Timing Analysis of Rate Constrained Traffic for the TTEthernet Communication Protocol Domițian Tămaș-Selicean¹, Paul Pop¹ and Wilfried Steiner² ¹Technical University of Denmark ²TTTech Computertechnik AG #### DTU Compute Department of Applied Mathematics and Computer Science #### **Motivation** Real time applications implemented using distributed systems - Application \mathcal{A}_1 -- highly critical - lacksquare Application \mathcal{A}_2 -- critical - Application \mathcal{A}_3 -- non-critical - Reduces wiring and weight - Mixed-criticality applications share the same network Full-Duplex Ethernet-based data network for safety-critical applications - Highly critical application \mathcal{A}_1 : τ_1 , τ_2 and τ_3 - τ_1 sends message m_1 to τ_2 and τ_3 - Non-critical application \mathcal{A}_2 : τ_4 and τ_5 - τ_4 sends message m_2 to τ_5 - Highly critical application \mathcal{A}_1 : τ_1 , τ_2 and τ_3 - τ_1 sends message m_1 to τ_2 and τ_3 - Non-critical application \mathcal{A}_2 : τ_4 and τ_5 - τ_4 sends message m_2 to τ_5 - Deterministic Event Triggered communication - Separation of traffic enforced through "bandwidth allocation" - Bandwidth Allocation Gap (BAG) minimum time interval between two consecutive instances of a frame on a virtual link • Maximum bandwidth assigned to virtual link vl_i BW $(vl_i) = f_i$.size/BAG_i #### **TTEthernet** - ARINC 664p7 compliant - Traffic classes: - synchronized communication - Time Triggered (TT) - unsynchronized communication - Rate Constrained (RC) ARINC 664p7 traffic class - Best Effort (BE) no timing guarantees - Standardized as SAE AS 6802 - Marketed by TTTech Computertechnik AG - Implemented by Honeywell on the NASA Orion Constellation #### **TTEthernet** - Composed of clusters - Each cluster has a clock synchronization domain - Inter-cluster communication using RC traffic #### **Motivation** | Frame | period (ms) | deadline (ms) | size (B) | C_i (ms) | Source | Dest | |-------------------------------|-------------|---------------|----------|------------|--------|--------| | | (1113) | (1113) | (D) | (1115) | | | | $f_1 \in \mathcal{F}^{TT}$ | 32 | 32 | 683 | 3 | ES_1 | ES_4 | | $f_2 \in \mathcal{F}^{TT}$ | 32 | 32 | 555 | 2.5 | ES_1 | ES_5 | | $f_3 \in \mathcal{F}^{TT}$ | 32 | 32 | 808 | 3.5 | ES_2 | ES_3 | | $f_{10} \in \mathcal{F}^{RC}$ | 32 | 32 | 308 | 1.5 | ES_1 | ES_5 | | $f_{11} \in \mathcal{F}^{RC}$ | 32 | 32 | 555 | 2.5 | ES_1 | ES_5 | | $f_{12} \in \mathcal{F}^{RC}$ | 32 | 32 | 433 | 2 | ES_2 | ES_4 | | $f_{13} \in \mathcal{F}^{RC}$ | 32 | 32 | 433 | 2 | ES_1 | ES_4 | | $f_{14} \in \mathcal{F}^{RC}$ | 32 | 32 | 308 | 1.5 | ES_2 | ES_3 | #### **Motivation** WCD = 37.5 ms ### **Sources of delay** $Q_{dl_i}^{TT}$ Delays from scheduled TT frames on dl_j $Q_{dl_i}^{RC}$ Delays from other RC frames transmitted on dl_j Q_{dl_i} TT and RC traffic integration-induced delays Q_{dl_i}^{TL} Technical latencies introduced by the network nodes #### **Busy Period** #### To compute the size: Demand $$H_{x}^{j}(bp_{x}^{j}) = Q_{dl_{j}}^{RC}(bp_{x}^{j}, f_{x}) + C_{x}^{j}$$ Availability $$A_{x}^{j}(bp_{x}^{j}) = \overline{bp_{x}^{j}} - (Q_{dl_{j}}^{TT}(bp_{x}^{j}) + Q_{dl_{j}}^{TB}(bp_{x}^{j}) + Q_{dl_{j}}^{TL}(bp_{x}^{j}))$$ #### Worst-case end-to-end delay - For each dataflow path dp_i, the end-to-end delay is the time difference between start of the busy period on the first dl₀ and the end of the busy period on the last dl_n - The start of the busy period on dl_j is obtained by subtracting from the end of the busy period on dl_{j-1} all the RC frames transmitted on both dl_i and dl_{i-1} - The longest delay among all the dp_i is the WCD #### Worst-case end-to-end delay - WCD: the longest end-to-end delay for all dp_i - The end-to-end delay on dp_i : $t^n t_c^0$ - Consider only possible scenarios: t_c^j depends on t^{j-1} ### **Example** | Frame | period
