
Timing Analysis of Rate Constrained Traffic for the
TTEthernet Communication Protocol

Domiţian Tămaş–Selicean and Paul Pop
Technical University of Denmark

DTU Compute
Kongens Lyngby, 2800, Denmark

{dota,paupo}@dtu.dk

Wilfried Steiner
TTTech Computertechnik AG

Vienna, Austria
wilfried.steiner@tttech.com

Abstract—Ethernet is a low-cost communication solution of-
fering high transmission speeds. Although its applications extend
beyond computer networking, Ethernet is not suitable for real-
time and safety-critical systems. To alleviate this, several real-time
Ethernet-based communication protocols have been proposed,
such as TTEthernet, which is the focus of this paper. TTEthernet
is suitable for mixed-criticality systems both in the safety and tem-
poral domain. TTEthernet offers three traffic classes: static time-
triggered (TT) traffic, dynamic traffic with bounded transmission
rate (called “Rate Constrained”, RC), and unbounded dynamic
traffic (BE). In this paper we propose a novel worst-case end-
to-end delay analysis of the RC traffic for TTEthernet systems.
The proposed technique considerably reduces the pessimism of
the analysis, compared to existing approaches. We have evaluated
the new analysis using several test cases.

I. INTRODUCTION

A large number of communication protocols have been pro-
posed for embedded systems. However, only a few protocols
are suitable for safety-critical real-time applications [13]. The
increasing number of functionality and control applications
implemented on distributed real-time systems results also in
an increase in the bandwidth requirements of the applications.
Ethernet [7], although it is low cost and has high speeds (100
Mbps up to 10 Gbps), is known to be unsuitable for real-
time and safety-critical applications [5], [8]. For example, in
half-duplex implementations, frame collision is unavoidable,
leading to unbounded transmission times. [5] presents the
requirements for a real-time network and how Ethernet can
be improved to comply with these requirements. Several real-
time communication solutions based on Ethernet have been
proposed, such as FTT-Ethernet [11], ARINC 664 Specifica-
tion Part 7 (ARINC 664p7, for short) [2], TTEthernet [14],
and IEEE Audio Video Bridging1 (AVB). [15] and [4] describe
and compare several of the proposed Ethernet-based real-time
communication protocols.

In this paper we focus on the TTEthernet [14] protocol.
TTEthernet is a deterministic, synchronized and congestion-
free network protocol based on the IEEE 802.3 Ethernet [7]
standard and compliant with the ARINC 664p7. The ARINC
664p7 specification [2] is a full-duplex Ethernet network,
which emulates point-to-point connectivity over the network
by defining virtual links, tree structures with one sender

1Audio Video Bridging is a collection of technical specifications that target
synchronized communication with low jitter and low latency on Ethernet
networks.

and one or several receivers (see Section II). ARINC 664p7
provides predictable event-triggered communication suitable
for hard real-time applications, and separation of safety-critical
messages through the concept of virtual links. In addition
to the functionality offered by Ethernet and ARINC 664p7,
TTEthernet supports time-triggered communication based on
static communication schedules which rely on a synchronized
time base. Such time-triggered static scheduling approach
is especially suitable for applications with highest criticality
requirements in both temporal and safety domains.

TTEthernet supports applications with mixed-criticality
requirements in the temporal domain, as it provides three
types of traffic: static time-triggered (TT) traffic and dynamic
traffic, which is further subdivided into Rate Constrained (RC)
traffic that has bounded end-to-end latencies, and Best-Effort
(BE) traffic, for which no timing guarantees are provided. TT
messages are transmitted based on static schedule tables and
have the highest priority. RC messages are transmitted if there
are no TT messages, and BE traffic has the lowest priority.
TTEthernet is suitable for automotive [16], avionics [19] and
space [6] applications.

The paper is organized as follows: Section I-A presents
the related work. Section II and III introduce the architecture
and application models. Section IV presents our proposed
timing analysis for the TTEthernet protocol in detail. Section V
explain the proposed analysis using an example. Section VI
evaluates the proposed analysis, and Section VII concludes
this paper and presents our future work.

A. Related work

Researchers have proposed several worst case end-to-end
delay analyses for the traffic in an ARINC 664p7 network,
including analyses based on Network Calculus [3], Timed
Automata [1] or Trajectory Approach [10]. However, none of
these analysis methods are applicable to TTEthernet, since
they do not consider the impact of TT messages on the
schedulability of RC messages.

There are very few proposed timing analyses for TTEther-
net systems. The earliest analysis approach for RC traffic [17]
considers that the TT schedules contain periodically alternating
phases for TT traffic and for RC traffic. However, these are
simplified assumptions, as realistic schedules do not contains
such periodic phases. More recently, Zhao et al [22] have
proposed a network calculus-based analysis to compute the

1

WCD of RC frames. Both analyses [17], [22] compute the
WCD of a frame by summing the worst-case delay of the
frame on each dataflow link traversed by the frame, thus
potentially leading to unreachable scenarios, where the worst-
case delay on a dataflow link occurs in time after the situation
leading to the worst-case delay on the following dataflow
link. In this paper, we propose a new TTEthernet analysis
that has reduced pessimism compared to the previous analyses
by eliminating these unreachable scenarios and computing for
each time instance in the schedule the end-to-end delay of the
frame.

