

Programming and physical design tools for flow-based biochips

Paul Pop

Technical University of Denmark

Programming biochips: vision

High-level language for describing biological protocols

Original protocol

Add 100 ul of 7X Lysis Buffer (Blue) and mix by inverting the tube 4-6 times.

Proceed to step 3 within 2 minutes.

```
1 ASSAY Glucose START
2 fluid Glucose, Reagent, Sample;
3 fluid a, b, c, d, e;
4 VARResult[5];
5 input Glucose 50;
6 input Reagent;
7 input Sample 30;
8 conflict Sample FOLLOWS Glucose WASH water;
9 a=MIX Glucose AND Reagent IN RATIOS1 : 1
```

Programming tools: compiler, assembler, debugger, simulator

From HLLs to graph models

We model a biochemical application as a graph

 Compiler: translates the protocol written in the HLL into the graph, doing mixing optimization

The graph model for an enzyme test

Considering a variable mixer module

Considering a 1:1 mixer module; mixing is optimized

Physical design: VLSI vs mVLSI

Allocation and schematic design

How many components, and how to interconnect them?

Mixer	3
Heater	2
Filter	1

- Input/ output ports
- Storage units
- Fluidic constraints

Flow layer placement

Flow-channel routing

Algorithms

Lee, Hadlock, Soukoup

Control layer routing

Algorithms

- Lee-Steiner: Route from component to nearest air inlet; rip-up and reroute
- PathFinder

Lee-Steiner's algorithm

Design for fault-tolerance: motivation example

Architecture without fault-tolerance

Application

Straightforward vs. optimized redundancy

 Straightforward solution: redundancy not optimized; architecture cost: 129

Optimized solution the introduction of redundancy is optimized; architecture cost: 96

The need for on-chip control

Slide from Prof. William Grover

On-chip control

Rule	Maintained at input/kPa	Maintained at control/kPa	Measured at output/kPa
PP	40	40	0
PV	40	-85	40
PN	40	0	40
VP	-85	40	0
VV	-85	-85	-83
VN	-85	0	0

Control circuit synthesis...

...and its physical design

