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What is probabilistic/Bayesian data analysis?

Probabilistic/Bayesian data analysis (inversion) attempts
to weigh each piece of processed information objectively.

Probabilities are used as weights.




Consistency - a principal theme
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e Inconsistency means contradictory results. If results are
contradictory, at least one of them is wrong!

e Every step in the computational procedure must, in principle,
be documented and agreed upon between analysts, thereby
securing a high degree of objectivity.

e Quantification alone is not sufficient to avoid contradictions
and therefore potentially meaningless results.

e In the following, we shall focus on consistency as a principal
theme.



Conditions satisfied by physical laws

* Unique solution (for given initial/boundary conditions)

* Predictions must be independent of the reference
frame



PARAMETERIZATION



Model Parameters, observable parameters
and their relation

* Model parameters:

m = (mll mz, )mM)
* Data:

d — (dll dz, e dN)
* Physical relation (law):

d=g(m)



A plan for data analysis

Parameterize the unknown structure m: m = f(m) to
obtain model parameters m.

Solve an inverse problem d = g(m) to infer information
about m from data d.

Draw conclusions about the structure: m - m.



The parameterization process

e Aninfinite set of orthonormal basis functions

(pl(x’ y' Z)) QDZ(X; }’; Z); (Pg(x, y, Z),
* Parameters m{,m,, ...

m,y,2) = ) Mupn(x,,2)
n=1



The parameterization process

* Truncatethe expansionif necessary
* Keep many parameters to ensure an accurate
representation

N
M,y,2) = ) man(%,9,2)
n=1
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Example: A seismic model of the Earth
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A model not unlike the P-wave velocity in the Earth's interior



Example: A seismic model of the Earth
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Example: A seismic model of the Earth

16000 16000
14000 1 14000 A
12000 1 12000 -
10000 10000 A
Vp Vp
m | 8000 [31} 8000
Ky N
6000 - 6000
4000 4000 1
2000 2000
07\ T T T T T T T T T 0 - T T T T T T T T T
0 0.1 02 03 04 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Depth (Earth Radii) Depth (Earth Radii)
True model Approximated model

Representation through 256 Haar-basis
functions



Note! We have invariant results
from different bases!

 Even when two analysts choose different set of
base functions, they will obtain (almost) the same

model.
* Theresultis invariantunder a change of base

functions.
* The methodis consistent: Thereis agreement

between the results from different analysts.



Models with few model parameters

Lunar seismic velocity profile to
1000 km depth
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[From Nakamura, JGR88,677-686,1983]



Sparse Models

“Extraordinary ...
claims require [

extrao rdln@{y”%. ,

evidence”
Carl Sagan

thelogicofscience.com



Reasons for sparsity

To make the problem computationallyfeasible
To build-in prior knowledge about structure
To avoid unnecessary detail (Occam’s Razor)
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Example: Different sparse models of the Earth
with the same misfit: The Fourier basis
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Example: Different sparse models of the Earth
with the same misfit: The Haar basis
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Probabilities

Where do they come from?
What do they mean?
How can they be substantiated?
How can they be challenged?



The basic mathematics



The rules of probability: Kolmogorov (1933)

@ Probabilities lie between O
and 1

® The total probability of all
possible outcomes is 1

® The probability P(A or B)
for two non-overlapping

events A and B is equal to
P(A) + P(B)

Universal set

Sample space, §

Andrei Nikolaevich Kolomogorov
(1903-1987)



(A) expressed through a probability density

ion p(x) over the parameter space X, is

A probability density funct

defined such that

p(x)dx for ACX. (1)

and P(A)

P(X)=1,
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A multi-modal probability density function over a 2-D space



Types and Sources of Uncertainty

o Probability densities as limits of sampling
densities

o Probability from symmetries
o Probability from subjective belief

« Beware of transformed probabilities!



Probability densities as limit sampling densities

0 10 g/cm 20 g/cm

Histogram of mass densities of 571 different known minerals in the
Earth's crust (Johnson and Olhoeft, 1984)



Probability densities as limit sampling densities

0.20
015
0.10
0.05
0.00

2D probability density as the limit of a 2D sampling density

In high-dimensional spaces, we can also view a probability density
as a limit sample density. This is the case when we use Monte
Carlo methods to sample the probability density of the solution to
an inverse problem (the posterior probability density).



Probability densities as limit sampling densities
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Young's experiment and the quantum dualism between particles
and waves



The assumtion of stationarity in time and space: A way of

getting more samples

@ In order to obtain many
samples it is, in practice,
required to use samples from
a wide range of points in
space/time.

@® It is therefore necessary to
assume that these samples
satisfy stationarity: that
their probability distribution
Is independent of space
/time.

8.0

8.5+ e

10.0 - =

Seismic recordings with noise. The
noise distribution may be found by
assuming that the noise is stationary
in time- and space.



