
Real-Time Systems manuscript No.
(will be inserted by the editor)

Design Optimization of TTEthernet-based Distributed
Real-Time Systems

Domiţian Tămaş–Selicean · Paul Pop ·
Wilfried Steiner

Received: date / Accepted: date

Abstract Many safety-critical real-time applications are implemented using distrib-
uted architectures, composed of heterogeneous processing elements (PEs) intercon-
nected in a network. Our focus in this paper is on the TTEthernet protocol, a de-
terministic, synchronized and congestion-free network protocol based on the Ether-
net standard and compliant with the ARINC 664 Specification Part 7. TTEthernet is
highly suitable for safety-critical real-time applications since it offers separation for
messages using the concept of virtual links and supports three time-criticality classes:
Time-Triggered (TT), Rate-Constrained (RC) and Best-Effort (BE). In this paper we
are interested in the design optimization of TTEthernet networks used to transmit
real-time application messages. Given the set of TT and RC messages, and the topol-
ogy of the network, our approach optimizes the packing of messages in frames, the
assignment of frames to virtual links, the routing of virtual links and the TT static
schedules, such that all frames are schedulable and the worst-case end-to-end delay
of the RC messages is minimized. We propose a Tabu Search-based metaheuristic for
this optimization problem. The proposed algorithm has been evaluated using several
benchmarks.

Keywords TTEthernet · real-time · network protocols · scheduling · frame packing ·
routing

1 Introduction

Many safety-critical real-time applications, following physical, modularity or safety
constraints, are implemented using distributed architectures, composed of heteroge-

D. Tămaş–Selicean · P. Pop
DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark
E-mail: dota@dtu.dk, paupo@dtu.dk

W. Steiner
TTTech Computertechnik AG, Vienna, Austria
E-mail: wilfried.steiner@tttech.com

1

neous processing elements (PEs), interconnected in a network. A large number of
communication protocols have been proposed for embedded systems. However, only
a few protocols are suitable for safety-critical real-time applications (Rushby, 2001).
In this paper, we are interested in the TTEthernet protocol (SAE, 2011).

Ethernet (IEEE, 2012), although it is low cost and has high speeds (100 Mbps,
1 Gbps, and 10 Gbps), is known to be unsuitable for real-time and safety-critical
applications (Decotignie, 2005; Lee et al, 2005). For example, in half-duplex imple-
mentations, frame collision is unavoidable, leading to unbounded transmission times.
Decotignie (2005) presents the requirements for a real-time network and how Ether-
net can be improved to comply with these requirements. Several real-time commu-
nication solutions based on Ethernet have been proposed, such as FTT-Ethernet (Pe-
dreiras et al, 2005), ARINC 664 Specification Part 7 (ARINC 664p7, for short) (AR-
INC, 2009), TTEthernet (SAE, 2011), EtherCAT (ETG, 2013) and IEEE Audio Video
Bridging1 (AVB). Schneele and Geyer (2012) and Cummings et al (2012) describe
and compare several of the proposed Ethernet-based real-time communication proto-
cols.

TTEthernet (SAE, 2011) is a deterministic, synchronized and congestion-free net-
work protocol based on the IEEE 802.3 Ethernet (IEEE, 2012) standard and compli-
ant with the ARINC 664p7. The ARINC 664p7 specification (ARINC, 2009) is a
full-duplex Ethernet network, which emulates point-to-point connectivity over the
network by defining virtual links, tree structures with one sender and one or several
receivers (see Section 3). ARINC 664p7 provides predictable event-triggered com-
munication suitable for hard real-time applications, and separation of safety-critical
messages through the concept of virtual links. In addition to the functionality offered
by Ethernet and ARINC 664p7, TTEthernet supports time-triggered communication
based on static communication schedules which rely on a synchronized time base.
Such time-triggered static scheduling approach is especially suitable for applications
with highest criticality requirements in both temporal and safety domains.

TTEthernet supports applications with mixed-criticality requirements in the tem-
poral domain, as it provides three types of traffic: static time-triggered (TT) traffic
and dynamic traffic, which is further subdivided into Rate Constrained (RC) traffic
that has bounded end-to-end latencies, and Best-Effort (BE) traffic, for which no tim-
ing guarantees are provided. TT messages are transmitted based on static schedule
tables and have the highest priority. RC messages are transmitted if there are no TT
messages, and BE traffic has the lowest priority. TTEthernet is suitable for automo-
tive (Steinbach et al, 2012), avionics (Suen et al, 2013) and space (Fletcher, 2009)
applications.

In this paper we are interested in safety-critical real-time applications imple-
mented using heterogeneous processing elements interconnected using TTEthernet.
Furthermore, we assume the designer has partitioned the messages into TT, RC or
BE traffic classes, depending on the particularities of the application. We are inter-
ested in optimizing the TTEthernet network implementation, such that the TT and RC
messages are schedulable, and the end-to-end delay of RC messages is minimized.

1 Audio Video Bridging is a collection of technical specifications IEEE (2011a, 2010, 2009, 2011b) that
target synchronized communication with low jitter and low latency on Ethernet networks.

2

In (Tămaş-Selicean et al, 2012) we have proposed an approach which focuses only
on deriving the static schedules for the TT messages. In this paper, synthesizing a
network implementation means deciding on: (i) the routing of virtual links (VLs)
on top of the physical network, (ii) the packing and fragmenting of messages into
frames, (iii) the assignment of frames to VLs, (iv) the bandwidth of the RC VLs and
(v) the static schedules of the TT messages. We have proposed a Tabu Search-based
metaheuristic to solve this optimization problem.

The paper is organized as follows: Section 2 presents the related work. Sec-
tion 3 and 4 introduce the architecture and application models. Section 5 describes
the TTEthernet protocol in detail. Section 6 presents the problem formulation, while
Section 7 consists of a few motivational examples. Section 8 and Section 9 describe
and evaluate the proposed optimization.

2 Related work

There are two basic approaches for handling real-time applications (Kopetz, 2011). In
the Event-Triggered (ET) approach, activities are initiated whenever a particular event
is noted. In the Time-Triggered (TT) approach, activities are initiated at predeter-
mined points in time. This duality is also reflected at the level of the communication
infrastructure, where communication activities can be triggered either dynamically,
in response to an event, as with the Controller Area Network (CAN) bus (ISO, 2003),
or statically, at predetermined moments in time, as in the case of Time-Division Mul-
tiple Access (TDMA) protocols such as the Time-Triggered Protocol (TTP) (Kopetz,
2011). The trend is towards bus protocols that support both static and dynamic com-
munication FlexRay (ISO, 2010), TTEthernet (SAE, 2011) and FTT-CAN (Almeida
et al, 2002a).

There is a lot of work on bus scheduling and schedulability analysis (Dobrin
and Fohler, 2001; Davis et al, 2007; Davis and Burns, 2009; Almeida et al, 2002b;
Marau et al, 2010). The focus of this paper is on the optimization of the TTEther-
net protocol. Researchers have proposed analysis and optimization approaches ad-
dressing, for example, TDMA bus such as the TTP (Pop et al, 1999) and a mixed
TT/ET bus such as FlexRay (Pop et al, 2008), where the focus has been on optimizing
the TDMA bus schedules, to decrease the end-to-end delays. For the CAN protocol,
Burns and Davis (2013) propose two extensions that provide separation for mixed-
criticality messages; they also propose a response-time analysis for these extensions.
PROFINET Isochronous Real-Time (IRT) is another Ethernet-based communication
protocol, which similarly to other protocols, splits the cycle time into a synchronous
and an asynchronous part. Hanzalek et al (2010) propose an algorithm formulated
as a Resource Constrained Project Scheduling with Temporal Constraints problem to
obtain the schedule tables for the PROFINET IRT protocol. The proposed solution
uses Integer Linear Programming (ILP) for smaller cases, and an iterative modulo
scheduling-inspired heuristic for bigger topologies, and in both cases, they obtain
similar results to the commercial tool for PROFINET IRT. For multi-mode distrib-
uted application connected by TDMA-based protocols, Azim et al (2014) propose a

3

strategy to generate state-based schedules and show that such an approach reduces
the mode-change delays compared to schedules generated using EDF.

For ARINC 664p7 systems, Nam et al (2013) have proposed a new real-time
switching algorithm that guarantees an upper bound on the switching period. Having
such an upper bound simplifies the worst-case delay analysis. For TTEthernet, Steiner
(2010) proposes an approach for the synthesis of static TT schedules, where he ig-
nored the RC traffic and used a Satisfiability Modulo Theory (SMT)-solver to find a
solution which satisfies an imposed set of constraints. Steiner (2011) has proposed an
SMT-solver approach to introduce periodic evenly-spaced slots into the static sched-
ules to help reduce RC delays. Suethanuwong (2012) proposes a scheduling approach
of the TT traffic, ignoring RC traffic, that introduces equally distributed available time
slots for BE traffic. We have proposed a Tabu Search-based metaheuristic (Tămaş-
Selicean et al, 2012) for the optimization of TT schedules that does not restrict the
space inserted into the TT schedules to evenly-spaced periodic slots and is able to
take into account the RC end-to-end delays during the design space exploration, and
not only as a post-synthesis check.

Researchers have also addressed the issue of frame packing (Tanasa et al, 2011;
Pop et al, 2005; Saket and Navet, 2006; Sandstrom et al, 2000). Schumacher et al
(2008) and Wisniewski et al (2012) propose the use of a dynamic packing mechanism
for PROFINET IRT systems to decrease the frame transfer time (by minimizing the
frame overhead associated with each message), but also to reduce the number of con-
flicting situations where several frames compete for transmission (at the end station
or network switch), by packing the competing messages into the same frame. Recent
work has also addressed the frame packing for the ARINC 664p7 protocol (which
TTEthernet extends with TT traffic). Ayed et al (2012) propose a packing strategy
for multi-cluster networks, where the critical avionics subsystems are based on CAN
buses, and are interconnected via ARINC 664p7. This strategy, meant to minimize
the CAN bandwidth through the ARINC 664p7 network, performs packing at the
CAN-ARINC 664p7 gateway based on a timer. Messages are not packed based on
destinations, but on availability. As a consequence, the virtual link delivers the mes-
sages to all the possible destinations. Also for ARINC 664p7, Al Sheikh et al (2013)
propose a packing strategy for messages with the same source and destinations, with
the goal of minimizing the reserved bandwidth.

Routing in networks is a very well researched topic (Grammatikakis et al, 1998;
Wang and Hou, 2000; Baransel et al, 1995). Researchers have also addressed routing
in safety-critical systems (Herpel et al, 2009; Pedreiras and Almeida, 2004). For AR-
INC 664p7, Al Sheikh et al (2013) propose a load-balancing routing strategy. None
of the existing work addresses packing/fragmenting and routing for TTEthernet.

