

Block algebraic methods for CT and their performance

 $f(x + \Delta x) = \sum_{i=0}^{\infty} \frac{(\Delta x)^i}{i!} f(x + \Delta x) = \sum_{i=0}^{\infty} \frac{(\Delta x)^i}{i!} f(x$

Hans Henrik Brandenborg Sørensen DTU Computing Center <hhbs@dtu.dk>

DTU Compute

Department of Applied Mathematics and Computer Science

Contributions from students etc.

DTU

SIAM J. SCI. COMPUT. Vol. 36, No. 5, pp. C524–C546 \bigodot 2014 Society for Industrial and Applied Mathematics

MULTICORE PERFORMANCE OF BLOCK ALGEBRAIC ITERATIVE RECONSTRUCTION METHODS*

HANS HENRIK B. SØRENSEN † and PER CHRISTIAN HANSEN †

Abstract. Algebraic iterative methods are routinely used for solving the ill-posed sparse linear

The Walnut case

Forward projection

Several different types:

Line, splatting, footprint, interpolation, ext. rays

Correction

AA^T can be pre-calculated (as forward projection).

Back projection Matrix operation: $\mathbf{x} := \mathbf{x} + \lambda \mathbf{A}^{\mathrm{T}} \mathbf{y}$

Several different types:

Line, splatting, footprint, interpolation, ext. rays

• Correction $(y = (b-Ax) ./diag(AA^T))$

Back projection ($x := x + \lambda A^T y$)

Back projection ($x := x + \lambda A^T y$)

SIRT reconstruction in ASTRA

% Set up a GPU reconstruction cfg = astra_struct('SIRT3D_CUDA'); cfg.ReconstructionDataId = rec_id; cfg.ProjectionDataId = proj_id; cfg.option.GPUindex = 0; % Create the algorithm object alg_id = astra_mex_algorithm('create', cfg); % Run 64 SIRT iterations astra_mex_algorithm('iterate', alg_id, 64); % Get the result rec = astra_mex_data3d('get', rec_id);

Block Methods

• Forward projection (A_0x)

• Correction $(y = (b - A_0 x) ./diag(A_0 A_0^T))$

Back projection ($x := x + \lambda A_0^T y$)

• Forward projection (A_1x)

• Correction $(y = (b - A_1 x) ./diag(A_1 A_1^T))$

Back projection ($x := x + \lambda A_1^T y$)

Forward projection (A₂x)

• Correction $(y = (b-A_2x) ./diag(A_2A_2^T))$

Back projection ($x := x + \lambda A_2^T y$)

Forward projection (A₃x)

• Correction $(y = (b-A_3x) ./diag(A_3A_3^T))$

Back projection ($x := x + \lambda A_3^T y$)

Block method using ASTRA


```
for iter = 1:num iter
    for blk = 1:num blks
        % Create the algorithm object
        alg id = astra mex algorithm('create', cfg{blk});
        % Run 1 SIRT iteration with this block
        astra mex algorithm('iterate', alg id, 1);
        % Delete algorithm object to conserve memory
        astra mex algorithm('delete', alg id);
    end
end
% Get the result
rec = astra mex data3d('get', rec id);
```


NTII

Block methods converge faster

Fully optimized block code

GPU	GTX 680	K20	K40	K80(x1)	TITAN X
Runtime (s)	47.0	25.1	20.7	22.8	10.5

<1 min is ok! - but what about larger problems?</p>

Distributed / Multi-GPU computing

Domain decomposition

Communication

Setting up for distributed/multi-GPU computing
 Top level domain decomposition of the solution x
 One domain for each MPI thread / GPU

We communicate the FP once per block Note that only part of the FP is required from others

Multi-GPU results (K80)

Ν	256	512	1024	2048
1 GPU	3.33	22.8	181	-
2 GPU	2.31	12.6	95.6	798
4 GPU	2.08	7.68	51.1	398
8 GPU	2.00	4.65	26.4	211

Walnut case - full reconstruction time (2 iters) without disk I/O in seconds.

Solution size: N³ / Projections: 400xN²

April 5, 2016

COST Training School, DTU Compute

40

DTU

GPU cluster results

CPU cluster results (Xeon 2680)

Ν	256	512	1024	2048
20 cores	5.54	38.7	316	2380
40 cores	3.39	21.8	171	1260
80 cores	1.94	13.3	97,3	700
160 cores	1.36	9.55	60.1	413
320 cores	-	8.01	46.5	314

Walnut case - full reconstruction time (2 iters) without disk I/O in seconds.

Solution size: N³ / Projections: 400xN²

Summary

- Block methods are convenient for large-scale reconstructions where runtimes are an issue
- ASTRA allows you to do block methods with little effort and good performance for limited blocks
- Block methods are well suited for GPUs & CPUs
 - We have an implementation with one projection per block that performs close to SIRT runtimes
- Multi-GPU approach is also efficient by domain decomposition and communication of the FP
- GPU-cluster performance scales but operates at the limit of current communication bandwidths

Thank you for your attention!

Block method

Formulated in terms of matrices (as yesterday)

Basic Block-Iteration algorithm

```
\begin{aligned} \mathbf{x}^{(0)} &= \text{initial vector} \\ \text{for } k &= 0, 1, 2, \dots \\ \mathbf{x}^{(k,0)} &= \mathbf{x}^{(k)} \\ \text{for } l &= 0, 1, 2, \dots, \text{blks-1} \\ \mathbf{x}^{(k,l+1)} &= P_{\mathcal{C}} \left( \mathbf{x}^{(k,l)} + \lambda_k \mathbf{D}^{-1} \mathbf{A}_l^T \mathbf{M}_l^{-1} (\mathbf{b}_l - \mathbf{A}_l \mathbf{x}^{(k,l)}) \right) \\ \text{end} \\ \mathbf{x}^{(k+1)} &= \mathbf{x}^{(k,\text{blks})} \\ \text{end} \end{aligned}
```