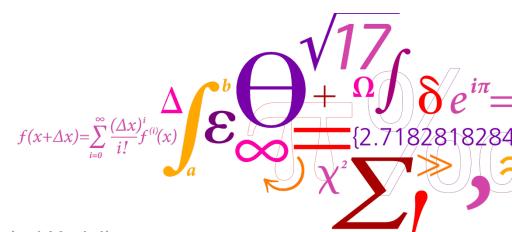


Block AIR MethodsFor Multicore and GPU

Per Christian Hansen Hans Henrik B. Sørensen Technical University of Denmark

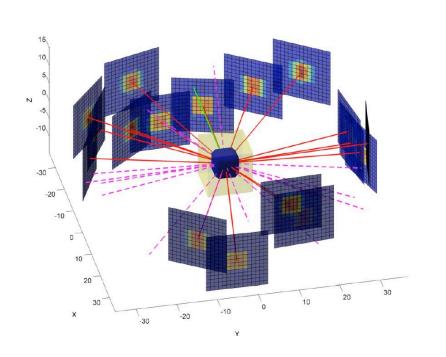


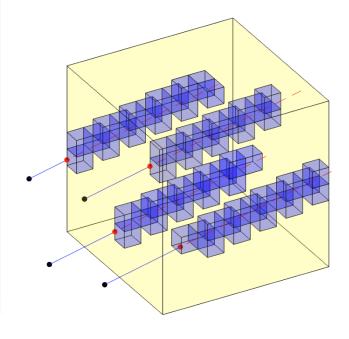
DTU Informatics

Department of Informatics and Mathematical Modeling

Model Problem and Notation

Parallel-beam 3D tomography





$$Ax \simeq b$$

$$Ax \simeq b, \qquad b = \overline{b} + \delta b, \qquad A \in \mathbb{R}^{m \times n}.$$

$$A \in \mathbb{R}^{m \times n}$$
.

: exact solution

 $\begin{array}{cccc} \bar{x} & & : & \text{exact solut} \\ \bar{b} = A\,\bar{x} & : & \text{exact data} \end{array}$

 δb

noise

 $\|\bar{x} - x^k\|_2 / \|\bar{x}\|_2$: relative error

ART (Algebraic Reconstruction Technique)

Algorithm: ART (Classical Kaczmarz)

Initialization: choose an arbitrary $x^0 \in \mathbb{R}^n$

Iteration: for k = 0, 1, 2, ..., maxiter or until convergence:

$$x^{k,0} = x^{k-1}$$

$$x^{k,i} = P_C \left(x^{k,i-1} + \lambda \frac{b_i - a_i^T x^{k,i-1}}{\|a_i\|_2^2} a_i \right), \qquad i = 1, \dots, m$$
$$x^k = x^{k-1,m}$$

Characteristics

- Relaxation parameter $\lambda \in [0,2]$
- Projection P_C
- Fast initial convergence.
- Parallelism at the level of an inner product

SIRT (Simultaneous Iter. Reconstr. Tech.)

Algorithm: SIRT

Initialization: choose an arbitrary $x^0 \in \mathbb{R}^n$, and two SPD matrices $M \in \mathbb{R}^{m \times m}$ and $T \in \mathbb{R}^{n \times n}$.

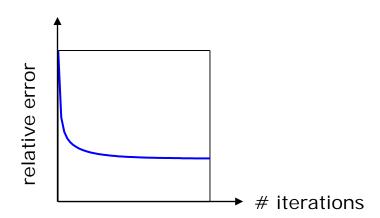
Iteration: for $k = 0, 1, 2, \ldots, maxiter$ or until convergence:

$$x^{k} = P_{C}(x^{k-1} + \lambda T A^{T} M (b - A x^{k-1}))$$

Characteristics

- Relaxation parameter $\lambda \in [\,0\,,\,2/\|A^TA\|_2\,]$
- Projection P_C
- Convergence + relaxation depends on T and M
- Slow initial convergence.
- Parallelism at the level of a matrix-vector product

Performance



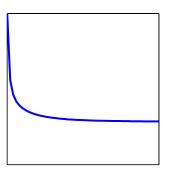
13 projections

$m \times n$	t/iter
$13 \cdot 128^2 \times 64^3$	$0.08 \mathrm{\ s}$
$13 \cdot 256^2 \times 128^3$	$0.93~\mathrm{s}$
$13 \cdot 512^2 \times 256^3$	$10.8 \mathrm{\ s}$

Test Problem:

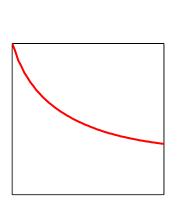
- parallel-beam tomography,
- 3D Shepp-Logan phantom, Schabel (2006).