3 Architecture model

A TTEthernet network is composed of a set of clusters. Each cluster consists of End
Systems (ESes) interconnected by links and Network Switches (NSes). The links are
full duplex, allowing thus communication in both directions, and the networks can be
multi-hop. An example cluster is presented in Fig. 1, where we have 4 ESes, ES1 to

4

Fig. 1: TTEthernet cluster example

ES4, and 3 NSes, NS1 to NS3. The optimization problem addressed in this paper is
performed at the cluster-level. Each ES consists of a processing element containing a
CPU, RAM and non-volatile memory, and a network interface card (NIC).

We model a TTEthernet cluster as an undirected graph G(V ,E), where V =
ES ∪N S is the set of end systems (ES) and network switches (N S) and E is the set
of physical links. For Fig. 1, V = ES ∪N S = {ES1, ES2, ES3, ES4}∪{NS1, NS2,
NS3}, and the physical links E are depicted with thick, black, double arrows.

A dataflow link li = [ν j,νk] ∈ L , where L is the set of dataflow links in a cluster,
is a directed communication connection from ν j to νk, where ν j and νk ∈ V can be
ESes or NSes. A dataflow path d pi ∈ DP is an ordered sequence of dataflow links
connecting one sender to one receiver. For example, in Fig. 1, d p1 connects ES1
to ES3, while d p2 connects ES1 to ES4 (the dataflow paths are depicted with green
arrows). Moreover, d p1 in Fig. 1 can be denoted as [[ES1, NS1], [NS1, NS2], [NS2,
ES3]].

The space partitioning between messages of different criticality transmitted over
physical links and network switches is achieved through the concept of virtual link.
Virtual links are defined by ARINC 664p7 (ARINC, 2009), which is implemented by
the TTEthernet protocol, as a “logical unidirectional connection from one source end
system to one or more destination end systems”.

Let us assume that in Fig. 1 we have two applications, A1 and A2. A1 is a high
criticality application consisting of tasks τ1 to τ3 mapped on ES1, ES3 and ES4, re-
spectively. A2 is a non-critical application, with tasks τ4 and τ5 mapped on ES2 and
ES3, respectively. τ1 sends message m1 to τ2 and τ3. Task τ4 sends message m2 to τ5.
With TTEthernet, a message has a single sender and may have multiple receivers. The
flow of these messages will intersect in the physical links and switches. Virtual links
are used to separate the highly critical message m1 from the non-critical message m2.
Thus, m1 is transmitted over virtual link vl1, which is isolated from virtual link vl2,
on which m2 is sent, through protocol-level temporal and spatial mechanisms (which
are briefly presented in Section 5).

We denote the set of virtual links in a cluster with V L . A virtual link vli ∈ V L
is a directed tree, with the sender as the root and the receivers as leafs. For example,

5

Fig. 2: Simplified frame format

vl1, depicted in Fig. 1 using dot-dash red arrows, is a tree with the root ES1 and
the leafs ES3 and ES4. Each virtual link is composed of a set of dataflow paths,
one such dataflow path for each root-leaf connection. More formally, we denote with
RV L(vli) = {∀d p j ∈ DP |d p j ∈ vli} the routing of virtual link vli. For example, in
Fig. 1, RV L(vl1) = {d p1,d p2}.

For a given message, with one sender and multiple receivers, there are several
virtual links which can be used for transmission. For example, in Fig. 1, message
m2 from ES2 to ES3 can be transmitted via vl2, containing dataflow path d p3 =
[[ES2,NS1], [NS1,NS2], [NS2,ES3]], or via vl3 = {d p4}, with d p4 = [[ES2,NS1],
[NS1,NS3], [NS3, NS2], [NS2,ES3]]. Deciding each virtual link vli for a message mi
is a routing problem: we need to decide which route to take from a set of possible
routes. This routing is determined by our optimization approach and, for real life sys-
tems, which can contain tens to hundreds of connected ESes and NSes, this is not a
trivial problem.

4 Application model

In (Tămaş-Selicean and Pop, 2011) we have proposed an application model for mixed-
criticality applications composed of interacting tasks, which communicate using mes-
sages. The proposed model can capture aspects specific to mixed-criticality applica-
tions, e.g., higher criticality tasks cannot receive messages from lower criticality tasks
(because lower criticality tasks could send corrupted data) and additional task-level
separation requirements, preventing certain tasks to share the same partition on an
ES. In this paper we focus only on messages.

TTEthernet transmits data using frames. The TTEthernet frame format fully com-
plies with the ARINC 664p7 specification (ARINC, 2009), and is presented in Fig. 2.
A complete description of the ARINC 664p7 frame fields can be found in (ARINC,
2009). Messages are transmitted in the payload of frames. A bit pattern specified in
the frame header identifies the traffic class of each frame (TT, RC or BE). The to-
tal frame header (Ethernet header and ARINC 664p7 header) is of 42 B, while the
payload of each frame varies between a minimum of 17 B and a maximum of 1471
B. In case a frame carries data smaller than 17 B, the frame payload will be padded
with zeroes to reach the minimum payload of 17 B. Thus, as shown in Fig. 2, the to-
tal protocol overhead for a frame (including the frame header, preamble, start frame
delimiter and interframe gap) varies from 67 B, for data bigger than 17 B, to 83 B for
data of 1 B.

The size mi.size for each message mi ∈M is given, where M is the set of all
messages. As mentioned, TTEthernet supports three traffic classes: TT, RC and BE.

6

We assume that the designer has decided the traffic classes for each message. We
define the sets M T T , M RC and M BE , respectively, with M = M T T ∪M RC ∪M BE .
In addition, for the TT and RC messages we know their periods / rate and deadlines,
mi.period or mi.rate, and mi.deadline, respectively. Furthermore, we also know the
safety-criticality level (also called Safety Integrity Level, or SIL) for each message.
RC messages are not necessarily periodic, but have a minimum inter-arrival time. We
define the rate of an RC message mi as mi.rate = 1/mi.period.

So far, researchers have assumed that each message mi ∈ M is transmitted in
the payload of a dedicated frame fi. This was also the assumption of our earlier
work, which focused only on the scheduling of TT frames (Tămaş-Selicean et al,
2012). However, the payload of a frame can in practice carry several messages. More-
over, messages can also be fragmented into several pieces, each carried by a different
frame. In this paper, our optimization also determines the fragmenting and the pack-
ing of messages into frames at the source and destination nodes. Unlike in other pro-
tocols, e.g., PROFINET IRT, see (Schumacher et al, 2008), the NSes do not change
the contents of the frames. Currently the only fragmentation/defragmentation sup-
ported by TTEthernet is a limited form of standard IP fragmentation/defragmentation.
Hence, we assume that the fragmenting and packing of messages into frames is per-
formed at the application level.

The fragmenting of messages into message fragments is denoted with Φm(mi) =
{∀m j ∈M +|m j ∈ mi}, where M + is the set that contains all the message fragments
resulted from fragmenting, and the messages which were not fragmented. The mes-
sage fragments m j ∈ Φm(mi) inherit the temporal constraints of the original mes-
sage, and have equal sizes. For example, let us consider M = {m1,m2}. In this case,
M + = M . Message m1 has a period and deadline of 30 ms, and a size of 300 B.
Message m2 has a deadline and period of 24 ms, and m2.size = 1200 B. We fragment
m2 into 3 same-sized message fragments, such that Φm(m2) = {m3,m4,m5} and m3,
m4 and m5 have the same period and deadline as m2, but their size is 400 B. After
fragmenting m2, M + = {m1,m3,m4,m5}.

The packing of messages and message fragments into frames is denoted with
P : M + → F , P (m j) = fi, where F is the set of all the frames in the cluster. In
this paper, the frame is the transmission unit in the cluster. A periodic frame fi has
several frame instances fi, j, where a frame instance fi, j is one instantiation of frame
fi, like a job is the instantiation of a task. Each frame is assigned to a virtual link,
which specifies among others, the routing for the frame. In TTEthernet, each virtual
link has assigned only one frame. The function MF : F →V L , MF(fi) = vli captures
this assignment of frames to virtual links. Let us consider the example given in Fig. 1,
with message m1 sent from ES1 to ES3 and ES4. We assume that m1 is packed by
frame f1, P (m1) = f1. In this case, f1 is assigned to vl1, MF(f1) = vl1. Fig. 1 shows
vl1 routed along the shortest route.

The properties of the frames are derived based on what messages or message
fragments are packed, such that the timing constraints are satisfied. Let us consider
the prior example. The packing of message m1 and message fragment m3, where
m1,m3 ∈M +, in frame f1 ∈ F , is denoted with P (m1) = f1 and P (m3) = f1, respec-
tively. In this case, the data packed by f1 has a size of 700 B. Note that, unlike in the
case of the EtherCAT (ETG, 2013) protocol, not all fragmenting and packing com-

7

binations are valid (e.g., messages packed into a frame must have the same source
and destination ESes and must be of the same safety-criticality level). Also, the tim-
ing properties of the new frame depends on the timing constraints of messages. Our
optimization takes care of these aspects, see Section 8 for details. Knowing the size
of a frame f j and the given speed of a dataflow link [νm,νn], we can determine the
transmission duration C[νm,νn]

j of f j on [νm,νn].

5 TTEthernet protocol

Next we will shortly describe the TTEthernet protocol. A more detailed presentation
of the protocol can be found in (Tămaş-Selicean et al, 2012).

5.1 Time-Triggered Transmission

TT communication is done according to static communication schedules determined
offline and stored into the ESes and NSes. The complete set of local schedules in a
cluster are denoted with S . The schedules S are derived by our optimization approach.
There are several approaches to the synchronization of tasks (which could be TT or
ET) and TT messages (Obermaisser, 2011). Often, TT tasks are used in conjunction
with TT messages, and the task and message schedules are synchronized such that
the task is scheduled to finish before the message is scheduled for transmission.

In addition, TTEthernet provides fault-tolerance services, such as fault-containment,
to the application level. For example, if a task becomes faulty and sends more mes-
sages than scheduled (called a “babbling idiot” failure), the sending ES will protect
the network as it will only transmit messages as specified in the schedule table SS.

Besides the sending schedule tables, each NS also contains a receiving schedule
table SR. Thus, an NS will rely on the receive schedule SR stored in the switch to
check if a TT frame has arrived within a specified receiving window. This window
is determined based on the sending times in the send schedules, the precision of the
clock synchronization mechanism and the “integration policy” used for integrating
the TT traffic with the RC and BE traffic (see next subsection for details). TT message
frames arriving outside of this receiving window are considered faulty. In order to
provide virtual link isolation and fault-containment, a TT receiver task T TR will drop
such faulty frames.

The schedules S contain the sending times and receiving windows for all the
frames transmitted during an application cycle, Tcycle. A periodic frame fi may occur
in several instances (a frame instance is the equivalent of the periodic job of a task)
within Tcycle. We denote the x-th instance of frame fi with fi,x. The sending time of
a frame fi relative to the start time of its period is called the offset, denoted with
fi.offset. In (Tămaş-Selicean et al, 2012) we have assumed a TTEthernet implemen-
tation where within an application cycle, the offset of a frame may vary from period
to period. In this paper we consider a realistic implementation, where the sending
time offset of a frame is identical in all periods, with the advantage of reducing the
size needed to store the schedules.