II. ARCHITECTURE MODEL

TTEthernet networks are composed of one or several
clusters interconnected by gateways. Each cluster groups End
Systems (ESes) and Network Switches (NSes) with the same
synchronization priority. The ESes and NSes are intercon-
nected by full duplex links, allowing simultaneous commu-
nication in both directions. An example cluster is presented in
Fig. 1, where we have 4 ESes, ES1 to ES4, and 3 NSes, NS1
to NS3.

We model a TTEthernet cluster as an undirected graph
G(V ,E), where V =ES ∪N S is the set of end systems (ES)
and network switches (N S) and E is the set of physical links.
For Fig. 1, V = ES ∪N S = {ES1, ES2, ES3, ES4}∪{NS1,
NS2, NS3}, and the physical links E are depicted with thick,
black, double arrows.

The space partitioning between messages of different crit-
icality transmitted over physical links and network switches is
achieved through the concept of virtual link. Virtual links are
defined by ARINC 664p7 [2], which is implemented by the
TTEthernet protocol, as a “logical unidirectional connection
from one source end system to one or more destination end
systems”.

We denote the set of virtual links in a cluster with V L . A
virtual link vli ∈V L is a directed tree, with the sender as the
root and the receivers as leafs. Each virtual link is composed of
a set of dataflow paths, one such dataflow path for each root-
leaf connection. A dataflow path d pi ∈DP is an ordered se-
quence of dataflow links connecting one sender to one receiver.
A dataflow link li = [ν j,νk]∈L , where L is the set of dataflow
links in a cluster, is a directed communication connection from
ν j to νk, where ν j and νk ∈ V can be ESes or NSes. More
formally, we denote with RV L(vli) = {∀d p j ∈ DP |d p j ∈ vli}
the routing of virtual link vli.

Fig. 1: TTEthernet cluster example

Let us assume that in Fig. 1 we have two applications, A1
and A2. A1 is a high criticality application consisting of tasks
τ1 to τ3 mapped on ES1, ES3 and ES4, respectively. A2 is a
non-critical application, with tasks τ4 and τ5 mapped on ES2
and ES3, respectively. τ1 sends message m1 to τ2 and τ3. Task
τ4 sends message m2 to τ5. With TTEthernet, a message has
a single sender and may have multiple receivers. The flow of
these messages will intersect in the physical links and switches.
Virtual links are used to separate the highly critical message
m1 from the non-critical message m2. Thus, m1 is transmitted
over virtual link vl1, which is isolated from virtual link vl2, on
which m2 is sent, through protocol-level temporal and spatial
mechanisms (which are presented in details in [20]).

For example, vl1, depicted in Fig. 1 using dot-dash red
arrows, is a tree with the root ES1 and the leafs ES3 and ES4,
and RV L(vl1) = {d p1,d p2}. Dataflow path d p1 connects ES1
to ES3, while d p2 connects ES1 to ES4 (the dataflow paths are
depicted with green arrows). Moreover, d p1 can be denoted as
[[ES1, NS1], [NS1, NS2], [NS2, ES3]].

III. APPLICATION MODEL

TTEthernet transmits data using frames. The TTEthernet
frame format fully complies with the ARINC 664p7 specifi-
cation [2]. Messages are transmitted in the payload of frames.
In [21] we proposed a design optimization of TTEthernet
systems, were our assumption was that a frame can transmit
several messages and that a message can be fragmented into
several pieces, each carried by a different frame. However, in
this work, we assume that messages are not split into packets,
and that each frame transmits a single message.

The size mi.size for each message mi ∈M is given, where
M is the set of all messages. As mentioned, TTEthernet
supports three traffic classes: TT, RC and BE. We assume that
the designer has decided the traffic classes for each message.
We define the sets M T T , M RC and M BE , respectively, with
M = M T T ∪M RC ∪M BE . Similarly, we define F T T , F RC

and F BE , with F = F T T ∪F RC ∪F BE is the set of all the
frames in the networks. Knowing the size mi.size for each
message mi, we can compute the size fi.size of the frame fi
packing mi. In addition, for the TT and RC frames we know
their periods / rate and deadlines, fi.period or fi.rate, and
fi.deadline, respectively.

TT frames are transmitted according to offline computed
schedules. The complete set of local schedules in a cluster are
denoted by S , and the TT schedule for a dataflow link dl j is
denoted by S j ∈ S . We have presented in [20], [21] several
approaches on how to obtain the schedules S for a cluster. In
this paper, we assume the schedules S are given.

RC frames are not necessarily periodic, but have a mini-
mum inter-arrival time. We define the rate of an RC frame fi
as fi.rate = 1/ fi.period. For each virtual link vli carrying an
RC frame fi the designer decides the Bandwidth Allocation
Gap (BAG). A BAG is the minimum time interval between
two consecutive instances of an RC frame fi and has a value
of 2i ms, i=0..7. The BAG is set in such a way to guarantee
that there is enough bandwidth allocated for the transmission
of a frame on a virtual link, with BAGi ≤ 1/ fi.rate. The BAG
is enforced by the sending ES. Thus, an ES will ensure that
each BAGi interval will contain at most one instance of fi. The

2

(a) Example architecture model

Frame period deadline size Ci Source Dest(ms) (ms) (B) (ms)
f1 ∈ F T T 32 32 683 3 ES1 ES4
f2 ∈ F T T 32 32 555 2.5 ES1 ES5
f3 ∈ F T T 32 32 808 3.5 ES2 ES3
f10 ∈ F RC 32 32 308 1.5 ES1 ES5
f11 ∈ F RC 32 32 555 2.5 ES1 ES5
f12 ∈ F RC 32 32 433 2 ES2 ES4
f13 ∈ F RC 32 32 433 2 ES1 ES4
f14 ∈ F RC 32 32 308 1.5 ES2 ES3

(b) Example application model

Fig. 2: Example system model

maximum bandwidth used by a virtual link vli transmitting an
RC frame fi is BW (vli) = fi.size/BAG(vli). The BAG for each
RC frame is computed offline, based on the requirements of
the messages it packs.