Performance



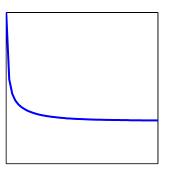
$m \times n$	t/iter	t/iter
	$0.08~\mathrm{s}$	$0.08~\mathrm{s}$
$13 \cdot 256^2 \times 128^3$	$0.93~\mathrm{s}$	$1.02 \mathrm{\ s}$
$13 \cdot 512^2 \times 256^3$	10.8 s	14.7 s

Intel Xeon E5620 2.40 GHz (1 core)



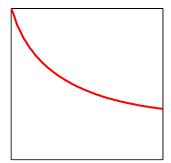
Same number of flops! The difference is due to the cache: ART reuses row a_i immediately.

Performance



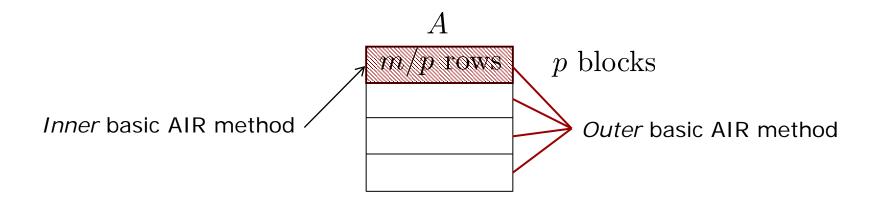
	t/iter	t/iter
	$0.08~\mathrm{s}$	
$13 \cdot 256^2 \times 128^3$	$0.93 \mathrm{\ s}$	$0.41~\mathrm{s}$
$13 \cdot 512^2 \times 256^3$	$10.8 \mathrm{\ s}$	4.12 s

Intel Xeon E5620 2.40 GHz (4 cores)



Block Methods

$$A = \begin{pmatrix} A_1 \\ A_2 \\ \vdots \\ A_p \end{pmatrix}, \quad b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_p \end{pmatrix}, \qquad A_{\ell} \in \mathbb{R}^{m_{\ell} \times n}, \quad \ell = 1, \dots, p,$$



Parallelism given by the tradeoff: m/p rows vs. p blocks

Block-Sequential Method

Inner method = SIRT / outer method = ART

Algorithm: Block-Sequential

Initialization: choose an arbitrary $x^0 \in \mathbb{R}^n$

Iteration: for k = 0, 1, 2, ..., maxiter or until convergence:

$$x^{k,0} = x^{k-1}$$

$$x^{k,\ell} = P_C \left(x^{k,\ell-1} + \lambda T A_\ell^T M_\ell \left(b_\ell - A_\ell x^{k,\ell-1} \right) \right), \quad \ell = 1,2,\dots,p$$

$$x^k = x^{k-1,p}$$

Eggermont, Herman & Lent (1981)

Characteristics

- Semi-convergence depends on p:
 - \triangleright If p = 1, we recover SIRT
 - \triangleright If p = m, we recover ART
- Parallelism at the level of a mat-vec product of size m/p

Block-Parallel method

Inner method = ART / outer method = SIRT

Algorithm: Block-Parallel

Initialization: choose an arbitrary $x^0 \in \mathbb{R}^n$

Iteration: for $k = 0, 1, 2, \ldots$, maxiter or until convergence

for
$$\ell = 1, \dots, p$$
 execute in parallel $y^{0,\ell} = x^{k-1}$

$$y^{i,\ell} = y^{i-1,\ell} + \lambda^{\ell} \frac{b_i - a_i^T y^{i-1,\ell}}{\|a_i\|_2^2} a_i, \qquad i = 1, \dots, m_{\ell}$$

$$x^{k,\ell} = y^{m_\ell,\ell}$$

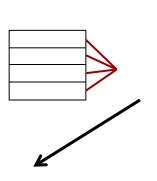
$$x^{k+1} = \sum_{\ell=1}^{p} D^{\ell} x^{k,\ell}$$