8

5.2 Rate Constrained Transmission

RC traffic consists of event-triggered messages. The separation of RC traffic is en-
forced through “bandwidth allocation”. Thus, for each virtual link vli carrying an RC
frame fi the designer decides the Bandwidth Allocation Gap (BAG). A BAG is the
minimum time interval between two consecutive instances of an RC frame fi and
has a value of 2i ms, i=0..7. The BAG is set in such a way to guarantee that there is
enough bandwidth allocated for the transmission of a frame on a virtual link, with
BAGi ≤ 1/ fi.rate. If the minimum inter-arrival time is greater than 128 ms, the BAG
is set to 128 ms. The BAG is enforced by the sending ES. Thus, an ES will ensure
that each BAGi interval will contain at most one instance of fi. Therefore, even if a
frame is sent in bursts by a task, it will leave the ES within a specified BAG. Thus,
the maximum bandwidth used by a virtual link vli transmiting an RC frame fi is
BW (vli) = fi.size/BAG(vli). The BAG for each RC frame is computed offline, based
on the requirements of the messages it packs.

Fault-containment at the level of RC virtual links is provided by the NSes by im-
plementing an algorithm known as leaky bucket (ARINC, 2009; SAE, 2011), which
checks the time interval between two consecutive instances on the same virtual link.
If this interval is shorter than the specified BAG time corrected by the maximum
allowed transmission jitter, the frame instance is dropped. Thus, the NS prevents a
faulty ES to send faulty RC frames (more often than allowed) and thus to disturb the
network.

RC traffic also has to be integrated with TT traffic, which has higher priority.
Thus, RC frames are transmitted only when there is no TT traffic on the dataflow
link. With integration, contention situations can occur when a TT frame is scheduled
for transmission, but an RC frame is already transmitting. There are three approaches
in to handle such situations (SAE, 2011; Steiner et al, 2009): (i) shuffling, (ii) pre-
emption and (iii) timely block. (i) With shuffling, the higher priority TT frame is de-
layed until the RC frame finishes the transmission. Thus, in the worst-case scenario,
the TT frame will have to wait for the time needed to transmit the largest Ethernet
frame, which is 1542 Bytes. In the case (ii) of pre-emption, the current transmission
of the RC frame is aborted, and is restarted after the TT frame finished transmitting.
In the case (iii) of timely block, the RC frame is blocked (postponed) from transmis-
sion on a dataflow link if a TT frame is scheduled to be sent before the RC frame
would complete its transmission. Note that, as discussed in the previous subsection,
the integration approaches have an impact on the receiving window of a TT frame,
which has to account for the delays due to shuffling, for example.

6 Problem Formulation

The problem we are addressing in this paper can be formulated as follows: given (1)
the topology G of the TTEthernet cluster, (2) the set of TT and RC messages M T T ∪
M RC and (3) for each message mi the size, deadline, period / rate, SIL and the source
and destination ESes, we are interested to determine an optimized implementation
such that the TT and RC frames are schedulable. Determining an implementation

9

means deciding on the (i) fragmenting Φm of messages and packing P of messages
and messages fragments into frames, (ii) the assignment MF of frames to virtual
links, (iii) the routing RV L of virtual links, (iv) the bandwidth for each RC virtual link
and (v) the set of TT schedule tables S .

The schedulability of a TT frame fi is easy to determine: we just have to check
the schedules S to see if the times are such that the TT frame fi is received before its
deadline fi.deadline. To determine the schedulability of an RC frame f j we have to
compute its Worst-Case end-to-end Delay (WCD), from the moment it is sent to the
moment it is received. We denote this worst-case delay with R f j . We have presented
in (Tămaş-Selicean et al, 2012) a schedulability analysis technique to determine the
WCD of an RC frame. By comparing R f j with the deadline f j.deadline, we can
determine if an RC frame f j is schedulable.

Once both TT and RC frames are schedulable several optimization objectives can
be tackled. In this paper we are interested to optimize the design of the network such
that the end-to-end delay of RC frames is minimized. Section 8.1 presents the cost
function used for the optimization. In this paper we ignore the BE traffic, but we have
shown in (Tămaş-Selicean, 2014) how BE traffic can be taken into account, by adding
a quality-of-service measure for the BE traffic to the objective function. In this paper
we are not concerned with scheduling redundant message delivery for fault-tolerance,
since TTEthernet networks can be physically replicated. The schedules we derive for
TT messages are used for all the replicated channels. The problem is illustrated in the
next subsections using several motivational examples.

7 Straightforward Solution and Motivational Examples

7.1 Straightforward Solution

Let us illustrate the design optimization problem using the setup from Fig. 3, where
we have a cluster composed of five end systems, ES1 to ES5 and three network
switches NS1 to NS3 (see Fig. 3a) and an application with five TT messages, m1 to
m5, and two RC messages, m6 and m7, see the table in Fig. 3b. The periods mi.period
and deadlines mi.deadline of each message mi are given in the table. For simplic-
ity, in this example we assume that all messages have the same SIL. Although the
standard TTEthernet speed is 100 Mbps or higher, for the sake of this example we
consider a link speed of only 2 Mbps, and that all the dataflow links have the same
speed. In Fig. 3b we also specify the source and destination for each message. For
simplicity, we considered one destination for each message. The table also contains
the transmission times Ci for each message mi in our setup, considering for the mo-
ment that each message is packed into its own frame. We take into account the total
overhead of the protocol for one frame (67 B for each frame). For this example we
consider that the RC and TT traffic are integrated using a “timely block” policy (see
Section 5), i.e., an RC frame will be delayed if it could block a scheduled TT frame.

A Straightforward Solution (SS) to our optimization problem is to (i) pack each
message into its own frame and (ii) assign this frame to a virtual link, (iii) route each
virtual link on the shortest paths from the frame source to its destinations, (iv) set

10

(a) Example architecture model

period deadline size Ci Source Dest(ms) (ms) (B) (ms)
m1 ∈M T T 40 40 233 1.2 ES1 ES4
m2 ∈M T T 40 40 683 3 ES2 ES4
m3 ∈M T T 10 10 433 2 ES3 ES4
m4 ∈M T T 40 40 1183 5 ES1 ES4
m5 ∈M T T 10 10 183 1 ES2 ES4
m6 ∈M RC 40 32 233 1.2 ES1 ES5
m7 ∈M RC 20 16 483 2.2 ES2 ES5

(b) Example application model

Fig. 3: Example system model

the bandwidth for each RC virtual link to the minimum required for the respective
RC frame rate, and (v) schedule the TT frames using As-Soon-As-Possible (ASAP)
scheduling. Such a straightforward solution would be chosen by a good designer
without the help of our optimization tool. For the example in Fig. 3, this solution is
depicted in Fig. 4a. Let us discuss it in more detail.

(i) Fragmenting, packing: SS does not fragment messages, and packs each mes-
sage mi into a frame fi, with fi inheriting the size, period and deadline of mi. (ii)
Frame assignment and (iii) VL routing. We assign each frame fi to a virtual link vl j
and route the VL along the shortest path in the physical topology. The resulting VLs
are depicted with dot dash red arrows in Fig. 3a. (iv) Each RC VL carrying an RC
frame has an associated bandwidth parameter called BAG. BAG(vl j) is the minimum
time interval between two consecutive instances of an RC frame fi on VL vl j. SS will
set the BAG in such a way to guarantee the rate of the frame fi, while respecting the
protocol constraints on BAG sizes (see Section 5.2).

(v) Scheduling of TT frames. As mentioned, SS uses ASAP scheduling to derive
the TT frame schedules. Fig. 4a presents these schedules for our example. Instead
of presenting the actual schedule tables, we show a Gantt chart, which shows on
a timeline from 0 to 25 ms what happens on the eight dataflow links of interest,
[ES1,NS1], [ES2,NS1], [ES3,NS2], [NS1,NS2], [NS1,NS3], [NS2,NS3], [NS3,ES4] and
[NS3,ES5]. For the TT frames f1 through f5, the Gantt chart captures their sending
times (the left edge of the rectangle) and transmission duration (the length of the
rectangle). In the Gantt chart, for readability, the rectangles associated to each frame

11

(a) Straighforward Solution, each message assigned to one frame, routed along the shortest path, and
scheduled ASAP, results in f7 missing its deadline in the worst-case scenario

(b) Alternative baseline solution, using SS approach for message packing and frame routing, but a different
TT schedule. In this case f7 misses its deadline in the worst-case scenario

Fig. 4: Baseline solutions

instance fi, j are labelled only with i,j. We can see in Fig. 4a that all the TT frames are
schedulable (they are received before their deadlines).

Since the transmission of RC frames is not synchronized with the TT frames,
there are many scenarios that can be depicted for the RC frames f6 and f7, depending
on when the frames are sent in relation to the schedule tables. Because we are inter-
ested in the schedulability of the RC frames f6 and f7, we show in the Gantt charts
their worst-case scenario, i.e., the situation which has generated the largest (worst-
case) end-to-end delay for these frames. Thus, in Fig. 4a, the worst-case end-to-end
delay (WCD) of the RC frame f6, namely f6,1, is 17.8 ms, smaller than its deadline of
32 ms, and hence, it is schedulable. For f7 though, the WCD is 16.6 ms, larger than its
deadline of 16 ms, thus frame f7 is not schedulable. This worst-case for f7 happens
for the frame instance f7,1, see Fig. 4a, when f7,1 is ready for transmission by ES2
at 0 ms, depicted with a downward pointing green arrow. The worst-case arrival time
for f6, which leads to the largest WCD R f6 , is depicted with a downward pointing red
arrow. In this case, as the network implements the timely block integration algorithm,
the frame f7 cannot be sent if its transmission interferes with the TT schedule. Thus,

12

Fig. 5: Fragmenting RC message m7 into two frames, reduces the WCD to 12.5 ms,
below its deadline.

f7,1 cannot be sent by ES2 until the TT frames f2,1 and f5,1 finish transmitting and it
cannot be forwarded by NS1 to NS3 until f4,1 is completely relayed by NS1.

Let us illustrate the optimizations that can be performed to reduce the WCD of RC
frames, and thus make frame f7 schedulable. In order to show all the optimizations
that can be performed, we propose to use Fig. 4b as the alternative initial solution.
The solution presented in Fig. 4b is built using the SS approach of packing messages
into frames and routing the frames, but has an alternative schedule table. In this case,
the TT frames are schedulable, and the WCD for the RC frames are 19.6 ms for f6,
and 24.4 ms for f7. Thus f7 misses its deadline, leading to an unschedulable solution.
As the network implements the timely block integration algorithm, the frame f7,1
cannot be sent until there is a big enough time interval to transmit the frame without
disturbing the scheduled TT frames. We denote these “blocked” time intervals with
hatched boxes. The first big enough interval on dataflow link [NS1, NS3] starts only at
time 20 ms, right after f5,2 is received by NS3, which is too late to meet f7’s deadline.

