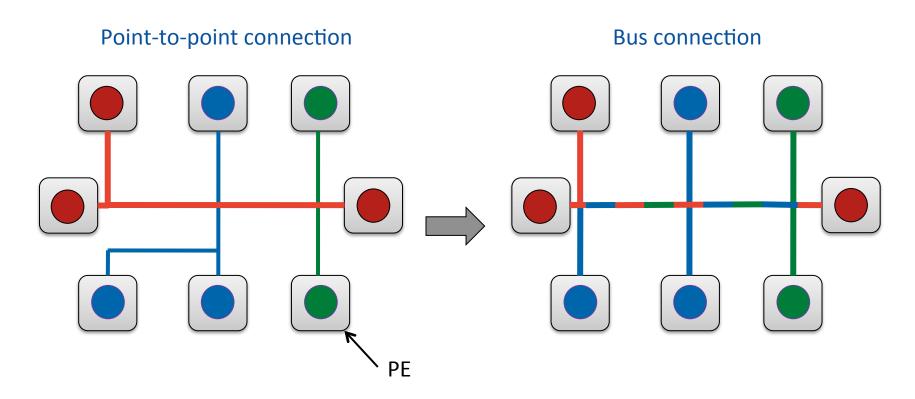


Timing Analysis of Rate Constrained Traffic for the TTEthernet Communication Protocol

Domițian Tămaș-Selicean¹, Paul Pop¹ and Wilfried Steiner²

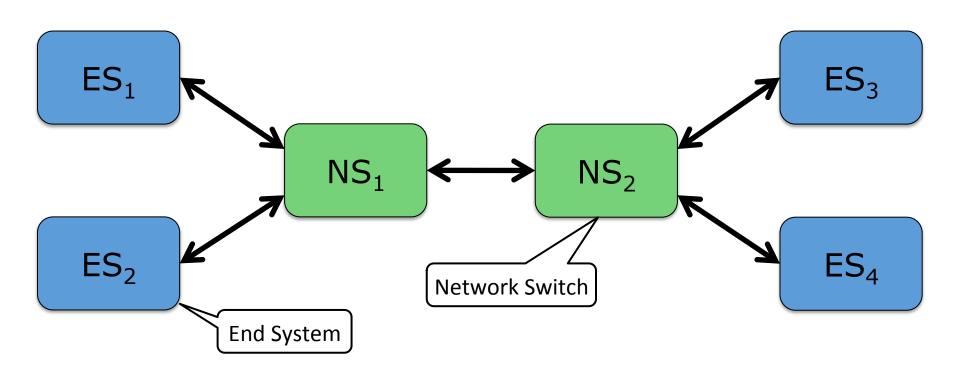
¹Technical University of Denmark

²TTTech Computertechnik AG



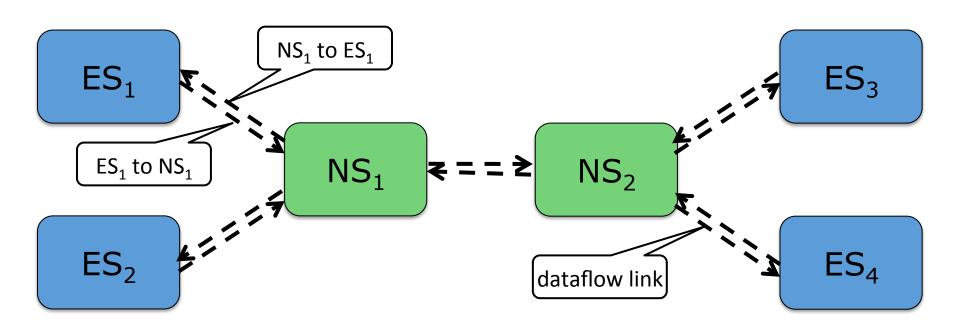
DTU Compute

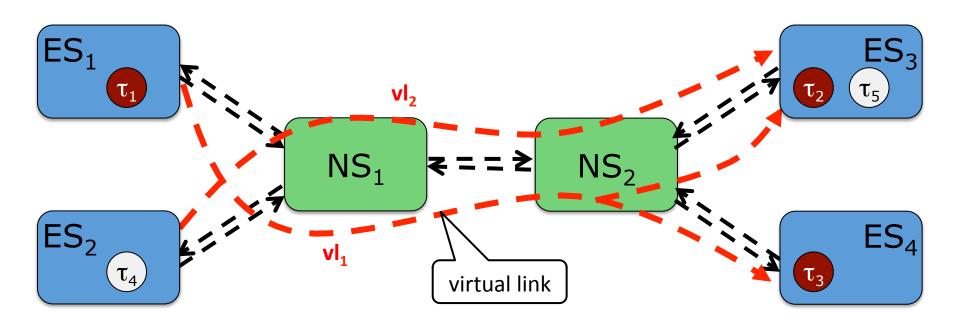
Department of Applied Mathematics and Computer Science

