavior is:
µ

1¡
2k

cond(A)2

¶
kx0 ¡ x¤k22 ·

E
¡
kxk ¡ x¤k22

¢
·
µ

1¡ 1

cond(A)2

¶k
kx0 ¡ x¤k22:

Note: AAT = diagonal matrix ) convergence in one sweep!

Strohmer & Vershynin (2009): Known estimates of convergence rates
are based on quantities of A that are hard to compute and di±cult to
compare with convergence estimates of other iterative methods. What
numerical analysts would like to have is estimates of the convergence
rate with respect to standard quantities such as kAk and kA¡1k. The
di±culty: the rate of convergence for ART depends on the ordering of
the equations, while kAk and kA¡1k are independent of the ordering.
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Towards SIRT – Steepest Descent Method 

Consider the least squares problem:

min
x

1
2
kA x¡ bk22 , ATA x = AT b :

The gradient for f(x) = 1
2kA x¡ bk22 is rf(x) = AT (A x¡ b).

The steepest-descent method involves the steps:

xk+1 = xk + ¸k AT (b¡A xk); k = 0; 1; 2; : : :

Next page 

With projection P this is the gradient projection algorithm:

xk+1 = P
¡
xk + ¸k AT (b¡A xk)

¢
; k = 0; 1; 2; : : :
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SIRT Methods Diagonally Relaxed Orthogonal Projection 

Simultaneous Algebraic Reconstruction Technique 
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The Geometry of Cimmono’s Method 

Cimmino's method is related to projections on hyperplanes.

Given z 2 Rn, the next iterate (¸ = 1) is the average of the
projections Pi(z) on the hyperplanes Hi, i = 1; 2; : : : ; m.

znew =
1

m

mX

i=1

Pi(z)

=
1

m

mX

i=1

µ
z +

bi ¡ aTi z

kaik22
ai

¶

= z +
1

m

mX

i=1

bi ¡ aTi z

kaik22
ai

= z + ATD (b¡A z); D =
1

m
diag

µ
1

kaik22

¶
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Convergence of Landweber 

Nesterov (2004): let ¹ = ¾min(A), then

kxk ¡ x¤k22 ·
µ

1¡ 2¸¹2kAk22
¹2 + kAk22

¶k
kx0 ¡ x¤k22 :

If we choose ¸ slightly smaller than 2=kAk22 (the largest value
that ensures convergence), then

kxk ¡ x¤k22 <»

µ
cond(A)2 ¡ 1

cond(A)2 + 1

¶k
kx0 ¡ x¤k22 :

For general SIRT methods, replace A by M1=2A.



June 2014 22/58 P. C. Hansen – Row Action Methods 

Nonnegativity and Box Constraints 

It is easy to inporporate a projection P on a convex set C in
the ART and SIRT iterations:

x Ã P
µ

x + ¸
bi ¡ aTi x

kaik22
ai

¶
:

x Ã P
¡
x + ¸ TATM (b¡ A x)

¢
:

E.g., C can represent nonnegativity constraints (x ¸ 0) or box
constraints (a · x · b). Nonneg. in Matlab: x(x<0) = 0;

The projected SIRT methods converge to a solution to

min
x2C

kb¡A xkM :
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Krylov Subspace Methods 
In spite of their fast convergence for some problems, these methods are
less known in the tomography community.

The most important method is CGLS, obtained by applying the
classical Conjugate Gradient method to the least squares problem:

x(0) = 0 (starting vector)

r(0) = b ¡A x(0)

d(0) = AT r(0)

for k = 1; 2; : : :

¹®k = kAT r(k¡1)k22=kA d(k¡1)k22
x(k) = x(k¡1) + ¹®k d(k¡1)

r(k) = r(k¡1) ¡ ¹®k A d(k¡1)

¹̄
k = kAT r(k)k22=kAT r(k¡1)k22

d(k) = AT r(k) + ¹̄
k d(k¡1)

end

One mult. with A 
One mult. with AT 

The work: 
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Setting the Stage for the Analysis 