7.2 Message Fragmenting and Packing

Next we will discuss about the benefits of fragmenting and packing messages to
frames, and we will show how they can improve the schedulability of messages.

Let us perform the following modification to the solution from Fig. 4b, shown
in Fig. 5. We fragment the RC message m7 into two frames f7/1 and f7/2. The sum
of the frames packing the message fragments is larger than the frame packing the
message due to frame overheads. Thus, we can use the existing empty time slots
between the TT frames on dataflow link [NS1, NS3]. The new RC frames, with a
C7/1,1 = C7/2,1 = 1.25 ms and a BAG of 16 ms, can be transmitted in the available
time between f2,1– f5,1, and f5,1– f4,1, respectively. This solution reduces the WCD
for message m6 to 13.4 ms and for m7 to 12.5 ms, thus making all the RC messages
schedulable. Fragmenting RC messages allows the RC frames to better use the ex-
isting available time slots between the TT frames. On the other hand, fragmenting
TT messages can increase the porosity of the schedule. The porosity of a schedule

13

Fig. 6: Rerouting TT frame f4 via NS2 frees up traffic on dataflow link [NS1, NS3],
reducing the WCD of the RC messages, compared to Fig. 4b

is a measure of the size and distribution of idle gaps the schedule of time-triggered
frames provides for non time-triggered frames.

Packing is especially advantageous to small messages, as it reduces the ratio of
protocol overhead to frame payload. Consider 3 RC messages mRC1, mRC2 and mRC3,
with the same SIL, transmitted from the same source to the same destinations. Mes-
sages have a size of 18 B, 10 B and 21 B, respectively, and a deadline of 20 ms,
19 ms and 50 ms. If each message is packed in its own frame, the corresponding
frames would have a size of 85 B, 81 B and 88 B, respectively, with a BAG of 16, 16
and 32 ms, respectively. If we pack the three messages into one frame, the new frame
would have a size of 116 B with a BAG of 16 ms. Thus, with an increase in the frame
size of less than 50% compared to the smallest frame, we can deliver all three mes-
sages at once, reducing also the delivery time of the frames. Moreover, the benefits
of packing several TT messages into one frame has the advantage of consolidating
the available time intervals for RC transmission, between scheduled TT frames, into
bigger chunks.

7.3 Virtual Link Routing

Fig. 3a shows the routing of VLs as performed by the Straightforward Solution, which
selects the shortest route. Let us assume, however, that we route the TT frame f4
(from ES1 to ES4) via the longer route through NS2 ([[ES1, NS1], [NS1, NS2], [NS2,
NS3], [NS3, ES4]]), instead of the shortest route ([[ES1, NS1], [NS1, NS3], [NS3,
ES4]]). Thus, in Fig. 6 we can see we have a WCD of 9.6 ms and 14.4 ms for RC
frames f6 and f7, respectively, which are schedulable.

This example shows that by selecting, counterintuitively, a longer route for a mes-
sage, we can improve the schedulability.

14

Fig. 7: Rescheduling frame f5 to an earlier instant on [ES2, NS1] groups the TT
frames and eliminates the timely block intervals, resulting in the WCD of the RC
messages

7.4 Scheduling of TT messages

In (Tămaş-Selicean et al, 2012) we have shown how carefully deciding the sched-
ules for the TT messages can improve schedulability. Compared to (Tămaş-Selicean
et al, 2012), which has focused only on scheduling, in this paper we also address
fragmenting, packing and routing. In addition, we also consider realistic scheduling
constraints imposed by the current TTEthernet implementations. In (Tămaş-Selicean
et al, 2012) we have assumed that the offset of a TT frame instance on a dataflow
link can vary across periods. Thus, frame instances of the same TT frame may have
different offsets. However, this is not supported by the current TTEthernet implemen-
tations, and hence in this paper we impose the scheduling constraint that all the frame
instances of a TT frame on a dataflow link should have the same offset in all periods.

Fig. 7 presents the impact of rescheduling a TT frame, in the context of the ex-
ample in Fig. 4b. We reschedule the TT frame f5 for an earlier transmission on [ES2,
NS1]. Although this move increases the worst-case delay for f7 on that dataflow link,
the move groups the TT frames together on the dataflow link [NS1, NS3]. Conse-
quently, this move eliminates the timely blocked intervals that block the transmission
of RC frames, thus reducing the overall WCD for both RC frames.

8 Design optimization

The scheduling problem presented in Section 6 is similar to the flow-shop scheduling
problem and is shown to be NP-complete (Garey and Johnson, 1979), with the pack-
ing and fragmenting of frames adding to the complexity of the problem. In order to
solve this problem, we propose the “Design Optimization of TTEthernet-based Sys-
tems” (DOTTS) strategy from Fig. 8, which is based on a Tabu Search metaheuristic.

Our strategy has 2 steps, see the two boxes in Fig. 8: (1) In the first step we deter-
mine an initial solution using the straightforward approach introduced in Section 7.1.
The initial set B◦ of BAGs for each RC VL is set as explained in Section 7.1.

15

Fig. 8: Design Optimization of TTEthernet-based Systems

The initial routing of virtual links R ◦V L is done to minimize the paths. We use
Prim’s algorithm (Cormen et al, 2009) for minimum spanning tree to determine the
initial vl◦i for each frame fi. We call Prim’s algorithm for each frame fi. Let ESsrc

i be
the source of frame fi and ES dest

i be the set of destinations of frame fi. The input to
Prim’s algorithm is the topology graph G from which we have removed all the ESes,
except ESsrc

i ∪ES dest
i . That is, we are interested in the minimum spanning tree in the

graph that connects the ESes involved in a particular frame’s transmission. Then we
remove from the resulting spanning tree all NSes that are not on the path between
the ESes, obtaining thus the routing that minimizes the paths. For frame f1 packing
m1 in Fig. 1, the graph is composed of vertices {ES1, NS1, NS2, ES3, ES4} and the
interconnecting edges. The virtual link routing for frame f1 is the minimum spanning
tree in this graph, depicted with a red dash-dotted arrow, see Fig. 1.

The initial schedules S◦ for the TT messages are built using the ASAP scheduling,
where the ESes, NSes and dataflow links are considered the resources onto which
the frame instances have to execute. The initial routing for the example in Fig. 3 is
presented in Fig. 3a with red dash-dotted arrow, and the initial schedule results from
the one-to-one packing and ASAP scheduling depicted in Fig. 4a.

(2) In the second step, we use a Tabu Search meta-heuristic (see Section 8.1) to
determine the fragmenting Φm and packing P of messages in frames, the final set of
virtual links V L , the assignment of frames to virtual links MF , the routing of virtual
links RV L, the BAGs for the RC VLs and the TT schedules S , such that the TT and
RC frames are schedulable, and the end-to-end delay of RC frames is minimized.

16

8.1 Tabu Search

Tabu Search (TS) (Glover and Laguna, 1997) is a meta-heuristic optimization, which
searches for that solution that minimizes the cost function. Tabu Search explores the
design space by using design transformations (or “moves”) applied to the current so-
lution in order to generate neighboring solutions. In order to increase the efficiency
of the Tabu Search, and to drive it intelligently towards the solution, these “moves”
are not performed randomly, but chosen to improve the search. If the currently ex-
plored solution is better than the best known solution, it is saved as the “best-so-far”
Best solution. To escape local minima, TS incorporates an adaptive memory (called
“tabu list”), to prevent the search from revisiting previous solutions. Thus, moves that
improve the search are saved as “Tabu”. In case there is no improvement in finding
a better solution for a number of iterations, TS uses diversification, i.e., TS visits
previously unexplored regions of the search space. The TS algorithm runs while the
termination condition is not reached. This termination condition can be, for exam-
ple, a time limit, a certain number of iterations or a number of iterations without
improvement, considering the cost function (Gendreau, 2002).

Next we describe our implementation. Fig. 9 presents our Tabu Search algorithm,
which takes as input the topology of the network G , the set of TT and RC messages
M T T ∪M RC (including the size, period/rate and deadline), and returns at the output
the best configuration of (i) message fragmenting Φm and packing P , (ii) the assign-
ment of frames to virtual links MF , (iii) the routing of virtual links RV L, the (iv) the
bandwidth for each RC virtual link and (v) the TT schedules S found during the de-
sign space exploration, in terms of the cost function. We define the cost function of
an implementation as:

Cost = wT T ·δT T +wRC ·δRC (1)

where δT T is the “degree of schedulability” for the TT frames and δRC is the “degree
of schedulability” for the RC frames. These are summed together into a single value
using the weights wT T and wRC, given by the designer. These weights change their
values depending on the schedulability of the frames: in case a frame is not schedu-
lable, its corresponding weight is a very big number, i.e., a “penalty” value. Such a
penalty value has to be several orders of magnitudes larger than the weights used, see
Section 9 for details. This allows us to explore unfeasible solutions (which correspond
to unschedulable frames) in the hope of driving the search towards a feasible region.
Once the TT frames are schedulable we set the weight wT T to zero, to drive the search
towards solutions that minimize the end-to-end delays for the RC frames. Setting the
wT T weight to zero does not “freeze” the TT schedules (TT related moves will still
be performed), but allows the cost function to evaluate a solution by considering the
RC traffic.

The degree of schedulability is calculated as:

δT T/RC =

{
c1 = ∑i max(0,R fi − fi.deadline) if ∃ j R f j ≥ f j.deadline
c2 = ∑i(R fi − fi.deadline) if c1 = 0

(2)

If at least one frame is not schedulable, there exists one R fi , i.e., the worst-case end-to-
end delay (WCD) of fi, greater than the deadline fi.deadline, and therefore the term

17

TabuSearch(G , M T T ∪M RC , P ◦, M ◦
F , R ◦V L, B◦, S◦)

1 Best← Current← < P ◦, M ◦
F , R ◦V L, B◦, S◦ >

2 L←{}
3 while termination condition not reached do
4 remove tabu with the oldest tenure from L if Size(L) = maxLSize
5 // generate a subset of neighbors of the current solution
6 C ← CLG(Current,G ,M T T ∪M RC)
7 Next← solution from C that minimizes the cost function
8 if Cost(Next) < Cost(Best) then
9 // accept Next as Current solution if better than the best-so-far Best

10 Best← Current← Next
11 add tabu(Next) to L
12 else if Cost(Next) < Cost(Current) and tabu(Next) /∈ L then
13 // also accept Next as Current solution if better than Current and not tabu
14 Current← Next
15 add tabu(Next) to L
16 end if
17 if diversification needed then
18 Current← Diversify(Current)
19 empty L
20 end if
21 end while
22 return < Φm, P , MF , RV L, B , S >

Fig. 9: The Tabu Search algorithm

c1 will be positive. We have discussed in (Tămaş-Selicean et al, 2012) how the WCD
of a frame is calculated. The assumption in that analysis is that all the RC frames
have the same priority. In our future work we intend to extend the analysis to allow
different priority levels for RC frames. However if all the frames are schedulable,
this means that each R fi is smaller than fi.deadline, and the term c1 = 0. In this
case, we use c2 as the degree of schedulability, since it can distinguish between two
schedulable solutions.