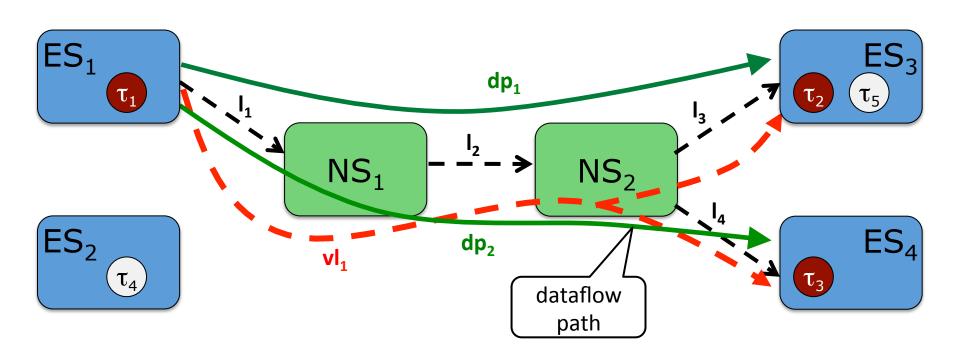

Motivation

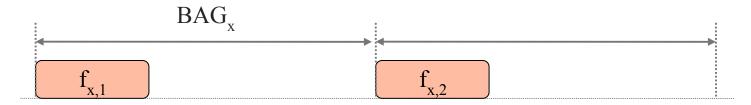
Real time applications implemented using distributed systems




- Application \mathcal{A}_1 -- highly critical
- lacksquare Application \mathcal{A}_2 -- critical
- Application \mathcal{A}_3 -- non-critical


- Reduces wiring and weight
- Mixed-criticality applications share the same network

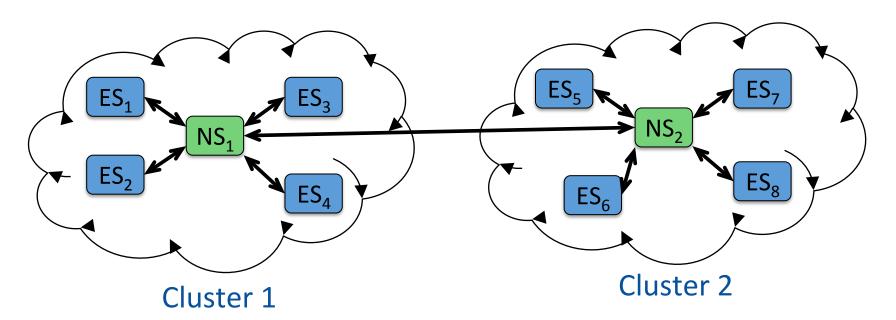

Full-Duplex Ethernet-based data network for safety-critical applications



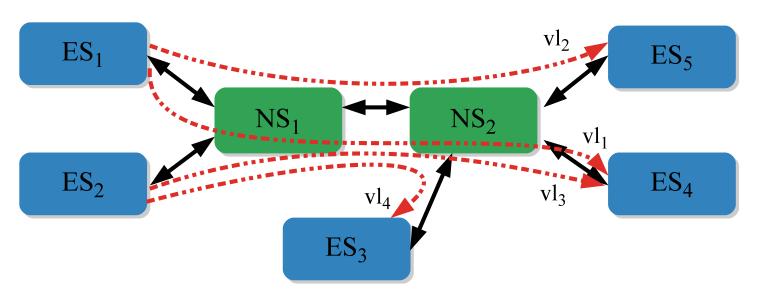
- Highly critical application \mathcal{A}_1 : τ_1 , τ_2 and τ_3
 - τ_1 sends message m_1 to τ_2 and τ_3
- Non-critical application \mathcal{A}_2 : τ_4 and τ_5
 - τ_4 sends message m_2 to τ_5

- Highly critical application \mathcal{A}_1 : τ_1 , τ_2 and τ_3
 - τ_1 sends message m_1 to τ_2 and τ_3
- Non-critical application \mathcal{A}_2 : τ_4 and τ_5
 - τ_4 sends message m_2 to τ_5

