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Topics Covered Today

Sharp image Reconstruction

Blurred image

Forward problem

e Tomography, inverse problems, and direct inversion
e An alternative: the algebraic formulation

e [terative methods: row action methods (ART & SIRT)
e Convergence and semi-convergence

e Choice of the relaxation parameter

e Stopping rules

e AIR Tools — a new MATLAB® package
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What is Tomography?
Image reconstruction from projections
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9y Projections
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Tomography is the science of

Medical h
Object /Q’,%} % edical tomography
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seeing inside objects.

Signals — e.g., waves, particles,
currents — are sent through an ob-
ject from many different angles.

The response of the object to the
signal is measured (projections).

We use the data + a mathematical
“forward model” to compute a 3D
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image of the object's interior. P e
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The Origin of Tomography

Johan Radon, Uber die Bestimmung von Funktionen
durch ihre Integralwerte Langs gewisser Mannings-
faltigkeiten, Berichte Sachsische Akadamie der
Wissenschaften, Leipzig, Math.-Phys. Kl., 69, pp.
262-277, 1917.

Main result:

An object can be perfectly reconstructed from a full set of projections.

NOBELFORSAMLINGEN KAROLINSKA INSTITUTET
THE NOBEL ASSEMBLY AT THE KAROLINSKA INSTITUTE
11 October 1979

The Nobel Assembly of Karolinska Institutet has decided today to
award the Nobel Prize in Physiology or Medicine for 1979 jointly to

Allan M Cormack and Godfrey Newbold Hounsfield

for the "development of computer assisted tomography".
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Inverse Problems

Goal: use measured data to compute “hidden” information.

v
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Inverse Problem — llI-Posed Problem

Hadamard’s conditions for

a well-posed problem The discretized problem
Kf=g AX=Db
Existence — Reformulation
The problem must have a Replace “"=" with min| |||, >
solution. consistent system A X = P b.
Uniqueness — Add more requirements
The must be only one Add additional constraint, e.qg.,
solution to the problem. minimum 2-norm — x = At b.
Stability — Sensitivity is the problem
The solution must depend cond(A) = «» — solution x and

continuously on the data. rank(A) very sensitive to pert.
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Some Reconstruction Algorithms

Direct Inversion Methods

The forward problem is formulated as a certain transform
— formulate a stable way to compute the inverse transform.

Examples: inverse Radon transform, filtered back projection.
Algebraic Iterative Methods — Row Action Methods

Write the forward problem as an algebraic model A X =D
— reconstruction amounts to solving A X = b iteratively.

Examples: ART, Landweber, Cimmino, conjugate gradients.

'Phantom’ Filtered back projection ART reconstruction

7/58 P. C. Hansen — Row Action Methods June 2014



i

Filtered Back Projection

The steps of the inverse Radon transform:
Choose a filter: F(w) = |w| - Flow—pass(w).
Apply filter for each angle ¢ in the sinogram: Gy (p) = ifft(F - fft(gy)).

Back projection to image: f(x,y) = fOQW Gy(x cos @ + ysin @) do.

Interpolation to go from polar to rectanglar coordinates (pixels).

Advantages

e Fast because it relies on FFT computations!

e Low memory requirements.

e Lots of experience with this method from many years of use.

Drawbacks

e Needs many projections for accurate reconstructions.

e Difficult to apply to non-uniform distributions of rays.

e Filtering is “hard wired” into the algorithm (low-pass filter).
» Difficult to incorporate prior information about the solution.
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Setting Up the Algebraic Model

Damping of i-th X-ray through domain:
b; = frayz_ x(s)df, x(s) = attenuation coef.

Assume X(S) IS a constant X in pixel j, leading to:

bi = ), aij T, a;; = length of ray ¢ in pixel j.