The routing of virtual links and the assignment of frames
to virtual links are given. This assignment is captured by
the function MF : F → V L , MF(fi) = vli. We define the
set F RC

j ⊂ F RC as the set of RC frames that are routed
via dataflow link dl j. More formally, F RC

j = { fi ∈ F RC|dl j ∈
MF(fi)}. Knowing the size of a frame fi and the given speed
of a dataflow link [νm,νn], we can determine the transmission
duration C[νm,νn]

i of f j on [νm,νn].

IV. TIMING ANALYSIS

In this paper we are interested in determining the worst-
case end-to-end delay (WCD) Rx of a frame fx going from
one ES to several other ESes via dataflow links and NSes. We
assume that the cluster contains both TT and RC traffic, that
the complete set of TT schedules S is given, and that all the
RC frames have the same priority. Once the WCD Rx of frame
fx is computed, we can determine if the frame is schedulable
or not, by comparing Rx with the deadline. For TT frames, the
WCD is easily obtained by checking the TT schedules, which
are fixed. In this paper, we focus on determining the WCD for
RC frames.

We base our analysis on the concept of “busy period” [9].
For the analyzed frame fx, the busy period on a dataflow link is
a time interval starting when the frame arrives at the incoming
network node, and ending when the frame was transmitted
on the dataflow link to the next network node. During this
interval, the frame can be delayed by several factors, presented
in Section IV-A. The definition of the busy period is formalized
in Section IV-B and we show in Section IV-C how to compute
the length of the busy period on a dataflow link. The WCD
Rx of frame fx is the largest difference between the end of the

busy period on the last dataflow link and the beginning of the
busy period on the first dataflow link for each dataflow path
fx is transmitted on. The algorithm to compute the WCD is
presented in Section IV-D. Next, we will present the source of
delays for RC frames.

A. Sources of delay for RC traffic

There are several factors contributing to the delay of an
RC frame since its arrival at a network node and until its
transmission on the following dataflow link. The factors are:
(a) technical latencies introduced by the network nodes, (b)
other RC frames that are already waiting for transmission on
the egress link, (c) scheduled TT frames, and (d) further delays
due to the integration of TT and RC traffic. Next, we will
discuss each factor in detail.

(a) Technical latencies introduced by the network nodes.
The TTEthernet network nodes implement the protocol func-
tionality as hardware tasks. For example, network node has a
hardware task that checks the validity and integrity of each
arriving frame. Hardware tasks in the NSes also provide fault-
containment at the level of RC virtual links, by implementing
an algorithm known as leaky bucket [2], [14]. The algorithm
checks the time interval between two consecutive instances
on the same virtual link. If this interval is shorter than the
specified BAG time corrected by the maximum allowed trans-
mission jitter, the frame instance is dropped, thus preventing a
faulty ES to send faulty RC frames (more often than allowed)
and disturbing the network. The TTEthernet protocol and the
hardware tasks are presented in more detail in [20]. The tech-
nical latencies introduced by the network nodes implementing
TTEthernet functionality increase the delay of an RC frame in
a network node. We assume that these delays are not frame-
specific, and are known.

(b) Delays from other RC frames. The TTEthernet NS
contains an RC outgoing queue for each egress dataflow link.
Every valid frame arriving at the NS is copied to the outgoing
queues corresponding to the dataflow links the frame will be
transmitted on next. RC traffic is unsynchronized, leading to
situations where several RC frames are present in an outgoing
queue waiting for transmission. In this paper, we assume that
all the RC frames have the same priority, similar to related
work, and the frames are ordered in a FIFO-manner. Thus,
the time necessary to transmit the RC frames placed in the
outgoing queue before the RC frame under analysis increase
its delay.

(c) Scheduled TT frames. RC traffic also has to be
integrated with TT traffic, which has higher priority. TT
communication is done according to static communication
schedules determined offline and stored in the ESes and NSes.
RC frames are transmitted only when there is no TT traffic
on the dataflow link. Therefore, the time necessary to transmit
the scheduled TT frames further increases the delay of an RC
frame ready for transmission.

(d) TT and RC traffic integration-induced delays. How-
ever, with the integration of TT and RC traffic, contention
situations can occur when a TT frame is scheduled for trans-
mission, but an RC frame is already transmitting. There are
three approaches in to handle such situations [14], [18]: (i)
shuffling, (ii) pre-emption and (iii) timely block. (i) With

3

shuffling, the higher priority TT frame is delayed until the
RC frame finishes the transmission. Thus, in the worst-case
scenario, the TT frame will have to wait for the time needed
to transmit the largest Ethernet frame, which is 1542 Bytes. In
the case (ii) of pre-emption, the current transmission of the RC
frame is aborted, and is restarted after the TT frame finished
transmitting. In the case (iii) of timely block, the RC frame is
blocked (postponed) from transmission on a dataflow link if a
TT frame is scheduled to be sent before the RC frame would
complete its transmission. Among the three policies, only the
“pre-emption” and “timely block” can increase the delay for
RC frames. In this paper we consider the cluster implements
the “timely block” integration policy. In the worst-case, this
policy can delay the RC frames by, at most, the time necessary
to transmit the largest TT frame on the given dataflow link.

