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What%is%probabilistic/Bayesian%data%analysis?

Probabilistic/Bayesian0data0analysis0(inversion)0attempts0
to0weigh0each0piece0of0processed0information0objectively.

Probabilities0are0used0as0weights.



Consistency - a principal theme

• Inconsistency means contradictory results. If results are
contradictory, at least one of them is wrong!

• Every step in the computational procedure must, in principle,
be documented and agreed upon between analysts, thereby
securing a high degree of objectivity.

• Quantification alone is not su�cient to avoid contradictions
and therefore potentially meaningless results.

• In the following, we shall focus on consistency as a principal
theme.



Conditions+satisfied+by+physical+laws

• Unique+solution+(for+given+initial/boundary+conditions)
• Predictions+must+be+independent+of+the+reference+
frame



PARAMETERIZATION



Model+Parameters,+observable+parameters+
and+their+relation

• Model+parameters:

• Data:

• Physical+relation+(law):



A"plan"for"data"analysis

• Parameterize" the"unknown"structure"m:"""! = #(%) to"
obtain"model&parameters&&!.

• Solve"an"inverse"problem""' = ((!) to"infer"information"
about"! from"data""'.

• Draw"conclusions"about"the structure:"""!) → )%.



The+parameterization+process

• An+infinite+set+of+orthonormal+basis+functions+
+1(-, /, 0), +2(-, /, 0), +3(-, /, 0), …

• Parameters+%1,%2), …)

% -, /, 0 = 4 %5+5(-, /, 0)
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• Truncate+the+expansion+if+necessary
• Keep+many+parameters+to+ensure+an+accurate++++

representation

The+parameterization+process

% -, /, 0 = 4 %5+5(-, /, 0)
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Example:+A+seismic+model+of+the+Earth

A+model+not+unlike+the+PMwave+velocity+in+the+Earth's+interior+



Representation+through+128+Fourier
(sin/cos)Mbasis+functions++

True+model Approximated+model

Example:+A+seismic+model+of+the+Earth



Representation+through+256+HaarMbasis+
functions++

True+model Approximated+model

Example:+A+seismic+model+of+the+Earth



Note!+We+have+invariant+results
from+different+bases!

• Even+when+two+analysts+choose+different+set+of+
base+functions,+they+will+obtain+(almost)+the+same+
model.+

• The+result+is+invariantunder+a+change+of+base+
functions.

• The+method+is+consistent:+There+is+agreement+
between+the+results+from+different+analysts.



[From+Nakamura,+JGR88,+677M686,+1983]

Lunar:seismic:velocity:profile:to:
1000:km:depth

Models+with+few+model+parameters



Sparse+Models



Reasons+for+sparsity

• To+make+the+problem+computationally+feasible+
• To+buildMin+prior+knowledge+about+structure+
• To+avoid+unnecessary+detail+(Occam’s+Razor)



Example:+Different+sparse+models+of+the+Earth+
with+the+same+misfit:+The+Fourier+basis

Representation+through+4+Fourier
(sin/cos)Mbasis+functions++

True+model Approximated+model



Representation+through+16+HaarMbasis+
functions++

True+model Approximated+model

Example:+Different+sparse+models+of+the+Earth+
with+the+same+misfit:+The+Haar+basis



Probabilities

Where do they come from?
What do they mean?

How can they be substantiated?
How can they be challenged?



The basic mathematics



The rules of probability: Kolmogorov (1933)

1 Probabilities lie between 0
and 1

2 The total probability of all
possible outcomes is 1

3 The probability P(A or B)
for two non-overlapping
events A and B is equal to
P(A) + P(B)



P(A) expressed through a probability density

A probability density function p(x) over the parameter space X , is
defined such that

P(X ) = 1 , and P(A) =

Z

A
p(x)dx for A ✓ X . (1)

A multi-modal probability density function over a 2-D space



Types and Sources of Uncertainty

• Probability densities as limits of sampling
densities

• Probability from symmetries

• Probability from subjective belief

• Beware of transformed probabilities!