X =X, %=X, ?/x X, =X, This leads to a large linear system:
X=Xy [ X=Xy "1/[)(23 Xi7 = Koy X = X5 A €T = b b p— b* —I— (&
/
X3= X x8=ny13=X33 Xig = Xyy | X3 = Xsg T
S Noise
Xy =Xy x%(ﬂ X15= Kz | Xig = Xyg %4 = X5 PI’OjeCtIOHS
X5=X7410=x52 X15 = Koz | X0 = Xoq X5 = Xss Image A
* *
b* = Az
/ “Geometry”
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DTU
More About the Coefficient Matrix, 3D Case =

bi = _; aij Tj, a;; = length of ray 7 in voxel j.
To compute the matrix element a;; we simply ' = ==
need to know the intersection of ray ¢ with N lyg
voxel j. Let ray ¢ be given by the line <
K r_;ff';\ :J‘l_
x X Q I e
yl=1w | +t|3], t e R. "N {E: T
< Z T‘:Dg s T I
0 Y ol L P S
-—--;K'— "_:::h
The intersection with the plane x = p is given by "1, U

(yj) = (y(’) 1 B0 (ﬁ) p=0,1,2,...
Zj 20 “ A\

with similar equations for the planes y = y; and z = z;.
From these intersetions it is easy to compute the ray length in voxel j..
Siddon (1985) presented a fast method for these computations.
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The Matrix Is Sparse

i

Each ray intersects only a few cells, hence A is very sparse.
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Many rows are structurally orthogonal.
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This sparsity plays a role in the convergence and the success
of some of the iterative methods.
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Analogy: the “Sudoku” Problem — &
J I I 0] 3
b 3 1 0 1 0 1 3
0O 1 0 1 i) . 7 4 3
f— = 7 1 10 0] |zs] |4
‘ ‘ 0O 0 1 1 T4 §)
1 2
4 6
. . ] 3 4
Infinitely many solutions (c € R):
1| 2 111 2 | 1
— + C X
3 4 1 | -1 2 5
3 0

Prior: solution is integer and non-negative | m—)
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Some Row Action Methods

ART — Algebraic Reconstruction Techniques

Kaczmarz’s method + variants.

Sequential row-action methods that update the solution using
one row of A at a time.

Good semiconvergence observed, but lack of underlying
theory of this important phenomenon.

SIRT — Simultaneous lterative Reconstruction Techniques
Landweber, Cimmino, CAV, DROP, SART, ...

These methods use all the rows of A simultaneously in one
Iiteration (i.e., they are based on matrix multiplications).

Slower semiconcergence, but otherwise good understanding
of convergence theory.

Krylov subspace methods
CGLS, LSQR, GMRES, ...
These methods are also based on matrix multiplications
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Projection on a Hyperplane

The ith row a! of A and the corresponding element b; of the
rhs b define the hyperplane

H; = {x € R" |a] x = b;}.

a,;

RTL

The orthogonal projection of z € R™ on H; is given by

T
b —a; 2z

Pi(z) =z + ;.
Z la:ill3
June 2014
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The Geometry of ART

ART has fast initial convergence, and has therefore been
a method of choice when only a few iterations can be
afforded cf. Gordon, Bender & Herman (1970),
Hounsfield (1973), Herman & Meyer (1993).

Initial guess

But after some initial iterations
the convergence can be very slow.
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Formulation of ART Methods

The typical step in these methods involves the ith row a;-r

of A in the following update of the iteration vector:

T
bi —a; x

x4+ A 50,
a2

where )\ is a relaxation parameter (A = 1 — projection).

Different sweeps of the m rows of A:

Kaczmarz: 1 =1,2,...,m.
Symmetric Kaczmarz: 1 =1,2,... m—1,m,m—1,...,3,2.

Randomized Kaczmarz: sclect row 2 randomly with prob-
ability proportional to the row norm ||a;||2.
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Convergence and Condition Number =
Strohmer & Vershynin (2009): Known estimates of convergence rates
are based on quantities of A that are hard to compute and difficult to
compare with convergence estimates of other iterative methods. What
numerical analysts would like to have is estimates of the convergence
rate with respect to standard quantities such as ||A|| and ||[A™!||. The
difficulty: the rate of convergence for ART depends on the ordering of
the equations, while ||A]| and ||A™!|| are independent of the ordering.

With random selection of the rows, the expected behavior is:

2k
1_ 0 ok 2 D
( — A)2) 2° — o* |2

1 k
k * || 2 0 * || 2
£(la* ~a*[) © (1= gy ) I° = o3

Note: AA? = diagonal matrix = convergence in one sweep!
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Towards SIRT — Steepest Descent Method

i

Consider the least squares problem:

min 3 || Az — b||3 & AT Ax = ATy .