B. Busy period on a dataflow link

We formally define the busy period bp j
x on dataflow link dl j

as the time interval [t j
c , t j] within which the RC frames arrived

before fx in the outgoing queue for dl j are transmitted. The
busy period begins at the time instant t j

c when the analyzed
frame fx arrives in the network node outgoing queue, and ends
at time t j when all the RC frames that arrived at the queue
before fx including fx have finished transmitting on dl j. Since
we are interested in the worst-case scenario, we assume that
all the RC frames transmitted on dl j (other than fx) arrive at
the queue before fx. We denote by bp j

x(t
j
c) = t j the end time

of the busy period, and by bp j
x = t j− t j

c the length of the busy
period bp j

x.

Next, we will explain the busy period concept using the
example shown in Fig. 3. We will compute the end time t j

of the busy period bp j
x for the RC frame fx arriving in the

outgoing queue at time instant t j
c . Fig. 3 presents using a Gantt

chart a fragment of the TT schedule on dataflow link dl j during
the time interval marked by the busy period bp j

x starting at time
instant t j

c . The schedule fragment contains 3 TT frames f1, f2
and f3 marked with red colored boxes. Besides the TT frames
and the analyzed RC frame fx, dl j also transmits 2 other RC
frames f4 and f5 marked with purple colored boxes.

To compute the worst-case ending time of the busy period,
we have to take into account all the potential sources of delay
presented in Section IV-A. Thus, the formula to compute the

Fig. 3: Busy period starting at time instant tc

end of the busy period bp j
x shown in Fig. 3 is:

bp j
x(t

j
c) = QT T

dl j
(bp j

x)+QRC
dl j
(bp j

x, fx)+

QT L
dl j
(bp j

x)+QT B
dl j

(bp j
x)+C j

x (1)

Let us now explain each term. QT T
dl j

(bp j
x) is the time during

the busy period bp j
x reserved in the static schedule S j for

transmission of the TT frames on dl j, and is captured by Eq. 2:

QT T
dl j

(bp j
x) = ∑

fi∈F T T∧
fi∈S j(bp j

x)

C j
i (2)

Thus, Eq. 2 sums up the transmission time C j
i for all the TT

frames fi that are scheduled for transmission on dl j during
the busy period. We denote by S j([ta, tb]) as the schedule for
dl j during the time interval [ta, tb], and with fi ∈ S j(bp j

x) the
frames scheduled on dl j during bp j

x. In the case of Fig. 3,
QT T

dl j
(bp j

x) =C j
1 +C j

2 +C j
3.

QRC
dl j
(bp j

x, fx) is the delay incurred by the RC frames arrived
at the outgoing queue before fx:

QRC
dl j
(bp j, fx) = ∑

fi∈F RC
j ∧

fi 6= fx

C j
i ·

⌈
bp j

x

fi.rate

⌉
(3)

Since we are interested in the worst-case scenario for the busy
period, we assume that all the RC frames transmitted on the
dl j (except fx) will be placed in the queue before fx. Thus,
Eq. 3 captures the sum of the transmission times for these RC
frames in the outgoing queue. In some cases, the length bp j

x
of the busy period might be larger than the rate fi.rate of an
RC frame fi, thus, the outgoing queue might contain several
instances of fi. The number of these instances is captured by⌈

bp j
x

fi.rate

⌉
. In the example shown in Fig. 3, we assume that the

busy period is shorter than the rate of f4 and f5, and these two
RC frames are already waiting in the outgoing queue when fx
arrives, therefore, they are transmitted before fx on dl j. Thus,
QRC

dl j
(bp j, fx) =C j

4 +C j
5.

In Section IV-A we also presented delays due to the
implemented integration policy and due to the hardware tasks
implementing the TTEthernet protocol functionality, other than
the latency resulting from queueing effects. QT L

dl j
(bp j) captures

this technical latency introduced by the network node for
each frame. Moreover, in this paper we assume that the
protocol implements the timely block integration policy (see
Section IV-A), but it can be easily extend to consider other
policies as well. In this case however, QT B

dl j
(bp j

x) is the sum

of the timely block intervals in the busy period bp j
x. The span

of a timely block interval tbi before a TT frame fi is equal
to the time C j

k necessary to transmit the largest RC frame fk
on dl j, or with the time between frame fi and the previously
scheduled TT frame, whichever is smaller. Fig. 3 contains 3
such timely block intervals (tb1, tb2 and tb3), one for each of
the TT frame in the schedule fragment (f1, f2 and f3).

QT L
dl j
(bp j) is the sum of the technical latency introduced by

the network node for each frame, due to the hardware tasks

4

1: function COMPUTEBUSYPERIOD(dl j, t j
c , F , S j, fx)

2: bp j
x(t

j
c) = t j

c +∑ fi∈F RC
j

C
dl j
i

3: repeat
4: compute demand H j

x (bp j
x)

5: compute availability A j
x(bp j

x)
6: if H j

x (bp j
x)> A j

x(bp j
x) then

7: t j = t j +H j
x (bp j

x)−A j
x(bp j

x)
8: end if
9: until A j

x(bp j
x)≥ H j

x (bp j
x)

10: return bp j
x = t j− t j

c
11: end function

Fig. 4: Iterative algorithm to compute the busy period

implementing the TTEthernet protocol functionality, other than
the latency resulting from queueing effects.