Line 1 initializes the Current and Best solutions to the initial solution formed by
the tuple < P ◦, M ◦

F , R ◦V L, B◦, S◦ >. Line 2 initializes the tabu list L to an empty list.
The size of the tabu list (maxLSize), i.e., its tenure, is set by the user. The algorithm
runs while the termination condition is not reached (see line 3), which in our imple-
mentation stops the search after a predetermined amount of time set by the user. In
case the tabu list L is filled, we remove the oldest tabu from this list (see line 4).

Evaluating all the neighboring solutions is infeasible, therefore we generate a
subset of neighbors of the Current solution (line 6), called Candidate List, by running
the Candidate List Generation (CLG) algorithm (see Section 8.3), and the algorithm
chooses from this Candidate List, as the Next solution, the one that minimizes the
cost function (line 7).

In case this Next solution is better than the best-so-far Best solution (lines 8–11),
TS sets the Best and Current solutions as the Next solution. TS accepts a solution
(i.e., sets it as Current) generated by a tabu move only if it is better than the best
known solution Best. Accepting a solution generated by a tabu move is referred to
as “aspiration criteria”. Then, the TS algorithm adds the move that generated this
solution to the tabu list, to prevent cycling. If the move is already a tabu, it will be

18

added to the head of the list, thus setting its tenure to the size of the list. If Next
improves the cost function compared to the Current solution, but not to the Best, and
furthermore, the move that generated Next is not a tabu, TS sets the Current solution
as Next, and adds the move to the tabu list.

In case the TS algorithm does not manage to improve the current solution after
a number of iterations (lines 17–20), TS proceeds to a diversification stage (line 18).
During this stage, TS attempts to drive the search towards an unexplored region of
the design space. To achieve this, the algorithm generates a new solution by applying
all the moves that generated the neighboring solutions in the current candidate list. In
case the candidate list contains solutions obtained by applying contradictory moves
to the same message, only the first move will be executed. For example, let us con-
sider that the candidate list contains the following two solutions: (i) one obtained by
packing mi, m j and mk and (ii) another solution obtained by fragmenting mi. In this
case, during the diversification stage only the packing move will be taken into ac-
count, being the first move applied to mi. After such a diversification stage, the tabu
list L is emptied.

8.2 Design Transformations

We use three classes of moves in our Tabu Search: (1) routing moves applied to virtual
links, (2) fragmenting/packing moves applied to messages and (3) scheduling moves
applied to the TT frames.

(1) The reroute move is applied to a virtual link vli carrying a frame fi. This move
returns a new tree for the virtual link vli, which has the same source and destinations,
but goes through different dataflow links and network switches. The new tree is ran-
domly selected, but the reroute move can also have a parameter specifying a dataflow
link li to avoid in the new tree, because, for example, we have determined that li is
too congested.

The reroute move selects from the complete set of trees that can be used to route a
virtual link vli. This set is determined only once, before TS is run, for every message
mi. We use breadth-first search to find every path between the source of mi and it’s
destinations, and we combine these paths to obtain a complete set of unique trees.

(2) The fragmenting / packing moves change the structure of the extended mes-
sages set M + and the assignment of messages to frames P . There are two types
of fragmenting moves: fragment message and un-fragment message, and two types of
packing moves: pack messages and unpack frames. The fragment message move splits
a message mi into several same-sized message fragments m j ∈M +,m j ∈ Φm(mi).
Each message fragment inherits the period and deadline of the message mi. In case
of the RC messages, each vl j carrying the RC frame f j that is packing one message
fragment m j, will inherit the BAG of vli carrying mi. The un-fragment message un-
does the fragment message move, and regroups all the fragments m j ∈ Φm(mi) back
into the original message mi.

The pack messages move packs into the same frame several messages and/or
message fragments that (i) have the same source and destinations, (ii) belong to the
same traffic class, (iii) have the same SIL and (iv) that the sum of their size does not

19

Fig. 10: Representation of a frame as a tree

exceed the maximum allowed payload size of 1471 B. In case we pack messages with
different periods and deadlines, the new frame fi will inherit the tightest deadline and
the smallest period of the composing messages and fragments. For RC messages, the
new frame fi will inherit the smallest BAG of the composing messages.

Packing of message fragments from different frames can further reduce the WCD
of the messages involved, similarly to the example of packing RC frames given in
Section 7.2. Although packing message fragments of different messages is possible,
we do not consider this to be realistic, hence we do not employ this in our optimiza-
tion. Also note that the ARINC 664p7 protocol has a restriction of 4096 VLs per
cluster. The pack messages move can be used to circumvent this restriction, in case
there are more than 4096 messages to be sent.

The unpack move applied to frame fi assigns each m j ∈M +,P (m j) = fi, to a
new frame f j, on a one-to-one basis.

For example, let us consider M = {m1,m2,m3}. By fragmenting m1 into 3 frag-
ments, we obtain Φm(m1) = {m1/1,m1/2,m1/3}, with the periods and deadlines equal
to m1, and their size equal to dm1.size/3e. Similarly, fragmenting m3 into 2 fragments,
we get Φm(m3) = {m3/1,m3/2}. Thus, M + = {m1/1,m1/2,m1/3,m2,m3/1,m3/2}. Per-
forming the un-fragment move on m3 will result in M + = {m1/1,m1/2,m1/3,m2,m3}.
If we pack m1/1 and m2 into frame fx, such that P (m1/1) = fx and P (m2) = fx,
fx.deadline is determined as min(m1/1.deadline,m2.deadline) and for TT messages,
fx.period=min(m1/1.period, m2.period), while for RC messages, fx.rate is equal to
min(m1/1.rate, m2.rate).

(3) Let us now discuss the scheduling moves. A periodic frame fi has several
frame instances. For the scheduling moves we introduce the following notation: we
denote with f

[ν j ,νk]
i,x the instance of frame fi,x sent on the dataflow link [ν j,νk]. All

the frame instances f
[ν j ,νk]
i,x of frame fi have the same offset across all periods. Let us

consider the topology presented in Fig. 3a, and frame fi transmitted from ES1 to ES4
and ES5 along the shortest route, that is [[ES1, NS1], [NS1, NS3], [NS3, ES4], [NS3,
ES5]]. The tree model that represents the frame fi is shown in Fig. 10. Each frame fi is
assigned a virtual link vli. A virtual link is a tree structure, where the sender is the root
and the receivers are the leafs. In the case of a virtual link, the ESes and NSes are the
nodes, and the dataflow links are the edges of the tree. However, in our tree model of a
frame, the dataflow links are the nodes and the edges are the precedence constraints.
Naturally, frame instance fi,1 on dataflow link [NS3,ES5] cannot be sent before it
is transmitted on [NS1,NS3] and received in NS3. Such a precedence constraint is
captured in the model using an edge, e.g., f [NS1,NS3]

i,1 → f [NS3,ES5]
i,1 . We denote with

20

pred(f
[ν j ,νk]
i,x) the set of predecessor frame instances of the frame instance fi,x on

dataflow link [ν j,νk].
We propose 4 scheduling moves: advance, advance predecessors, postpone and

postpone predecessors. The advance move will advance the scheduled send time off-
set of a TT frame fi from node ν j on a dataflow link [ν j,νk] to an earlier moment
in time. The advance predecessors applied to a frame fi will advance the scheduled
send time offset for all its predecessors. Similarly, the postpone move will postpone
the schedule send time offset of a TT frame from a node, while postpone predecessors
will postpone the send time offset for one random predecessor of that frame.

The schedule offset of a frame is advanced or postponed by a random value that
is upper bounded. This maximum amount of time a frame instance is advanced or
postponed at a node ν j ∈V is computed such that the frame instance will not be sent
before it is scheduled to be received, or sent too late to meet its deadline. For each
node ν j, we compute the latest absolute send time for frame fi so that it may still
meet its deadline, ignoring other traffic. Also, after each move we may need to adjust
the schedules (move other frame offsets later or earlier) to keep the solution valid,
i.e., the schedules respect the precedence and resource constraints.

Tabu Search relies on a memory structure called “Tabu List” to prevent the search
from cycling through previously visited solutions. Our algorithm relies on a tabu list
with tabu-active attributes, that is, it does not remember whole solutions, but rather
attributes of the moves that generated the tabu solutions. For each tabu, we record the
move that generated it, and the affected frames or messages.

8.3 Candidate List

As previously mentioned, Tabu Search drives the search towards schedulable solu-
tions by applying “moves” to the current solution in order to generate neighboring
solutions. The number of neighbors for each solution is very large, therefore evaluat-
ing all the neighboring solutions is infeasible. Instead, our algorithm evaluates only
a subset of neighbors of the Current solution, called Candidate List. One option is to
randomly select the neighbors placed on the candidate list. However, our algorithm
uses a heuristic approach that selects those neighbors which have a higher chance
to quickly lead to a good result. The Candidate List Generation (CLG) algorithm is
described in the following. Each candidate solution is obtained by performing moves
on the Current solution.

We consider the following classes of candidates: (1) candidates for TT frames,
(2) candidates for RC frames and (3) randomly generated candidates.

8.3.1 Candidates for TT frames

CLG generates a set of candidates for the unschedulable TT frames, and another
set for schedulable TT frames. First we describe the candidates for unschedulable
frames. For each unschedulable TT frame fT T , CLG identifies the first dataflow link
lx ∈ RV L(MF(fT T)) where fT T is unschedulable, i.e., where f lx

T T is sent too late for
fT T to reach its deadline. CLG creates candidate solutions by performing separately

21

on the Current solution: reschedule moves to f lx
T T , reroute to fT T , and packing and

fragmenting moves to the message mT T packed by frame f lx
T T . In case fT T packs

several messages, CLG performs an unpack move instead. Similarly, if fT T pack a
message fragment, CLG performs an unfragment move. Next, CLG targets TT frames
that might delay fT T excessively. The high rate frames and the very “large” frames on
lx are such frames. CLG reroutes the TT frame with the highest rate on lx to another
link, thus decongesting lx and increasing fT T ’s chances to be schedulable. Similarly,
CLG reroutes the largest TT frame to another randomly selected route. Furthermore,
CLG reroutes a random frame on lx to another randomly selected route.

Our optimization is driven by the cost function specified in Eq. 1 (see Section 8.1).
Thus, TS searches for a solution that makes TT and RC frames schedulable, and
minimizes the end-to-end delay of the RC frames. Therefore, once the TT frames are
schedulable, TS does not look for solutions that reduce the end-to-end delay of the
TT frames. Instead, it applies moves to the schedulable TT frames to minimize the
end-to-end delay of the RC frames. Thus, the next moves focus on schedulable TT
frames.