- Deterministic Event Triggered communication
- Separation of traffic enforced through "bandwidth allocation"
- Bandwidth Allocation Gap (BAG) minimum time interval between two consecutive instances of a frame on a virtual link

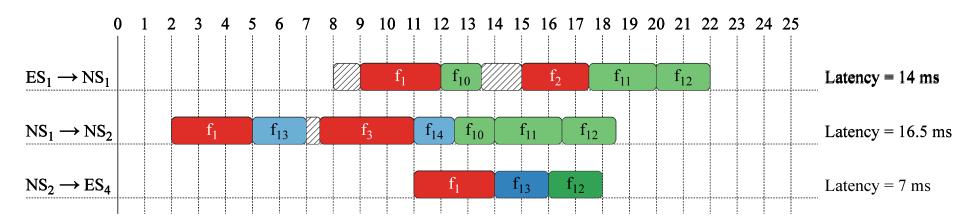

• Maximum bandwidth assigned to virtual link vl_i BW $(vl_i) = f_i$.size/BAG_i

TTEthernet

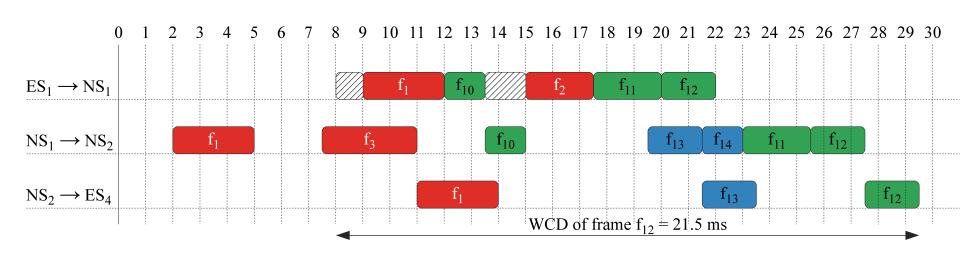

- ARINC 664p7 compliant
- Traffic classes:
 - synchronized communication
 - Time Triggered (TT)
 - unsynchronized communication
 - Rate Constrained (RC) ARINC 664p7 traffic class
 - Best Effort (BE) no timing guarantees
- Standardized as SAE AS 6802
- Marketed by TTTech Computertechnik AG
- Implemented by Honeywell on the NASA Orion Constellation

TTEthernet

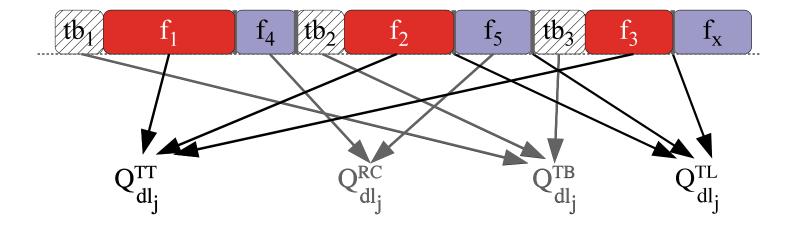
- Composed of clusters
- Each cluster has a clock synchronization domain
- Inter-cluster communication using RC traffic



Motivation

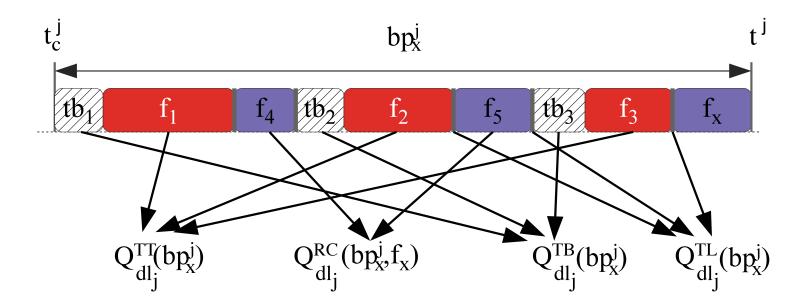


Frame	period (ms)	deadline (ms)	size (B)	C_i (ms)	Source	Dest
	(1113)	(1113)	(D)	(1115)		
$f_1 \in \mathcal{F}^{TT}$	32	32	683	3	ES_1	ES_4
$f_2 \in \mathcal{F}^{TT}$	32	32	555	2.5	ES_1	ES_5
$f_3 \in \mathcal{F}^{TT}$	32	32	808	3.5	ES_2	ES_3
$f_{10} \in \mathcal{F}^{RC}$	32	32	308	1.5	ES_1	ES_5
$f_{11} \in \mathcal{F}^{RC}$	32	32	555	2.5	ES_1	ES_5
$f_{12} \in \mathcal{F}^{RC}$	32	32	433	2	ES_2	ES_4
$f_{13} \in \mathcal{F}^{RC}$	32	32	433	2	ES_1	ES_4
$f_{14} \in \mathcal{F}^{RC}$	32	32	308	1.5	ES_2	ES_3