The gradient for f(z) = 3||Az —b||3 is Vf(z) = AT (Az —b).
The steepest-descent method involves the steps:
et = 2 N, AT (b — A "), k=0,1,2,...
With projection P this is the gradient projection algorithm:
"t =P (2" + A\ AT (b — Aah)), k=0,1,2,...
The SIRT methods are based on this approach. = Next page
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S | RT Meth OdS Diagonally Relaxed Orthogonal Projection

Simultaneous Algebraic Reconstruction Technique

i

The general form:
eF T = 2 + AYTATM (b — Azh), k=0,1,2,...

Some methods use the row norms ||a;||2.

Landwebey: /I' =1 and M = 1.

Cimmino:/T' =7 and M =D = %diag(m).

ponent averaging method): T = [ and
= diag (“ E ) with S = diag(nnz(column j)).

DROP: T =S~ ! and M = mD.

SART: T = diag(row sums)~! and M = diag(column sums)~*.
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The Geometry of Cimmono’s Method

Cimmino’s method is related to projections on hyperplanes.

Given z € R", the next iterate (A = 1) is the average of the
projections P;(z) on the hyperplanes H;, i =1,2,...,m

new 1 « Pi(z
Z = _sz(z) Ho ¢
m_ Z
( b; — alz )
- L3 (oe bt
|az||2
1 <~ b; —alz Hi
p— A — 2 a
m = a3

= z+A'D(b— Az), D—ldiag< ! )
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Convergence of Landweber

Nesterov (2004): let u = omin(A), then

k
2)\,“2”14”% 0 2
ok — 2*|2 [ (1 . 2° — 2|2 .
2 2+ A2 >

If we choose ) slightly smaller than 2/||A||3 (the largest value
that ensures convergence), then

5 k
ko *x12 < COIld(A) —1 0 %2
A o N R

For general SIRT methods, replace A by M1/2A.
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Nonnegativity and Box Constraints

It is easy to inporporate a projection P on a convex set C in
the ART and SIRT iterations:

T

xep(r—l—)\bi_aixa-).

lasll3

4+ Pz +ATA"M (b— Ax)).

E.g., C can represent nonnegativity constraints (x > 0) or box
constraints (a [1 x [1b). Nonneg. in Matlab: x(x<0) = 0;
The projected SIRT methods converge to a solution to

min ||b — Az||n -

xeC
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Krylov Subspace Methods =
In spite of their fast convergence for some problems, these methods are
less known in the tomography community.

The most important method is CGLS, obtained by applying the
classical Conjugate Gradient method to the least squares problem:

29 =0 (starting vector)
r0) —p— A0
d0) = AT(0)

for k=1,2,...
oy = || ATr D3/ Ad* D3
z(k) = z(k=1) 4 5, d(k-1) The work:

(k) — p(k=1) _ ay A qk—1) One mult. with A

_ One mult. with AT
B = [|ATr®) |3 /|| ATr (P42
dF) = ATyr(k) 3 3, @(F—1)

end
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Setting the Stage for the Analysis

We need the SVD of the matrix A:
min(m,n)
A=USVT = Y wo0].
i=1
The (minimum norm) least squares least squares solution is:
rank(A)

Iy
xLS:ATb: Z Zi V;.

O'.
i=1 v

Regularized solutions (obtained by “spectral filtering”) are:
n T

Z u;
Lreg = P o
1=1

(

b
Vi, p; = filter factors.
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Picard condition:

The Need for

Picard plot

Noise:

lul'b| decays
faster than o;

for small 7.

25/58
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Regularization

lu? b| levels off

for larger 1.

e

Assume Gaussian noise:
b:b*+€ ) GNN(()’O-I%oiseI)'
Then

Lnaive = A_lb =z + A_lea

and using the SVD we see that

T
n w;b
Lnaive — Zizl ;i (%)

T
' n  u;e
Vi + D g — v;.

(o)

. Zn ul b*

“inverted noise”J

Regularization:

keep the SVD components
and discard the noisy ones!

June 2014
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Convergence of the Iterative Methods

Assume that the solution is smooth, as controlled by a parameter o > 0,
u;-rb:JiHO‘, 1=1,...,n,

and that the right-hand side has no errors/noise.

Then the iterates ¥ converge to an exact solution z* € R(AT) as follows.
ART and SIRT methods:

|zF — a*||s = O(k™/?),  k=0,1,2,...

