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MULTICORE PERFORMANCE OF BLOCK ALGEBRAIC
ITERATIVE RECONSTRUCTION METHODS∗
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Abstract. Algebraic iterative methods are routinely used for solving the ill-posed sparse linear
systems arising in tomographic image reconstruction. Here we consider the algebraic reconstruction
technique (ART) and the simultaneous iterative reconstruction techniques (SIRT), both of which rely
on semiconvergence. Block versions of these methods, based on a partitioning of the linear system,
are able to combine the fast semiconvergence of ART with the better multicore properties of SIRT.
These block methods separate into two classes: those that, in each iteration, access the blocks in a
sequential manner, and those that compute a result for each block in parallel and then combine these
results before the next iteration. The goal of this work is to demonstrate which block methods are
best suited for implementation on modern multicore computers. To compare the performance of the
different block methods, we use a fixed relaxation parameter in each method, namely, the one that
leads to the fastest semiconvergence. Computational results show that for multicore computers, the
sequential approach is preferable.
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1. Introduction. Discretizations of tomographic imaging problems often lead
to large sparse systems of linear equations with noisy data:

(1.1) Ax ≃ b, b = b̄+ e, A ∈ Rm×n.

Here b̄ = A x̄ denotes the exact data, x̄ is the exact solution, and e is the perturbation
consisting of additive noise. The sparse matrix A models the forward problem; there
are no restrictions on its dimensions, and both over- and underdetermined systems
arise in applications—depending on the amount of data in a given experiment. For
examples of such systems, see [3], [4], [29], and [40].

Iterative algorithms are ideal for solving the large-scale problem (1.1) [30], and
several classes of methods have emerged [19]. They have in common that they produce
regularized solutions to problems with noisy data, i.e., solutions that approximate the
exact and unknown solution x̄ without being too sensitive to the perturbation e. This
work focuses on two specific classes of algebraic iterative methods, both of which are
often used in tomographic imaging: the algebraic reconstruction technique (ART) and
the simultaneous iterative reconstruction technique (SIRT), and in particular block
extensions of these two methods. In our approach, we assume that the matrix A
is generated prior to the reconstruction procedure and provided as input data, in
contrast to matrix-free approaches.

The number of computing cores on contemporary computer platforms increases
rapidly, which spawns an increased need for parallelism. The importance of utilizing
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The Walnut case 
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Xradia 410 Versa micro-CT scanner at DTU Physics

www.imaging.dtu.dk

48 / 49

1600 projections (1024×1024) 



Forward projection 

n  Matrix operation:  
    y = Ax 

n  Several different types:  
q Line, splatting, footprint, interpolation, ext. rays 
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Correction 

n  Vector operation:  
    y: = (b-y)./diag(AAT) 
 
 
 
 
 
 
 
 
 

n  AAT can be pre-calculated (as forward projection). 
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Back projection 

n  Matrix operation:  
    x := x + λATy 
 

n  Several different types:  
q Line, splatting, footprint, interpolation, ext. rays 
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SIRT 

n  Forward projections (Ax) 
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SIRT 

n  Forward projections (Ax) 
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SIRT 

n  Forward projections (Ax) 
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SIRT 

n  Forward projections (Ax) 
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SIRT 

n  Correction (y = (b-Ax) ./diag(AAT)) 
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SIRT 

n  Back projection (x := x + λATy) 
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SIRT 

n  Back projection (x := x + λATy) 
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1 FP x 4 
1 Correction x 4 
1 BP x 4 

Total: 



SIRT reconstruction in ASTRA 
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% Set up a GPU reconstruction!
cfg = astra_struct('SIRT3D_CUDA');!
cfg.ReconstructionDataId = rec_id;!
cfg.ProjectionDataId = proj_id;!
cfg.option.GPUindex = 0;!
% Create the algorithm object!
alg_id = astra_mex_algorithm('create', cfg);!
% Run 64 SIRT iterations!
astra_mex_algorithm('iterate', alg_id, 64); !
% Get the result!
rec = astra_mex_data3d('get', rec_id);!



Block Methods 
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Block method (one per projection) 

n  Forward projection (A0x) 
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Block method (one per projection) 

n  Correction (y = (b-A0x) ./diag(A0A0
T)) 
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Block method (one per projection) 

n  Back projection (x:= x + λA0
Ty) 
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Block method (one per projection) 

n  Forward projection (A1x) 
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Block method (one per projection) 

n  Correction (y = (b-A1x) ./diag(A1A1
T)) 
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Block method (one per projection) 

n  Back projection (x:= x + λA1
Ty) 
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Block method (one per projection) 

n  Forward projection (A2x) 
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Block method (one per projection) 

n  Correction (y = (b-A2x) ./diag(A2A2
T)) 
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Block method (one per projection) 

n  Back projection (x:= x + λA2
Ty) 
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Block method (one per projection) 

n  Forward projection (A3x) 
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Block method (one per projection) 

n  Correction (y = (b-A3x) ./diag(A3A3
T)) 
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Block method (one per projection) 

n  Back projection (x:= x + λA3
Ty) 
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4 FP 
4 Corrections 
4 BP 

Total: 



Block method using ASTRA 
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...!
for iter = 1:num_iter!
    for blk = 1:num_blks!
        % Create the algorithm object!
        alg_id = astra_mex_algorithm('create', cfg{blk});!
        % Run 1 SIRT iteration with this block!
        astra_mex_algorithm('iterate', alg_id, 1); !
        % Delete algorithm object to conserve memory!
        astra_mex_algorithm('delete', alg_id);!
    end!
end!
% Get the result!
rec = astra_mex_data3d('get', rec_id);!