Example of the use of stationarity in space: Sequential
simulation

e Pattern frequency distributions obtained from a training
Image.

e The method assumes that the training image is stationary, to
ensure that patterns from the same distribution can be
sampled at different locations in the image.

(Normalized. Only non-zero entries)
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A training image (left), and its pattern histogram.



Example of the use of stationarity in space: Sequential
simulation

e If the pattern histogram obtained from the training image is
used as a pattern probability density, we can generate new
patterns from this density, and create new images.

i
NS

A training image (left), and a new realization generated from the pattern
histogram (right).



Challenging the probability distribution: Is the histogram a
likely outcome of a sampling experiment?

e For the probability
distribution to be an
[\ acceptable prediction,
MY our histogram must
be a likely result of
the sampling process

|
\
: p
4
V4

| e

0 10 g/cm 20 g/cm

The probability of getting the histogram 7y, ..., Tk with N counts,
is given by the Multinomial Distribution p1, ..., pk :

N!
7T1!...7TK

P(r1,..., k) = - p TR

However, the fact that a histogram has a high probability does not
guarantee that the probability distribution is correct!



Challenging the probability distribution: Is the histogram a
likely outcome of a sampling experiment?

In principle, building a probability density from a histogram (or a
'cloud of sample points’) should be done by observing how the
sampling density/heights of the histogram columns evolves during
the sampling.

% Heads as number of throws increases

R

0

Proportion of heads

o &0 100 150 200 250 200 350 400

Number of throws

Percentage of heads and tails for an increasing number of
tosses of a fair coin



Challenging the probability distribution: Is the histogram a
likely outcome of a sampling experiment?

Monitoring the evolution of the sampling density or histogram
heights (or any function hereof) during Monte Carlo sampling will
reveal if the sampling density is not yet close to the probability
density.
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Evolution of parameter values (left) and data misfit (right) during a Monte
Carlo sampling of solutions to an inverse problem (Univ. Texas at Austin, 2013)



Probability from symmetries: Rotation invariance
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Random generators based on rotation invariance




Probability from symmetries: Translation invariance

A={x+t | xeA}

Translation invariance means that two similar, translated volumes
have the same probability



Probability from subjective belief

Ames (1950)

Best practice:
Avoid probabilities based on purely subjective belief!



Probability from subjective belief

Gaussian distribution centered at the 'best guess’ and with a dispersion
expressing how unsure the analyst is.

e Subjective probabilities are probabilities without an empirical
or theoretical basis.

e Subjective probabilities are personal and therefore inconsistent.

Best practice:
Avoid probabilities based on purely subjective belief!



The most common application of subjective probabilities

Consider a linear inverse problem

d=Gm (2)

Two possible solutions to this problem are:

@ Bayesian (Stochastic) inversion:
m = (GTCBlG + C/\_ﬂl)_lcTCBldobs

where Cyp, defines a Gaussian probability distribution often
chosen from subjective belief.

® If weput Cp =1and Cy, = E%I, this expression is equal to the
expression used in inversion through Tikhonov Regularization:

m= (G "G+ 1) 1G dgps

where € is an undefined, arbitrary parameter to be determined
from external considerations.



Conflict between subjective probabilities

Bob’s conductivity distribution

.2 0.25 03
Conductivity

1 ( — Fo 5)2
falp) = Sp\/% exp (_ 4 Z:;Zb )
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gs(0) = sz o (— 25,72 >
1 1

d 1 - os2
fB(p)=|d—Z gB<a)=;Smexp(—(/p25i”)

)

Alice’s resistivity distribution:

5
Resistivity

Bob’s computed

resistivity distribution:




PROBABILISTIC INVERSION



Bayes Theorem

From the definition of conditional probability density

f(x,y)
V) =
f(x1y) f(y)
we get:
F(mld)= f(dIim)f(m)

f(d)



Bayes Theorem

From the definition of conditional probability density

f(x,y)
V) =
Jx3) f(y)
we get:
F(mld)= f(dIm)f(m)

@ N
posterior/ / i

likelihood



CONDITIONAL PROBABILITIES AND
THEIR INHERENT INCONSISTENCY



Computing a conditional probability density

K.-A. Lie et al. (2012)



Computing a conditional probability density

Same conditional PDF ?

K.-A. Lie et al. (2012)



The Borel Paradox

e Near-Cartesian
1T
reference frame
 Equal volumes T
have EC.]L.JEE!| g
probabilities
—1
—1

* Conditional proba- 4
bility density is

constant




Non-Cartesian
reference frame
Equal volumes
have equal
probabilities

Conditional proba-
bility density is not
constant

The Borel Paradox
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The Borel Paradox

The metric of the
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The metric of the
blue subspace is
unchanged.

Conditional proba-
bility density has
changed

The Borel Paradox
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Conclusion on conditional probability densities

Conditional probability densities are inconsistent,
because different analysts may arrive at different
(conflicting) results.