We need the SVD of the matrix A:

A = U § V T =

min(m;n)X

i=1

ui ¾i v
T
i :

The (minimum norm) least squares least squares solution is:

xLS = Ayb =

rank(A)X

i=1

uTi b

¾i
vi:

Regularized solutions (obtained by \spectral ¯ltering") are:

xreg =
nX

i=1

'i
uTi b

¾i
vi; 'i = ¯lter factors:
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The Need for Regularization 
Assume Gaussian noise:

b = b¤ + e ; e » N
¡
0; ¾2

noiseI
¢
.

Then

xnaive ´ A¡1b = x¤ + A¡1e,

and using the SVD we see that

xnaive =
Pn

i=1
uTi b
¾i

vi

=
Pn

i=1
uTi b

¤

¾i
vi +

Pn
i=1

uTi e
¾i

vi.

\inverted noise"

Picard condition:

juTi bj decays
faster than ¾i
for small i.

Noise:

juTi bj levels o®
for larger i.

Regularization: 
keep the “good” SVD components 
and discard the noisy ones! 
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Convergence of the Iterative Methods 

ART and SIRT methods:

kxk ¡ x¤k2 = O(k¡®=2); k = 0; 1; 2; : : :

Assume that the solution is smooth, as controlled by a parameter ® > 0,

uTi b = ¾1+®
i ; i = 1; : : : ; n;

and that the right-hand side has no errors/noise.

Then the iterates xk converge to an exact solution x¤ 2 R(AT ) as follows.

The interesting case is when errors/noise is present in the right-hand side!

CGLS:
kxk ¡ x¤k2 = O(k¡®); k = 0; 1; 2; : : :
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The goal of regularization:

Find an x such that kA x¡ bk2 is small (good ¯t) and x resembles x¤.

In principle, we want to solve A x = b { but A is very ill conditioned!

The underlying noise model:

b = A x¤ + e; x¤ = exact solution e = noise:

It follows that

xnaive = A¡1b = x¤ + A¡1e where kA¡1ek2 À kxexactk2:

Hence the \naive solution" A¡1b is useless.

Enter the Noise! 
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Semi-Convergence of the Iterative Methods 

However, during the ¯rst iterations, the iterates xk capture \important"

information in b, associated with the exact data b¤ = A x¤.

² In this phase, the iterates xk approach the exact solution x¤.

Throughout all the iterations, the residual norm kA xk ¡ bk2 decreases
as the iterates xk converge to the least squares solution xLS.

But xLS is dominated by errors from the noisy right-hand side b!

At later stages, the iterates starts to capture undesired noise components.

² Now the iterates xk diverge from the exact solution and they
approach the undesiredleast squares solution xLS.

Noise model: b = A x¤ + e, where x¤ = exact solution, e = additive noise.

”… even if [the iterative method] provides a satisfactory solution after a certain 
number of iterations, it deteriorates if the iteration goes on.” 

This behavior is called semi-convergence, a term coined by Natterer (1986).



June 2014 29/58 P. C. Hansen – Row Action Methods 

Many Studies of Semi-Convergence 

 G. Nolet, Solving or resolving inadequate and noisy tomographic systems 
(1985) 

 A. S. Nemirovskii, The regularizing properties of the adjoint gradient method 
in ill-posed problems (1986) 

 F. Natterer, The Mathematics of Computerized Tomography (1986) 
 Brakhage, On ill-posed problems and the method of conjugate gradients 

(1987). 
 C. R. Vogel, Solving ill-conditioned linear systems using the conjugate 

gradient method (1887) 
 A. van der Sluis & H. van der Vorst, SIRT- and CG-type methods for the 

iterative solution of sparse linear least-squares problems (1990) 
 M. Hanke, Accelerated Landweber iterations for the solution of ill-posed 

equations (1991). 
 M. Bertero & P. Boccacci, Inverse Problems in Imaging (1998) 
 M. Kilmer & G. W. Stewart, Iterative regularization and MINRES (1999) 
 H. W. Engl, M. Hanke & A. Neubauer, Regularization of Inverse Problems 

(2000) 
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Illustration of Semi-Convergence 

x0

x20

x40

x120

x250

Ayb
x8
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Another Look at Semi-Convergence 

Notation: b = A x¤ + e, x¤ = exact solution, e = noise.

