
39

Design Optimization of Mixed-Criticality
Real-Time Embedded Systems

Domiţian Tămaş–Selicean, Technical University of Denmark
Paul Pop, Technical University of Denmark

In this paper we are interested in implementing mixed-criticality real-time embedded applications on a given heterogeneous
distributed architecture. Applications have different criticality levels, captured by their Safety-Integrity Level (SIL), and are
scheduled using static-cyclic scheduling. According to certification standards, mixed-criticality tasks can be integrated onto
the same architecture only if there is enough spatial and temporal separation among them. We consider that the separation
is provided by partitioning, such that applications run in separate partitions, and each partition is allocated several time slots
on a processor. Tasks of different SILs can share a partition only if they are all elevated to the highest SIL among them.
Such elevation leads to increased development costs, which increase dramatically with each SIL. Tasks of higher SILs can
be decomposed into redundant structures of lower SIL tasks. We are interested to determine (i) the mapping of tasks to
processors, (ii) the assignment of tasks to partitions, (iii) the decomposition of tasks into redundant lower SIL tasks, (iv) the
sequence and size of the partition time slots on each processor, and (v) the schedule tables, such that all the applications
are schedulable and the development costs are minimized. We have proposed a Tabu Search-based approach to solve this
optimization problem. The proposed algorithm has been evaluated using several synthetic and real-life benchmarks.

Categories and Subject Descriptors: C.3 [Special-Purpose and application-based systems]: Real-time and embedded sys-
tems; D.4.7 [Organization and Design]: Real-time systems and embedded systems

General Terms: Embedded systems, Real-time systems, Mixed-criticality, metaheuristic, IMA

1. INTRODUCTION
Safety is a property of a system that will not endanger human life or the environment. Safety-Integrity
Levels (SILs) are assigned to safety-related functions to capture the required level of risk reduction,
and will dictate the development processes and certification procedures that have to be followed
[IEC 61508 2010], [ISO 26262 2009], [RTCA DO-178B 1992]. There are multiple SIL levels in
safety standards, e.g., IEC 61508 [2010] has four SIL levels, ranging from SIL 4 (most critical) to
SIL 1 (least critical). Certification standards require that safety functions of different criticality levels
are protected (or, isolated), so they cannot influence each other. For example, without protection, a
lower-criticality task could corrupt the memory of a higher-criticality task.

The “Research Agenda for Mixed-Criticality Systems” [Barhorst et al. 2009] defines a mixed-
criticality system as “an integrated suite of hardware, operating system and middleware services
and application software that supports the execution of safety-critical, mission-critical, and non-
critical software within a single, secure computing platform”. Many such applications, following
physical, modularity or safety constraints, are implemented using distributed architectures, com-
posed of several different types of hardware components (called nodes), interconnected in a net-
work. Initially, each function was implemented in a separate node, which has led to a large increase
in the number of nodes. The current trends are towards “integrated architectures”, where several

This work has been funded by the Advanced Research & Technology for Embedded Intelligence and Systems (ARTEMIS)
within the project ‘RECOMP’, support code 01IS10001A, agreement no. 100202.
Author’s addresses: D. Tămaş–Selicean and Paul Pop, DTU Compute, Technical University of Denmark, Kongens Lyngby,
Denmark.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the
first page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this work in other works requires prior specific permission and/or a fee.
Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701
USA, fax +1 (212) 869-0481, or permissions@acm.org.
c© 2010 ACM 1539-9087/2010/03-ART39 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

1

functions are integrated onto the same node. In this context, designers are relying on partitioning
mechanisms at the platform level. Without the separation provided by partitioning, all the functions
sharing the same resource would have to be certified at the highest SIL among them, which would
be prohibitively expensive (the certification costs can increase the costs of the project anywhere
from 25 to 100% [IBM 2010]). In the avionics area, the partitioned architecture is called “Integrated
Modular Avionics” (IMA) [ARINC 1997], and the platform-level separation mechanisms are pro-
vided by implementations of the ARINC 653 standard [ARINC 2013]. ARINC 653 consists of
hardware-mediated operating system-level spatial and temporal partitioning mechanisms [Rushby
1999]. Similar platform-level separation mechanisms are available in other industries [Ernst 2010;
Leiner et al. 2007; ?].

In this paper we are interested in the design optimization of hard real-time applications of different
SILs. We consider distributed platforms, consisting of several processing elements (PEs) intercon-
nected using a broadcast bus. We assume each PE contains a CPU, RAM and non-volatile memory,
and a network interface card. We assume that the platform provides both spatial and temporal parti-
tioning, thus enforcing enough separation for the mixed-criticality applications. Each partition can
have its own scheduling policy. There has been a long debate in the real-time and embedded sys-
tems communities concerning the advantages of using a Time-Triggered (TT) or Event-Triggered
(ET) approach [Audsley et al. 1993; Kopetz 2011a; Xu and Parnas 1993]. Several aspects have been
considered in favor of one or the other approach, such as flexibility, predictability, jitter control,
processor utilization, testability, etc. Our work can handle both TT tasks scheduled using static-
cyclic scheduling (SCS) and ET tasks scheduled using fixed-priority pre-emptive scheduling (FPS).
In [Tămaş-Selicean and Pop 2011] we have shown how applications scheduled using a FPS policy
can be handled in a partitioned architecture. However, to simplify the discussion, in this paper, we
assume that all applications are scheduled using SCS, which is the preferred scheduling policy for
highly critical systems. In addition, although we address hard real-time applications, (non-critical)
soft real-time applications can also be handled using a technique such as the Constant Bandwidth
Server [Abeni and Buttazzo 1998], where the server is seen as a hard task providing a desired level
of service to soft tasks.

We assume that the communication protocol has mechanisms to enforce partitioning at the bus
level. For example, space partitioning is attained in SAFEbus [Hoyme and Driscoll 1993] by map-
ping the messages to unique locations in the inter-module memory, protected by a memory-mapping
hardware in the host, and temporal partitioning is achieved in TTP [Kopetz 2011b] by enforcing a
Time-Division Multiple Access scheme. TTEthernet [AS 6802 2011] offers spatial separation for
mixed-criticality messages through the concept of virtual links, and temporal separation, enforced
through schedule tables for time-triggered messages and bandwidth allocation for rate constrained
messages. Researchers have shown how realistic bus protocols such as TTP [Pop et al. 2004],
FlexRay [Pop et al. 2008b] and TTEthernet [Tămaş-Selicean et al. 2012] can be taken into account
during the design. However, in this paper we consider a simple statically scheduled bus.

Safety-critical real-time applications have to function correctly and meet their timing constraints
even in the presence of faults. Fault tolerance can be addressed with hardware architecture solutions,
such as TTA [Kopetz 2011b], or software-based solutions such as re-execution, replication and
checkpointing [Pop et al. 2009]. In this paper we do not address the issue of fault-tolerance (which
is orthogonal to our problem), and we assume that the designer has developed the applications such
that they provide the required level of fault-tolerance.

1.1. Contribution
In this paper we are interested in implementing mixed-criticality embedded real-time applications on
a given distributed architecture, such that all applications are schedulable and the development costs
are minimized. An implementation consists of (i) the mapping of tasks to PEs, (ii) the assignment of
tasks to partitions, (iii) the decomposition of higher SIL tasks into redundant structures of lower SIL
tasks, (iv) the sequence and size of the partition time slots on each PE, and (v) the schedule tables
for all PEs. We propose a Tabu Search (TS)-based approach for this design optimization problem.

2

In [Tămaş-Selicean and Pop 2011] we have presented a Simulated Annealing-based approach for
the optimization of the sequence and size of time slots, considering a given fixed mapping. As the
experimental results will show, significant improvements can be obtained if mapping is considered
at the same time with partitioning, as we propose in this paper. There are cases when obtaining
schedulable implementations is not possible, even if mapping is considered at the same time with
partitioning. In such cases, one option is to upgrade the hardware platform. This will increase the
unit cost of the system. However, there are many cost-sensitive areas (e.g., automotive, which is a
mass market), where increasing unit costs are not an option. Therefore, in this paper we address
the case when the sharing of partitions by tasks from applications with different SILs is allowed,
aiming at integrating more applications onto a given platform, without increasing unit costs. We
also consider the decomposition of higher SIL tasks into lower SIL tasks, as allowed by certification
standards. If tasks of different SILs share a partition, they will have to be developed and certified
at the highest SIL level among them. This will increase the development costs. Thus, we integrate
more applications onto the same cost-sensitive partitioned architecture at the expense of increased
development costs, instead of increased unit costs.

The paper is organized in eight sections. The next two sections present the application and system
models considered, respectively. The problem formulation is presented in Section 4. Our proposed
TS optimization approach is outlined in Section 5 and evaluated in Section 6. The related work is
presented in Section 7. The last section presents our conclusions.

2. APPLICATION MODEL
The set of all applications in the system is denoted by Γ. We model an application as a directed,
acyclic graph Gi(Vi,Ei) ∈ Γ. Each node τ j ∈ Vi represents one task. The mapping is denoted by
the function M : Vi → N , where N is the set of processing elements (PEs) in the architecture.
This mapping is not yet known and will be decided by our approach. For each task τi we know the
worst-case execution time (WCET) C

N j
i on each processing element N j where τi is considered for

mapping.
An edge e jk ∈ Ei from τ j to τk indicates that the output of τ j is the input of τk. A task becomes

ready after all its inputs have arrived, and it issues its outputs when it terminates. Communication
between tasks mapped to different PEs is performed by message passing over the bus. The time
necessary to transmit message mi on the bus is captured by smi , and is given. All the applications
are scheduled using SCS. A deadline DGi ≤ TGi , where TGi is the period of Gi, is imposed on each
application graph Gi.

An example mixed-criticality system composed of three applications is presented in Fig. 1a. The
periods and deadlines are presented under the application graphs. The WCETs of tasks are given in
Fig. 1b for two PEs, N1 and N2. “N/A” in the table means that the task is not considered for mapping
on the respective PE. The size of the messages is depicted on the graph edges.

During the engineering of a safety-critical system, the hazards are identified and their severity is
analyzed, the risks are assessed and the appropriate risk control measures are introduced to reduce
the risk to an acceptable level. A Safety-Integrity Level (SIL) captures the required level of risk
reduction, see Section 7 for details. We introduce the function SIL : Vi→{SIL k}, where k ∈ {0..4},
to capture the SIL of a task. The tasks of an application may have different SILs. The SILs for the
example in Fig. 1a are presented next to the tasks.

