
Block algebraic methods for CT
and their performance

Hans Henrik Brandenborg Sørensen
DTU Computing Center
<hhbs@dtu.dk>

March 18, 2015 PPCES 2015, RWTH Aachen University 1

Contributions from students etc.

COST Training School, DTU Compute 2 April 5, 2016

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. SCI. COMPUT. c⃝ 2014 Society for Industrial and Applied Mathematics
Vol. 36, No. 5, pp. C524–C546

MULTICORE PERFORMANCE OF BLOCK ALGEBRAIC
ITERATIVE RECONSTRUCTION METHODS∗

HANS HENRIK B. SØRENSEN† AND PER CHRISTIAN HANSEN†

Abstract. Algebraic iterative methods are routinely used for solving the ill-posed sparse linear
systems arising in tomographic image reconstruction. Here we consider the algebraic reconstruction
technique (ART) and the simultaneous iterative reconstruction techniques (SIRT), both of which rely
on semiconvergence. Block versions of these methods, based on a partitioning of the linear system,
are able to combine the fast semiconvergence of ART with the better multicore properties of SIRT.
These block methods separate into two classes: those that, in each iteration, access the blocks in a
sequential manner, and those that compute a result for each block in parallel and then combine these
results before the next iteration. The goal of this work is to demonstrate which block methods are
best suited for implementation on modern multicore computers. To compare the performance of the
different block methods, we use a fixed relaxation parameter in each method, namely, the one that
leads to the fastest semiconvergence. Computational results show that for multicore computers, the
sequential approach is preferable.

Key words. algebraic iterative reconstruction, ART, SIRT, block methods, relaxation param-
eter, semiconvergence, tomographic imaging

AMS subject classifications. 65F10, 65R32

DOI. 10.1137/130920642

1. Introduction. Discretizations of tomographic imaging problems often lead
to large sparse systems of linear equations with noisy data:

(1.1) Ax ≃ b, b = b̄+ e, A ∈ Rm×n.

Here b̄ = A x̄ denotes the exact data, x̄ is the exact solution, and e is the perturbation
consisting of additive noise. The sparse matrix A models the forward problem; there
are no restrictions on its dimensions, and both over- and underdetermined systems
arise in applications—depending on the amount of data in a given experiment. For
examples of such systems, see [3], [4], [29], and [40].

Iterative algorithms are ideal for solving the large-scale problem (1.1) [30], and
several classes of methods have emerged [19]. They have in common that they produce
regularized solutions to problems with noisy data, i.e., solutions that approximate the
exact and unknown solution x̄ without being too sensitive to the perturbation e. This
work focuses on two specific classes of algebraic iterative methods, both of which are
often used in tomographic imaging: the algebraic reconstruction technique (ART) and
the simultaneous iterative reconstruction technique (SIRT), and in particular block
extensions of these two methods. In our approach, we assume that the matrix A
is generated prior to the reconstruction procedure and provided as input data, in
contrast to matrix-free approaches.

The number of computing cores on contemporary computer platforms increases
rapidly, which spawns an increased need for parallelism. The importance of utilizing

∗Submitted to the journal’s Software and High-Performance Computing section May 10, 2013;
accepted for publication (in revised form) July 11, 2014; published electronically October 9, 2014.

http://www.siam.org/journals/sisc/36-5/92064.html
†Department of Applied Mathematics and Computer Science, Technical University of Denmark,

DK-2800 Lyngby, Denmark (hhbs@dtu.dk, pcha@dtu.dk). This project was supported by grants 274-
07-0065 and 09-070032 from the Danish Research Council for Technology and Production Sciences.

C524

D
ow

nl
oa

de
d

12
/1

6/
14

 to
 1

30
.2

25
.9

3.
16

3.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Block Algebraic Methods for 3D
Image Reconstructions on GPUs

Kenneth Kjær Nielsen

Kongens Lyngby 2014

The Walnut case

COST Training School, DTU Compute 3 April 5, 2016

Xradia 410 Versa micro-CT scanner at DTU Physics

www.imaging.dtu.dk

48 / 49

1600 projections (1024×1024)

Forward projection

n  Matrix operation:
 y = Ax

n  Several different types:
q Line, splatting, footprint, interpolation, ext. rays

COST Training School, DTU Compute 4 April 5, 2016

Correction

n  Vector operation:
 y: = (b-y)./diag(AAT)

n  AAT can be pre-calculated (as forward projection).