In this context, first, the CLG algorithm selects the TT frames with the highest de-
gree of schedulablity and generates a candidate solution by rerouting each such frame
to another route. Although this move may reduce the degree of schedulability of the
rerouted frames, as a side effect, it may decongest some dataflow links. Furthermore,
CLG also generates other candidates by rescheduling these frames.

Second, CLG selects schedulable TT frames with lowest degree of schedulabil-
ity, and reroutes each such frame on a randomly chosen alternative route. Third, CLG
generates candidates by packing the smallest schedulable TT messages, to consoli-
date the schedule. Fourth, similarly with the previous candidates, CLG fragments in
equally sized frame fragments the largest TT messages. For the pack and fragment
moves, CLG randomly choses the number of the frames and the number of the frag-
ments, respectively, so the size of the resulting frames respect the size constraints (see
Section 4).

8.3.2 Candidates for RC frames

Similarly with the candidates for TT frames (previously described), CLG generates
two sets of candidates: one set for the unschedulable, and another set for schedulable
RC frames. For each fRC unschedulable RC frame, the CLG algorithm identifies the
first dataflow link lx where fRC is unschedulable. Then, CLG creates candidate so-
lutions by applying the following moves separately on the current solution: (i) CLG
reroutes fRC to another, randomly selected route, (ii) fragments and (iii) packs the
message in fRC’s payload. In case fRC packs a message fragment, CLG unfragments
the message instead. Similarly, if the frame packs several messages, CLG unpacks it.

There are cases where a high rate TT frame might greatly delay RC frames. Let
hrlx

T T be the TT frame on lx with the highest rate. Rerouting hrlx
T T to another, randomly

selected, route decongests lx, possibly reducing the delay for fRC on this dataflow link.
Rescheduling hrlx

T T might create sufficient time to reduce fRC’s delay. CLG also cre-
ates candidates by packing and fragmenting the message transported by hrlx

T T . Sim-

22

ilarly to the high rate TT frame hrlx
T T on lx, there are cases where large TT frame

will delay RC frames. Let lglx
T T be the largest TT frame on lx. CLG applies moves

that reroute lglx
T T , pack and fragment the message carried by lglx

T T and moves that
advance and postpone lglx

T T on lx, just like in the case of hrlx
T T .

Next, CLG focuses on schedulable RC frames to improve their schedulability.
For these candidates, first, CLG targets the fRC RC frames with highest degree of
schedulability, rerouting each such frame to another route. Although this move may
reduce the degree of schedulability of fRC, as a side effect, it may decongest some
dataflow links, reducing the worst-case end-to-end delay (WCD) of other RC frames.
Second, CLG focuses on schedulable RC frames with the lowest degree of schedu-
lability, rerouting them in order to increase their schedulability. Third, CLG focuses
on the smallest and largest RC frames. Thus, CLG creates candidates by packing the
smallest RC messages, and by fragmenting the largest RC messages, respectively.
The packing and fragmenting moves are done such that they respect the constraints
presented in Section 8.2.

8.3.3 Randomly generated candidates

As the previous moves are targeting specific frames, in order to increase the degree
of schedulability, CLG introduces a third set of candidates. On a randomly selected
set of frames, CLG randomly applies packing, fragmenting or routing moves.

8.4 Tabu Search Example

We illustrate in this section how Tabu Search works. We consider the applications
from Fig. 3. The current solution, which is also the best-so-far solution, is presented
in Fig. 11a. This solution is also presented in Fig. 6, and is obtained from Fig. 4b by
rerouting the TT frame f4 via NS2. The following 3 solutions, Fig. 11b to Fig. 12a
show possible candidate solutions obtained from Fig. 11a. Next to each solution, we
present the associated tabu list. We consider a tabu tenure of 5. The current state of
the tabu list is shown next to Fig. 11a.

To reduce the delays, the CLG algorithm proposes candidates by rescheduling the
largest TT frame on the dataflow link where it delays RC frames. Fig. 11b presents
such a candidate solution, advancing f4 in the schedule of [ES1, NS1]. This solution
is tabu (tenure 4), and because this candidate is not better than the Best solution, it is
ignored.

Another set of candidate solutions is obtained by fragmenting the largest RC
frames in the system. Fig. 11c presents such a solution. Message m7 is fragmented
into f7/1 and f7/2. The newly created frames have the same BAG as f7, of 16 ms,
and a transmission duration of C7/1 =C7/2 = 1.25ms. Thus, f7/1,1 can be transmitted
on [NS1, NS3], in the interval between f2,1 and f5,1, which previously was timely
blocked for f7. This move reduces the WCD of m7 to 12.5 ms, thus improving the
solution. Overall, this solution is better than the Current solution. If this candidate
solution is chosen as the next solution, the tabu for the fragmenting m7 is added to
the head of the tabu list, with a tenure of 5. The tenures of the other tabus in the list

23

(a) Current solution

(b) Reschedule f4 does not improve the best-so-far solution and is tabu, thus ignored

(c) Fragment message m7. Better than the current solution

Fig. 11: Candidate solutions and their tabu list

are decremented, and the “Reroute f2” tabu, previously with a tenure of 1, is removed
from the list. The update tabu list is in Fig. 11c.

Rerouting f2 via NS2, see Fig. 12a, reduces the WCD for f7 from 14.4 to 10.6
ms. Although the move is tabu (tenure 1), the solution is better than the Current and
Best solutions, and thus, its tabu status is aspired and the solution is accepted as the

24

(a) Reroute f2 via NS2. Although tabu, the move results in a solution better than the current solution, and
thus accepted as the best so far and set as current

Fig. 12: Candidate solutions and their tabu list (continued)

Current and best-so-far Best solution. The next TS iteration will continue with this
solution as Current. The updated tabu list is also presented in Fig. 12a.

9 Experimental evaluation

For the evaluation of our proposed optimization approach, “Design Optimization of
TTEthernet-based Systems” (DOTTS), we used 30 synthetic test cases and two real-
life case studies. The algorithm was implemented in Java (JDK 1.6), running on Sun-
Fire v440 computers with UltraSPARC IIIi CPUs at 1.062 GHz and 8 GB of RAM.

The details of the test cases are presented in Table 1. For the synthetic test cases,
we have used 10 network topologies, and we have randomly generated the parameters
for the frames, taking into account the details of the TTEthernet protocol. All the
dataflow links have a transmission speed of 100 Mbps. In columns 3–10, we have
the details of each test case: the number of ESes, NSes, the load of the system, the
number of messages, the minimum and maximum message size in the test case, and
the minimum and the maximum message period. The load within an application cycle
Tcycle is calculated as the ratio of the sum of the required bandwidth by each message
divided by the network speed. The required bandwidth for a message is computed as
the size of the message divided by the period. The number of frame instances in the
network, considering a one-to-one mapping of messages to frames, can be found in
column 11. This number is much larger than the number of messages since there is a
frame instance for each period of a message on a virtual link.

We used a time limit of 45 minutes for all algorithms and all test cases. We were
first interested to determine how close are the results obtained by DOTTS to the op-
timal result. Thus, we have run an exhaustive search for a small test case (called test
case 10 in Table 1) and obtained thus the optimal solution. Running DOTTS for 45
minutes on this test case we have been able to obtain a result which is less than 3.5%
from the optimal value of the cost function. In addition, we have selected test case
18, presented in Table 1. The design space for this test case is prohibitively large to

25

perform an exhaustive search. Thus, we ran DOTTS for 12 hours, for 8 times. Out
of the 8 long runs, 6 runs returned solutions with the same value of the cost function
-618.702, which was the best cost function value among the 8 runs. We considered
this to be a “near-optimal” solution. Running DOTTS for 45 minutes returned a solu-
tion with a cost function of -612.742, thus less than 1% away from this “near-optimal”
solution.

We used 7 sets of test cases. In the first set of test cases, “Set 1”, we use 10
test cases where we gradually increase the size of the system, both in the number of
networks and the number of messages. In the next five sets, labeled “Set 2” to “Set 6”,
we consider in each set a fixed architecture, and we increase the load of the system on
that architecture. “Set 2” uses the topology of test case 12, “Set 3” uses the topology
of test case 14, and “Set 6” uses the topology of test case 17.

We have used the following weights wT T and wRC. For the case when all the TT
and RC frames are schedulable we use wT T = 0 (once the TT frames are schedula-
ble, we ignore δT T and focus on finding solutions that minimize the WCD of the RC
frames), and wRC = 1. If there are TT frames which are not schedulable, we use a
penalty value, wT T = 2,000. The same penalty value is used if there are unschedula-
ble RC frames, wRC = 2,000.

We were interested to evaluate the performance of DOTTS. The results obtained
by DOTTS were compared with four other optimization approaches. The first ap-
proach is the Straightforward Solution (SS) presented in Section 7.1 and implemented
by the box “Initial Solution” in Fig. 8. This is what a good designer would do with-
out the help of our optimization tool. The other three approaches are based on the
same Tabu Search optimization as DOTTS, but they restrict the type of optimiza-
tion performed. Thus, Routing Optimization (RO) optimizes only routing, using SS
for packing and scheduling. Packing and Fragmenting Optimization (PFO) optimizes
only fragmenting and packing, and not routing and scheduling. Scheduling Optimiza-
tion (SO) optimizes the schedules but keeps the packing and routing from SS. These
TS implementations correspond to the boxes RO, PFO and SO in Fig. 8, where only
the respective type of moves are performed in the TS.

The results are presented in Table 1. We are interested in finding schedulable
implementations. Thus, for each optimization algorithm, we report the percentage of
schedulable messages in the system, after applying the respective optimization. As
we can see from the results, DOTTS is able to find schedulable implementations (all
the TT and RC messages are schedulable) for all the test cases in Table 1. On the
other hand, SS performs poorly, with only 42% schedulable messages for example
for test case 10 (column 12). This shows that performing the design optimization of
TTEthernet-based systems is very important.

Next, we compared DOTTS with RO, PFO and SO. The question is, where is the
improvement of DOTTS coming from, compared to SS, from which kind of opti-
mization: routing, packing/fragmenting or scheduling? SO, which performs schedule
optimization, obtains the best result among RO, PFO and SO, but very rarely obtains
schedulable solutions. Furthermore, PFO and RO are not consistently better one than
the other. The conclusion is that the optimizations should all be used together, as we
do in DOTTS.

26

Ta
bl

e
1:

E
xp

er
im

en
ta

lr
es

ul
ts

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

(1
0)

(1
1)

(1
2)

(1
3)

(1
4)

(1
5)

(1
6)

(1
7)

Se
t

Te
st

E
S

N
S

L
oa

d
M

sg
s

M
in

M
ax

T m
in

T m
ax

Fr
am

e
SS

R
O

PF
O

SO
D

O
T

T
S

∆
W

C
D

ca
se

si
ze

si
ze

In
st

an
ce

s
Sc

he
d.

%
Sc

he
d.

%
Sc

he
d.

%
Sc

he
d.

%
Sc

he
d.

%
[%

]

1

10
5

3
30

61
29

14
51

2
25

69
7

42
.6

2
50

.8
1

54
.3

8
83

.6
0

10
0.