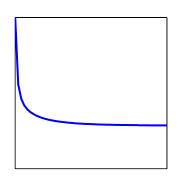
Characteristics

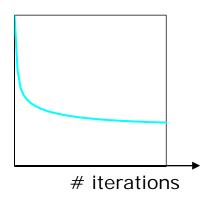
Gordon & Gordon (2005): CARP

- Semi-convergence depends on p:
 - \triangleright If p = 1, we recover ART
 - \triangleright If p = m, we recover SIRT
- Parallelism is coarse-grained: p blocks

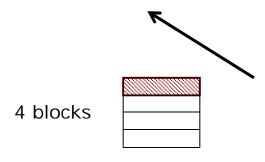
Block Sequential

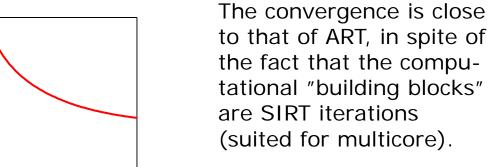




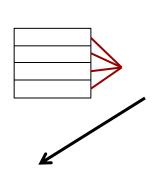


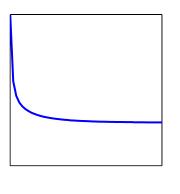
	l '	t/iter	,
$13 \cdot 128^2 \times 64^3$	$0.08~\mathrm{s}$	$0.04~\mathrm{s}$	$0.05~\mathrm{s}$
$13 \cdot 256^2 \times 128^3$	$0.93~\mathrm{s}$	$0.41~\mathrm{s}$	$0.48 \mathrm{\ s}$
$13 \cdot 512^2 \times 256^3$	10.8 s	4.12 s	$4.36 \mathrm{\ s}$

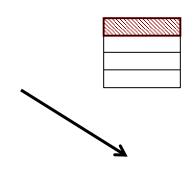


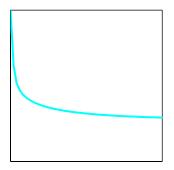


Block Parallel

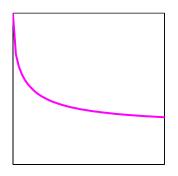


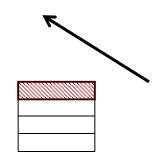


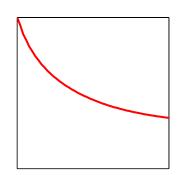


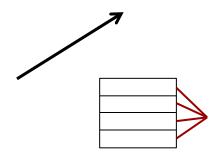


	l '	,	t/iter	,
$13 \cdot 128^2 \times 64^3$				
$13 \cdot 256^2 \times 128^3$	$0.93~\mathrm{s}$	$0.41~\mathrm{s}$	$0.48 \mathrm{\ s}$	$0.37~\mathrm{s}$
$13 \cdot 512^2 \times 256^3$	$10.8 \mathrm{\ s}$	$4.12 \mathrm{\ s}$	$4.36 \mathrm{\ s}$	$5.41~\mathrm{s}$









Fair Comparison of the Methods ...

It is quite easy to make an unfair comparison between the different methods: choose a bad λ for the method you don't like.

To make a *fair* comparison between the methods, we must choose the value of λ that is (near) optimal for each method!