COST Training School, DTU Compute 5 April 5, 2016

Back projection

n  Matrix operation:
 x := x + λATy

n  Several different types:
q Line, splatting, footprint, interpolation, ext. rays

COST Training School, DTU Compute 6 April 5, 2016

SIRT

n  Forward projections (Ax)

COST Training School, DTU Compute 7 April 5, 2016

SIRT

n  Forward projections (Ax)

COST Training School, DTU Compute 8 April 5, 2016

SIRT

n  Forward projections (Ax)

COST Training School, DTU Compute 9 April 5, 2016

SIRT

n  Forward projections (Ax)

COST Training School, DTU Compute 10 April 5, 2016

SIRT

n  Correction (y = (b-Ax) ./diag(AAT))

COST Training School, DTU Compute 11 April 5, 2016

SIRT

n  Back projection (x := x + λATy)

COST Training School, DTU Compute 12 April 5, 2016

SIRT

n  Back projection (x := x + λATy)

COST Training School, DTU Compute 13 April 5, 2016

1 FP x 4
1 Correction x 4
1 BP x 4

Total:

SIRT reconstruction in ASTRA

COST Training School, DTU Compute 14 April 5, 2016

10
0

bl
ks
"

Iters" 1" 2" 4" 8" 16" 32" 64"

 2
 b

lk
s"

 4
 b

lk
s"

8.05 s" 15.8 s" 31.3 s" 61.7 s" 125 s" 248 s" 775 s"

% Set up a GPU reconstruction!
cfg = astra_struct('SIRT3D_CUDA');!
cfg.ReconstructionDataId = rec_id;!
cfg.ProjectionDataId = proj_id;!
cfg.option.GPUindex = 0;!
% Create the algorithm object!
alg_id = astra_mex_algorithm('create', cfg);!
% Run 64 SIRT iterations!
astra_mex_algorithm('iterate', alg_id, 64); !
% Get the result!
rec = astra_mex_data3d('get', rec_id);!

Block Methods

COST Training School, DTU Compute 15 April 5, 2016

Block method (one per projection)

n  Forward projection (A0x)

COST Training School, DTU Compute 16 April 5, 2016

Block method (one per projection)

n  Correction (y = (b-A0x) ./diag(A0A0
T))

COST Training School, DTU Compute 17 April 5, 2016

Block method (one per projection)

n  Back projection (x:= x + λA0
Ty)

COST Training School, DTU Compute 18 April 5, 2016

Block method (one per projection)

n  Forward projection (A1x)

COST Training School, DTU Compute 19 April 5, 2016

Block method (one per projection)

n  Correction (y = (b-A1x) ./diag(A1A1
T))

COST Training School, DTU Compute 20 April 5, 2016

Block method (one per projection)

n  Back projection (x:= x + λA1
Ty)

COST Training School, DTU Compute 21 April 5, 2016

Block method (one per projection)

n  Forward projection (A2x)

COST Training School, DTU Compute 22 April 5, 2016

Block method (one per projection)

n  Correction (y = (b-A2x) ./diag(A2A2
T))

COST Training School, DTU Compute 23 April 5, 2016

Block method (one per projection)

n  Back projection (x:= x + λA2
Ty)

COST Training School, DTU Compute 24 April 5, 2016

Block method (one per projection)

n  Forward projection (A3x)

COST Training School, DTU Compute 25 April 5, 2016

Block method (one per projection)

n  Correction (y = (b-A3x) ./diag(A3A3
T))

COST Training School, DTU Compute 26 April 5, 2016

Block method (one per projection)

n  Back projection (x:= x + λA3
Ty)

COST Training School, DTU Compute 27 April 5, 2016

4 FP
4 Corrections
4 BP

Total:

Block method using ASTRA

COST Training School, DTU Compute 28 April 5, 2016

...!
for iter = 1:num_iter!
 for blk = 1:num_blks!
 % Create the algorithm object!
 alg_id = astra_mex_algorithm('create', cfg{blk});!
 % Run 1 SIRT iteration with this block!
 astra_mex_algorithm('iterate', alg_id, 1); !
 % Delete algorithm object to conserve memory!
 astra_mex_algorithm('delete', alg_id);!
 end!
end!
% Get the result!
rec = astra_mex_data3d('get', rec_id);!