Initial iterations: the error kx¤ ¡ xkk2 decreases.

Later: the error increases as xk ! argminxkA x¡ bkM .

The minimum error is independent of both λ and the method. 
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Analysis of Semi-Convergence, Fixed λ 

Consider the SIRT methods with T = I and the SVD:

M 1=2A = U § V T =
Pn

i=1 ui ¾i vTi ;

Then xk is a ¯ltered SVD solution:

xk =
Pn

i=1 '
[k]
i

uTi M
1=2b

¾i
vi; '

[k]
i = 1¡

¡
1¡ ¸ ¾2

i

¢k
:

The ith component of the error, in the SVD basis, is

vTi (x¤ ¡ xk) = (1¡ '
[k]
i ) vTi x¤ ¡ '

[k]
i

uTi M
1=2e

¾i
:

NEki : noise errorIEki : iteration error
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The Behavior of the Filter Factors 

The ¯lter factors dampen the \inverted noise" uTi M 1=2e=¾i.

¸ ¾2
i ¿ 1 ) '

[k]
i ¼ k ¸ ¾2

i ) k and ¸ play the same role.

Iteration error IEki = (1¡ ¸¾2
i )
k vTi x¤ ! 0 for k ! 0.

When k doubles,
the \break point"
is reduced by a
factor ¼

p
2.
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About the Noise Error 

Fix ¾ and ¸: ªk % with k.

NEki = ªk(¾i; ¸) uTi M 1=2e
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Bounding the Noise Error 

Assuming a ¯xed ¸ we thus have

kNEkk2 · max
i

ªk(¾i; ¸) kM 1=2ek2

· ªk(¾¤k; ¸) kM 1=2ek2 =
p

¸
1¡ ³kkp
1¡ ³k

kM 1=2ek2:
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Semi-Convergence of Projected SIRT 

When the projection P is included it is not possible the perform
a componentwise analysis.

Assuming a ¯xed ¸ we have shown that

kIEkk2 · (1¡ ¸ ¾2
n)k kx¤k2;

kNEkk2 · cond(A) ªk(¾n; ¸) kM 1=2ek2:

These bounds are very pessimistic { but they correctly track
the behavior of the iteration and noise error.

For ¸ ¾2
n ¿ 1 we have (similar to the unprojected case):

kNEkk2 ¼ ¸ k ¾1 kM
1=2ek2:

Next page. 
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Iteration and Noise Error, Projected SIRT 

NE-b and IE-b:

the pesimistic

factors cond(A)

and kx¤k2 are

omitted.

Top: consistent 
system A x = b. 
Bottom: 
inconsistent 
system A x ≈ b. 
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Analysis of Semi-Convergence – ART 

Not much theory has been developed for the semi-convergence of ART. 
 
A first attept: 
T. Elfving, P. C. Hansen, and T. Nikazad, Semi-convergence properties of 
Kaczmarzs method, Inverse Problems, 30 (2014): 

knoise-errorkk2 ·
p

¸±

¾min

p
k+O(¾2

min):
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Choosing the SIRT Relaxation Parameter 

Training. Using a noisy test problem,
¯nd the ¯xed ¸k = ¸ that gives fastest
semi-convergence to the minimum error.
Algorithm available in AIR Tools.
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A New Strategy: Limit the Noise Error 

Strategy ª1: choose ¸0 = ¸1 =
p

2=¾2
1 and

¸k =
2

¾2
1

(1¡ ³k); k = 2; 3; : : :