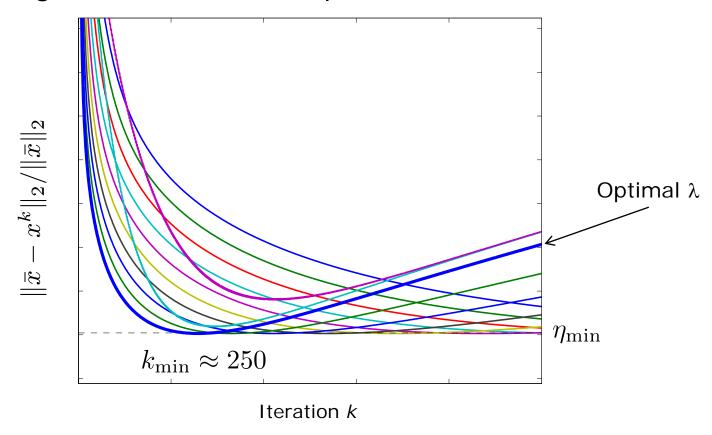
What do we mean by "(near) optimal"?

Use **training** (implemented in AIR Tools):

- Choose a test problem with a known solution, and which resembles the class of problems you need to solve.
- Find the parameter λ that gives fastes semi-convergence.

Training for Optimal λ

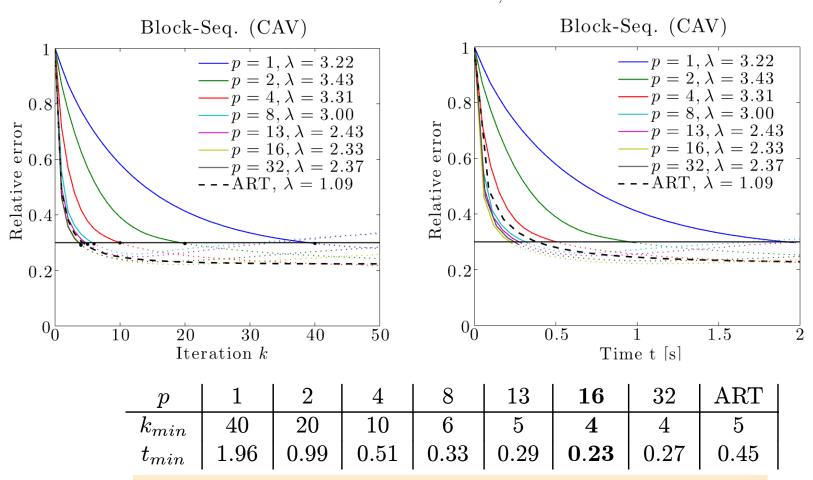
Semi-convergence and relaxation parameter λ



Optimal λ reaches min. error η_{\min} in fewest iterations k_{\min}

Preliminary Results

$$m = 13 \times 128^2, n = 64^3$$



The advantage of "block sequential" over standard ART is due to the improved use of the multicore architecture.

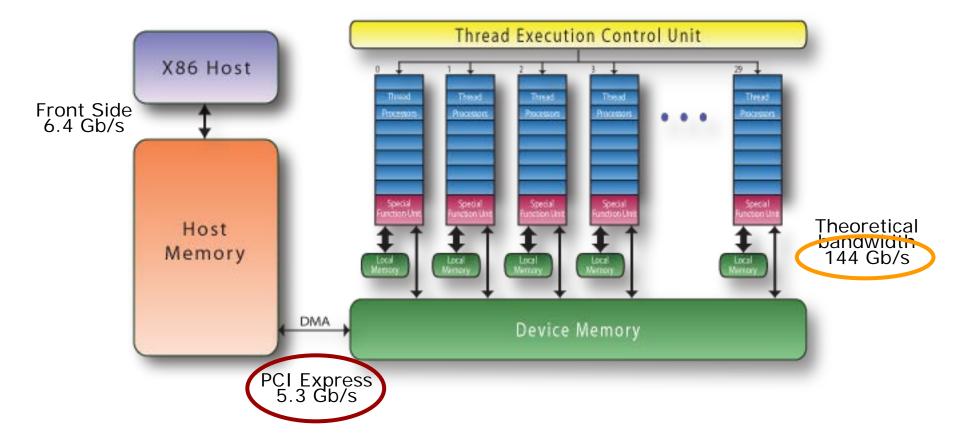
Typical GPU Hardware

Host

Intel Xeon 4 cores 2.4 GHz 38 Gflop/s (DP)

Accelerator (GPU)

Nvidia C2050 "Fermi" 448 cores 1.15 GHz 515 Gflop/s (DP)



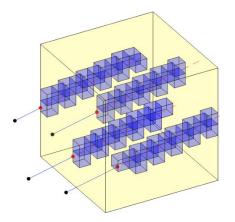
Towards a GPU Algorithm

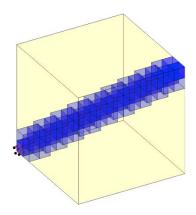
The best way to utilize the GPU is to give it tasks with very finegrained parallelism.