2.1. Task Decomposition
During the early stages of the design of safety-critical systems, a SIL is allocated to each safety
function. Safety functions are later implemented as software or hardware, or a combination of both.
Let us consider a safety function of SIL i, to be implemented as software tasks. The certification
standards allow several options. For example, the safety-function could be implemented as one
task of SIL i or, using redundancy to increase dependability, as several redundant tasks of a lower
SIL, e.g., SIL i-1. Decomposing a safety function of a higher SIL into several redundant tasks

3

(a) Example mixed-criticality applications

(b) WCET and mapping restrictions

(c) Development costs (kEuro)

Fig. 1: Application model example

of lower SILs can reduce the development and certification costs, and could be the right choice
in a particular context. For software redundancy, the standards recommend the use diversity, i.e.,
different implementations of the same functionality. This is because a fault (bug) in a software
task will lead to a correlated failure in all of the tasks sharing the same implementation, unless
software diversity is used. Often, one of the redundant tasks will implement a simpler (and maybe
less accurate) algorithm as alternative diverse implementation.

Certification standards refer to this process as “SIL decomposition” and provide recommenda-
tions on the possible decompositions. For example, ISO 262621, Part 9, Section 5, provides the
guide shown in Table I for SIL decomposition. Such a decomposition guide amounts to a “SIL alge-
bra” [Parker et al. 2013], i.e., the SIL of the safety function is the sum of the SILs of the redundant
tasks.

In this paper we assume that the safety functions are implemented as software tasks running on a
distributed architecture. Let us consider a tasks τA which has to fulfill a safety requirement of SIL 3.
According to Table I, we can decompose task τA into two redundant tasks, e.g., τB with SIL 2 and
τC of SIL 1. Task τB can be further decomposed into two SIL 1 tasks.

1ISO 26262 uses the concept of Automotive SIL, or ASIL. To simplify the discussion, we consider ASIL D to be SIL 4 and
ASIL A to be SIL 1.

4

Table I: ISO/DIS 26262 SIL decomposition schemes

SIL Can be decomposed as
SIL 4 SIL 3 + SIL 1 or SIL 2 + SIL 2 or SIL 4
SIL 3 SIL 2 + SIL 1 or SIL 3
SIL 2 SIL 1 + SIL 1 or SIL 2
SIL 1 SIL 1

We assume that, for those tasks which are considered for decomposition, the designer will specify
a library L of possible decompositions based on the standard considered, similar to the library in
Table I. In this paper, we are interested to determine a decomposition of tasks such that the timing
requirements are satisfied and the development costs are minimized.

Fig. 5a shows a two decomposition options for task τ11 of SIL 4 from application A1 in Fig. 4a.
We define the decomposition function D(τi), D(τi) : Vi→ Di, where Di is a set of decomposition
options, specified in the decomposition library L . There are two decomposition options in Fig. 5a:
D1 into tasks τ11b of SIL 3 and τ11c of SIL 1, and D2 in two tasks of SIL 2, i.e., τ11 f and τ11g.
Fig. 5a also shows how τ11, once decomposed, is connected to the graph of application A1 from
Fig. 4a. We assume that a decomposed task will be connected to the original application graph via
two “connecting” tasks; one task which is distributing the input to the redundant decomposed tasks
(τ11a in Fig. 5a) and one task which is collecting the outputs (τ11d). The SIL of the connecting tasks
are given by the engineer based on the requirements from the standards.

2.2. Development Cost Model
The SIL assigned to a task will dictate the development processes and certification procedures that
have to be followed. Software development cost estimation is a widely researched topic, and is
beyond the scope of this paper. The reader is directed to [Jorgensen and Shepperd 2007; Boehm
et al. 2000a] for reviews on this topic. One of the most influential software cost models is the
Constructive Cost Model (COCOMO) [Boehm et al. 2000b]. Researchers have shown how to take
into account the development costs during the design process of embedded systems [Debardelaben
et al. 1997].

The development of safety-critical systems is a highly structured and systematic process dictated
by standards. These standards increase the development costs due to additional processes for soft-
ware development and testing, qualification activities involved in compliance and increased process
complexity, shown also by an IBM Rational study [IBM 2010]. Because of the systematic nature
of the development processes dictated by the standards, we assume that the designer will be able to
estimate the development effort required for a task. Hence, we define the development cost (DC)
function DC(τi,SIL j) to capture the cost to develop and certify a task τi to safety integrity level
SIL j. Fig. 1c shows an example of the development costs for each of the tasks in Fig. 1a. Knowing
the DC for each task, we can compute this cost at the application level. The DC of application Ai,
denoted by DC(Ai), is the sum of the development costs of each task in the application. Similarly,
we define the DC for the set of all the applications, DC(Γ), as the sum of the costs for each ap-
plication. An example certification cost estimation in person-days for an Air Traffic Control radio
platform is presented in [Rockwell-Collins 2009].

3. SYSTEM MODEL
We consider architectures composed of a set N of PEs which share a broadcast communication
channel. In this paper we focus on minimizing development costs, and not on the communication,
hence we consider a simple statically scheduled bus, where the communication takes place accord-
ing to a static schedule table computed offline. Also, we consider that all applications are scheduled
using non-preemptive static-cyclic scheduling (SCS).

5

Fig. 2: Partitioned architecture

3.1. Protection through Partitioning
When several tasks of different SILs share the same processing element, the standards require that
they are developed at the highest SIL among the SILs of the tasks, which is very expensive. Unless,
the standards state, it can be shown that the implementation of the tasks is “sufficiently indepen-
dent”, i.e., there is both spatial and temporal separation among the tasks. Hence, tasks of different
SILs have to be protected from each other. Otherwise, for example, a lower-criticality task could in-
terfere with the activity of a higher-criticality task, leading thus to a failure. Protection also imposes
constraints on the type of communication that is allowed. Thus, within an application, a task can
only receive an input from a task of the same criticality level or higher than its own. In addition, we
assume that there is no communication between two applications.

We consider that the protection is achieved through a temporal- and space-partitioning scheme
similar to Integrated Modular Avionics (IMA) [Rushby 1999]. Partitioning schemes similar to IMA
are available in several application areas [Pop et al. 2013], not only in the avionics area. Space parti-
tioning uses mechanisms such as a Memory Management Unit (MMU) to ensure that, for example,
applications running on different partitions cannot corrupt the memory for the other applications.
Temporal partitioning ensures the access of each application to the CPU, according to a predeter-
mined partition table. A detailed discussion about partitioning is available in [Rushby 1999].

We denote the assignment of tasks to partitions using the function φ : V → P , where V is the set
of tasks in the system and P is the set of partitions. On a processing element Ni, a partition Pj ∈ P is
defined as the sequence Pi, j of k partition slices pk

i, j, k ≥ 1. A partition slice pk
i, j is a predetermined

time interval in which the tasks mapped to Ni and allocated to the partition Pj are allowed to use Ni.
All the slices on a processor are grouped within a time interval called “Major Frame” (MF), that

is repeated periodically. The period TMF of the Major Frame is given by the designer and is the same
on each PE. Several MFs are combined together in a system cycle that is repeated periodically, with
a period Tcycle. Within a Tcycle, the sequence and length of the partition slices are the same across
MFs (on a given PE), but the contents of the slices (i.e., the tasks assigned to the slices) can differ.
In this work we have considered that the values for TMF and the TCycle are given, since in real-
life systems these are difficult to change because of legacy applications. In case such a change is
permitted, we have shown in [Tamas-Selicean et al. 2014] how the strategy proposed in this paper
can be extended to also determine the values for TMF and TCycle.

Fig. 2 presents the partitions for 3 applications of different SILs, A1, A2 and A3, implemented on
an architecture of 2 PEs, N1 and N2, with TMF = 10 and Tcycle = 2×TMF = 20. Using the partitions
in the figure, the tasks of A3, for example, can execute only in partition P3 on PE N1 (the light blue
rectangles in the timeline on N1), composed of the sequence P1,3 of partition slices p1

1,3 and p2
1,3.

In this example, we assume that all the tasks of A3 have the same SIL. However, as mentioned

6

in Section 2, the tasks of an application may have different SILs. Such tasks have to be placed in
separate partitions.

The schedule tables S for the applications have to be constructed such that they take into account
the partitions P . Note that a task can extend its execution over several partition slices and MFs.
When a task does not complete during a partition slice, its execution is suspended until its partition
is activated again. Such an example is task τ31 on N1 in Fig. 3b, which shows the schedule tables for
the applications in Fig.1a. The time overhead due to partition switching is denoted by tO, and our
optimization approach takes into account the partition switching overheads.

3.2. Elevation and Software-based Protection
As mentioned, tasks of different SILs have to be placed in separate partitions. However, there might
be situations when it would be beneficial (e.g., in terms of schedulability) for two tasks of different
SILs to share a partition. This can be achieved through elevation: increasing the SIL of the lower
criticality task to the level of the higher criticality task. Although such elevation to a higher SIL is
allowed by the standards, it will increase the development costs for the elevated task. For example,
considering the application details from Fig. 1, in Fig. 3d task τ23 shares the partition with tasks τ12
on N2, second MF. As task τ23 has a lower SIL than τ12, which is SIL 3, it has to be elevated from
SIL 1 to SIL 3. This is shown visually in the schedule by raising task τ23 slightly compared to the
other tasks which are not elevated.

Such elevation may trigger the elevation of other tasks. For example, as previously mentioned, we
assume that a task can only receive inputs from predecessors of the same or higher SIL. This means
that elevating a task τi to a higher SIL may trigger the elevation of its predecessors, triggering the
elevation of other tasks, if such predecessors will be assigned a higher SIL in another partition slice.
This is the case for the tasks in application A2, shown in Fig. 3d using green rectangles. As τ22 and
τ23 share the partition with τ12, they have to be elevated from SIL 1 to SIL 3. This in turn triggers
the elevation to SIL 3 of the predecessors of these tasks, namely tasks τ20 and τ21, see the A2 graph
in Fig. 1a. Furthermore, τ20 and τ21 share the partition with τ24 and τ25, namely partition P2 on N1,
see Fig. 3d. Since tasks τ20 and τ21 were elevated to SIL 3, and tasks τ24 and τ25 are SIL 1, we
need to elevate tasks τ24 and τ25 to SIL 3 to allow the sharing of partition P2. Thus, all the tasks of
application A2 are elevated to SIL 3, increasing the development costs DC for this application from
19 to 61 kEuro (the development costs for these tasks are presented in Fig. 1c).

4. PROBLEM FORMULATION
The problem we are addressing in this paper can be formulated as follows: given a set Γ of applica-
tions, the criticality level SIL(τi) of each task τi, the library of SIL decompositions L , an architecture
consisting of a set N of processing elements, the size of the major frame TMF and the application
cycle Tcycle, we are interested to find an implementation Ψ such that all applications meet their
deadlines and the development costs are minimized. Deriving an implementation Ψ means deciding
on (1) the SIL decomposition D of the tasks for which the designer has provided alternatives in the
library L , (2) the mapping M of tasks to PEs taking into account the mapping restrictions, (3) the
set P of partition slices on each processor, including their order and size, (4) the assignment φ of
tasks to partitions and (5) the schedule S for all the tasks and messages in the system.