(ms) | deadline (ms) | size (B) | C_i (ms) | Source | Dest | |-------------------------------|----------------|---------------|----------|------------|--------|------------------| | | ` ′ | ` ′ | | | | | | $f_1 \in \mathcal{F}^{TT}$ | 32 | 32 | 683 | 3 | ES_1 | $\mid ES_4 \mid$ | | $f_2 \in \mathcal{F}^{TT}$ | 32 | 32 | 555 | 2.5 | ES_1 | ES_5 | | $f_3 \in \mathcal{F}^{TT}$ | 32 | 32 | 808 | 3.5 | ES_2 | ES_3 | | $f_{10} \in \mathcal{F}^{RC}$ | 32 | 32 | 308 | 1.5 | ES_1 | ES_5 | | $f_{11} \in \mathcal{F}^{RC}$ | 32 | 32 | 555 | 2.5 | ES_1 | ES_5 | | $f_{12} \in \mathcal{F}^{RC}$ | 32 | 32 | 433 | 2 | ES_2 | ES_4 | | $f_{13} \in \mathcal{F}^{RC}$ | 32 | 32 | 433 | 2 | ES_1 | ES_4 | | $f_{14} \in \mathcal{F}^{RC}$ | 32 | 32 | 308 | 1.5 | ES_2 | ES_3 | #### **Example** #### Exact WCD: #### **Experimental Results** - 3 synthetic benchmarks: - 12 ESes and 4 NSes, 20 TT and 26 RC - 10 ESes and 5 NSes, 58 TT and 51 RC - 35 ESes and 8 NSes, 91 TT and 81 RC - The analysis is compared to the analysis from: - W. Steiner. Synthesis of Static Communication Schedules for Mixed-Criticality Systems. In *Proceedings of the International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing Workshops*, pages 11–18, 2011. ## **Experimental Results** | Frame | Size | Period | WCD using [17] | Our WCD | Difference | |------------------|------|--------|----------------|---------|------------| | Traine | (B) | (ms) | (ms) | (ms) | (ms) | | rc_1 | 1021 | 4 | 4.44 | 0.77 | 3.66 | | rc_2 | 1395 | 16 | 19.94 | 1.81 | 18.12 | | rc ₃ | 134 | 4 | 20.68 | 1.10 | 19.57 | | rc ₄ | 1078 | 2 | 10.16 | 1.53 | 8.62 | | rc ₅ | 590 | 8 | 13.04 | 1.35 | 11.69 | | rc ₆ | 946 | 2 | 14.62 | 1.68 | 12.93 | | rc_7 | 784 | 16 | 3.12 | 0.79 | 2.33 | | rc ₈ | 1120 | 2 | 14.09 | 1.22 | 12.86 | | rc ₉ | 1361 | 8 | 8.43 | 1.38 | 7.04 | | rc ₁₀ | 20 | 4 | 17.81 | 1.48 | 16.33 | | rc ₁₁ | 1262 | 8 | 11.30 | 1.34 | 9.96 | | rc ₁₂ | 926 | 4 | 15.30 | 1.17 | 14.13 | | rc ₁₃ | 879 | 4 | 12.86 | 1.43 | 11.43 | | rc ₁₄ | 1360 | 16 | 16.69 | 1.80 | 14.89 | | rc ₁₅ | 1332 | 8 | 14.62 | 1.60 | 13.01 | | rc ₁₆ | 728 | 16 | 13.67 | 1.61 | 12.05 | | rc ₁₇ | 1127 | 16 | 18.52 | 1.70 | 16.81 | | rc ₁₈ | 156 | 4 | 5.57 | 0.86 | 4.71 | | rc ₁₉ | 378 | 8 | 20.73 | 1.08 | 19.65 | | rc_{20} | 1443 | 2 | 20.07 | 1.75 | 18.31 | | rc_{21} | 1367 | 2 | 20.52 | 1.85 | 18.67 | | rc_{22} | 519 | 16 | 13.24 | 1.32 | 11.91 | | rc ₂₃ | 522 | 2 | 19.74 | 1.33 | 18.41 | | rc_{24} | 308 | 16 | 11.15 | 1.23 | 9.91 | | rc ₂₅ | 411 | 2 | 11.11 | 0.65 | 10.46 | | rc ₂₆ | 406 | 16 | 7.47 | 1.35 | 6.11 | #### **Conclusions** - TTEthernet is very well suited for mixed-criticality applications - Predictability is achieved using three classes of traffic: TT, RC and BE - Spatial separation is achieved trough virtual links - Temporal separation is enforced by schedule tables for TT traffic and bandwidth allocation for RC traffic - We proposed a timing analysis for the TTEthernet protocol - Compared to other analyses, our analysis is much closer to the exact worst-case end-to-end delay, while requiring more time to obtain a result - Future work: - Optimize the analysis to reduce the computation time - Provide a more formal complexity analysis