C. Computing the length of a busy period

Eq. 1 is a recursive function, with bp j
x on both sides of

the equality. In order to compute the length bp j
x of the busy

period bp j
x, we use the concepts of ET availability and ET

demand [12], which we have adapted from tasks to messages,
as follows. The demand for a frame fx on a dataflow link
dl j during the busy period bp j

x is the maximum amount of
transfer time which can be demanded by RC frames arrived
at the outgoing queue before fx and by frame fx. The demand
H j

x (bp j
x) during the busy period bp j

x is equal to the length of
the busy period if considering only RC traffic:

H j
x (bp j

x) = QRC
dl j
(bp j

x, fx)+C j
x (4)

The availability is the fraction of time available for RC traffic
during the busy period bp j

x. The availability A j
x is computed

by subtracting from the length bp j
x of the busy period the time

necessary for the transmission of TT frames, reserved by the
timely block intervals, or by the technical latency:

A j
x(bp j

x) = bp j
x− (QT T

dl j
(bp j

x)+QT B
dl j

(bp j
x)+QT L

dl j
(bp j

x)) (5)

We compute the length of the busy period using the
algorithm presented in Fig. 4. The function takes as input the
dataflow link dl j, the critical instant t j

c starting the busy period
bp j

x, the complete set of frames F , the TT schedules S j for
dl j, and the frame to be analyzed fx. We initialize the busy
period bp j

x starting at t j
c with a length equal to the sum of

all the RC frames transmitted on dl j, ignoring any intervals
unavailable due to the transmission of TT frames (line 2 in
Fig. 4). Next, we iteratively compute the length of the busy
period bp j

x until the demand H j
x (see Eq. 4) is satisfied by the

availability A j
x (see Eq. 5) during the busy period (lines 3–

9). The availability satisfies the demand when there is enough
available time during the busy period to transmit all the RC
frames in the outgoing queue. First, we update the value of
the demand (line 4) and of the availability (line 5) for the new
interval of the busy period bp j

x. If A j
x does not satisfy H j

x , we
extend the busy period with the difference between the demand
and the availability (line 7). Once the demand is satisfied, the
algorithm returns the length bp j

x of the busy period bp j
x starting

1: function COMPUTEDELAY(t0
c , F , S , fx, vlx)

2: Delay = 0
3: for d pi ∈ RV L(vlx) do
4: for dl j ∈ d pi do
5: compute t j

c based on bp j−1
x

6: t j = t j
c +ComputeBusyPeriod(dl j, t

j
c ,F ,S j, fx)

7: end for
8: if tn− t0

c > Rx then
9: Delay = tn− t0

c
10: end if
11: end for
12: return Delay
13: end function

Fig. 5: Algorithm to compute the end-to-end delay for a frame

at t j
c . Section V presents an example on how the length of the

busy period is computed.

D. Worst-case end-to-end delay

All the related work compute the WCD Ri of an RC frame
fi by summing up the worst-case delays on each dataflow link
traversed by fi. However, this might lead to unlikely cases,
such as, the TT schedule in the interval leading to the worst-
case busy period on a dataflow link dl j might occur in time
after the TT schedule in the interval leading to the worst-case
busy period on the following dataflow link dl j+1. To obtain
tight WCDs (i.e., very close to the actual worst-case), our
analysis attempts to eliminate these scenarios which cannot
occur. Fig. 5 presents the algorithm to compute the WCD of
frame fx on virtual link vlx, starting at time instance t0

c . The
algorithm receives as input also the set of frames F and the
set of schedules in the system S .

The algorithm computes the end-to-end delay by calcu-
lating the longest delay of dataflow path d pi in virtual link
vlx (lines 3–11 in Fig. 5). In the case of unicast frames, i.e.,
frames with only one destination ES, the virtual link contains
only one dataflow path. The delay on a path is computed as the
time difference between the end tn of the busy period bpn

x on
the last dataflow link dln in the dataflow path and the critical
instant t0

c starting the busy period on the first dataflow link in
the current dataflow path. For each dataflow link dl j ∈ d pi, we
compute the start time t j

c of the busy period bp j
x based on the

start time t j−1
c of the busy period on the previous dataflow link

dl j−1 (line 5). We obtain t j
c by subtracting from the end t j−1 of

the busy period on dl j−1 the time necessary to transmit all the
RC frames fk ∈F RC

j−1∩F RC
j , i.e., all the RC frames transmitted

during the busy period bp j−1 on dl j−1 that are also transmitted
on dl j. In the case of the first dataflow link in d pi, the critical
instant starting the busy period is equal to t0

c .

The WCD Rx of frame fx is obtained by computing the
delay for each time instance t0

c in the schedule S0 of the first
dataflow link dl0 transmitting frame fx, and selecting the time
instance resulting in the biggest delay.

V. TIMING ANALYSIS EXAMPLE

In this section we will show how the timing analysis
presented in the previous section computes the WCD Rx of

5

Fig. 6: Exact worst-case end-to-end delay for f12

a frame fx. Let us present this analysis using the application
details presented in Fig. 2. In Fig. 2 we have a cluster
composed of 5 end systems, ES1 to ES5 and two network
switches, NS1 and NS2. The table in Fig. 6 presents the frames
in the network: we have 3 TT frames (f1 to f3), and 5 RC
frames (f10 to f14). The frame details (the period, the deadline,
the payload size, and the transmission time) are given in the
table. Although the standard TTEthernet speed is 100 Mbps or
higher, for the sake of this example we consider a link speed
of only 2 Mbps, and that all the dataflow links have the same
speed. Furthermore, for simplicity, we consider one destination
ES for each message and the technical latency is zero.