4.1. Partition-Aware Mapping Optimization
Let us illustrate the problem using the mixed-criticality applications A1, A2 and A3 from Fig. 1a,
to be implemented on two PEs, N1 and N2. We initially do not consider task τ12, i.e., it is not part
of application A1. We have set TMF to 15 time units and Tcycle = 2×TMF = 30. In this example we
ignore the partition switch overhead. Note that in this subsection we do not yet consider partition
sharing by tasks of different criticality, which is discussed in Section 4.2, nor do we consider SIL
decompositioning, which is discussed in Section 4.3.

Let us first consider the case when the mapping and partitioning optimizations are performed
separately. Thus, Fig. 3a presents the mapping and schedules for the case when there is no partition-

7

(a) Optimal mapping and schedules, without considering partitions

(b) Partitioning, using the previously obtained mapping. τ25 and the second instance of τ11 do not fit in the schedule

(c) By remapping tasks τ11, τ23 and τ32, and by optimizing the time partitions we manage to successfully schedule all the
applications

(d) By elevating τ22 and τ23 to SIL 3, and thus all the tasks in A2, we manage to successfully schedule all applications

Fig. 3: Motivational example

ing, i.e., the tasks do not have to be separated, and they can use the PEs without restrictions. The
mapping and scheduling are optimal in terms of schedulability, captured by the “degree of schedu-
lability” metric, which is the sum of the slacks available between the completion time Ri of an
application graph Ai and its deadline Di. The “degree of schedulability” cost function is presented
in Eq. 2 in Section 6. In Fig. 3a we show the schedules on each resource, namely, the PEs N1 and N2
and the bus, using a Gantt chart. The messages on the bus are labeled with the indices of the sender
and receiver task, e.g., the first message on the bus, “20–22” is sent from task τ20 to τ22. The dashed
vertical lines are timeline guides to help with the visualization of the schedule, and should not be
interpreted as partitions, since we ignore partitions in Fig. 3a.

Next, using this optimal mapping, we are interested to obtain the partitions and the schedules,
such that, the separations are enforced and the schedule lengths are minimized with the goal of
producing a schedulable implementation. Thus, Fig. 3b presents the optimal partitions and schedules
(in terms of the same cost function from Eq. 2), considering the fixed mapping decided in Fig. 3a.

8

The continuous line at time 15 represents the major frame boundary, while the shorter continuous
lines, such as the one between tasks τ20 and τ30 represent partition slice boundaries. The partition
slices are denoted by the notation pk

i j introduced in Section 3.1. We mark the unused CPU time of a
partition slice with a hatching pattern, as is the case with partition slice p1

12 on N1 in the second MF
assigned to A2.

With partitioning, tasks can only execute in their assigned partition. Hence, partitioning may lead
to unused slack in the schedule, even in the case of an optimal partitioning and schedule, as depicted
in Fig. 3b. In this case, although application A3 is schedulable, task τ25 of A2 does not fit into the
schedule. Furthermore, given that task τ11 has only executed for 2 time units in slot 4–6 and 1 time
unit in slot 14–15 when it reaches its deadline, there are still 2 more time units that must be executed,
hence τ11 misses the deadline. Thus applications A1 and A2 are not schedulable.

Our approach in this paper is to perform the optimization of mapping and partitioning at the same
time, and not separately. By deciding simultaneously the mapping and partitioning we have a better
chance of obtaining schedulable implementations. Such a solution is depicted in Fig. 3c, where all
applications are schedulable. Compared to the solution in Fig. 3b, we have changed the mapping of
tasks τ23 and τ32 from N1 to N2 and of task τ11 from N2 to N1, and we have resized the partition
slices and changed the schedule accordingly. This example shows that by optimizing the mapping
at the same time with partitioning we are able to obtain schedulable implementations.

4.2. Partition-Sharing Optimization
However, there might be cases when obtaining schedulable implementations is not possible, even
if mapping and partitioning are considered simultaneously. For example, let us consider a similar
setup as in the previous section, with the only difference that we add task τ12 to application A1,
see Fig. 1a. The solution presented in Fig. 3c, prior to adding task τ12, has the partitioning and
scheduling optimized, and the schedule is almost full. Adding task τ12 to the task set, we are unable
to obtain a schedulable implementation: although it may seem that task τ12 would fit in-between
tasks τ23 and τ33 in the schedule of N2 in Fig. 3c, τ12, which is SIL 3, cannot use that partition,
which is for SIL 1 tasks. Moreover, the partition slice p1

2,2 cannot be split, because then τ22 would
not fit in the first major frame.

For such situations, in this paper we consider the elevation of tasks to allow partition sharing,
and we are interested to derive schedulable implementations that minimize the development costs
associated to elevation. Thus, in Fig. 3d we allow τ12 of SIL 3 to share the partition with tasks τ22 and
τ23 of SIL 1, by elevating these two tasks to SIL 3. This will trigger the elevation of the predecessors
of τ22 and τ23, namely τ20 and τ21, to SIL 3. In addition, since τ20 and τ21 share partitions with
tasks τ24 and τ25, these will also have to be elevated to SIL 3, leading to a complete elevation of
application A2 from SIL 1 to SIL 3, which, according to the costs from Fig. 1c, means an increase
in development costs from 85 kEuros to 127 kEuros. The solution in Fig. 3d is schedulable, and is
optimal in terms of development costs as captured by the cost function from Eq. 1 to be discussed
in Section 5.1.

Note that, in many application areas, such a development cost increase is preferred to an increase
in unit costs. Our optimization approach provides to a trade-off analysis tool to the designer, who
can decide what is the best option: to upgrade the platform and increase the unit costs, or to increase
the development costs, but keep the same architecture.

4.3. Task Decomposition
We have not yet discussed the issue of SIL decomposition. In the previous subsection we have shown
how to use elevation to achieve partition sharing, which may lead to increased development costs.
Another option is to explore several SIL decompositions for those tasks for which the designer
has specified a SIL decomposition in the decomposition library L (see Section 2.1). Using SIL
decomposition will result in more (redundant) tasks of lower SILs. Using multiple tasks of lower
SILs has the advantage of lowering the development costs and may facilitate partition sharing.

9

(a) Two applications

(b) WCETs

(c) Development costs (kEuro)

Fig. 4: Application model example for SIL decomposition

(a) Library L with two decompositions

(b) WCETs for the tasks resulted from the SIL decomposition

(c) Developments costs for the tasks resulted from SIL decomposition

Fig. 5: Example decomposition for task τ11

10

(a) No sharing or decomposition, τ22 does not fit into the schedule. Initial DC=172 kEuro

(b) By allowing partition sharing, we obtain a schedulable solution. DC=194 kEuro

(c) If not selected carefully, SIL decomposition may increase costs. DC=224 kEuro

(d) Using an optimized SIL decomposition can lower the development costs. DC=173 kEuro

Fig. 6: SIL decomposition optimization example

The disadvantage is the introduction of more tasks, which have to be placed in the schedule table,
potentially impairing schedulability.

Let us illustrate these issues using the example in Fig. 4. We have two applications, A1 and
A2, presented in Fig. 4a. The WCETs for the tasks are shown in Fig. 4b, while Fig. 4c shows the
development costs. Let us assume the designer is considering decomposing task τ11 into two options
D1 and D2 as discussed in Section 2.1 and shown in Fig. 5a. Fig. 5b and Fig. 5c present the WCETs
and development costs of the tasks resulted from the decomposition. The TMF is 11 time units, and
Tcycle is 22.

We first show a solution to this example without considering partition sharing and SIL decompo-
sition. Thus, Fig. 6a presents the optimal mapping, partitioning and schedules of tasks, as obtained
by running the simultaneous mapping and partitioning optimization discussed in Section 4.1. In this
case, τ22 does not fit into the schedule. Although A2 has two partition slices on N1, i.e., p1

1,2 and p2
1,2,

with a total time of 6 out of the 11 time units of the MF, τ22, which is of SIL 1, is allowed to execute

11

only in p2
1,2, since it cannot share the partition slice p1

1,2 with τ21 of SIL 3. Thus, τ22 executes for
only two time units, during time slot 10–11 and time slot 21–22, but there is still 1 more time unit
left to execute by the time it reaches the deadline. Fig. 6b shows a solution where we allow partition
sharing, but not SIL decomposition. In this case, a schedulable solution was obtained by elevating
τ22 to SIL 3 to allow τ21 and τ22 to share the same partition slice p1

1,2. Due to the elevation of τ22,
the development cost of this solution increased to 194 kEuros, compared to 172 kEuros, if all the
tasks would have been implemented and certified according to their lowest possible SIL.

We show in Fig. 6c the solution when we use SIL decomposition alongside with partition shar-
ing. In Fig. 6c we decompose τ11 of SIL 4 into two tasks of SIL 3 and SIL 1 as specified by the
decomposition option D1, see Fig. 5a. Decomposing τ11 in this manner increases the cost from 194
kEuros, corresponding to the solution in Fig. 6b, to 224 kEuros. To obtain a schedulable solution
task τ13 is elevated from SIL 2 to SIL 3 to share the partition slice p1

2,1 with the other tasks of SIL 3.
Similarly, τ14 is elevated to SIL 3 to share p1

1,1 with τ12. Clearly, this decomposition does not help
our design, as it significantly increases the costs. Hence, not all decompositions are improving the
design. Fig. 6d presents a solution where we use the SIL decomposition specified by D2, Fig. 5a.
Thus, τ11 of SIL 4 is decomposed into two tasks of SIL 2, namely τ11 f and τ11g. Similar to Fig. 6b,
task τ22 is elevated to SIL 3 to share the partition slice p1

1,2 with τ21. Moreover, task τ14 is elevated
to SIL 2 to share the partition slice p4

2,1 with τ13. Decomposing in this manner reduces the cost to
173 kEuros, while also ensuring that all deadlines are satisfied.

This example shows that, in order to reduce costs and obtain schedulable solutions, it is important
to optimize the SIL decomposition.

5. TABU SEARCH-BASED DESIGN OPTIMIZATION
The problem of scheduling tasks on multiprocessors is known to be NP-complete [Ullman 1975],
while the problem of mapping tasks onto a multiprocessor system is proved to be NP-hard [Baruah
2004b]. In order to solve the problem presented in the previous section, we will use the “Mixed-
Criticality Design Optimization” (MCDO) strategy from Fig. 7, which is based on a Tabu Search
metaheuristic. MCDO takes as input a set of applications Γ (including the SIL information and
development costs DC), the SIL decomposition library L and the set of processing elements N ,
and returns the implementation Ψ consisting of the SIL decomposition D, the mapping M of tasks
to PEs, the set of partitions slices P on each PE, the assignment φ of tasks to partitions and the
schedules S for the applications. Our strategy has 3 steps:

(1) In the first step, we consider that tasks are not decomposed (denoted by D◦) and we determine
an initial task mapping M◦, an initial set of partition slices P ◦ and an initial assignment of tasks to
partitions φ◦, line 1 in Fig. 7. The initial mapping M◦ is done in two steps: in the first step, a Greedy
algorithm performs the mapping such that the utilization of processors is balanced and minimized.
In the second step, the algorithm identifies for each application orphan tasks, i.e., tasks mapped to
other PEs than any of their immediate successors or predecessors. Next the algorithm remaps these
tasks to the same PE as the predecessor or successor that has the largest communication costs, thus
minimizing the communication, with the constraint that the utilization of the processors cannot vary
more than 25% from the average utilization. P ◦ consists of a simple straightforward partitioning
scheme which allocates for each application A j a total time on PE Ni proportional to the utilization
of the tasks of A j mapped to Ni. The initial assignment φ◦ of tasks to partitions consists of a separate
partition for each SIL level in each application, and does not allow partition sharing.