Strategy ª2: choose ¸0 = ¸1 =
p

2=¾2
1 and

¸k =
2

¾2
1

1¡ ³k
(1¡ ³kk )2

; k = 2; 3; : : :
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Our New Strategy: What We Achieve 

As a result:

kNEkk2 <»

p
2

¾1
(1¡ ³kk ) kM 1=2ek2 for strategy ª1

kNEkk2 <»

p
2

¾1
kM 1=2ek2 for strategy ª2

Also, for both variants we still have convergence:

xk ! argminkA x¡ bkM as k !1:

For both variants we obtain relaxation parameters ¸k > 0
that lead to a diminishing step-size strategy with ¸k ! 0
such that

P
k ¸k = 1.
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Error Histories for Cimmino Example 

All three strategies give fast semi-convergence: 
•  The fixed λ requires training and thus a realistic test problem. 
•  The line search strategy often gives a ‘zig-zag’ behavior.  
•  Our new strategy clearly controls the noise propagation. 
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For high noise 
levels η, our 
new strate-
gies ”track” 
the optimal λ. 
 
Line search 
strategy has 
zig-zag beha-
vior. 
 
The same 
behavior is 
observed for 
the projected 
methods! 

Line search 
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Stopping the Iterations 

For iterative methods it is common to stop the iterations when
the residul norm kb¡ A xkk2 is \su±ciently small" since this
may imply that xk is close to the solution A¡1b.

Next page 

For discritizations of inverse problems, this is problematic:

² For ill-conditioned problems a small residual does not
imply an accurate solution, since

kxnaive ¡ xkk2
kxnaivek2

· cond(A)
kb¡A xkk2

kbk2
:

² We do not want to compute xnaive = A¡1b in the ¯rst
place.
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Typical Behavior of Residual Norm and Error 

”Best” reconstruction 

The residual norm 
keeps decreasing 
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Stopping Rules for Inverse Problems 

Let ± = kek2, ¿ = fudge parameter found by training,
and rkM = M

1=2(b¡A xk). Find the smallest k such that:
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Re. the Discrepancy Principle 

For some methods the residual norms do not decay monotonically. 
We stop when the residual norm is below τδ for the first time. 
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NCP = Normalized Cum. Periodogram 

Examples
with n = 256
and q = 128.

Dominated by 
low frequencies 

Dominated by 
high frequencies 

Quite white 

The NCP measures the frequency contents in a signal s 2 Rn.

Let ŝ = dft(s) (Fourier transform of s) and p = jŝj2 (power spectrum of s).

The NCP is a plot of the vector c with elements (assume Matlab indexing):

c` =

P`
i=1 p(i+1)Pq
i=1 p(i+1)

=
kŝ(2: `+1)k22
kŝ(2: q+1)k22

; ` = 1; 2; : : : ; q; q = bn=2c

The closer c is
to a straight line,
the more white
the signal s.
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NCPs for deriv2 Test Problem 

k
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AIR Tools – A MATLAB Package of Algebraic 
Iterative Reconstruction Methods 

 Some important algebraic iterative reconstruction methods 
 presented in a common framework 
 using identical functions calls, 
 and with easy access to: 

o  strategies for choosing the relaxation parameter, 
o  strategies for stopping the iterations. 

The package allows the user to easily 
test and compare different methods 
and strategies on test problems. 

Also: “model implementations” for dedi- 
cated software (Fortran, C, Python, ...). 
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Contents of the Package 

ART – Algebraic Reconstruction Techniques 
 Kaczmarz’s method + symmetric and randomized variants. 
 Row-action methods that treat one row of A at a time. 

 

SIRT – Simultaneous Iterative Reconstruction Techniques 
 Landweber, Cimmino, CAV, DROP, SART. 
 These methods are based on matrix multiplications. 