00
–

11
6

3
40

10
0

70
14

29
2

60
14

70
51

.0
0

56
.0

0
63

.3
3

99
.0

0
10

0.
00

–
12

8
5

50
99

6
14

58
2

37
.5

13
00

51
.5

1
58

.5
8

60
.2

0
88

.8
8

10
0.

00
–

13
10

5
50

10
9

10
14

70
2

37
.5

15
57

46
.7

8
51

.3
7

57
.5

4
88

.0
7

10
0.

00
–

14
12

4
40

10
1

1
13

47
2

37
.5

24
14

6
50

.4
9

60
.3

9
61

.0
0

99
.0

1
10

0.
00

–
15

20
5

60
84

2
14

61
1

15
0

23
88

52
.3

8
67

.8
5

68
.8

6
97

.1
9

10
0.

00
–

16
20

5
90

14
5

4
14

69
2

12
6

55
09

58
.6

2
62

.9
6

63
.8

8
81

.3
7

10
0.

00
–

17
35

8
40

13
2

98
14

71
4

25
0

40
64

63
.6

3
66

.6
6

68
.1

8
98

.4
8

10
0.

00
–

18
37

8
40

43
1

14
70

1
15

0
23

05
53

.4
8

86
.0

4
81

.3
9

95
.3

4
10

0.
00

–
19

37
8

40
77

2
14

67
2

12
6

24
41

48
.0

5
70

.1
2

64
.9

3
10

0.
00

10
0.

00
36

.3
5

2

20

8
5

30
46

29
14

63
2

25
64

0
56

.5
2

69
.5

6
73

.9
1

95
.6

6
10

0.
00

–
21

40
63

72
14

61
2

37
.5

92
9

41
.2

6
50

.7
9

52
.4

5
95

.2
3

10
0.

00
–

22
50

99
6

14
58

2
37

.5
13

00
51

.5
1

58
.5

8
60

.2
0

88
.8

8
10

0.
00

–
23

60
10

6
1

14
68

2
37

.5
15

79
48

.1
1

54
.7

1
56

.1
9

94
.3

3
10

0.
00

–

3

30

12
4

30
46

20
14

43
2

25
53

6
56

.5
2

73
.9

1
76

.0
8

97
.8

2
10

0.
00

–
31

40
50

28
14

70
2

25
66

0
52

.0
0

72
.0

0
74

.0
0

98
.0

0
10

0.
00

–
32

50
99

19
14

64
2

37
.5

15
42

51
.5

1
60

.6
0

61
.6

1
96

.9
6

10
0.

00
–

33
60

15
3

22
14

68
2

37
.5

18
99

49
.6

7
54

.2
4

57
.3

3
94

.7
7

10
0.

00
–

4

40

21
6

40
91

13
14

42
2

37
.5

11
56

45
.0

5
56

.0
4

72
.5

4
10

0.
00

10
0.

00
12

.7
6

41
50

86
31

14
67

2
37

.5
13

03
47

.6
7

60
.4

6
62

.2
9

90
.9

8
10

0.
00

–
42

60
16

5
20

14
69

2
37

.5
21

78
49

.0
9

57
.5

7
59

.8
4

90
.9

7
10

0.
00

–
43

70
13

1
8

14
66

2
37

.5
17

85
46

.5
6

56
.4

8
55

.4
9

86
.1

2
10

0.
00

–

5

50

30
8

30
67

26
14

45
2

37
.5

89
7

46
.2

6
65

.6
7

65
.6

7
10

0.
00

10
0.

00
42

.9
9

51
40

18
0

18
14

59
4

37
5

58
09

48
.8

8
53

.3
3

55
.0

0
10

0.
00

10
0.

00
0

52
50

22
0

20
14

69
4

37
5

68
71

50
.0

0
53

.1
8

54
.0

9
78

.1
8

10
0.

00
–

53
60

22
0

17
14

71
4

37
5

78
11

50
.0

0
51

.8
1

54
.5

4
74

.0
9

10
0.

00
–

6

60

35
8

40
51

11
14

66
2

37
.5

78
5

41
.1

7
62

.7
4

64
.0

4
10

0.
00

10
0.

00
2.

21
61

50
12

2
5

14
66

2
37

.5
15

96
50

.0
0

58
.1

9
65

.1
1

97
.6

7
10

0.
00

–
62

60
13

3
24

14
60

2
37

.5
18

38
45

.8
6

53
.3

8
61

.7
2

92
.7

2
10

0.
00

–
63

70
17

3
3

14
64

2
37

.5
24

81
46

.8
2

52
.0

2
60

.4
6

96
.9

4
10

0.
00

–

7
au

to
15

7
50

79
28

14
61

4
10

0
51

80
53

.1
6

58
.2

2
72

.3
4

89
.8

7
10

0.
00

–
or

io
n

31
14

40
18

7
20

14
60

4
37

5
61

30
46

.5
2

58
.8

2
57

.7
5

10
0.

00
10

0.
00

43
.8

1

27

Moreover, even in the rare cases where SO finds schedulable solutions, DOTTS
is able to improve on that solution by reducing the WCD of the RC frames. The last
column in Table 1 presents this improvement as the average percentage improvement
in the WCD of RC frames, between the solution found by SO and the solution found
by DOTTS. The percentage improvement ∆WCD(fi) for a RC frame fi is computed
according to Eq. 3, where RSO

fi is the WCD for fi obtained by SO, and RDOT T S
fi is

the WCD for fi obtained by DOTTS. The average percentage improvement ∆WCD
presented in Table 1 is obtained by averaging the percentage improvement ∆WCD(fi)
for all the fi RC frames in each test case,

∆WCD(fi) =
RSO

fi −RDOT T S
fi

RSO
fi

100. (3)

As we can see, for example for the test case 50, DOTTS is able to significantly reduce
the WCD of the RC frames in this case with 42.99%.

From the experiments in Table 1 we can see that DOTTS is able to produce
schedulable results as the size of the system increases. By using the sets “Set 2”
to “Set 6” we were interested to determined how DOTTS handles increased loads
(while the architecture in a set does not change). For example, in “Set 4” we have
used an architecture of 21 ESes and 6 NSes and we have increased the number of
messages leading to loads of 40 to 70%. As we can see, although there are situations
where SO is able to find schedulable solutions when the load is reduced (benchmarks
40, 50, 60), only DOTTS is able to find schedulable implementation as the load of
the system increased.

In the last set of experiments, labeled with “Set 7”, we used two real-life bench-
marks. The first test case is derived from (Mohammad and Al-holou, 2010), based on
the SAE automotive communication benchmark (SAE, 1993). In this benchmark we
have 22 network nodes (ESes and NSes), and 79 messages (with the parameters gen-
erated based on the messages presented in (Mohammad and Al-holou, 2010)). The
results for this test case are shown in Table 1, in the row labelled “auto”. The other
test case is derived from (Paulitsch et al, 2011), based on the Orion Crew Exploration
Vehicle (CEV), 606E baseline (Paulitsch et al, 2011) and labeled in Table 1 with
“orion”. In this test case we have 45 network nodes (ESes and NSes) and 187 mes-
sages (with the parameters generated based on the messages presented in (Paulitsch
et al, 2011)). The topology for this test case is shown in Fig. 13. The results obtained
for the real-life test cases confirm the results of the synthetic test cases.

Finally, we have validated the output produced by DOTTS. We have taken the so-
lution produced for the “orion” test case and we have used the TTEthernet simulator
from (Zafirov, 2013) to simulate it, validating thus the results.

10 Conclusions

In this paper we have addressed the optimization of TTEthernet-based real-time sys-
tems. TTEthernet is very suitable for mixed-criticality systems, both in the temporal
and safety domain. In the temporal domain, TTEthernet offers three types of traf-
fic classes, Time-Triggered, Rate Constrained and Best Effort. In the safety domain,

28

Fig. 13: Network topology of the Orion CEV, derived from (Paulitsch et al, 2011)

the protocol offers separation between mixed-criticality frames using the concept of
virtual links, and protocol-level specialized dependability services.

We have considered mixed-criticality hard real-time applications implemented on
distributed heterogenous architectures. Given the sets of TT and RC messages and the
topology of the network, we have proposed a Tabu Search optimization strategy for
the packing of messages into frames, assignment of frames to virtual links, routing
of virtual links and synthesis of the TT schedules. The optimization is performed
such that the frames are schedulable, and the degree of schedulability is improved.
The results on several synthetic benchmarks and two real-life case studies show that
through the careful optimization of communication design, significant improvements
can be obtained.

Acknowledgements

This work has been funded by the Advanced Research & Technology for Embedded
Intelligence and Systems (ARTEMIS) within the project ‘RECOMP’, support code
01IS10001A, agreement no. 100202.

References

Al Sheikh A, Brun O, Chéramy M, Hladik PE (2013) Optimal design of virtual links
in AFDX networks. Real-Time Systems Journal 49(3):308–336

Almeida L, Pedreiras P, Fonseca J (2002a) The FTT-CAN protocol: why and how.
IEEE Transactions on Industrial Electronics 49(6):1189–1201

29

Almeida L, Tovar E, Fonseca JAG, Vasques F (2002b) Schedulability analysis of real-
time traffic in WorldFIP networks: an integrated approach. IEEE Transactions on
Industrial Electronics 49(5):1165–1174

ARINC (2009) ARINC 664P7: Aircraft Data Network, Part 7, Avionics Full-Duplex
Switched Ethernet Network. ARINC (Aeronautical Radio, Inc)

Ayed H, Mifdaoui A, Fraboul C (2012) Frame packing strategy within gateways for
multi-cluster avionics embedded networks. In: Proceedings of Emerging Technolo-
gies Factory Automation, pp 1–8

Azim A, Carvajal G, Pellizzoni R, Fischmeister S (2014) Generation of communica-
tion schedules for multi-mode distributed real-time applications. In: Design, Au-
tomation and Test in Europe Conference and Exhibition, pp 1–6

Baransel C, Dobosiewicz W, Gburzynski P (1995) Routing in multihop packet
switching networks: Gb/s challenge. IEEE Network 9(3):38–61

Burns A, Davis R (2013) Mixed criticality on Controller Area Network. In: Proceed-
ings of the Euromicro Conference on Real-Time Systems, pp 125–134

Cormen TH, Leiserson CE, Rivest RL, Stein C (2009) Introduction to Algorithms,
Third Edition, 3rd edn. The MIT Press

Cummings R, Richter K, Ernst R, Diemer J, Ghosal A (2012) Exploring use of ether-
net for in-vehicle control applications: AFDX, TTEthernet, EtherCAT, and AVB.
SAE International Journal of Passenger Cars - Electronic and Electrical Systems
5(1):72–88

Davis R, Burns A (2009) Robust priority assignment for messages on ControllerArea
Network (CAN). Real-Time Systems 41(2):152–180

Davis R, Burns A, Bril R, Lukkien J (2007) Controller Area Network (CAN) schedu-
lability analysis: Refuted, revisited and revised. Real-Time Systems 35(3):239–272

Decotignie JD (2005) Ethernet-based real-time and industrial communications. Pro-
ceedings of the IEEE 93(6):1102–1117

Dobrin R, Fohler G (2001) Implementing off-line message scheduling on Controller
Area Network (CAN). In: Proceedings of the International Conference on Emerg-
ing Technologies and Factory Automation, pp 241–245 vol.1

ETG (2013) ETG.1000.1 EtherCAT Specification. EtherCAT Technology Group
Fletcher M (2009) Progression of an open architecture: from Orion to Altair and LSS.