(2) In the second step, we use a Tabu Search meta-heuristic (see Section 5.1) to determine the
SIL decomposition D, the task mapping M, the set of partition slices P and the assignment of tasks
φ to partitions, such that the applications are schedulable and the development costs are minimized.

(3) Finally, given the SIL decomposition D, the task mapping M, the optimized partitions P and
the assignment φ of tasks to partitions obtained in line 2 in Fig. 7, we use a List Scheduling heuristic
(see Section 5.2) to determine the schedule tables S for the applications.

12

MCDO(Γ, N , L)
1 < D◦,M◦,P ◦,φ◦ > = InitialSolution(Γ, N)
2 < D,M,P ,φ > = TabuSearch(Γ, N , L , D◦, M◦, P ◦, φ◦)
3 S = ListScheduling(Γ, N , D, M, P , φ)
4 return Ψ =< D,M,P ,φ,S >

Fig. 7: Mixed-Criticality Design Optimization strategy

5.1. Tabu Search

TabuSearch(Γ, N , L , D◦, M◦, P ◦, φ◦)
1 Best← Current← < D◦,M◦, P ◦, φ◦ >
2 L←{}
3 while termination condition not reached do
4 remove tabu with the oldest tenure from L if Size(L) = l
5 // generate a subset of neighbors of the current solution
6 C ← GenerateCandidateList(Current,Γ,N)
7 Next← solution from C that minimizes the cost function
8 if Cost(Next) < Cost(Best) then
9 // accept Next as Current solution if better than the best-so-far Best

10 Best← Current← Next
11 add Next to L
12 reset diversification counter, restart counter
13 else if Cost(Next) < Cost(Current) and Next /∈ L then
14 // also accept Next as Current solution if better than Current and not tabu
15 Current← Next
16 add Next to L
17 reset diversification counter, restart counter
18 else
19 increment diversification counter
20 end if
21 if diversification counter reached then
22 Current← Diversify(Current)
23 empty L
24 increment restart counter
25 end if
26 if restart counter reached then
27 Current← Best
28 empty L
29 end if
30 end while
31 return Best

Fig. 8: The Tabu Search algorithm

Tabu Search (TS) [Glover and Laguna 1997] is a meta-heuristic optimization, which searches for
that solution which minimizes the cost function (see Section 5.1.1 for our cost function definition).
Tabu Search takes as input the set of applications Γ, the set of PEs N , the decomposition library L
and the initial solution, consisting of D◦, M◦, P ◦, and φ◦, and returns at the output the best solution
found during the design space exploration, in terms of the cost function.

13

Tabu Search explores the design space by using design transformations (or “moves”) applied to
the current solution in order to generate neighboring solutions. To escape local minima, TS incorpo-
rates an adaptive memory (called “tabu list” or “tabu history”), to prevent the search from revisiting
previous solutions, thus avoiding cycling. The size of the tabu list, that is, the number of solutions
marked as tabu, is called tabu tenure. In case there is no improvement in finding a better solution
for a number of iterations, TS uses diversification, i.e., visiting previously unexplored regions of the
search space. In case the search diversification is unsuccessful, TS will restart the search from the
best known solution.

Fig. 8 presents the Tabu Search algorithm. Line 1 initializes the Current and Best solutions to
the initial solution formed by the tuple < D◦, M◦, P ◦, φ◦ >. Line 2 initializes the tabu list L to an
empty list. The size l of L, i.e., its tenure, is set by the user. The Tabu Search algorithm runs until the
termination condition is not reached (see line 3). This termination condition can be, for example,
a certain number of iterations or a number of iterations without improvement, considering the cost
function [Gendreau 2002]. Our implementation stops the search after a predetermined amount of
time, set by the user. In case the tabu list L is filled, we remove the oldest tabu from this list (see
line 4).

Since it is infeasible to evaluate all the neighboring solutions (see the discussion in Section 5.1.3),
we generate a subset of neighbors of the Current solution (line 6), called Candidate List and we
choose from this Candidate List, as the possible Next solution, the one that minimizes the cost
function (line 7). We accept a solution as the Current solution from which the exploration continues
if: (1) if it has a cost which is better than the best-so-far solution Best, lines 8–12 in Fig. 8, or (2) if
it has a better cost then the Current solution and it is not “tabu”, lines 13–18. If we accept a solution
at the Current solution, the algorithm resets the diversification and restart counters (lines 12, 17).
Otherwise, the algorithm increments the diversification counter. The Best and Current solutions are
updated accordingly, lines 10 and 15, respectively, and the Next solution is added to the tabu list L,
lines 12 and 16. Note that in the first case we can also accept tabu solutions, which is referred to as
“aspiration”. In this situation, the already tabu solution in L will be moved to the tail of the list, thus
setting its tenure to the size l of the list.

In case the algorithm does not manage to improve the current solution after a given number
of iterations, it proceeds to a diversification stage (lines 17–20). During this stage, we attempt to
drive the search towards an unexplored region of the design space. Thus, in the Diversify function
call, we randomly decompose tasks that have decomposition options specified in the library L , and
we randomly re-assign a task from each application, while keeping the same partition tables. The
algorithm increments the restart counter after each diversification stage (line 24). If after a preset
number of diversification stages, the algorithm is still unable to improve the solution, we restart the
search from the best known solution so far (lines 21–24). After a diversification or restart occurs,
the tabu list L is emptied.

5.1.1. Cost Function. For each alternative solution visited by TS we use the List Scheduling-
based heuristic from Section 5.2 to produce the schedule tables S . We define the response time Ri of
an application Ai as the time difference between the finishing time of the sink node and the start time
of the application. DC(Γ) is the development cost of the set Γ of all applications (see Section 2.2).
We define the cost function of an implementation ψ as:

Cost(ψ) =
{

c1 = ∑Ai∈Γ max(0,Ri−Di) i f c1 > 0
c2 = DC(Γ) i f c1 = 0 (1)

If at least one application is not schedulable, there exists one Ri greater than the deadline Di, and
therefore the term c1 will be positive. However if all the applications are schedulable, this means
that each Ri is smaller than Di, and the term c1 = 0. In this case, we use c2 as the cost function, since
when the applications are schedulable, we are interested to minimize the development cost.

5.1.2. Design Transformations. As previously mentioned, the exploration of the design space is
done by applying design transformations (moves) to the current solution Current. We use one re-

14

Fig. 9: Partition slice move examples

assignment move, which changes the assignment of a task to another partition and four types of
moves applied to partition slices: resize, swap, join and split. We also employ SIL decomposition
moves, namely decompose and recompose.

Let us first discuss the moves applied to partition slices. The resize move, as its name implies,
resizes the selected partition slice. This is done either by increasing the size of the partition slice
at the expense of a neighboring partition slice, or by decreasing it and giving the extra space to
a neighboring slice. The amount with which the slice can be resized is randomly chosen, but we
have imposed an upper limit (half the size of the partition slice). The swap move swaps the chosen
partition slice with another randomly chosen partition slice. The join move joins two partition slices
belonging to the same application, while the split move splits a partition slice into two, and adds
the second slice to the end of the MF.

Fig. 9 depicts the basic slice moves as they are sequentially performed on a single PE, namely N1.
As mentioned, the notation pk

i, j means the kth partition slice of the application A j on the processing
element Ni. There are 4 applications, numbered from 1 to 4, and the first application has 2 partition
slices, p1

1,1 and p2
1,1. The current partitioning solution is presented in Step 1 in Fig. 9. The first move

is the split move, which is performed on the partition slice p1
1,3 belonging to A3. The slice is split in

two equal parts, and the resulting slice is added to the end of the MF. The second move is a resize
with 10 ms, which affects p1

1,1 at the expense of p1
1,2. The third move is a swap of slices p1

1,2 and
p2

1,3. The result is shown in the 4th step. The last move is a join move and as previously mentioned,
it can be applied only to partition slices belonging to the same application. For this move we chose
the p1

1,1 and p2
1,1 slices.

The re-assignment move re-assigns a task to another partition. The partition can be an existing
one, or newly created. The partition may be on another PE, thus, implicitly, the re-assignment move
will also re-map the task. The re-assignment move does not prevent partition sharing by tasks of
different SILs. In case the move will lead to sharing, we elevate tasks as required, and update the
development costs accordingly. If a re-assignment move results in an empty partition, the partition
is deleted and its assigned CPU time is distributed to a randomly chosen partition. As a result, the
algorithm creates and deletes partitions and partition slices, as well as resizes them, on the fly as
needed, depending on the task re-assignment moves.

The SIL decomposition moves are applied to the tasks which have decomposition alternatives
specified in the library L . The decompose move selects a random decomposition option from the
library. The recompose move is applied to a task τi, and it reverts the task to its initially proposed
model, thus undoing any decompose moves that may have affected τi. These moves are applied
during the diversification phase (line 18 in Fig. 8) to randomly selected tasks.

Our algorithm relies on a tabu list with tabu-active attributes, that is, it does not remember com-
plete solutions in the list L, but rather attributes of the moves that generated the tabu solutions. In
case of the resize and the swap moves, tabu-active attributes are the involved partition slices. For

15

(a) Current solution

(b) Swap the partitions on N2, results in a solution which is not better than the current solution

(c) Resize τ31’s partition. Best solution so far, although it is a tabu move. The tabu status is “aspired”

(d) Re-assign τ11 to N2. Tabu move and does not improve the solution

(e) Re-assign τ11 to A3’s partition on N1. Best solution so far

Fig. 10: Moves and tabu history

the split and join moves, the tabu-active attribute is the partition the move was performed on. As for
the re-assignment move, the attributes are the re-assigned task and the involved partitions.

Let us illustrate in Fig. 10 how Tabu Search works. We consider applications A1, with tasks τ10
and τ11, and A3, with tasks τ30–τ33, from Fig. 1, with their periods and deadlines equal to 16. The
size of the major frame TMF is set to 8 and Tcycle is 16. We are interested in implementing these
applications on an architecture with two PEs, N1 and N2. Let us assume that we are running our TS
and the current solution, which is also the best-so-far solution, is the one presented in in Fig. 10a.