Motivation

WCD = 37.5 ms

Sources of delay


 $Q_{dl_i}^{TT}$ Delays from scheduled TT frames on dl_j

 $Q_{dl_i}^{RC}$ Delays from other RC frames transmitted on dl_j

Q_{dl_i} TT and RC traffic integration-induced delays

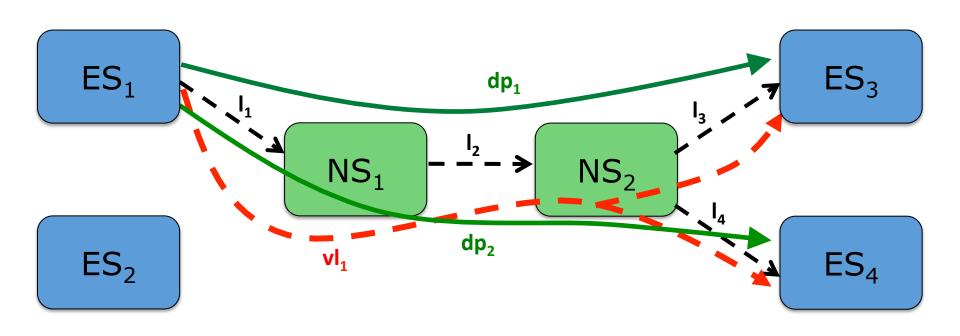
Q_{dl_i}^{TL} Technical latencies introduced by the network nodes

Busy Period

To compute the size:

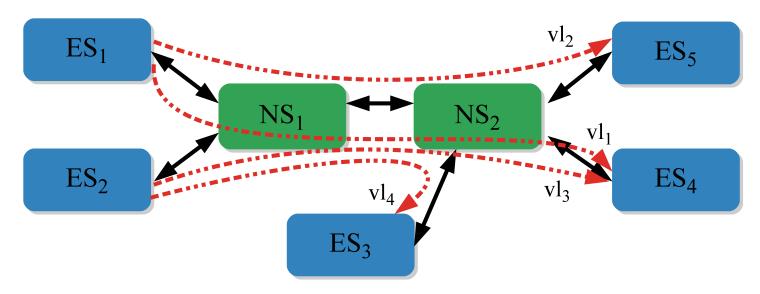
Demand

$$H_{x}^{j}(bp_{x}^{j}) = Q_{dl_{j}}^{RC}(bp_{x}^{j}, f_{x}) + C_{x}^{j}$$

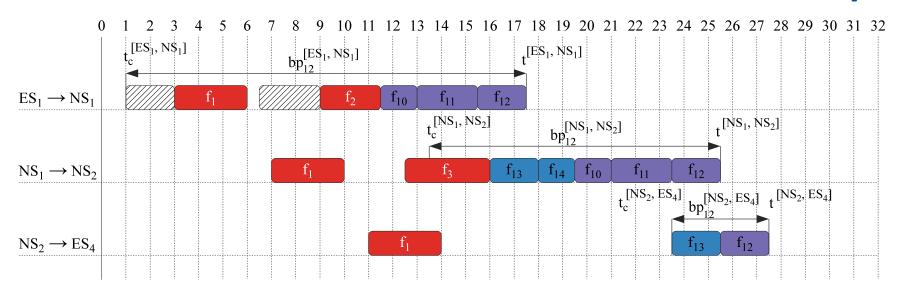

Availability

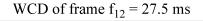
$$A_{x}^{j}(bp_{x}^{j}) = \overline{bp_{x}^{j}} - (Q_{dl_{j}}^{TT}(bp_{x}^{j}) + Q_{dl_{j}}^{TB}(bp_{x}^{j}) + Q_{dl_{j}}^{TL}(bp_{x}^{j}))$$