CGLS:
HCBk—CC*HQ = O0(k™%), k=0,1,2,...

The interesting case is when errors/noise is present in the right-hand side!

26/58 P. C. Hansen — Row Action Methods June 2014



i

Enter the Noise!

In principle, we want to solve |Axz = b|— but A is very ill conditioned!

The underlying noise model:
b=Az" + e, 2™ = exact solution e = noise.
It follows that
Toaive = A Tb=x* 4+ A7 te where A e|l2 > || Texact||2-

Hence the “naive solution” A~ 1b is useless.

The goal of regularization:

Find an z such that ||[Az — bl|2 is small (good fit) and = resembles x*.
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Semi-Convergence of the Iterative Methods =

Noise model: b = Ax* + e, where £* = exact solution, e = additive noise.

Throughout all the iterations, the residual norm ||A z* — b||» decreases
as the iterates z* converge to the least squares solution zpg.

But z1s is dominated by errors from the noisy right-hand side b!

k capture “important”

However, during the first iterations, the iterates x
information in b, associated with the exact data b* = Ax™.

e In this phase, the iterates 2* approach the exact solution z*.

At later stages, the iterates starts to capture undesired noise components.

e Now the iterates ¥ diverge from the exact solution and they
approach the undesiredleast squares solution x1s.

This behavior is called semi-convergence, a term coined by Natterer (1986).

”... even if [the iterative method] provides a satisfactory solution after a certain
number of iterations, it deteriorates if the iteration goes on.”
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Many Studies of Semi-Convergence

O G. Nolet, Solving or resolving inadequate and noisy tomographic systems
(1985)

O A. S. Nemirovskii, The regularizing properties of the adjoint gradient method
in ill-posed problems (1986)

O F. Natterer, The Mathematics of Computerized Tomography (1986)

O Brakhage, On ill-posed problems and the method of conjugate gradients
(1987).

a C. R. Vogel, Solving ill-conditioned linear systems using the conjugate
gradient method (1887)

O A. van der Sluis & H. van der Vorst, SIRT- and CG-type methods for the
iterative solution of sparse linear least-squares problems (1990)

O M. Hanke, Accelerated Landweber iterations for the solution of ill-posed
equations (1991).

O M. Bertero & P. Boccacci, Inverse Problems in Imaging (1998)
M. Kilmer & G. W. Stewart, lterative regularization and MINRES (1999)

O H. W. Engl, M. Hanke & A. Neubauer, Regularization of Inverse Problems
(2000)

(W
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lllustration of Semi-Convergence

WE
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Another Look at Semi-Convergence =

Notation: b= Ax* 4+ e, x* = exact solution, e = noise.
Initial iterations: the error ||z* — x¥||» decreases.

Later: the error increases as z* — argmin_||Ax — bl| ;.

Error histories for the DROP method with fixed % Error histories for Cimmino’s method with fixed A

01 —05—1—15—2 — 1—5-—10—30—50 — 85

4.5

1000 1500

k

1

The minimum error is indepehdent of both A and the method.
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Analysis of Semi-Convergence, Fixed A

Consider the SIRT methods with T' = I and the SVD:

MPA=USVT =" wo;0f

Then z* is a filtered SVD solution:

n ul Y/
2k =3 plk] e M vai) gogk]:1—(1—)\07;2)k.

The 1th component of the error, in the SVD basis, is

T prt/2
of (2" — %) = (1 — Iy ol ot — ! 2=
oF)
/ \

IEY: iteration error NE;: noise error
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The Behavior of the Filter Factors

Filter factors cp[k} — 1 — (1 _ )\gg)k

i

107+ - e—
When k doubles,
| the “break point”
107 is reduced by a
| factor =~ /2.
2
10
107

The filter factors dampen the “inverted noise” u! M"/?e/c;.
[F]

Ao < 1= ¢, ~kAo? = k and ) play the same role.

Iteration error IE} = (1 — Ao?)* v z* — 0 for k — 0.
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About the Noise Error

NEF = T*(g;, \) ul M'/?e
1—(1—Xo?)k

ko, \) =
o

WE

Fix ¢ and \: ¥ ~ with k.