 

Making the methods useful 
 Choice of relaxation parameter λ. 
 Stopping rules for semi-convergence. 
 Non-negativity constraints. 

 

Tomography test problems 
 Medical X-ray (parallel beam, fan beam), seismic travel-time, 

binary and smooth images (parallel beam) 
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Tomography Test Problems 

Medical X-ray 

Seismic travel time 

Parallel beam Fan beam Sources and receives 

Better medical test problems: use the SNARK09 software from CUNY. 
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Using AIR Tools – An Example 

N = 24;      % Problem size is N-by-N. 

eta = 0.05;  % Relative noise level. 

kmax = 20;   % Number of of iterations. 

 

[A,bex,xex] = fanbeamtomo(N,10:10:180,32); % Test problem 

nx = norm(xex); e = randn(size(bex));      %  with noise. 

e = eta*norm(bex)*e/norm(e); b = bex + e; 

 

lambda = trainLambdaSIRT(A,b,xex,@cimmino); % Train lambda. 

options.lambda = lambda;                    % Iterate with 

  X1 = cimmino(A,b,1:kmax,[],options);      %  fixed lambda. 

options.lambda = 'psi2';                    % Iterate with 

  X2 = cimmino(A,b,1:kmax,[],options);      %  psi2 strategy. 

options.lambda = 'line';                    % Iterate with 

  X3 = cimmino(A,b,1:kmax,[],options);      %  line search. 
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Using AIR Tools – Another Example 
N = 24;      % Problem size is N-by-N. 

eta = 0.05;  % Relative noise level. 

kmax = 20;   % Number of of iterations. 
 

[A,bex,xex] = fanbeamtomo(N,10:10:180,32); % Test problem 

nx = norm(xex); e = randn(size(bex));      %  with noise. 

e = eta*norm(bex)*e/norm(e); b = bex + e; 
 

% Find tau parameter for Discrepancy Principle by training. 

delta = norm(e); 

options.lambda = 1.5; 

tau = trainDPME(A,bex,xex,@randkaczmarz,'DP',delta,2,options); 
 

% Use randomized Kaczmarz with DP stopping criterion. 

options.stoprule.type = 'DP'; 

options.stoprule.taudelta = tau*delta; 

[x,info] = randkaczmarz(A,b,kmax,[],options); 

k = info(2);   % Number of iterations used. 
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Using AIR Tools – An Third Example 
N = 64;                  % Problem size. 

eta = 0.02;              % Relative noise level. 

k = 20;                  % Number of iterations. 

[A,bex,x] = odftomo(N);  % Test problem, smooth image.  

  

% Noisy data. 

e = randn(size(bex)); e = eta*norm(bex)*e/norm(e); b = bex + e; 

  

% ART (Kaczmarz) with non-negativity constraints. 

options.nonneg = true; 

Xart = kaczmarz(A,b,1:k,[],options); 

  

% Cimmino with non-neg. constraints and Psi-2 relax. param. choice. 

options.lambda = 'psi2'; 

Xcimmino = cimmino(A,b,1:k,[],options); 

  

% CGLS followed by non-neg. projection. 

Xcgls = cgls(A,b,1:k); Xcgls(Xcgls<0) = 0; Next page 
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Results for Smooth Image Example 

CGLS gives the best result in just k = 4 iterations. 
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Results for Binary Image Example 

ART (Kaczmarz) is the most succesful method here. 
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Conclusions 
 ART and SIRT methods are well suited for tomography. 
 Projection on a convex set can easily be incorporated. 
 More difficult in incorporate other types of prior information. 
 Both methods rely on semi-convergence; it is well under-

stood for the SIRT methods. 
 The role of the relaxation parameter is well understood, and 

we have a strategy that control the noise error. 
 We developed a new MATLAB package AIR Tools with 

 three methods for choosing the relaxation parameter, 
 three stopping rules, and 
 three test problems. 
 Available from www.imm.dtu.dk/~pch/AIRtools. 
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