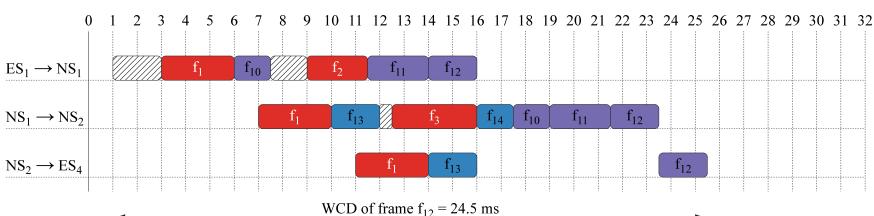
Worst-case end-to-end delay


- For each dataflow path dp_i, the end-to-end delay is the time difference between start of the busy period on the first dl₀ and the end of the busy period on the last dl_n
 - The start of the busy period on dl_j is obtained by subtracting from the end of the busy period on dl_{j-1} all the RC frames transmitted on both dl_i and dl_{i-1}
- The longest delay among all the dp_i is the WCD

Worst-case end-to-end delay


- WCD: the longest end-to-end delay for all dp_i
- The end-to-end delay on dp_i : $t^n t_c^0$
- Consider only possible scenarios: t_c^j depends on t^{j-1}


Example


Frame	period (ms)	deadline (ms)	size (B)	C_i (ms)	Source	Dest
	` ′	` ′				
$f_1 \in \mathcal{F}^{TT}$	32	32	683	3	ES_1	$\mid ES_4 \mid$
$f_2 \in \mathcal{F}^{TT}$	32	32	555	2.5	ES_1	ES_5
$f_3 \in \mathcal{F}^{TT}$	32	32	808	3.5	ES_2	ES_3
$f_{10} \in \mathcal{F}^{RC}$	32	32	308	1.5	ES_1	ES_5
$f_{11} \in \mathcal{F}^{RC}$	32	32	555	2.5	ES_1	ES_5
$f_{12} \in \mathcal{F}^{RC}$	32	32	433	2	ES_2	ES_4
$f_{13} \in \mathcal{F}^{RC}$	32	32	433	2	ES_1	ES_4
$f_{14} \in \mathcal{F}^{RC}$	32	32	308	1.5	ES_2	ES_3

Example

Exact WCD:

Experimental Results

- 3 synthetic benchmarks:
 - 12 ESes and 4 NSes, 20 TT and 26 RC
 - 10 ESes and 5 NSes, 58 TT and 51 RC
 - 35 ESes and 8 NSes, 91 TT and 81 RC
- The analysis is compared to the analysis from:
 - W. Steiner. Synthesis of Static Communication Schedules for Mixed-Criticality Systems. In *Proceedings of the International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing Workshops*, pages 11–18, 2011.

Experimental Results

Frame	Size	Period	WCD using [17]	Our WCD	Difference
Traine	(B)	(ms)	(ms)	(ms)	(ms)
rc_1	1021	4	4.44	0.77	3.66
rc_2	1395	16	19.94	1.81	18.12
rc ₃	134	4	20.68	1.10	19.57
rc ₄	1078	2	10.16	1.53	8.62
rc ₅	590	8	13.04	1.35	11.69
rc ₆	946	2	14.62	1.68	12.93
rc_7	784	16	3.12	0.79	2.33
rc ₈	1120	2	14.09	1.22	12.86
rc ₉	1361	8	8.43	1.38	7.04
rc ₁₀	20	4	17.81	1.48	16.33
rc ₁₁	1262	8	11.30	1.34	9.96
rc ₁₂	926	4	15.30	1.17	14.13
rc ₁₃	879	4	12.86	1.43	11.43
rc ₁₄	1360	16	16.69	1.80	14.89
rc ₁₅	1332	8	14.62	1.60	13.01
rc ₁₆	728	16	13.67	1.61	12.05
rc ₁₇	1127	16	18.52	1.70	16.81
rc ₁₈	156	4	5.57	0.86	4.71
rc ₁₉	378	8	20.73	1.08	19.65
rc_{20}	1443	2	20.07	1.75	18.31
rc_{21}	1367	2	20.52	1.85	18.67
rc_{22}	519	16	13.24	1.32	11.91
rc ₂₃	522	2	19.74	1.33	18.41
rc_{24}	308	16	11.15	1.23	9.91
rc ₂₅	411	2	11.11	0.65	10.46
rc ₂₆	406	16	7.47	1.35	6.11

Conclusions

- TTEthernet is very well suited for mixed-criticality applications
 - Predictability is achieved using three classes of traffic: TT, RC and BE
 - Spatial separation is achieved trough virtual links
 - Temporal separation is enforced by schedule tables for TT traffic and bandwidth allocation for RC traffic
- We proposed a timing analysis for the TTEthernet protocol
 - Compared to other analyses, our analysis is much closer to the exact worst-case end-to-end delay, while requiring more time to obtain a result
- Future work:
 - Optimize the analysis to reduce the computation time
 - Provide a more formal complexity analysis