Block method reconstruction

COST Training School, DTU Compute 29 April 5, 2016

 1
 b

lk"
10

0
bl

ks
"

Iters" 1" 2" 4" 8" 16" 32" 64"

 2
 b

lk
s"

 4
 b

lk
s"

8.05 s" 15.8 s" 31.3 s" 61.7 s" 125 s" 248 s" 775 s"

Block method reconstruction

COST Training School, DTU Compute 30 April 5, 2016

 1
 b

lk"
10

0
bl

ks
"

Iters" 1" 2" 4" 8" 16" 32" 64"

 2
 b

lk
s"

 4
 b

lk
s"

8.05 s" 15.8 s" 31.3 s" 61.7 s" 125 s" 248 s" 775 s"

Block method reconstruction

COST Training School, DTU Compute 31 April 5, 2016

 1
 b

lk"
10

0
bl

ks
"

Iters" 1" 2" 4" 8" 16" 32" 64"

 2
 b

lk
s"

 4
 b

lk
s"

Block method reconstruction

COST Training School, DTU Compute 32 April 5, 2016

 1
 b

lk"
8

bl
ks
"

Iters" 1" 2" 4" 8" 16" 32" 64"

 2
 b

lk
s"

 4
 b

lk
s"

Block method reconstruction

COST Training School, DTU Compute 33 April 5, 2016

 1
 b

lk"
8

bl
ks
"

Iters" 1"

6.88 s"

2" 4" 8" 16" 32" 64"

 2
 b

lk
s"

 4
 b

lk
s"

13.5 s" 26.8 s" 55.3 s" 106 s" 213 s" 424 s"

7.25 s" 14.3 s" 28.0 s" 55.8 s" 112 s" 225 s" 449 s"

8.05 s" 15.8 s" 31.3 s" 61.7 s" 125 s" 248 s" 555 s"

9.42 s" 18.5 s" 36.8 s" 72.9 s" 139 s" 281 s" 707 s"

Block methods converge faster

COST Training School, DTU Compute 34 April 5, 2016

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C536 H. H. B. SØRENSEN AND P. C. HANSEN

Table 2
Results for the large problem: The smallest relative error ηmin in the first step of Alg. ORP

from section 2.3. We use these values to set the overall target error to ηtarget = 1.05 ·0.196 = 0.206,
i.e., 5% above the global minimum, when comparing the different methods. The combinations of
methods and block sizes that do not reach this ηtarget in 50 iterations are not taken into account.

Blocks p 1 2 4 8 16 32 64 133 256 532

Block-It 0.201 0.203 0.204 0.205 0.201 0.200 0.200 0.200 0.200 0.200

SAP 0.200 0.199 0.199 0.197 0.197 0.198 0.199 0.206 0.213 0.258

CARP 0.201 0.201 0.197 0.196 0.198 0.198 0.199 0.207 0.213 0.218

PART 0.200 0.200 0.199 0.200 0.200 0.200 0.200 0.199 0.199 0.199

Iteration k

R
el

at
iv

e
er

ro
r

Block-It

0 10 20 30 40 500

0.2

0.4

0.6

0.8

1
p = 1, λ = 0.02
p = 2, λ = 0.03
p = 4, λ = 0.06
p = 8, λ = 0.13
p = 16, λ = 0.27
p = 32, λ = 0.45
p = 64, λ = 0.60
p = 133, λ = 0.59

Iteration k

R
el

at
iv

e
er

ro
r

SAP

0 10 20 30 40 500

0.2

0.4

0.6

0.8

1
p = 1, λ = 0.59
p = 2, λ = 0.79
p = 4, λ = 1.22
p = 8, λ = 1.73
p = 16, λ = 1.90
p = 32, λ = 2.39
p = 64, λ = 2.74
p = 133, λ = 2.90

Iteration k

R
el

at
iv

e
er

ro
r

PART

0 10 20 30 40 500

0.2

0.4

0.6

0.8

1
p = 1, λ = 0.48
p = 2, λ = 0.47
p = 4, λ = 0.48
p = 8, λ = 0.50
p = 16, λ = 0.51
p = 32, λ = 0.52
p = 64, λ = 0.53
p = 133, λ = 0.59

Iteration k

R
el

at
iv

e
er

ro
r

CARP

0 10 20 30 40 500

0.2

0.4

0.6

0.8

1
p = 1, λ = 0.59
p = 2, λ = 0.79
p = 4, λ = 1.22
p = 8, λ = 1.72
p = 16, λ = 2.08
p = 32, λ = 2.44
p = 64, λ = 2.90
p = 133, λ = 2.63

Fig. 4. Error histories of the different block methods for the large problem calculated using
64 threads. The legends indicate the number of blocks p and the value of the corresponding optimal
relaxation parameter λ. Note that some of the curves are indistinguishable from each other.

with the previous observations. The main differences compared to the small problem
are that

1. fewer iterations are required for ART to reach the target error;
2. more iterations are required for SIRT to reach the target error;
3. more blocks are required for Block-It before its convergence behavior is

indistinguishable from that of ART.
We also note that, in general, lower values of the optimal fixed relaxation parameter
are obtained.