We will consider for this example the end-to-end delay of
frame f12. We assume the TT schedules presented in Fig. 6 as a
Gantt chart. Since we are interested in the WCD for this frame,
we show in Fig. 6 only the schedules for the dataflow links
transited by f12. We have marked with boxes with hatching
pattern the timely block intervals (see Section III for a brief
description of timely block). Fig. 6 also presents the exact
WCD of frame f12, which is R12 = 24.5ms.

First, we will compute the worst-case end-to-end delay
using the analysis presented in [17], to highlight the pessimism
of the only TTEthernet analysis available now. The analysis
in [17] computes the WCD of a frame by summing up the
worst-case delay of the frame on each dataflow link the frame
is transmitted on. This analysis assumes that the schedule has
periodically alternating phases for TT and RC frames. The
worst-case delay of a frame on a dataflow link is computed by
taking into account the time necessary to transmit all the RC
frames in the outgoing queueing (considering there are no TT
frames), and the number of RC phases necessary to transmit
the RC frames.

The authors introduce the term b̂urst
[νx,νk]

[νk,νy] as the necessary
time to transmit the RC frames received from dataflow link
[νx,νk] and forwarded to [νk,νy], and ̂BURST

in
[νk,νy] as the

total time necessary to transmit all the RC frames on [νk,νy].
Considering the example in Fig. 6, with the application details
presented in Fig. 2, b̂urst

[ES1,NS1]

[NS1,NS2]
= C[ES1,NS1]

10 +C[ES1,NS1]
11 +

C[ES1,NS1]
12 , while b̂urst

[ES2,NS1]

[NS1,NS2]
=C[ES2,NS1]

13 +C[ES2,NS1]
14 .

Furthermore, the analysis in [17] defines lT T as length
of the TT phase, and lblank as the length of the RC phase.
However, realistic schedules do not have such phases, as
this is just a simplifying assumption of the analysis in [17].
To map a realistic schedule on the analysis from [17], we
need to redefine lT T as the maximum time necessary to
transmit consecutive TT frames, while lblank is redefined as

the minimum time between two TT frames.

Based on these values, [17] defines the maximum time
necessary to transmit all the RC frames in the outgoing queue
as:

Q̂out
[νk,νy]

= ̂BURST
in
[νk,νy]−max(b̂urst

[νx,νk]

[νk,νy])+

lT T × (

max(b̂urst
[νx,νk]

[νk,νy])

lT T + lblank

+1) (6)

and the worst-case delay for the RC frame fi is given by the
equation below:

̂latency
[νx,νk]

[νk,νy] = Q̂out
[νk,νy]

+C[νk,νy]
i +

Q̂out
[νk,νy]

lblank

× lT T (7)

where the first right term is the time necessary to transmit
the RC frames, the second term is the time necessary to
transmit the frame under analysis, and the third term captures
the number of TT phases interrupting the transmission of the
RC frames.

Thus, using the analysis in [17], the WCD for f12 is
computed by summing the worst-case latency computed using
Eq. 7 on all the dataflow links traversed by f12. On [ES1,
NS1], lT T = 3 (the size of f1) and lblank = 3. Using Eq. 6,
we compute Q̂out

[ES1,NS1]
= 6, resulting in a worst-case latency

for f12 of 14. On [NS1, NS2], with lT T = 3.5 and lblank = 2.5,
Q̂out
[NS1,NS2]

= 8 and the worst-case latency is 24. On the last
dataflow link, lT T = 3 and lblank = 37, resulting in a worst-
case latency of 9. Adding up the latencies on all the dataflow
links results in a WCD for f12 of 47, almost double the value
of the exact WCD, which is 24.5 ms. The pessimism in the
computed WCD is mainly due to the fact that the analysis
considers that the schedules have alternating phases for TT and
RC frames, thus greatly underestimating the actual available
time for transmitting RC frames. For example, on dataflow link
[NS1, NS2] the analysis considers that the schedule has a TT
phase of 3.5 ms and an RC phase of 2.5 ms.

Fig. 7 shows how our analysis computes the WCD for
frame f12. We will present this analysis step by step, con-
sidering that the analysis starts from the same critical instant
tc = 1 that led to the worst-case scenario presented in Fig. 6.
We obtain the time-critical leading to the WCD by computing
the end-to-end delay using the algorithm presented in Fig. 5 for
each time instant in the schedule S[ES1,NS1]. Let us first compute
the busy period on [ES1, NS1], using the algorithm presented
in Fig. 4. First we initialize the length of the busy period

6

Fig. 7: Analysis example

with the sum of the necessary time to transmit the RC frames
on [ES1, NS1], i.e., f10 to f12. Thus, bpES1,NS1]

12 is initialized
with the interval [1, 7]. The demand H [ES1,NS1]

12 = 6, i.e., the
sum of the RC frames. The availability A[ES1,NS1]

12 = 0: although
there is available time in the interval [6, 6.5], it is followed
by a timely block interval, and it is too small to transmit even
the smallest frame, so it is ignored. Thus, the busy period is
incremented with H [ES1,NS1]

12 −A[ES1,NS1]
12 = 6. The busy period

is updated to [1, 13]. In this interval, H [ES1,NS1]
12 has the same

value, while A[ES1,NS1]
12 = 1.5. Although the interval is smaller

than the smallest RC frame transmitted on this link, the busy
period is not followed by a timely block interval. Therefore,
there is potentially enough time to transmit a frame afterwards.
Again, we increase the busy period interval with the difference
between the demand and availability, i.e., 4.5. The new busy
period is [1, 17.5]. In the new interval, the availability satisfies
the demand, therefore this is the final interval for bpES1,NS1]

12 .