Think of "SIMD" – single instruction-stream multiple data-stream.

In *tomography*, it is easy to find sets of rows that are orthogonal due to the structure of zeros/nonzeros.

Thus, a re-ordering of the rows can produce blocks with mutually orthogonal rows.





Fine-Grained Parallelism

Consider a block A_{ℓ} whose rows are all *structurally orthogonal*, i.e., their nonzeros are located such that $a_i^T a_j$ for all $i \neq j$.

Now consider the sequential updates, for $i \neq j$:

$$\hat{x} = x + \lambda \frac{b_i - a_i^T x}{\|a_i\|_2^2} a_i$$

$$\hat{x} = \hat{x} + \lambda \frac{b_j - a_j^T \hat{x}}{\|a_i\|_2^2} a_j$$

Since there is no overlap between the locations of the nonzeros in a_i and a_j , we can compute the updates in parallel. If \mathcal{I} and \mathcal{J} denote the indices of the nonzeros in a_i and a_j , with $\mathcal{I} \cap \mathcal{J} = \emptyset$, we have:

$$\hat{x}(\mathcal{I}) = x(\mathcal{I}) + \lambda \frac{b_i - a_i^T x}{\|a_i\|_2^2} a_i(\mathcal{I})$$

$$\hat{x}(\mathcal{J}) = x(\mathcal{J}) + \lambda \frac{b_j - a_j^T x}{\|a_i\|_2^2} a_j(\mathcal{J}).$$

GPU-Block-Sequential Method

Inner method = ART-Orthogonal / outer method = ART

Algorithm: GPU-Block-Sequential

Initialization: choose an arbitrary $x^0 \in \mathbb{R}^n$

Iteration: for $k = 0, 1, 2, \ldots, maxiter$ or until convergence:

$$x^{k,0} = x^{k-1}$$

for $l = 1, \ldots, p$ execute sequentially

for $i = 1, ..., m_l$ execute in parallel

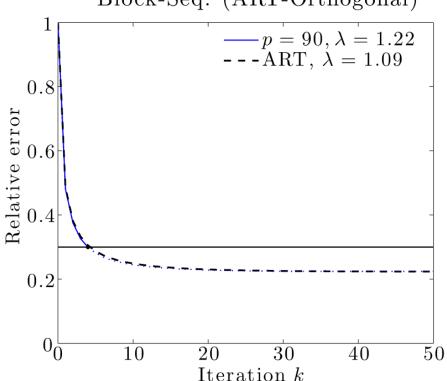
$$x^{k,l} = P_C\left(x^{k,l-1} + \lambda \frac{(b_l)_i - (A_l)_i^T x^{k,l-1}}{\|(A_l)_i\|_2^2} (A_l)_i\right)$$

$$x^k = x^{k-1,p}$$

Characteristics

- Convergence identical to ART.
- Here p is the number of blocks required for each block to have mutually orthogonal rows.
- Parallelism is fine-grained $\approx m/p$.

Preliminary GPU Results



threads: the CPU has 4 cores, but hyper-threading is allowed

threads	1	2	4	8	16	\mathbf{GPU}	ART
t/iter	0.0961	0.0629	0.0475	0.0429	0.0517	0.0484	0.0850

The limiting factor is the CPU-GPU bandwidth, because blocks of *A* are moved to the GPU in each iteration.

Conclusions

Multicore

- Block-sequential methods are able to achieve convergence similar to that of ART (error reduction per iteration),
- and with smaller computing time because we can utilize the multicore architecture.

GPU

- With a suitable row ordering and choice of blocks, we can utilize the fine-grained parallelism of GPUs.
- Next step: generate the matrix A on the GPU (don't move it).