Probability densities as limit sampling densities

Histogram of mass densities of 571 di↵erent known minerals in the
Earth’s crust (Johnson and Olhoeft, 1984)



Probability densities as limit sampling densities

2D probability density as the limit of a 2D sampling density

In high-dimensional spaces, we can also view a probability density
as a limit sample density. This is the case when we use Monte
Carlo methods to sample the probability density of the solution to
an inverse problem (the posterior probability density).



Probability densities as limit sampling densities

Young’s experiment and the quantum dualism between particles
and waves



The assumtion of stationarity in time and space: A way of
getting more samples

1 In order to obtain many
samples it is, in practice,
required to use samples from
a wide range of points in
space/time.

2 It is therefore necessary to
assume that these samples
satisfy stationarity: that
their probability distribution
is independent of space
/time.

Seismic recordings with noise. The
noise distribution may be found by
assuming that the noise is stationary
in time- and space.



Example of the use of stationarity in space: Sequential
simulation

• Pattern frequency distributions obtained from a training

image.
• The method assumes that the training image is stationary, to
ensure that patterns from the same distribution can be
sampled at di↵erent locations in the image.

A training image (left), and its pattern histogram.



Example of the use of stationarity in space: Sequential
simulation

• If the pattern histogram obtained from the training image is
used as a pattern probability density, we can generate new
patterns from this density, and create new images.

A training image (left), and a new realization generated from the pattern
histogram (right).



Challenging the probability distribution: Is the histogram a
likely outcome of a sampling experiment?

• For the probability
distribution to be an
acceptable prediction,
our histogram must
be a likely result of
the sampling process

The probability of getting the histogram ⇡
1

, . . . ,⇡
K

with N counts,
is given by the Multinomial Distribution p

1

, . . . , p
K

:

P(⇡
1

, . . . ,⇡
K

) =
N!

⇡
1

! . . .⇡
K

!
p

1

⇡
1 . . . p

K

⇡
K .

However, the fact that a histogram has a high probability does not
guarantee that the probability distribution is correct!



Challenging the probability distribution: Is the histogram a
likely outcome of a sampling experiment?

In principle, building a probability density from a histogram (or a
’cloud of sample points’) should be done by observing how the
sampling density/heights of the histogram columns evolves during
the sampling.

Percentage of heads and tails for an increasing number of
tosses of a fair coin



Challenging the probability distribution: Is the histogram a
likely outcome of a sampling experiment?

Monitoring the evolution of the sampling density or histogram
heights (or any function hereof) during Monte Carlo sampling will
reveal if the sampling density is not yet close to the probability
density.

Evolution of parameter values (left) and data misfit (right) during a Monte

Carlo sampling of solutions to an inverse problem (Univ. Texas at Austin, 2013)



Probability from symmetries: Rotation invariance

Random generators based on rotation invariance



Probability from symmetries: Translation invariance

Translation invariance means that two similar, translated volumes
have the same probability



Probability from subjective belief

Ames (1950)

Best practice:

Avoid probabilities based on purely subjective belief!



Probability from subjective belief

Gaussian distribution centered at the ’best guess’ and with a dispersion
expressing how unsure the analyst is.

• Subjective probabilities are probabilities without an empirical
or theoretical basis.

• Subjective probabilities are personal and therefore inconsistent.

Best practice:

Avoid probabilities based on purely subjective belief!



The most common application of subjective probabilities

Consider a linear inverse problem

d = Gm (2)

Two possible solutions to this problem are:

1 Bayesian (Stochastic) inversion:

m = (GT

C

�1

D

G+ C

�1

M

)�1

G

T

C

�1

D

d

obs

where C

M

defines a Gaussian probability distribution often
chosen from subjective belief.

2 If we put C
D

= I and C

M

= 1

✏2 I, this expression is equal to the
expression used in inversion through Tikhonov Regularization:

m = (GT

G+ ✏2I)�1

G

T

d

obs

where ✏ is an undefined, arbitrary parameter to be determined
from external considerations.