Next, we compute the starting time t [NS1,NS2] of the busy
period bpNS1,NS2]

12 , by subtracting from the end time t [ES1,NS1] of
the busy period bpES1,NS1]

12 the transmission time of frames f10
and f11. Therefore t [NS1,NS2] = 17.5−4 = 13.5. Afterwards, we
compute the busy period bpNS1,NS2]

12 using the algorithm from
Fig. 4, and we obtain the interval [13.5, 25.5]. Similarly, we
obtain bpNS2,ES4]

12 as the time interval [25.5, 27.5].

The end-to-end delay of frame f12 computed with our
proposed analysis is t [NS2,ES4] − t [ES1,NS1]

c = 26.5. Compared
to the analysis from [17], our proposed analysis reduces
considerably the pessimism (26.5 ms compared to 47 ms).
However, compared to the exact WCD (shown in Fig. 6),
the proposed analysis is a bit more conservative due to how
it reserves the timely block intervals. Our proposed analysis,
reserves a timely block interval equal to the time necessary
to transmit the largest RC frame on the dataflow link, before
each TT frame, regardless (a) if the largest RC frame is the
frame under analysis, and regardless (b) of the RC frame sizes.
However, not much can be done to reduce this pessimism.

VI. EVALUATION

We have evaluated the proposed analysis using three syn-
thetic use cases. The first use case has a topology of 12 ESes

and 4 NSes (shown in Fig. 8), running 20 TT frames and 26
RC frames. The details of the frames and the results of the first
test case are presented in Table I. The frame name, the size
and period are presented in columns 1, 2 and 3, respectively.
Column 4 presents the WCDs computed with the analysis
from [17], while column 5 presents the results obtained with
our proposed analysis. The last column shows the difference
between the results obtained with the two analyses. As we can
see, our proposed analysis reduces the pessimism by an order
of magnitude compared to the analysis from [17]. However,
while the analysis from [17] requires only 0.415 s to compute
the WCDs, our analysis takes 6 minutes.

The following two use cases have increasing complexity.
The second use case has 58 TT messages and 51 RC messages
transmitted on a cluster composed of 10 ESes and 5 NSes. The
sizes of the RC frames range between 1000 and 1470 B. In
this use case, our proposed analysis reduces the pessimism of
the analysis from [17] with an average of 236.47 ms, with a
minimum of 15 ms and maximum 412.87 ms. However, since
our analysis computes the WCD by analyzing the delay at each
time instant, it takes 164 minutes to compute the WCDs for
this use case, compared to 0.617 s, the time necessary for the
analysis from [17]. The time necessary to compute the WCD
for a set of RC frames depends on both the number of frames
in the set, and the size of the schedule.

The third use case is the largest, with 91 TT messages and
81 RC messages implemented on a network composed of 35
ESes interconnected by 8 NSes. In this case, our proposed

Fig. 8: Topology of the first use case

7

TABLE I: Experimental results, first use case

Frame Size Period WCD using [17] Our WCD Difference
(B) (ms) (ms) (ms) (ms)

rc1 1021 4 4.44 0.77 3.66
rc2 1395 16 19.94 1.81 18.12
rc3 134 4 20.68 1.10 19.57
rc4 1078 2 10.16 1.53 8.62
rc5 590 8 13.04 1.35 11.69
rc6 946 2 14.62 1.68 12.93
rc7 784 16 3.12 0.79 2.33
rc8 1120 2 14.09 1.22 12.86
rc9 1361 8 8.43 1.38 7.04
rc10 20 4 17.81 1.48 16.33
rc11 1262 8 11.30 1.34 9.96
rc12 926 4 15.30 1.17 14.13
rc13 879 4 12.86 1.43 11.43
rc14 1360 16 16.69 1.80 14.89
rc15 1332 8 14.62 1.60 13.01
rc16 728 16 13.67 1.61 12.05
rc17 1127 16 18.52 1.70 16.81
rc18 156 4 5.57 0.86 4.71
rc19 378 8 20.73 1.08 19.65
rc20 1443 2 20.07 1.75 18.31
rc21 1367 2 20.52 1.85 18.67
rc22 519 16 13.24 1.32 11.91
rc23 522 2 19.74 1.33 18.41
rc24 308 16 11.15 1.23 9.91
rc25 411 2 11.11 0.65 10.46
rc26 406 16 7.47 1.35 6.11

analysis reduces the pessimism of the analysis from [17] with
an average 263.42 ms. For this case it took 446 minutes to
compute the WCDs for the 81 RC messages, compared to the
analysis from [17], which required only 0.49 s.

The time necessary to compute the WCDs depends on both
the number of RC frames, and on the size of the schedules (the
larger the schedules, the more time instances our analysis has
to check).

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed a timing analysis for
the TTEthernet protocol. Highly suitable for mixed-criticality
systems, both in the temporal and safety domain, TTEthernet
offers three types of traffic classes, Time-Triggered, Rate
Constrained and Best Effort. In the safety domain, the protocol
offers separation between mixed-criticality frames using the
concept of virtual links, and protocol-level specialized depend-
ability services.