PART exhibits almost identical convergence behavior for all block partitionings.
This is quite remarkable since the rows in the blocks are not strictly structurally
orthogonal (although almost so for p = 133 blocks). The reason for the identical
convergence is that the matrix A is extremely sparse for the problem considered;

D
ow

nl
oa

de
d

12
/1

6/
14

 to
 1

30
.2

25
.9

3.
16

3.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

SIRT"

133 blocks"

n  <1 min is ok! - but what about larger problems?

Fully optimized block code

COST Training School, DTU Compute 35 April 5, 2016

11.2 s" 22.5 s" 33.7 s"

40
0

bl
ks
"

1 iter" 2 iters" 3 iters"

GPU GTX 680 K20 K40 K80(x1) TITAN X

Runtime (s) 47.0 25.1 20.7 22.8 10.5

Distributed / Multi-GPU computing

COST Training School, DTU Compute 36 April 5, 2016

Domain decomposition

COST Training School, DTU Compute 37 April 5, 2016

 Domains: Detector: Angles!
 512 !
 +-------------------------------+ + +-----!
 / /| /| \ 400!
 / / | / | \ !
 / / | / | \ !
 512 / 3 / + 512 / | !
 / / /| / | !
 / / 3 / | / | !
 / / / | / | !
 +-------------------------------+ / + 512 + | 512 !
 | | / /| | | !
 128 | 3 | / 2 / | | | !
 | |/ / | | | !
 +-------------------------------+ / + | | !
 | | / /| | | !
 128 | 2 | / 1 / | | | !
 | |/ / | | | !
 +-------------------------------+ / + 512 | + !
 | | / / | / !
 128 | 1 | / 0 / | / !
 | |/ / | / !
 +-------------------------------+ / 512 | / 512 !
 | | / | / !
 128 | 0 | / | / !
 | |/ |/ !
 +-------------------------------+ + !
 512 !

Communication

n  Setting up for distributed/multi-GPU computing
q Top level domain decomposition of the solution x
q One domain for each MPI thread / GPU

n  We communicate the FP once per block
q Note that only part of the FP is required from others

COST Training School, DTU Compute 38 April 5, 2016

Multi-GPU results (K80)

COST Training School, DTU Compute 39 April 5, 2016

N 256 512 1024 2048
1 GPU 3.33 22.8 181 -
2 GPU 2.31 12.6 95.6 798
4 GPU 2.08 7.68 51.1 398
8 GPU 2.00 4.65 26.4 211

Solution size: N3 / Projections: 400xN2

Walnut case - full reconstruction time (2
iters) without disk I/O in seconds.

GPU cluster results

COST Training School, DTU Compute 40 April 5, 2016

1 min

GPUs

R
u
n
ti
m
e
(s
)

1 2 3 4 8 16 32 64
1

10

100

1000

N=512
N=1K
N=2K
N=4K
Amdahl’s law

0.997

 0.983

0.960

0.905

2 switches

GPU cluster results

COST Training School, DTU Compute 41 April 5, 2016
GPUs

S
p
ee
d
-u

p

1 2 4 8 16 32
1
2
4

8

16

32

N=512
N=1K
N=2K
N=4K
Amdahl’s law

0.997

 0.983

0.960

0.905

CPU cluster results (Xeon 2680)

COST Training School, DTU Compute 42 April 5, 2016

N 256 512 1024 2048
20 cores 5.54 38.7 316 2380
40 cores 3.39 21.8 171 1260
80 cores 1.94 13.3 97,3 700

160 cores 1.36 9.55 60.1 413
320 cores - 8.01 46.5 314

Solution size: N3 / Projections: 400xN2

Walnut case - full reconstruction time (2 iters)
without disk I/O in seconds.

Summary

n  Block methods are convenient for large-scale
reconstructions where runtimes are an issue

n  ASTRA allows you to do block methods with little
effort and good performance for limited blocks

n  Block methods are well suited for GPUs & CPUs
q We have an implementation with one projection per

block that performs close to SIRT runtimes
n  Multi-GPU approach is also efficient by domain

decomposition and communication of the FP
n  GPU-cluster performance scales but operates at

the limit of current communication bandwidths
COST Training School, DTU Compute 43 April 5, 2016

Summary

COST Training School, DTU Compute 44 April 5, 2016

Thank you for your attention!

Block method

n  Formulated in terms of matrices (as yesterday)

COST Training School, DTU Compute 45 April 5, 2016

Basic Block-Iteration algorithm

�(0) = initial vector
for k = 0,1,2, . . .

�(k,0) = �(k)
for � = 0,1,2, . . . ,blks�1

�(k,�+1) = PC
Ä
�(k,�) + �kD�1AT

� M
�1
� (b� �A� �(k,�))

ä

end
�(k+1) = �(k,blks)

end

1