Conflict)between)subjective)probabilities
Bob’s)conductivity)distribution Alice’s)resistivity)distribution:

Bob’s)computed)
resistivity)distribution:

σ ρ=1/σ



PROBABILISTIC+INVERSION



Bayes&Theorem

f (m |d) = f (d |m) f (m)
f (d)

From&the&definition&of&conditional&probability&density

we&get:

f (x | y) ≡ f (x, y)
f (y)



f (m |d) = f (d |m) f (m)
f (d)

From&the&definition&of&conditional&probability&density

we&get:

f (x | y) ≡ f (x, y)
f (y)

posterior
prior

likelihood

Bayes&Theorem



CONDITIONAL)PROBABILITIES)AND)
THEIR)INHERENT)INCONSISTENCY



Computing*a*conditional*probability*density

K.6A.*Lie*et*al.*(2012)



Computing*a*conditional*probability*density

Same*conditional**PDF*?K.6A.*Lie*et*al.*(2012)



The*Borel*Paradox

• Near6Cartesian*
reference*frame

• Equal*volumes*
have*equal*
probabilities

• Conditional*proba6
bility*density* is*
constant

A



• Non6Cartesian*
reference*frame

• Equal*volumes*
have*equal*
probabilities

• Conditional*proba6
bility*density* is*not)
constant

B

The*Borel*Paradox*



• The*metric*of*the*
blue*subspace is)
unchanged. B

The*Borel*Paradox

• Conditional*proba6
bility*density*has)
changed



• The*metric*of*the*
blue*subspace is)
unchanged. B

The*Borel*Paradox

• Conditional*proba6
bility*density*has)
changed

Probabilities) have)changed)!



Conclusion*on*conditional*probability*densities

• Conditional*probability*densities*are*inconsistent,*
because*different*analysts*may*arrive*at*different*
(conflicting)*results.

Borel’s*paradox*disappears*if* f(x) is replaced*with

g(x)%=%f(x)%/%μ(x)

where*μ(x) is*a*nonzero*volume%density
(Mosegaard*and*Tarantola,*2002)



Constructing+a+probabilistic+solution+



Constructing+a+probabilistic+solution

From+the+laws+of+physics:

Noise+! contaminating+the+observed+data:

Assuming+that+"! ! is+the+density+of+the+noise,+we+have+
the+likelihood(function:+

" # $ = "! #& − ( $ +

#)*+# = ,($)

# = #)*+# + !



Likelihood+function:

" # $ = "! #& − ( $ +

Assuming+a+normal+(Gaussian)+distribution+with+zero+mean+
and+variance+01:+

"! ! = exp − !1
201

giving+

" # $ = exp − #& − ( $ 6

201 +

Constructing+a+probabilistic+solution



If+we+have+the+marginal+probability+density+" $ ,+often+
termed+the+prior(density " $ ,+we+have

If+we+have+observed+a+concrete+realization++#789 of+#,++we+can+
compute+

" $,# = " # $ " $

;($) = " $,#789 +

known+as+the+posterior(distribution of+$.+

Constructing+a+probabilistic+solution



The+linear+Gaussian+problem

" # $ = exp −12 #& − =$ >?!@A #& − =$

" $ = exp − 12 $& −$B >?$@A $& −$B

where ?! is the noise covariance matrix, and

where $B is the center (mean) of the prior density, and
?$ is the prior model covariance matrix. 

The+likelihood+function:

From the above expressions we get:
;($) &= exp −C($) +

where

C($) = 1
2 #&− =$ >?!@D #& − =$ + $& −$B >?$@D $& − $B . +



The+linear+Gaussian+problem
It can be shown that the posterior

;($) &= exp −C($) +
with

C($) = 1
2 #& − =$ >?!@D #&− =$ + $& − $B >?$@D $& − $B

has mean

$FGHI = $B &+ =>?J@A= + ?$@A @A&=>?!@A(# − =$BK

?FGHI = =>?J@A= + ?$@A @A.
and covariance



Record no.
0 1 2 3 4 5 6 7 8 9 10 11

Tw
o-

w
ay

 ti
m

e

5

5.2

5.4

5.6

5.8

6

6.2

6.4

6.6

6.8

Data

Record no.
0 2 4 6 8 10

Tw
o-

w
ay

 ti
m

e

5

5.2

5.4

5.6

5.8

6

6.2

6.4

6.6

6.8

Noise

A+selection+ of+deep+seismic+reflections+from+the+Earth’s+lithosphere+ (DRUM+profile,+
BIRPS,+1984).+Right:+The+noise+found+by+assuming+horizontal+stratification+and+
temporal+and+spatial+stationarity+of+noise+in+the+data.+