16

The mapping and assignment of tasks in this solution is as follows. τ10 ∈ A1 is assigned to partition
P2,1 on N2 (composed of partition slice p1

2,1), while τ11 is assigned to partition P1,1 on N1 (with
partition slice p1

1,1). In the case of application A3, τ30 and τ31 are assigned to partition P1,3 on N1

(of slice p1
1,3), while τ32 and τ33 are assigned to P2,3 on N2 (with slice p1

2,3). Note that this solution
is not schedulable, since tasks τ31 and τ33 from A3 do not fit into the schedule. Each of the figures
from Fig. 10b–10e presents a neighboring solution generated from the current solution in Fig. 10a,
and are intended to illustrate moves performed by TS and how the tabu list is updated. None of these
solutions are schedulable, but we can see improvements in the cost function, which will drive the
search to a schedulable solution.

Next to each solution we present the value of the cost function associated to the solution. Since
none of these solution are schedulable, the value of the cost function is the term c1 from Eq. 1.
Furthermore, we also present for each solution the updated tabu list (referred to as L in Fig. 8).
Fig. 10a presents the current tabu list. Fig. 10b–10e present the updated list, that will be used in
case the associated solution is chosen as the as the Next solution (see Fig. 8). For this example, the
tabu tenure l is 5. The tabu most recently added to the list has the highest tenure, while the oldest
tabu in the list has the lowest tenure. For example, in Fig. 10a, the most recently added tabu to the
list has a tenure of 5. This tabu is associated to the move that generated this solution, namely a resize
move, and the involved partition slices are p1

2,1 and p1
2,3.

Fig. 10b presents a neighboring solution obtained from Fig. 10a by swapping on N2 the partition
slices p1

2,1 and p1
2,3 assigned to A1 and A3, respectively. This move does not improve the solution,

i.e., the value of the cost function is 7 in both cases, thus, the move is ignored and the tabu list is not
updated. Fig. 10c shows the solution obtained from Fig. 10a obtained by resizing the partition slice
p1

1,3 on N1. In this solution, p1
1,3 is increased, while the size of p1

1,1 is decreased. This solution was
generated by a move that is tabu. Because this solution is better than the best-so-far solution shown
in Fig. 10a, in terms of the cost function (the value of the cost function is 4 in the new solution,
compared to 7 in Fig. 10a) the tabu status of the move is ignored or “aspired” (TS can choose tabu
moves, if the resulting solutions are better than the Best known solution). The updated tabu list,
in case the search will continue with this solution as the Current solution, is presented next to the
solution.

The solution in Fig. 10d is obtained by re-assigning task τ11 from partition P1,1 on N1 (composed
of partition slice p1

1,1) in Fig. 10a to P2,1 on N2 (of slice p1
2,1). After re-assigning τ11, partition

P1,1 on N1, composed of p1
1,1, has no tasks assigned to it, therefore it is deleted and the algorithm

“transfers” the CPU time of P1,1 to P1,3 (composed of p1
1,3). Thus, on N1, there is only one partition

slice executing, i.e., p1
1,3. Although this move does improve the solution presented in Fig. 10a in

terms of the cost function, it is not better than the solution from Fig. 10c, and hence, it is ignored.
Fig. 10e presents a solution obtained by re-assigning τ11 from partition P1,1 on N1 in Fig. 10a to
P1,3. Similar to the solution from Fig. 10d, since partition P1,1 has no tasks assigned to it, it is
deleted and its CPU time given to P1,3. Furthermore, τ11 shares the partition with τ30 and τ31. Since
τ11 is a task with SIL 3, and tasks τ30 and τ31 are SIL 2 tasks, the two tasks from A3 have to be
elevated to SIL 3, thus increasing the development costs of the system. This move does not result in
a schedulable solution, but it improves the solution in terms of cost function. The value of the cost
function in this case is 3, and is better than the other neighboring solutions. The search will continue
with this solution as the Current solution, and the tabu list will be accordingly updated.

5.1.3. Candidate List. The neighborhood of the Current solution is composed of all the solutions
which are “one move away”, that is, obtained by applying a move to the Current solution. To decide
which move to select as the Next solution, we need to determine which of the neighbors minimizes
the cost function (line 7 in Fig. 8). Calculating the cost function (Eq. 1) means determining the
schedule tables for all the applications (term c1 in Eq. 1) and, if they are schedulable, a sumation of
the development costs for all tasks (term c2). Since the size of a neighborhood is large, calculating

17

the cost function for every neighbor would take a very long time, rendering the search process
infeasible. Instead, only a part of the neighborhood is considered, and neighbors are placed on a so
called candidate list C . One option is to select randomly the neighbors to be placed on the candidate
list. However, we use a heuristic approach that selects those neighbors which have a higher chance
to lead quickly to good quality solutions.

GenerateCandidateList(Current,Γ,N)
1 C ← {}
2 for PEi ∈N do
3 for all move ∈ {resize, swap, join, split} do
4 C ← C ∪{New|New← apply move to a random partition slice on PE j in Current}
5 end for
6 C ← C ∪{ New| New← resize most oversized partition on PE j in Current}
7 C ← C ∪{ New| New← resize most undersized partition on PE j in Current}
8 end for
9 if perform moves on tasks then

10 for all applications Ai that missed their deadlines do
11 C ← C ∪{New|New← re-assign random task τ j ∈ Ai to random partition in Current}
12 end for
13 for all PEi ∈N do
14 C ← C ∪{New|New← re-assign random task τ j from PEi to a random partition on PEk 6=

PEi in Current}
15 C ← C ∪{New|New← re-assign random task τ j from PEi to another partition on PEi in

Current}
16 C ← C ∪{New|New← re-assign random task τ j from PEi to another application’s parti-

tion in Current}
17 end for
18 end if
19 return C

Fig. 11: Algorithm to generate the candidate list C

The candidate list generation algorithm (GCL) is presented in Fig. 11. GCL takes as input the
Current solution, the set of applications Γ and the set of processing elements N , and returns a list
C of candidate solutions. GCL is called on line 6 in our Tabu Search from Fig. 8.

GCL starts with an empty candidate list C (line 1 in Fig. 11). The neighbors placed in C are
obtained by performing moves on the Current solution. The following moves are considered. On
each PE, GCL performs partition related moves (resize, swap, join and split moves) on random
partition slices (lines 3–5). On each PE, GCL chooses as a candidate the most oversized partition,
that is, the partition with the lowest ratio of used CPU time compared to actual allocated time
(line 6), and resizes (shrinks) this partition. This is done to transfer “unused” CPU time from an
oversized partition to another partition, in the hope of improving the overall schedulability of the
system. Similarly, there might exist situations where we have undersized partitions, that is, partitions
that have more tasks assigned than allocated CPU time, or partitions where the allocated time is not
enough for all the assigned tasks to execute before their deadline. For such situations, on each PE,
GCL selects the most undersized partition, i.e., the partition with the highest ratio of required CPU
time compared to the actual allocated time, and resizes this partition, increasing its size (line 7).
Such an example is given in Fig. 10c, obtained from Fig. 10a. The most undersized partition in
Fig 10a, on PE N1 is partition P1,3 containing partition slice p1

1,3. This partition has an allocated
time of 8 time units during the MF, and has assigned to it tasks τ30 and τ31, requiring 10 time units
for execution. Thus, it has a ratio of required to allocated CPU time of 125%. The other partition

18

on N1, P1,1, has only τ11 assigned to it, which requires only 3 time units for execution, out of the
8 allocated to the partition. The ratio of required to allocated CPU time for this partition is only
37.5%. Hence, the most undersized partition, i.e., P1,3, is increased, by transferring CPU time from
partition slice p1

1,1 to p1
1,3. The candidate solution generated by this move is presented in Fig. 10c,

and is better than the solution shown in Fig. 10a, in terms of the cost function.
The diversification stage presented in Fig. 8, line 18, randomly re-assigns a task from each appli-

cation, while keeping the same partition tables. Furthermore, during this phase, randomly selected
tasks that have decomposition options specified in the decomposition library L , are decomposed.
The introduction of the decomposed tasks may decrease the schedulability of the diversified solu-
tion. In order to allow TS to improve on the schedulability by adapting the partition table to the
new mapping scheme and to the decomposed tasks, we do not allow any re-assignment moves for a
certain number of iterations. This condition is shown in line 9, in Fig. 11. Thus, we force the TS to
explore this new design space area, while keeping the assignment of tasks to partitions fixed. When
this restriction is lifted, GCL focuses on the applications that miss their deadlines, in order to make
them schedulable (lines 10–12 in Fig. 11). For this, GCL selects a random task from each applica-
tion missing its deadline, and re-assigns it to another partition. Furthermore, on each PE we perform
three types of re-assign moves (lines 13–17), in hope to thoroughly explore the design space. GCL
re-assigns a random task τi to another PE, but to the same application’s partition (line 14); a random
task to the same PE, but to another partition (line 15); and another task to another PE, to another
application’s partition (line 16).

5.2. List Scheduling
The applications are scheduled using static-cycling non-preemptive scheduling. We use a List
Scheduling (LS)-based heuristic [Sinnen 2006] to determine the schedule tables S for each ap-
plication. Adam et al. [1974] have shown that critical path-based List Scheduling heuristics result
in schedules that are “within 5 percent of the optimal execution time in 90 percent of the cases”.
LS heuristics use a sorted priority list, Lready, containing the tasks ready to be scheduled. A task
τi is ready if all the predecessor tasks have finished executing and all the incoming messages are
received. We use the Modified Partial Critical Path priority function [Pop et al. 2004] to sort Lready.

We have modified the classical LS algorithm to take into account the partitions. Thus, when
scheduling a task, we are allowed to use only the corresponding partitions slices from P . Our LS
is implemented as a loop. During each iteration, the LS algorithm checks which partition is active
during the current step. We use a priority list L

Pi, j
ready for each partition Pj on processor Ni. LS selects

the task τn with the highest priority from the L
Pi, j
ready and schedules it in the current partition slice pk

i, j.
If a partition slice finishes before the task task τn has completed its execution (as is the case with
τ31 ∈ A3 in Fig. 3b), τn is suspended at the end of the slice, CNi

n is updated with the remaining time
to execute, and τn is not removed from the ready list. Then LS continues scheduling tasks from the
ready list of the next partition. When the processor is assigned to the next partition slice pk+1

i, j of Pj,
LS will continue with scheduling task τn. The partition switch overhead tO is taken into account at
each partition switch by reducing the actual duration of each partition slice with tO. LS also derives
the schedules tables for the messages on the bus.

6. EXPERIMENTAL EVALUATION
For the evaluation of our proposed “Mixed-Criticality Design Optimization” (MCDO) algorithm we
used 7 synthetic benchmarks and 2 real-life case studies. The MCDO algorithm was implemented
in Java (JDK 1.6), running on SunFire v440 computers with UltraSPARC IIIi CPUs at 1.062 GHz
and 8 GB of RAM.