The proposed analysis considers that each frame packs a
single message, and that the network implements the “timely
block” integration policy. However, the analysis can be easily
extended to handle the other policies. The results on several
synthetic benchmarks show that compared to previous analy-
ses, the proposed analysis considerably reduces the pessimism
and is much closer to the exact worst-case end-to-end delay.

The current analysis obtains the worst-case end-to-end
delay by computing the latencies for each time instance in
the schedule. In our future work, we plan to reduce the time
instances considered by the analysis, thus also considerably
reducing the time necessary to obtain the result.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the Advanced Research & Technology for Embedded In-

telligence and Systems (ARTEMIS) Joint Undertaking within
the project EMC2, under grant agreement no. 621429.

REFERENCES

[1] M. Adnan, J.-L. Scharbarg, J. Ermont, and C. Fraboul. Model for worst
case delay analysis of an AFDX network using timed automata. In
Proceedings of the Conference on Emerging Technologies and Factory
Automation, pages 1 –4, 2010.

[2] ARINC. ARINC 664P7: Aircraft Data Network, Part 7, Avionics Full-
Duplex Switched Ethernet Network. ARINC (Aeronautical Radio, Inc),
2009.

[3] M. Boyer and C. Fraboul. Tightening end to end delay upper bound for
AFDX network calculus with rate latency FIFO servers using network
calculus. In Proceedings of the International Workshop on Factory
Communication Systems, pages 11–20, 2008.

[4] R. Cummings, K. Richter, R. Ernst, J. Diemer, and A. Ghosal. Exploring
use of ethernet for in-vehicle control applications: AFDX, TTEthernet,
EtherCAT, and AVB. SAE International Journal of Passenger Cars -
Electronic and Electrical Systems, 5(1):72–88, 2012.

[5] J. D. Decotignie. Ethernet-based real-time and industrial communica-
tions. Proceedings of the IEEE, 93(6):1102–1117, 2005.

[6] M. Fletcher. Progression of an open architecture: from Orion to Altair
and LSS. White paper S65-5000-20-0, Honeywell, International, 2009.

[7] IEEE. IEEE 802.3 - IEEE Standard for Ethernet. The Institute of
Electrical and Electronics Engineers, Inc., 2012.

[8] Y.-H. Lee, E. Rachlin, and P. A. Scandura. Safety and Certification
Approaches for Ethernet-Based Aviation Databuses. Technical Report
DOT/FAA/AR-05/52, Federal Aviation Administration, December 2005.

[9] J. Lehoczky. Fixed priority scheduling of periodic task sets with arbitrary
deadlines. In Real-Time Systems Symposium, 1990. Proceedings., 11th,
pages 201–209, Dec 1990.

[10] X. Li, O. Cros, and L. George. The trajectory approach for AFDX
FIFO networks revisited and corrected. In Proceedings of the Interna-
tional Conference on Embedded and Real-Time Computing Systems and
Applications, pages 1–10, Aug 2014.

[11] P. Pedreiras, P. Gai, L. Almeida, and G. Buttazzo. FTT-Ethernet: a
flexible real-time communication protocol that supports dynamic QoS
management on Ethernet-based systems. IEEE Transactions on Indus-
trial Informatics, 1(3):162–172, Aug 2005.

[12] T. Pop, P. Pop, P. Eles, and Z. Peng. Analysis and optimisation of hi-
erarchically scheduled multiprocessor embedded systems. International
Journal of Parallel Programming, 36(1):37–67, 2008.

[13] J. Rushby. A comparison of bus architectures for safety-critical em-
bedded systems. Technical report, Computer Science Laboratory, SRI
International, 2001.

[14] SAE. AS6802: Time-Triggered Ethernet. SAE International, 2011.
[15] S. Schneele and F. Geyer. Comparison of IEEE AVB and AFDX. In

Proceedings of the Digital Avionics Systems Conference, pages 7A1–1–
7A1–9, 2012.

[16] T. Steinbach, H.-T. Lim, F. Korf, T. C. Schmidt, D. Herrscher, and
A. Wolisz. Tomorrow’s In-Car Interconnect? A Competitive Evaluation
of IEEE 802.1 AVB and Time-Triggered Ethernet (AS6802). In IEEE
Vehicular Technology Conference, pages 1–5, September 2012.

[17] W. Steiner. Synthesis of Static Communication Schedules for Mixed-
Criticality Systems. In Proceedings of the International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing
Workshops, pages 11–18, 2011.

[18] W. Steiner, G. Bauer, B. Hall, M. Paulitsch, and S. Varadarajan. TTEth-
ernet Dataflow Concept. In Proceedings of the International Symposium
on Network Computing and Applications, pages 319–322, 2009.

[19] J. Suen, R. Kegley, and J. Preston. Affordable avionic networks with
Gigabit Ethernet assessing the suitability of commercial components for
airborne use. In Proceedings of SoutheastCon, pages 1–6, 2013.

[20] D. Tămaş-Selicean, P. Pop, and W. Steiner. Synthesis of Communication
Schedules for TTEthernet-based Mixed-Criticality Systems. In Proceed-
ings of the International Conference on Hardware/Software Codesign
and System Synthesis, pages 473–482, 2012.

[21] D. Tămaş-Selicean, P. Pop, and W. Steiner. Design optimization of
TTEthernet-based distributed real-time systems. Real-Time Systems,
2014.

[22] L. Zhao, H. Xiong, Z. Zheng, and Q. Li. Improving worst-case
latency analysis for rate-constrained traffic in the time-triggered ethernet
network. IEEE Communications Letters, 18(11):1927–1930, 2014.

8