Fix A:
max of ¥¥* is attained for

_ % [ 1-Cg
=0k =\ x

where (j, is the unique root in (0, 1) of

gr—1(y) = (2k — 1)yF—1 —

34/58 P. C. Hansen — Row Action Methods

(y* 2+ ...+y+1)=0.

\ ¥X(5,100)
10° < :
10°F —
/}
90
10"}
30
10
10° - .
10 10 10
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Bounding the Noise Error

Assuming a fized \ we thus have

INE®[l2 00 masx 0" (0, 0) [| M2

1 - Ck 1
0 TR eE ) M Pe|ls = VA E_ 1M 2el|.
(0%, A) || | \WJH |
/ |

20/ | | / |

15}

10t

5_

% 200 400 600 800 1000
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Semi-Convergence of Projected SIRT =

When the projection P is included it is not possible the perform
a componentwise analysis.

Assuming a fired A we have shown that
NEFla O (1= Aa2)" [lz*l2,
INE*|l, O cond(A) U*(a,, \) || M2el],.

These bounds are very pessimistic — but they correctly track

the behavior of the iteration and noise error. == Next page.

For A o2 < 1 we have (similar to the unprojected case):

INE®||s =~ Mk oy || M 72e||5.
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Iteration and Noise Error, Projected SIRT

n= 0.01 n= 0.05 n= 0.08
10" 10" !
10° - S 10"
_1 4 1 4
10 ——NE NE-b ——IE - - - IE-b
0 50 0 50 0 50
lteration number k lteration number k Iteration number k
n = 0.01 n =0.05 n =0.08
1 1 1
10
10°
_1 4 ! 4
10 —NE NE-b —IE - - - |E-b
0 50 0 50 0 50

lteration number k lteration number k Iteration number k
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Top: consistent
system A X = Db.

Bottom:
inconsistent
system A X =~ b.

NE-b and IE-b:
the pesimistic
factors cond(A)
and |[x*|| are

omitted.
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Analysis of Semi-Convergence — ART

Not much theory has been developed for the semi-convergence of ART.

A first attept:

T. Elfving, P. C. Hansen, and T. Nikazad, Semi-convergence properties of
Kaczmarzs method, Inverse Problems, 30 (2014):

\/X'(s VE+O(c2.,).

min

|noise-error||2 [
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Choosing the SIRT Relaxation Parameter

xk+1:xk+@ATM(b—Axk), k=0,1,2,...

Goal: fast semi-convergence to the minimum error.

Error histories for Cimmino’s method with fixed
b

—1—5—10—30—50 85

Training. Using a noisy test problem,
find the fized Ay, = A that gives fastest
semi-convergence to the minimum error. ]
Algorithm available in AIR Tools. eSS

Line search (Dos Santos, Appleby & Smolarski, Dax).
Minimize the error ||z¥ — z*||5 in each iteration — must as-
sume that Az = b is consistent. When T' = I we get:

A = (P T M | AT MR, rF =b— Azt
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A New Strategy: Limit the Noise Error

Assume we used a fized A\ in steps 1,...,k — 1; then

INESll2 < maxT¥(os, X) 1M el

i

1—(F
< WF(op, A || M e]la = VA E_ || M 2el|s.
= (O-kv )H €H2 \/_m H 6H2
Strategy Wi: choose A\g = \; = v2/0? and
2
01

Strategy Wo: choose A\g = A\; = v/2/0% and
21—

k=23 ...

40/58 P. C. Hansen — Row Action Methods

June 2014



i

Our New Strategy: What We Achieve

For both variants we obtain relaxation parameters A\ > 0
that lead to a diminishing step-size strateqy with A\ — 0
such that ), A\ = o0.

1 e sEE e e e e

0.5r1
As a result: ' T —ro

0
2
INEVl £ Y2 (1 ¢y el for strateay ¥,

0 20 40 60 80 100

V2

2
INE®[|5 < — |M el for strategy Uy
1

Also, for both variants we still have convergence:

¥ — argmin||Axz —bl[yy as k — oo.
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Error Histories for Cimmino Example

Cimmino
0.85 w

—e—fixed A
— ‘P2 strategy

08l —e—|ine search ||

0.65r

All three strategies give fast semi-convergence:

e The fixed A requires training and thus a realistic test problem.
e The line search strategy often gives a ‘zig-zag’ behavior.