In the first set of experiments we were interested to evaluate the proposed MCDO in terms of its
ability to find schedulable implementations. Thus, we have used 3 synthetic benchmarks with 3 to
5 mixed-criticality applications (with a total of 15 to 41 tasks). We have used MCDO to implement

19

Table II: Comparison of MO+PO, MPO and MCDO (run time: 480 minutes)

Set Benchmark Apps Tasks PE MO+PO MPO MCDO
Sched.
Apps

Sched.
Apps

δSched
(%)

Sched.
Apps

δDC
(kEuro)

1
1 3 15 2 2 2 450 All 59
2 4 34 4 0 3 3600 All 19
3 5 41 5 3 All 235 – –

2

4.1 3 20 4 All All 1.10 – –
4.2 4 30 4 All All 23.96 – –
4.3 5 34 4 4 All 13.27 – –
4.4 6 39 4 3 5 208.11 All 470

3

5.1 20 210 15 16 All 1912 – –
5.2 25 265 15 24 All 27647 – –
5.3 30 333 22 18 28 96.51 All 158
5.4 35 371 20 33 All 1602 – –
5.5 40 270 25 36 38 42.29 All 89

3 consumer 2 12 3 0 1 343.45 All 123
networking 4 13 3 2 2 31.78 All 40

these applications on architectures with 2 to 5 processing elements. The execution times and mes-
sage lengths were assigned randomly within the 1 to 19 ms and 1 to 5 bytes ranges, respectively. The
details of each benchmark, namely the benchmark number, the number of applications, the number
of tasks and the number of processing elements are presented in Table II, columns 2–5. For all the
experiments, we used the decompositions in Table I.

We were interested to compare the number of schedulable implementations found by MCDO with
two other setups. In one of the setup, SIL decomposition is not used and the sharing of partitions
by tasks of different criticality levels is not allowed, but mapping and partitioning optimization is
performed simultaneously. Let us call this simultaneous “mapping and partitioning optimization”,
MPO. In the other setup, sharing and decomposition are not allowed, and in addition, mapping
optimization (MO) is performed separately from partitioning optimization (PO). We call such an
approach MO+PO.

MO+PO and MPO are based on the MCDO strategy presented in Fig. 7, and use the same Tabu
Search for the optimization. The difference is in the types of moves performed by TS: there are only
mapping moves for MO (without considering partitions), we use only partition-related moves in PO,
considering mapping fixed, as determined by MO. In addition, MPO does not allow decomposition
moves and re-assignment moves that would lead to partition sharing by mixed-criticality tasks.
Further, MO, PO and MPO use a cost function where we do not consider development costs (the
term c2 in Eq. 1), which are constant in their case since we do not elevate or decompose tasks:

Cost(Ψ) =

{
c1 = ∑Ai∈Γ max(0,Ri−Di) i f c1 > 0
c2 = ∑Ai∈Γ(Ri−Di) i f c1 = 0. (2)

If at least one application Ai is not schedulable, there exists one application completion time Ri
greater than the deadline Di, and therefore the term c1 will be positive. However if all applications
are schedulable, this means that each Ri is smaller than Di, and the term c1 = 0. In this case, we use
c2 as the “degree of schedulability”, since it can distinguish between two schedulable solutions. The
solution with a higher “degree of schedulability”, i.e., a smaller c2 value, is preferred.

The termination condition of our Tabu Search is a time limit given by the designer. The time
imposed for each individual experiment is 480 minutes. To determine an appropriate value, we have
run our TS for long periods, e.g., for 2 days and then determined the shortest time limit that can
produce a result within 5% of the result obtained in 2 days, in our case 480 minutes. The results
for the first set of experiments are presented in Table II in the rows corresponding to “Set 1”. The

20

number of schedulable applications, resulted after implementing the system using MO+PO, MPO
and MCDO are reported in columns 6, 7 and 9, respectively, labelled with the respective acronym
and “Sched. apps.”.

As we can see from the comparison between MO+PO and MPO, there is a significant improve-
ment in the number of schedulable applications if the optimization of mapping is considered at the
same time with the optimization of partitioning. For example, for the second benchmark (benchmark
2 in Set 1) with 4 applications mapped to 4 PEs, MO+PO is unable to successfully schedule any of
the applications. MPO, which performs mapping and time optimization simultaneously, is able to
schedule 3 out 4 applications. We have also compared MPO and MO+PO in terms of the degree of
schedulability, i.e., the cost function captured by Eq. 2. The percentage improvement δsched of MPO
over MO+PO is presented in column 8 and is computed as

δsched =
Cost(MPO)−Cost(MO+PO)

Cost(MO+PO)
×100 (3)

where Cost(MPO) and Cost(MO+PO) are the values of the cost function for the solutions obtained
using the MPO and MO+PO strategies, respectively. An improvement in the degree of schedulability
means that there is more slack available in the schedule, which can be used for future upgrades, for
example.

If MPO produces a schedulable solution, i.e., the applications are schedulable without SIL de-
composition or partition sharing, we do not have to run MCDO. This is indicated in the table using a
dash “–” in the MCDO columns. However, MPO is not able to find schedulable implementations in
the first two cases. In such situations, MCDO, which optimizes the SIL decompositions and the par-
tition sharing at the same time with mapping and partitioning, can find schedulable implementations
in all cases.

Once a schedulable implementation is found by using decomposition and elevation, the cost func-
tion from Eq. 1 will drive MCDO to solutions that minimize the development cost. Elevation for
partition sharing will increase the development costs, whereas SIL decomposition has the potential
to reduce these costs. The increase δDC in development cost that we have to pay in order to find
schedulable implementations, compared to MPO which does not perform SIL elevation or decom-
position, is reported in the last column of Table II.

In the second set of experiments, labeled “Set 2” in Table II, we were interested to see how MCDO
performs compared to MO+PO and MPO as the utilization of the system increases. Thus, we have
an increasing number of mixed-criticality applications, from 3 to 6, on the same architecture of 4
PEs. The average utilization of the system, per processor, increases from 46.7% in benchmark 4.1 to
77.9% in benchmark 4.4. As we can see, for the smaller benchmarks of 3 and 4 applications (bench-
marks 4.1 and 4.2, respectively), MO+PO is able to find schedulable implementations. Optimizing
the mapping and time partitions using MPO leads to more schedulable implementations, i.e., “All”
applications are schedulable in benchmark 4.3. However, as the system utilization increases, as is
the case for the largest benchmark in this set (4.4), where we used 6 applications on 4 PEs, only
MCDO, which considers decomposition and elevation to allow partition sharing by tasks of mixed-
criticality, is able to find schedulable solutions. Therefore, MCDO is able to integrate successfully
more mixed-criticality applications on the same integrated architecture, thus saving product unit
costs by avoiding costly architecture upgrades across the product line.

In the third set of experiments “Set 3”, we wanted to see how the optimization strategies perform
on large test cases. In the new test cases, the number of applications vary between 20 to 40, with
210 to 371 tasks, and are mapped on 15 to 25 processing elements. The results confirm the findings
of the previous sets. Moreover, we see that our optimization handle well also large test cases.

We were interested to determine how close are the results obtained by MCDO to the optimal
result. We have run an exhaustive search for test case 1 in Table II and obtained thus the optimal
solution. Running MCDO for 480 minutes on this benchmark, we have been able to obtain a result
which has the same cost function value as the optimal solution.

21

Finally, we have also used 2 real life benchmarks derived from the Embedded Systems Synthesis
Benchmarks Suite [Dick 2005] version 0.9. We have used the consumer-cords and networking-cords
benchmarks. In both cases we were interested in implementing the applications to an architecture
of 3 PEs. The results obtained from these real-life benchmarks are reported in the last 2 lines in
Table II and confirm the results of the synthetic benchmarks.

7. RELATED WORK
There is a large amount of research on hard real-time systems [Kopetz 2011b; Buttazzo 1997],
including task mapping to heterogeneous architectures [Braun et al. 2001]. Researchers have ad-
dressed systems with mixed time-criticality requirements, showing how Time Triggered (TT)/Event
Triggered (ET) tasks or hard/soft real-time tasks can be integrated onto the same platform.

In the context of mixed TT/ET systems, Pop et al. [2008a] have shown how the static schedules
can be optimized such that both the TT applications (scheduled using SCS) and the ET applica-
tions (scheduled using FPS) are schedulable. Their approach could be extended to constrain the TT
schedules to follow a given partitioning. They have later addressed the problem of mapping and
partitioning, but in their context partitioning means deciding which tasks should be TT and which
ET [Pop et al. 2006]. While in [Pop et al. 2006, 2008a] TT and ET tasks share the same processor,
the work in [Pop et al. 2004] considers that TT and ET tasks are implemented on different clusters.
In this context, partitioning means deciding in which cluster (TT or ET) to place a task.

Researchers have shown how to integrate mixed hard/soft real-time tasks onto the same platform.
The order of tasks is decided by quasi-static scheduling in [Cortés et al. 2004] (several schedules are
determined offline, and are activated online depending on when tasks finish executing), such that
the hard tasks meet their deadlines and the total “utility” of soft tasks is maximized. This work has
been extended by Izosimov et al. [2008] to handle transient faults, by switching online to backup
recovery schedules. Soft real-time tasks can be integrated in fixed-priority preemptive scheduling
using the Constant Bandwidth Server (CBS) [Abeni and Buttazzo 1998], where the server is a
hard task providing a desired level of service to soft tasks. Thus, the CBS-servers provide a time-
partitioning between hard and soft tasks. The optimization of CBS-server capacity in the context of
mixed hard and soft real-time tasks has been addressed by Saraswat et al. [2010], such that the hard
tasks are schedulable and the quality of service for the soft tasks is maximized.

The problem of the optimization of time-partitions has been addressed at the bus level, but without
considering partitions at the processor level. Researchers have shown how a Time-Division Multiple
Access bus such as the TTP [Pop et al. 1999] and a mixed TT/ET bus such as FlexRay [Pop et al.
2008b] can be optimized to decrease the end-to-end delays. The optimization implies deciding on
the sequence and length of the communication slots.

Lee et al. [2000] consider an IMA-based system where all tasks are scheduled using FPS. The
time-partition optimization problem is formulated as a static cyclic scheduling problem, where the
partitions are statically scheduled such that the FPS tasks are schedulable. A similar approach to
IMA is used in the DEOS operating system [Binns 2001], with the difference that FPS is used
for scheduling both the partitions (which are normally scheduled using SCS) and the tasks. Binns
[2001] has proposed several slack-stealing approaches, where the unused time in one partition is
given to the other partitions, thus the partitions are implicitly adjusted online.

There are several works where mixed-criticality tasks are addressed, mostly targeting uniproces-
sor systems. Vestal [2007] was the first to extend the task model to include criticality-level depen-
dent Worst-Case Execution Times (WCET). Furthermore, he proposes two fixed-priority preemp-
tive scheduling algorithms. Vestal’s assumption is that the method used to determine the WCET,
and thus the accuracy of the value, depends on the criticality level of the task. For example, if for
the highest criticality level a WCET analysis is suggested, for the lowest criticality the WCET value
can be obtained using simulations. In our work, we assume that a task has the same WCET value,
regardless of the criticality level. Baruah and Vestal [2008] extend the work from [Vestal 2007] and
propose for sporadic tasks sets a hybrid-priority scheduling policy [Baruah and Fisher 2008], which
includes features of the Earliest Deadline First (EDF) policy as well. Baruah et al. [2010] propose

22

a task model that can capture mixed-criticality functions, together with an associated schedulability
analysis.