Block method reconstruction 
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Block method reconstruction 
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Block method reconstruction 
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Block method reconstruction 
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Block method reconstruction 
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Block methods converge faster 
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C536 H. H. B. SØRENSEN AND P. C. HANSEN

Table 2
Results for the large problem: The smallest relative error ηmin in the first step of Alg. ORP

from section 2.3. We use these values to set the overall target error to ηtarget = 1.05 ·0.196 = 0.206,
i.e., 5% above the global minimum, when comparing the different methods. The combinations of
methods and block sizes that do not reach this ηtarget in 50 iterations are not taken into account.

Blocks p 1 2 4 8 16 32 64 133 256 532

Block-It 0.201 0.203 0.204 0.205 0.201 0.200 0.200 0.200 0.200 0.200

SAP 0.200 0.199 0.199 0.197 0.197 0.198 0.199 0.206 0.213 0.258

CARP 0.201 0.201 0.197 0.196 0.198 0.198 0.199 0.207 0.213 0.218

PART 0.200 0.200 0.199 0.200 0.200 0.200 0.200 0.199 0.199 0.199

Iteration k
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er
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Fig. 4. Error histories of the different block methods for the large problem calculated using
64 threads. The legends indicate the number of blocks p and the value of the corresponding optimal
relaxation parameter λ. Note that some of the curves are indistinguishable from each other.

with the previous observations. The main differences compared to the small problem
are that

1. fewer iterations are required for ART to reach the target error;
2. more iterations are required for SIRT to reach the target error;
3. more blocks are required for Block-It before its convergence behavior is

indistinguishable from that of ART.
We also note that, in general, lower values of the optimal fixed relaxation parameter
are obtained.

PART exhibits almost identical convergence behavior for all block partitionings.
This is quite remarkable since the rows in the blocks are not strictly structurally
orthogonal (although almost so for p = 133 blocks). The reason for the identical
convergence is that the matrix A is extremely sparse for the problem considered;
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SIRT"

133 blocks"



 

 
 
 
n  <1 min is ok! - but what about larger problems? 

Fully optimized block code 
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11.2 s" 22.5 s" 33.7 s"

40
0 

bl
ks
"

1 iter" 2 iters" 3 iters"

GPU GTX 680 K20 K40 K80(x1)  TITAN X 

Runtime (s) 47.0 25.1 20.7 22.8 10.5 



Distributed / Multi-GPU computing 
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Domain decomposition 
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 Domains:                                             Detector:       Angles!
                            512                                                 !
             +-------------------------------+                    +       +-----!
            /                               /|                   /|        \ 400!
           /                               / |                  / |         \   !
          /                               /  |                 /  |          \  !
     512 /               3               /   +            512 /   |             !
        /                               /   /|               /    |             !
       /                               / 3 / |              /     |             !
      /                               /   /  |             /      |             !
     +-------------------------------+   /   + 512        +       | 512         !
     |                               |  /   /|            |       |             !
 128 |               3               | / 2 / |            |       |             !
     |                               |/   /  |            |       |             !
     +-------------------------------+   /   +            |       |             !
     |                               |  /   /|            |       |             !
 128 |               2               | / 1 / |            |       |             !
     |                               |/   /  |            |       |             !
     +-------------------------------+   /   +        512 |       +             !
     |                               |  /   /             |      /              !
 128 |               1               | / 0 /              |     /               !
     |                               |/   /               |    /                !
     +-------------------------------+   / 512            |   / 512             !
     |                               |  /                 |  /                  !
 128 |               0               | /                  | /                   !
     |                               |/                   |/                    !
     +-------------------------------+                    +                     !
                    512 !



Communication 

n  Setting up for distributed/multi-GPU computing 
q Top level domain decomposition of the solution x 
q One domain for each MPI thread / GPU 

n  We communicate the FP once per block 
q Note that only part of the FP is required from others 
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Multi-GPU results (K80) 
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N 256 512 1024 2048 
1 GPU 3.33 22.8 181 - 
2 GPU 2.31 12.6 95.6 798 
4 GPU 2.08 7.68 51.1 398 
8 GPU 2.00 4.65 26.4 211 

Solution size: N3 / Projections: 400xN2 

Walnut case - full reconstruction time (2 
iters) without disk I/O in seconds. 
 



GPU cluster results  
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GPU cluster results  
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CPU cluster results (Xeon 2680) 
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N 256 512 1024 2048 
20 cores 5.54 38.7 316 2380 
40 cores 3.39 21.8 171 1260 
80 cores 1.94 13.3 97,3 700 

160 cores 1.36 9.55 60.1 413 
320 cores - 8.01 46.5 314 

Solution size: N3 / Projections: 400xN2 

Walnut case - full reconstruction time (2 iters) 
without disk I/O in seconds. 
 



Summary 

n  Block methods are convenient for large-scale 
reconstructions where runtimes are an issue 

n  ASTRA allows you to do block methods with little 
effort and good performance for limited blocks 

n  Block methods are well suited for GPUs & CPUs 
q We have an implementation with one projection per 

block that performs close to SIRT runtimes 
n  Multi-GPU approach is also efficient by domain 

decomposition and communication of the FP 
n  GPU-cluster performance scales but operates at 

the limit of current communication bandwidths 
COST Training School, DTU Compute 43 April 5, 2016 



Summary 
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Thank you for your attention! 

  



Block method 

n  Formulated in terms of matrices (as yesterday) 
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Basic Block-Iteration algorithm

�(0) = initial vector
for k = 0,1,2, . . .

�(k,0) = �(k)
for � = 0,1,2, . . . ,blks�1

�(k,�+1) = PC
Ä
�(k,�) + �kD�1AT

� M
�1
� (b� �A� �(k,�))

ä

end
�(k+1) = �(k,blks)

end

1