e Our new strategy clearly controls the noise propagation.
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Relative error Relative error

Relative error

0.5¢

0.4; |

0.37

0.2¢

Cimmino, n = 0.01

—— Optimal &
----- ¥ -strategy

- — - ¥, -strategy 1
Line search||

! —
-
Do,

-—
- el e

0

10 20 30
Iteration number

40

Relative error Relative error

Relative error

DROP, n = 0.01
0.5 “ — Optimal A
“ ----- ¥ -strategy
04y - - = ¥ -strategy |]
0.3} Pl -
0.2} | =G—— :
0 10 20 30 40
DROP, n = 0.05
0.2} | | | _
0 10 20 30 40
DROP, 1 = 0.08
0.5
0.4
0.3
0.2 | | | -
0 10 20 30 40

Iteration number

DTU

—
>
=

For high noise
levels n, our
new strate-
gies "track”
the optimal .

Line search
strategy has
Zig-zag beha-
Vior.

The same
behavior is
observed for
the projected
methods!
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Stopping the lterations =

For iterative methods it is common to stop the iterations when
the residul norm ||b — A z*||, is “sufficiently small” since this
may imply that z* is close to the solution A~1b.

For discritizations of inverse problems, this is problematic:

e For ill-conditioned problems a small residual does not
imply an accurate solution, since

|b— Az"|,
10]]2

Hxnaive - kaZ

||ajnaive H2

] cond(A)

e We do not want to compute Tpaive = A7 'b in the first
place. =) Next page
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Typical Behavior of Residual Norm and Error ==

k=70

107 |

— |l b-AX,

X" - X4, y ., .
Best” reconstruction

| \ The residual norm

k =300 keeps decreasing

10 -

_

0 100 200 300

10"
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Stopping Rules for Inverse Problems

i

Let § = ||e||]2, 7 = fudge parameter found by training,
and 7%, = M'/?(b — Az*). Find the smallest k such that:

Discrepancy principle:

{ [k s <716 HMl/QHg SIRT methods with T = I

lr¥]l2 < 76 all other methods.
Monotone error rule (SIRT methods only):
()T +
Il

NCP = normalized cumulative periodogram (Bert Rust):
stop when the residual can be considered as noise.

) < oMo,
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Re. the Discrepancy Principle

randkaczmarz, DP stopping rule: kDP =9 Residuals

0.75

» k
X =XK1,
k
I,

0.45

04

For some methods the residual norms do not decay monotonically.
We stop when the residual norm is below 6 for the first time.
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NCP = Normalized Cum. Periodogram

The NCP measures the frequency contents in a signal s € R".
Let § = dft(s) (Fourier transform of s) and p = |3|? (power spectrum of s).

The NCP is a plot of the vector ¢ with elements (assume Matlab indexing):

L . ~
- 1 2:04+1)]|2

o = =zt PUHD IS LD — oy = g
Top+) )3

The closer c is

to a straight line,
the more white
the signal s.

Dominated by
low frequencies

) Quite white
Examples ‘ 041 ,,"/_j """""" '\,// |
. 0.3 d Il 1
with n = 256 | \ :
o2l .7 & ~— Dominated by
and g = 128. - o : .
01f 1 high frequencies
% a0 60 80 100 120
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NCPs for deriv2 Test Problem

i
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DTU
AIR Tools — A MATLAB Package of Algebraic =

Iterative Reconstruction Methods

Some important algebraic iterative reconstruction methods
presented in a common framework
using identical functions calls,
and with easy access to:
strategies for choosing the relaxation parameter,
strategies for stopping the iterations.

The package allows the user to easily
test and compare different methods
and strategies on test problems.

Also: “model implementations” for dedi-
cated software (Fortran, C, Python, ...).
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Contents of the Package

ART — Algebraic Reconstruction Techniques
Kaczmarz’'s method + symmetric and randomized variants.

Row-action methods that treat one row of A at a time.

SIRT — Simultaneous lterative Reconstruction Techniques

Landweber, Cimmino, CAV, DROP, SART.
These methods are based on matrix multiplications.

Making the methods useful
Choice of relaxation parameter A.
Stopping rules for semi-convergence.

Non-negativity constraints.