Borel’s paradox disappears if f(x)is replaced with

9(x) = f(x) / u(x)

where u(x) is a nonzero volume density
(Mosegaard and Tarantola, 2002)




Constructing a probabilistic solution



Constructing a probabilistic solution

From the laws of physics:

dpred = g(m)

Noise . contaminating the observed data:

d = dpred +n

Assuming that f,, (n) is the density of the noise, we have
the likelihood function:

f(dlm) = f,(d — g(m))



Constructing a probabilistic solution

Likelihood function:
f(dim) = fo(d — g(m))

Assuming a normal (Gaussian) distribution with zero mean
and variance o ?:
n?
fa(m) = exp (— —)

2072

giving

(d —g(m))2>

2072

f(dlm) = exp (—



Constructing a probabilistic solution

If we have the marginal probability density f(m), often
termed the prior density f (m), we have

f(m,d) = f(d|m)f(m)

If we have observed a concrete realization d,,, of d, we can
compute

p(m) = f(m,dps)

known as the posterior distribution of m.



The linear Gaussian problem

The likelihood function:

f(dlm) = exp (—%(d — 6m)TC;l(d - (;m)>

where C,, 1s the noise covariance matrix, and

1
f(m) = exp (_E(m —m,) €' (m —m0)>

where mg 1s the center (mean) of the prior density, and
C,, 1s the prior model covariance matrix.

From the above expressions we get:

p(m) = exp(—S(m))
where

S(m) = %[(d - 6m)" C;'(d — Gm) + (m —my)"C,,' (m — my)].



The linear Gaussian problem

It can be shown that the posterior

p(m) = exp(—S(m))
with

S(m) =3 [(d — 6m)TCi*(d — 6m) + (m — m) Ca(m —mo)]
has mean
My =my + (6TC16 + Cpt) ™ 6T CRY(d — Gmo)
and covariance

Coose = (6TC716 + C;1) ™.



Example: Inversion of seismic data
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A selection of deep seismic reflections from the Earth’s lithosphere (DRUM profile,
BIRPS, 1984). Right: The noise found by assuming horizontal stratification and
temporal and spatial stationarity of noise in the data.



Example: Inversion of seismic data

At the ith surface point we measure the seismogram

diq
di = = Gmi
din
where

* m; is the ith column in the matrix M = {ml-j} containing the

unknown acoustic impedances at points (i, ) in the subsurface.
* Gisgiven by G = WD where D performs a differentiation of m;
to obtain an approximate reflectivity
W is a matrix that convolves the reflectivity with the source
signal (wavelet)



Example: Inversion of seismic data
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Top left: Recorded wavelet. Top right: Histogram of noise values estimated from data.
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Histogram of reflection coefficients derived from field measurements of rock properties.



Example: Inversion of seismic data

Log Acoustic Impedance
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A posteriori mean model obtained from a linear, Gaussian inversion of the
data shown in Figure 6 (left). The figure shows a plot of log(I/Iy) where I is
the acoustic impedance and I is a (here arbitrary) reference value of I.



Gaussian, mildly non-linear problems

A mildly non-linear inverse problem:

d = g(m)
can be solved iteratively by local approximation to a linear
inverse problem:

_ 1\~ 1 ,.T ~_ _
My = My + (6L G+ ) (6,,CxH(d - g(my)) — Crit(my. — my))

agi)
Gk — < .
am] m=my,

In the limit k — oo we obtain the local posterior covariance
(of the tangent Gaussian centered at m, ):

where

Cpost = (GHLCH1Go, + Ct) ™1



Probabilistic Solutions with
Geostatistical Constraints

Example: The Braided River Model



Example: Rakaia-River, New Zealand
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Examples of geo-information: Braided rivers

B sand Mudstone




Examples of geo-information: Braided rivers

A simple model of a braided river
(Strebelle, 2002)

g
B sand Mudstone

w A close-up of part of the pixeled model




Pattern statistics from a geological model




The frequency distribution

(Normalized. Only non-zero entries)
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Computing Prior Probability from a Reference Model

Reference Model What is the prior probability
of this model m?

A Freq.

Pattern # Pattern #



Computing Prior Probability from a Reference Model

Pattern histogram of the Pattern histogram of the
reference model test model m
A Freq. (P, o r PK) AFreq. (1T, ..., )

Pattern # Pattern #

Define the prior probability

f(m) = P(mq, ..., mg) = pfl ...pZK



Adding physics to ensure
invariant models?



Global Physical Constraints

A salt structure model

Tomography with PSR TR anE
vertical and lateral rays
S 5 i
i A

Cordua & Mosegaard, 2014



Global Physical Constraints

A salt structure model

Least Squares inversion
with simple Gaussian
prior

Cordua & Mosegaard, 2014



Global Physical Constraints

A salt structure model

Adding least-gravitational
energy and volume
preservation to the prior

Cordua & Mosegaard, 2014