Example:+Inversion+of+seismic+data



At#the#!th#surface#point#we#measure#the#seismogram

"# =
%&'
⋮
%&)

= *+,#

where
• ,# is#the#!th#column#in#the#matrix#- = .!/ containing#the#
unknown#acoustic#impedances#at#points#(!, /) in#the#subsurface.

• + is#given#by#+ = 34 where#4 performs#a#differentiation#of#,#
to#obtain#an#approximate#reflectivity

• 3 is#a#matrix#that#convolves#the#reflectivity#with#the#source#
signal (wavelet)

Example:#Inversion#of#seismic#data



Example:+Inversion+of+seismic+data
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Top+left:+Recorded+wavelet.+Top+right:+Histogram+of+noise+values+estimated+ from+data.+
Bottom+left:+Estimate+ of+the+(temporal)+covariance+function+of+the+noise.+Bottom+right:+
Histogram+of+reflection+coefficients+derived+from+field+measurements+of+rock+properties.+



Example:+Inversion+of+seismic+data

A"posteriori"mean"model"obtained"from"a"linear,"Gaussian"inversion"of"the"
data"shown"in"Figure"6"(left)."The"figure"shows"a"plot"of"log(V/VX)where"V is"
the"acoustic" impedance"and"VX is"a"(here"arbitrary)"reference"value"of"V.



Gaussian,+mildly+nonTlinear+problems

A"mildly"non@linear" inverse"problem:
! = '(()

can+be+solved+iteratively+by+local+approximation+to+a+linear+
inverse+problem:
(YZ? = (Y + [\(;\

<=H>?;\ + =(>?]
>?
*(;\

<=)>?(!− '((Y)) − =(>?((Y *− (@)I

where
;\ =

^_M
^PQ (`(\

. +

In"the"limit"a → ∞ we"obtain"the"local"posterior"covariance"
(of"the"tangent"Gaussian"centered"at"(d):

=DEFG ≈ (;df =H>B;d + =(>?)>?. +



Probabilistic+Solutions+with+
Geostatistical+Constraints

Example:)The)Braided)River)Model



Example:+Rakaia;River,+New+Zealand



Example:+Congo;River



Examples+of+geo;information:+Braided+rivers

Sand Mudstone



Examples+of+geo;information:+Braided+rivers
A)simple)model)of)a)braided)river
(Strebelle,)2002)

Sand Mudstone

A)closeBup)of)part)of)the)pixeled)model



Pattern+statistics+from+a+geological+model



The+frequency+distribution

(Normalized.)Only)nonBzero)entries)



Computing+Prior+Probability+from+a+Reference+Model

What)is)the)prior)probability)
of)this)model)!?

Reference)Model

Freq.

Pattern)#

Freq.

Pattern)#



Computing+Prior+Probability+from+a+Reference+Model

Pattern)histogram)of)the)
reference)model

Freq.

Pattern)#

Freq.

Pattern)#

Pattern)histogram)of)the)
test)model)!

" ! ≡ $ %&, … , %) = +!
%&!… %)!

-&./ …-).0

%&, … , %)-&, … , -)

Define)the)prior)probability



Adding&physics&to&ensure
invariant&models?



Global&Physical&Constraints

A"salt"structure"model

Tomography"with"
vertical"and"lateral"rays

Cordua"&"Mosegaard,"2014



A"salt"structure"model

Least"Squares"inversion"
with"simple"Gaussian"
prior

Cordua"&"Mosegaard,"2014

Global&Physical&Constraints



A"salt"structure"model

Adding"least:gravitational&
energy and"volume
preservation to"the"prior

Cordua"&"Mosegaard,"2014

Global&Physical&Constraints