Tomography test problems
Medical X-ray (parallel beam, fan beam), seismic travel-time,

binary and smooth images (parallel beam)

June 2014
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Tomography Test Problems

Shepp-Logan Phantom, N = 100 Seismic Phantom, N = 100

Medical X-ray —

e

Parallel beam Fan beam Sources and receives

Better medical test problems: use the SNARKO9 software from CUNY.
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Using AIR Tools — An Example

N = 24; % Problem size i1s N-by-N.
eta = 0.05; % Relative noise level.
kmax = 20; % Number of of 1terations.

[A,bex,xex] = fanbeamtomo(N,10:10:180,32); % Test problem
nx = norm(xex); e = randn(size(bex)); % with noise.

e = eta*norm(bex)*e/norm(e); b = bex + e;

lambda = trainLambdaSIRT(A,b,xex,@cimmino); % Train lambda.

options.lambda = lambda; % Iterate with
X1 = cimmino(A,b,1:kmax,[],options); % Fixed lambda.

options.lambda = "psi2-; % Iterate with
X2 = cimmino(A,b,1:kmax,[],options); % psi2 strategy.

options.lambda = "line"; % Iterate with

X3 = cimmino(A,b,1:kmax,[],options); % Uline search.
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Using AIR Tools — Another Example

Exactimage =15 1=1034

i

N = 24; % Problem size i1s N-by-N.
eta = 0.05; % Relative noise level.
kmax = 20; % Number of of i1terations.

[A,bex,xex] = fanbeamtomo(N,10:10:180,32); % Test problem
nx = norm(xex); e = randn(size(bex)); % with noise.
e = eta*norm(bex)*e/norm(e); b = bex + e;

% Find tau parameter for Discrepancy Principle by training.
delta = norm(e);

options.lambda = 1.5;

tau = trainDPME(A,bex,xex,@randkaczmarz, "DP" ,delta,2,options);

% Use randomized Kaczmarz with DP stopping criterion.
options.stoprule.type = "DP";
options.stoprule.taudelta = tau*delta;

[Xx,1nfo] = randkaczmarz(A,b,kmax,[],options);

k = 1info(2); % Number of i1terations used.
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Using AIR Tools — An Third Example

N = 64; % Problem size.
eta = 0.02; % Relative noise level.
k = 20; % Number of i1terations.

[A,bex,x] = odftomo(N); % Test problem, smooth Image.

% Noisy data.
e = randn(size(bex)); e = eta*norm(bex)*e/norm(e); b = bex + e;

% ART (Kaczmarz) with non-negativity constraints.
options.nonneg = true;
Xart = kaczmarz(A,b,1:k,[].,options);

% Cimmino with non-neg. constraints and Psi-2 relax. param. choice.
options. lambda = "psi2-;
Xcimmino = cimmino(A,b,1:k,[],options);

% CGLS followed by non-neg. projection.
Xcgls = cgls(A,b,1:k); Xcgls(Xcgls<0) = O; == Next page
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Results for Smooth Image Example

True (smooth)

10 10
20 20
30 30
40 40
50 50
60 60
20 40 60
ART, k=3
10
20
30
40
50
60

Cimmino, k=20

20 40
CGLS, k=4
20 40

Error || ¥ -x Il

14

12

10

©
T

Semi-convergence

HE

T T T

Cimmino
ART

1
8 10 12
Iteration k

CGLS gives the best result in just kK = 4 iterations.
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Results for Binary Image

ART (Kaczmarz) is the most succesful method here.
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True (smooth)

20 40 60

ART, k=175
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Cimmino, k=500

Ko
Error || X" - x ||2

40

35

30

n
(32
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Example -
Semi-convergence
T T T T T T T
Cimmino
——ART
——CGLS
1 1 1 1 1 1 L 1 1
20 40 60 80 100 120 140 160 180 200
Iteration k
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Conclusions

O ART and SIRT methods are well suited for tomography.
Projection on a convex set can easily be incorporated.
More difficult in incorporate other types of prior information.

Both methods rely on semi-convergence; it is well under-
stood for the SIRT methods.

The role of the relaxation parameter is well understood, and
we have a strategy that control the noise error.

O We developed a new MATLAB package AIR Tools with
0 three methods for choosing the relaxation parameter,
0 three stopping rules, and
0 three test problems.
2 Available from www. imm.dtu.dk/~pch/ZAlRtools.

R W

L
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