Several papers [Li and Baruah 2010; Baruah and Fohler 2011; Baruah et al. 2011b] base their
work on the assumption that the Certification Authorities (CAs) consider a more pessimistic WCET
for the tasks than the system designer, leading to inefficient usage of computing resources. Thus, for
each task they take into account two WCETs: a HI WCET, pessimistic, considered by the CA, and
a less pessimistic LO WCET expected by the system designer. The work in [Li and Baruah 2010]
proposes an algorithm for on-line priority-based scheduling of mixed-criticality sporadic tasks on
uniprocessors. If during a busy period, a high criticality task exhibits HI WCET behavior, that is,
its execution time is larger than the LO WCET assumed by the designer, the low criticality tasks
are discarded, in order to ensure the necessary CPU time to all the high criticality tasks. Baruah
et al. [2011b] introduce a novel scheduling algorithm using Fixed Priority on uniprocessor mixed-
criticality systems which takes into account the criticality level of each task, evaluate three possible
priority assignment schemes, and propose an associated response time analysis.

Baruah and Fohler [2011] offer a solution using Time-Triggered scheduling to the problem
in [Baruah et al. 2010; Li and Baruah 2010]. They propose a “mode change” approach: using the
algorithm from [Li and Baruah 2010], they compute offline two schedules, a “certification mode”
schedule considering the HI WCET behavior, and a “designer mode” schedule considering the LO
WCET behavior. In case a task overruns its LO WCET, a mode change is triggered, and the system
runs using the “certification mode” schedule.

In [de Niz et al. 2009], the authors discuss the issue of “criticality inversion”, similar to the clas-
sical priority inversion problem, and propose a “zero-slack scheduling” scheme for such a context.
Mollison et al. [2010] propose a scheduling architecture for mixed-criticality tasks on multicore sys-
tems. In this architecture, the high criticality tasks are considered slack generators, as the WCET
predictions are deemed overly pessimistic, and the authors assume that these tasks will “use only a
small fraction of the execution time budgeted for them”. Employing slack shifting, this architecture
considers the low criticality tasks slack consumers and are allowed to execute during the slack if
it will not have a negative impact on the timing of the high criticality tasks. Li and Baruah [2012]
propose a scheduling algorithm for mixed-criticality sporadic tasks implemented on homogeneous
multiprocessor platforms, were task migration is permitted. Their algorithm is based on the EDF-
VD [Baruah et al. 2011a] uniprocessor scheduling algorithm and fpEDF [Baruah 2004a] global
scheduling algorithm.

As mentioned, a SIL captures the required level of risk reduction, and will dictate the development
processes and certification procedures that have to be followed. SILs differ slightly among areas. For
example, the avionics area uses five “Design Assurance Levels” (DAL), from DAL E (lest critical) to
DAL A (most critical), while ISO 26262 specifies for the automotive area four “Automotive Safety
Integrity Levels” (ASIL), from ASIL A (least critical) to ASIL D (most critical). However, the
approach presented in this paper is applicable to all safety-critical areas, regardless of the standard.
SILs are assigned to tasks, from SIL 4 (most critical) to SIL 0 (non-critical).

Giannopoulou et al. [2013] propose for multicore platforms a mapping optimization and schedul-
ing strategy that takes into account the effects of resource sharing on execution times, by restricting
the cores to synchronize and execute tasks of the same criticality levels. In Giannopoulou et al.
[2014] they extend the previous work with an optimization method that statically maps task data
and communication buffers to the banks of the shared memory, to reduce the effect of bank sharing
on the task response times.

Standards provide checklists of objectives required to be fulfilled for each SIL. Depending on the
SIL, the standard may also impose that some objectives to be satisfied with independence, to ensure
an unbiased evaluation and to avoid misinterpretation of the requirements [RTCA DO-178B 1992].
For example, for the verification process, independence is achieved by using tools and personnel
other than those used throughout the development process.

SIL 0 functions are non-critical and do not impact the safety of the systems, thus are not covered
by the standards. In the case of SIL 1, the processes are similar to those covered by quality man-

23

agement standards such as ISO 9001 [ISO 9001 2008]. SIL 2 involves more reviewing and testing.
SIL 3 is significantly more difficult, and requires “semi-formal” methods. SIL 4 often mandates
formal methods, increasing further the development costs.

The assessment of conformity to the checklist of objectives has to be performed by independent
assessors. For SIL 1 is enough to have an independent person, whereas for SIL 2 an independent
department is required. In the case of SIL 3 and SIL 4, an independent organization has to be used.
Moreover, the number of objectives that have to be satisfied with independence is also growing. For
example, in the case of DO-178B, the main difference between DAL A and DAL B is the number
of objectives to be satisfied with independence: 25 out of 66 objectives are required for DAL A to
be satisfied with independence, while for DAL B it is only 14 out of 66.

In this paper we have also addressed the issue of SIL decomposition. SIL allocation is typically a
manual process, which is done after performing hazard and risk analysis [Storey 1996], although a
few researchers have proposed automatic approaches for SIL allocation [Papadopoulos et al. 2010].
Parker et al. [2013] and Azevedo et al. [2013] have proposed Genetic Algorithm and Tabu Search-
based metaheuristics for SIL decomposition. These algorithms aim to reduce the development costs
and focus on deriving fault-tolerant architectures. The safety of the resulted architecture is evaluated
using Fault-Tree Analysis.

Our work has been motivated by the need to reduce the certification costs, which add a 25 to 100%
overhead to the development costs [IBM 2010]. Hence, we were interested in realistic assumptions
that are accepted by the current certification practice. These assumptions have been validated in the
RECOMP project (”Reduced Certification Costs Using Trusted Multi-core Platforms”) [Pop et al.
2013], where certification authorities such as TÜV SÜD were participants.

8. CONCLUSIONS
In this paper we have presented a Tabu Search-based approach for the optimization of mixed-
criticality applications on cost-constrained partitioned architectures. The architectures consist of
a set of heterogeneous processing elements interconnected by a broadcast bus. With partitioning,
tasks of different criticality are allowed to use the PEs only during predetermined time slots, and are
thus separated in both space and time. We have considered that tasks and messages are scheduled
using Static Cyclic Scheduling.

We were interested to derive schedulable implementations that minimize the development costs.
We have seen that significant improvements can be gained considering the optimization of task
mapping to PEs at the same time with the optimization of partitions, which decides the sequence
and size of the time partition time slots on each PE.

However, there are situations when finding schedulable implementations on cost-constrained ar-
chitectures is only possible if we allow tasks of different criticality to share a partition. This implies
the elevation of tasks to the highest Safety-Integrity Level of a partition, which leads to increased
development costs. This increase in development costs can be partially avoided by using SIL decom-
position. Our optimization approach is able to find schedulable implementations on cost-constrained
architecture, which minimizes the development costs.

REFERENCES

L. Abeni and G. Buttazzo. 1998. Integrating multimedia applications in hard real-time systems. In
Proceedings of Real-Time Systems Symposium. 4 –13.

Thomas L. Adam, K. M. Chandy, and J. R. Dickson. 1974. A Comparison of List
Schedules for Parallel Processing Systems. Comm. ACM 17, 12 (Dec. 1974), 685–690.
DOI:http://dx.doi.org/10.1145/361604.361619

ARINC. 1997. ARINC 651-1: Design Guidance for Integrated Modular Avionics. ARINC (Aero-
nautical Radio, Inc).

ARINC. 2013. ARINC 653P0: Avionics Application Software Standard Interface, Part 0, Overview
of ARINC 653. ARINC (Aeronautical Radio, Inc).

24

AS 6802. 2011. Time-Triggered Ethernet. SAE International.
N. Audsley, K. Tindell, and A. Burns. 1993. The end of the line for static cyclic scheduling. In

Proceedings of Euromicro Workshop on Real-Time Systems. 36–41.
Luis Silva Azevedo, David Parker, Martin Walker, Yiannis Papadopoulos, and Rui Esteves Araujo.

2013. Automatic Decomposition of Safety Integrity Levels: Optimization by Tabu Search. In
Workshop on Critical Automotive applications: Robustness and Safety.

James Barhorst, Todd Belote, Pam Binns, Jon Hoffman, James Paunicka, Prakash Sarathy, John
Scoredos, Peter Stanfill, Douglas Stuart, and Russel Urzi. 2009. A Research Agenda for Mixed-
Criticality Systems. In Cyber-Physical Systems Week.

S.K. Baruah. 2004a. Optimal utilization bounds for the fixed-priority scheduling of periodic task
systems on identical multiprocessors. Computers, IEEE Transactions on 53, 6 (2004), 781–784.

Sanjoy Baruah. 2004b. Task Partitioning Upon Heterogeneous Multiprocessor Platforms. In Pro-
ceedings of the Real-Time and Embedded Technology and Applications Symposium. 536–543.

Sanjoy Baruah and Nathan Fisher. 2008. Hybrid-priority Scheduling of Resource-Sharing Sporadic
Task Systems. In Proceedings of the Real-Time and Embedded Technology and Applications Sym-
posium. 248–257.

Sanjoy Baruah and Gerhard Fohler. 2011. Certification-Cognizant Time-Triggered Scheduling of
Mixed-Criticality Systems. In Proceedings of the Real-Time Systems Symposium. 3–12.

Sanjoy Baruah, Haohan Li, and Leen Stougie. 2010. Towards the Design of Certifiable Mixed-
criticality Systems. In Real-Time and Embedded Technology and Applications Symposium. 13–
22.

Sanjoy Baruah and Steve Vestal. 2008. Schedulability Analysis of Sporadic Tasks with Multiple
Criticality Specifications. In Proceedings of the Euromicro Conference on Real-Time Systems.
147–155.

Sanjoy K. Baruah, Vincenzo Bonifaci, Gianlorenzo D’Angelo, Alberto Marchetti-Spaccamela,
Suzanne van der Ster, and Leen Stougie. 2011a. Mixed-Criticality Scheduling of Sporadic Task
Systems. In Annual European Symposium on Algorithms. 555–566.

S. K. Baruah, A. Burns, and R. I. Davis. 2011b. Response-Time Analysis for Mixed Criticality
Systems. In Proceedings of the Real-Time Systems Symposium. 34–43.

P. Binns. 2001. A robust high-performance time partitioning algorithm: the digital engine operating
system (DEOS) approach. In Proceedings of the Conference on Digital Avionics Systems, Vol. 1.
1B6/1–1B6/12.

B. Boehm, C. Abts, and S. Chulani. 2000a. Software development cost estimation approaches–A
survey. Annals of Software Engineering 10, 1 (2000), 177–205.

Barry W. Boehm, Clark, Horowitz, Brown, Reifer, Chulani, Ray Madachy, and Bert Steece. 2000b.
Software Cost Estimation with Cocomo II (1st ed.). Prentice Hall PTR, Upper Saddle River, NJ,
USA.

Tracy D Braun, Howard Jay Siegel, Noah Beck, Ladislau L Blni, Muthucumaru Maheswaran, Al-
bert I Reuther, James P Robertson, Mitchell D Theys, Bin Yao, Debra Hensgen, and Richard F
Freund. 2001. A Comparison of Eleven Static Heuristics for Mapping a Class of Independent
Tasks onto Heterogeneous Distributed Computing Systems. J. Parallel and Distrib. Comput. 61,
6 (2001), 810 – 837.

Giorgio Buttazzo. 1997. Hard Real-Time Computing Systems: Predictable Scheduling Algorithms
and Applications. Kluwer Academic Publishers, Boston.

L.A. Cortés, P. Eles, and Z. Peng. 2004. Quasi-static scheduling for real-time systems with hard and
soft tasks. In Proceedings of the Conference on Design, automation and test in Europe. 21176–
21181.

Dionisio de Niz, Karthik Lakshmanan, and Ragunathan Rajkumar. 2009. On the Scheduling of
Mixed-Criticality Real-Time Task Sets. In Proceedings of the Real-Time Systems Symposium.
291–300.

James A. Debardelaben, Vijay K. Madisetti, and Anthony J. Gadient. 1997. Incorporating Cost
Modeling in Embedded-System Design. IEEE Design and Test of Computers 14 (July 1997),

25

24–35. Issue 3.
Robert Dick. 2005. Embedded System Synthesis Benchmarks Suite. (2005). http://ziyang.eecs.

umich.edu/∼dickrp/e3s/
Rolf Ernst. 2010. Certification of Trusted MPSoC Platforms. (2010). 10th International Forum on

Embedded MPSoC and Multicore.
M. Gendreau. 2002. An Introduction to Tabu Search. Centre for Research on Transportation.
Georgia Giannopoulou, Nikolay Stoimenov, Pengcheng Huang, and Lothar Thiele. 2013. Schedul-

ing of Mixed-Criticality Applications on Resource-Sharing Multicore Systems. In International
Conference on Embedded Software (EMSOFT). Montreal, 17:1–17:15.

Georgia Giannopoulou, Nikolay Stoimenov, Pengcheng Huang, and Lothar Thiele. 2014. Mapping
Mixed-Criticality Applications on Multi-Core Architectures. In Design, Automation Test in Eu-
rope Conference Exhibition (DATE), Hot-Topic Session on Predictable Multicore Computing.
IEEE, Dresden, Germany, 1–6.

Fred Glover and Manuel Laguna. 1997. Tabu Search. Kluwer Academic Publishers, Norwell, MA,
USA.

K. Hoyme and K. Driscoll. 1993. SAFEbus. IEEE Aerospace Electronic Systems Magazine 8
(1993), 34–39.

IBM. 2010. DO-178B compliance: turn an overhead expense into a competitive advantage. White
paper, IBM Rational. (2010). ftp://public.dhe.ibm.com/common/ssi/ecm/en/raw14249usen/
RAW14249USEN.PDF

IEC 61508. 2010. IEC 61508: Functional safety of electrical/electronic/programmable electronic
safety-related systems. International Electrotechnical Commission.

ISO 26262. 2009. ISO 26262 - Road vehicles Functional safety. International Organization for
Standardization / Technical Committee 22 (ISO/TC 22).

ISO 9001. 2008. Quality management systems - Requirements. International Organization for
Standardization.

V. Izosimov, P. Pop, P. Eles, and Z. Peng. 2008. Scheduling of fault-tolerant embedded systems
with soft and hard timing constraints. In Proceedings of the conference on Design, automation
and test in Europe. 915–920.

M. Jorgensen and M. Shepperd. 2007. A systematic review of software development cost estimation
studies. IEEE Transactions on Software Engineering 33, 1 (2007), 33–53.

H. Kopetz. 2011a. Real-Time Systems: Design Principles for Distributed Embedded Applications.
Springer.

H. Kopetz. 2011b. Real-Time Systems: Design Principles for Distributed Embedded Applications.
Springer.

Yann-Hang Lee, Daeyoung Kim, M. Younis, J. Zhou, and J. McElroy. 2000. Resource scheduling in
dependable integrated modular avionics. In Proceedings of Dependable Systems and Networks.
14–23.

Bernhard Leiner, Martin Schlager, Roman Obermaisser, and Bernhard Huber. 2007. A Comparison
of Partitioning Operating Systems for Integrated Systems. Computer Safety, Reliability, and
Security (2007), 342–355.

Haohan Li and Sanjoy Baruah. 2010. An Algorithm for Scheduling Certifiable Mixed-Criticality
Sporadic Task Systems. In Proceedings of the Real-Time Systems Symposium. 183–192.

Haohan Li and Sanjoy Baruah. 2012. Global Mixed-criticality Scheduling on Multiprocessors. In
Euromicro Conference on Real-Time Systems. 166–175.

Malcolm S. Mollison, Jeremy P. Erickson, James H. Anderson, Sanjoy K. Baruah, and John A.
Scoredos. 2010. Mixed-Criticality Real-Time Scheduling for Multicore Systems. In Proceedings
of the Conference on Computer and Information Technology. 1864–1871.

Y. Papadopoulos, M. Walker, M.-O. Reiser, M. Weber, D. Chen, M. Törngren, David Servat, A.
Abele, F. Stappert, H. Lonn, L. Berntsson, Rolf Johansson, F. Tagliabo, S. Torchiaro, and An-
ders Sandberg. 2010. Automatic allocation of safety integrity levels. In Proceedings of the 1st
Workshop on Critical Automotive applications: Robustness and Safety. 7–10.

26

David Parker, Martin Walker, LusSilva Azevedo, Yiannis Papadopoulos, and RuiEsteves Arajo.
2013. Automatic Decomposition and Allocation of Safety Integrity Levels Using a Penalty-
Based Genetic Algorithm. In Recent Trends in Applied Artificial Intelligence, Moonis
Ali, Tibor Bosse, KoenV. Hindriks, Mark Hoogendoorn, CatholijnM. Jonker, and Jan Treur
(Eds.). Lecture Notes in Computer Science, Vol. 7906. Springer Berlin Heidelberg, 449–459.
DOI:http://dx.doi.org/10.1007/978-3-642-38577-3 46

Paul Pop, Petru Eles, and Zebo Peng. 1999. Scheduling with optimized communication for
time-triggered embedded systems. In Proceedings of the International Workshop on Hard-
ware/Software Codesign. 178–182.

Paul Pop, Petru Eles, and Zebo Peng. 2004. Analysis and Synthesis of Communication-Intensive
Heterogeneous Real-Time Systems. Kluwer Academic Publishers.

Paul Pop, Petru Eles, Zebo Peng, Viacheslav Izosimov, Magnus Hellring, and Olof Bridal. 2004.
Design Optimization of Multi-Cluster Embedded Systems for Real-Time Applications. In Pro-
ceedings of the Conference on Design, automation and test in Europe. 21028–21033.

P. Pop, P. Eles, Z. Peng, and T. Pop. 2006. Analysis and optimization of distributed real-time
embedded systems. ACM Transactions on Design Automation of Electronic Systems 11, 3 (2006),
593–625.

P. Pop, V. Izosimov, P. Eles, and Zebo Peng. 2009. Design Optimization of Time- and Cost-
Constrained Fault-Tolerant Embedded Systems With Checkpointing and Replication. Very Large
Scale Integration (VLSI) Systems, IEEE Transactions on 17, 3 (2009), 389–402.

Paul Pop, Leonidas Tsiopoulos, Sebastian Voss, Oscar Slotosch, Christoph Ficek, Ulrik Ny-
man, and Alejandra Ruiz Lopez. 2013. Methods and tools for reducing certification costs of
mixed-criticality applications on multi-core platforms: the RECOMP approach. In Workshop on
Industry-Driven Approaches for Cost-effective Certification of Safety-Critical, Mixed-Criticality
Systems.

Traian Pop, Paul Pop, Petru Eles, and Zebo Peng. 2008a. Analysis and Optimisation of Hierarchi-
cally Scheduled Multiprocessor Embedded Systems. International Journal of Parallel Program-
ming 36, 1 (2008), 37–67.

Traian Pop, Paul Pop, Petru Eles, Zebo Peng, and Alexandru Andrei. 2008b. Timing analysis of the
FlexRay communication protocol. Real-Time Systems 39, 1-3 (2008), 205–235.

Rockwell-Collins. 2009. Certification Cost Estimates for Future Communication Radio Platforms
(1.1 ed.). Technical Report. Rockwell-Collins.

RTCA DO-178B. 1992. Software Considerations in Airborne Systems and Equipment Certification.
Radio Technical Commission for Aeronautics (RTCA).

John Rushby. 1999. Partitioning for Avionics Architectures: Requirements, Mechanisms, and As-
surance. NASA Contractor Report CR-1999-209347. NASA Langley Research Center.

Prabhat Kumar Saraswat, Paul Pop, and Jan Madsen. 2010. Task Mapping and Bandwidth Reser-
vation for Mixed Hard/Soft Fault-Tolerant Embedded Systems. Real-Time and Embedded Tech-
nology and Applications Symposium (2010), 89–98.

Oliver Sinnen. 2006. Fundamental Heuristics. In Task Scheduling for Parallel Systems. John Wiley
and Sons, Inc., Hoboken, NJ, USA.

Neil R. Storey. 1996. Safety Critical Computer Systems. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA.

Domitian Tamas-Selicean, Paul Pop, and Jan Madsen. 2014. Design of Mixed-Criticality Applica-
tions on Distributed Real-Time Systems. Technical University of Denmark.

Domiţian Tămaş-Selicean and Paul Pop. 2011. Optimization of Time-Partitions for Mixed-
Criticality Real-Time Distributed Embedded Systems. In IEEE International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing Workshops. 1–10.

Domiţian Tămaş-Selicean, Paul Pop, and Wilfried Steiner. 2012. Synthesis of communication
schedules for TTEthernet-based mixed-criticality systems. In Proceedings of the International
Conference on Hardware/software Codesign and System Synthesis. 473–482.

J. D. Ullman. 1975. NP-complete scheduling problems. J. Comput. Syst. Sci. 10, 3 (1975), 384–393.

27

Steve Vestal. 2007. Preemptive Scheduling of Multi-criticality Systems with Varying Degrees of
Execution Time Assurance. In Proceedings of the Real-Time Systems Symposium. 239–243.

J. Xu and D. L. Parnas. 1993. On Satisfying Timing Constraints in Hard-Real-Time Systems. IEEE
Trans. Softw. Eng. 19, 1 (1993), 70–84.

28