White paper S65-5000-20-0, Honeywell, International
Garey MR, Johnson DS (1979) Computers and Intractability: A Guide to the Theory

of NP-Completeness. W. H. Freeman & Co., New York, NY, USA
Gendreau M (2002) An Introduction to Tabu Search. Centre for Research on Trans-

portation (C.R.T.)
Glover F, Laguna M (1997) Tabu Search. Kluwer Academic Publishers, Norwell,

MA, USA
Grammatikakis MD, Hsu D, Kraetzl M, Sibeyn JF (1998) Packet routing in fixed-

connection networks: A survey. Journal of Parallel and Distributed Computing
54(2):77 – 132

Hanzalek Z, Burget P, Sucha P (2010) Profinet io irt message scheduling with tem-
poral constraints. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS
6(3):369–380, DOI 10.1109/TII.2010.2052819

30

Herpel T, Kloiber B, German R, Fey S (2009) Routing of Safety-Relevant Messages
in Automotive ECU Networks. In: Proceedings of the Vehicular Technology Con-
ference, pp 1–5

IEEE (2009) IEEE 802.1Qav - IEEE Standard for Local and Metropolitan Area Net-
works - Virtual Bridged Local Area Networks Amendment 12: Forwarding and
Queueing Enhancements for Time-Sensitive Streams. The Institute of Electrical
and Electronics Engineers, Inc.

IEEE (2010) IEEE 802.1Qat - IEEE Standard for Local and Metropolitan Area Net-
works - Virtual Bridged Local Area Networks Amendment 14: Stream Reservation
Protocol. The Institute of Electrical and Electronics Engineers, Inc.

IEEE (2011a) IEEE 802.1AS - IEEE Standard for Local and Metropolitan Area Net-
works - Timing and Synchronization for Time-Sensitive Applications in Bridged
Local Area Networks. The Institute of Electrical and Electronics Engineers, Inc.

IEEE (2011b) IEEE 802.1BA - IEEE Standard for Local and Metropolitan Area Net-
works - Audio Video Bridging (AVB) Systems. The Institute of Electrical and Elec-
tronics Engineers, Inc.

IEEE (2012) IEEE 802.3 - IEEE Standard for Ethernet. The Institute of Electrical and
Electronics Engineers, Inc.

ISO (2003) ISO 11898: Road Vehicles – Controller Area Network (CAN). Interna-
tional Organization for Standardization (ISO), Geneva, Switzerland

ISO (2010) ISO 10681: Road vehicles – Communication on FlexRay. International
Organization for Standardization (ISO), Geneva, Switzerland

Kopetz H (2011) Real-Time Systems: Design Principles for Distributed Embedded
Applications. Springer

Lee YH, Rachlin E, Scandura PA (2005) Safety and Certification Approaches for
Ethernet-Based Aviation Databuses. Tech. Rep. DOT/FAA/AR-05/52, Federal
Aviation Administration

Marau R, Almeida L, Pedreiras P, Lakshmanan K, Rajkumar R (2010) Utilization-
based schedulability analysis for switched Ethernet aiming dynamic QoS manage-
ment. In: Proceedings of the Conference on Emerging Technologies and Factory
Automation, pp 1–10

Mohammad U, Al-holou N (2010) Development of an automotive communication
benchmark. Canadian Journal on Electrical and Electronics Engineering 1(5):99–
115

Nam MY, Lee J, Park KJ, Sha L, Kang K (2013) Guaranteeing the end-to-end latency
of an IMA system with an increasing workload. IEEE Transactions on Computers
99(PrePrints):1

Obermaisser R (2011) Time-Triggered Communication. CRC Press, Inc.
Paulitsch M, Schmidt E, Gstöttenbauer B, Scherrer C, Kantz H (2011) Time-

triggered communication (industrial applications). In: Time-Triggered Communi-
cation, CRC Press, pp 121–152

Pedreiras P, Almeida L (2004) Message routing in multi-segment FTT networks: the
isochronous approach. In: Proceedings of the Parallel and Distributed Processing
Symposium, pp 122–129

Pedreiras P, Gai P, Almeida L, Buttazzo G (2005) FTT-Ethernet: a flexible real-time
communication protocol that supports dynamic QoS management on Ethernet-

31

based systems. IEEE Transactions on Industrial Informatics 1(3):162–172
Pop P, Eles P, Peng Z (1999) Scheduling with optimized communication for time-

triggered embedded systems. In: Proceedings of the International Workshop on
Hardware/Software Codesign, pp 178–182

Pop P, Eles P, Peng Z (2005) Schedulability-driven frame packing for multicluster
distributed embedded systems. ACM Transasctions on Embedded Computing Sys-
tems 4(1):112–140

Pop T, Pop P, Eles P, Peng Z, Andrei A (2008) Timing analysis of the FlexRay com-
munication protocol. Real-Time Systems 39(1-3):205–235

Rushby J (2001) A comparison of bus architectures for safety-critical embedded sys-
tems. Tech. rep., Computer Science Laboratory, SRI International

SAE (1993) SAE J2056/1 Class C Application Requirement Considerations. Stan-
dard, SAE International

SAE (2011) AS6802: Time-Triggered Ethernet. SAE International
Saket R, Navet N (2006) Frame packing algorithms for automotive applications. Jour-

nal of Embedded Computing 2(1):93–102
Sandstrom K, Norstom C, Ahlmark M (2000) Frame packing in real-time communi-

cation. In: Proceedings of the Conference on Real-Time Computing Systems and
Applications, pp 399–403

Schneele S, Geyer F (2012) Comparison of IEEE AVB and AFDX. In: Proceedings
of the Digital Avionics Systems Conference, pp 7A1–1–7A1–9

Schumacher M, Jasperneite J, Weber K (2008) A new approach for increasing the
performance of the industrial ethernet system profinet. In: International Work-
shop on Factory Communication Systems, pp 159–167, DOI 10.1109/WFCS.2008.
4638725

Steinbach T, Lim HT, Korf F, Schmidt TC, Herrscher D, Wolisz A (2012) Tomorrow’s
In-Car Interconnect? A Competitive Evaluation of IEEE 802.1 AVB and Time-
Triggered Ethernet (AS6802). In: IEEE Vehicular Technology Conference, IEEE
Press, pp 1–5

Steiner W (2010) An Evaluation of SMT-based Schedule Synthesis For Time-
Triggered Multi-Hop Networks. In: Proceedings of the Real-Time Systems Sym-
posium, pp 375–384

Steiner W (2011) Synthesis of Static Communication Schedules for Mixed-
Criticality Systems. In: Proceedings of the International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing Work-
shops, pp 11–18

Steiner W, Bauer G, Hall B, Paulitsch M, Varadarajan S (2009) TTEthernet Dataflow
Concept. In: Proceedings of the International Symposium on Network Computing
and Applications, pp 319–322

Suen J, Kegley R, Preston J (2013) Affordable avionic networks with Gigabit Ether-
net assessing the suitability of commercial components for airborne use. In: Pro-
ceedings of SoutheastCon, pp 1–6

Suethanuwong E (2012) Scheduling time-triggered traffic in TTEthernet systems. In:
Proceedings of the Conference on Emerging Technologies and Factory Automa-
tion, pp 1–4

32

Tanasa B, Dutta Bordoloi U, Eles P, Peng Z (2011) Reliability-aware Frame Packing
for the Static Segment of FlexRay. In: Proceedings of the International Conference
on Embedded Software, ACM, New York, NY, USA, EMSOFT ’11, pp 175–184

Tămaş-Selicean D (2014) Design of Mixed-Criticality Applications on Distributed
Real-Time Systems. PhD thesis, Technical University of Denmark

Tămaş-Selicean D, Pop P (2011) Design Optimization of Mixed-Criticality Real-
Time Applications on Cost-Constrained Partitioned Architectures. In: Proceedings
of the Real-Time Systems Symposium, pp 24–33

Tămaş-Selicean D, Pop P, Steiner W (2012) Synthesis of Communication Sched-
ules for TTEthernet-based Mixed-Criticality Systems. In: Proceedings of the In-
ternational Conference on Hardware/Software Codesign and System Synthesis, pp
473–482

Wang B, Hou J (2000) Multicast routing and its QoS extension: problems, algorithms,
and protocols. IEEE Network 14(1):22–36

Wisniewski L, Schumacher M, Jasperneite J, Schriegel S (2012) Fast and simple
scheduling algorithm for profinet irt networks. In: International Workshop on Fac-
tory Communication Systems, pp 141–144, DOI 10.1109/WFCS.2012.6242556

Zafirov AT (2013) Modeling and simulation of the TTEthernet communication pro-
tocol

33

Appendix: Notations and abbreviations
Abbreviation Meaning
ASAP As-Soon-As-Possible (ASAP)
AVB Audio Video Bridging
BAG Bandwidth Allocation Gap
BE Best-Effort
CAN Controller Area Network
DOTTS Design Optimization of TTEthernet-

based Systems
ES End System
ET Event-Triggered
FIFO First In First Out
FU Filtering Unit
NS Network Switch
PE Processing Element
PFO Packing and Fragmenting Optimiza-

tion
RC Rate-Constrained
RO Routing Optimization
SIL Safety-Integrity Level
SMT Satisfiability Modulo Theory
SO Scheduling Optimization
SS Straightforward Solution
TDMA Time-Division Multiple Access
TP Traffic Policing task
TR Traffic Regulator task
TS Tabu Search
TT Time-Triggered
TTP Time-Triggered Protocol
VL Virtual Link
WCD Worst-Case end-to-end Delay

Symbol Meaning
G(V ,E) TTEthernet cluster
V = ES ∪N S Set of all the end systems and net-

work switches in the cluster
ES Set of all the end systems
ESsrc

i The source end system for frame fi

ES dest
i The set of destination end systems

for frame fi
N S Set of all the network switches
ESi An end system
NSi A network switch
E Set of physical links
L Set of dataflow links in the cluster
li A dataflow link
DP Set of dataflow paths in the cluster
d pi A dataflow path
V L Set of virtual links in the cluster
vli A virtual link
BAG(vli) The BAG of vli
B The set of BAG for all VLs
B◦ The initial set of BAG for all VLs
RV L(vli) The routing of virtual link vli
M = M T T ∪
M RC ∪M BE

Set of all the messages in the cluster

M T T Set of the TT messages
M RC Set of the RC messages
M BE Set of the BE messages
mi A message
mi.rate The rate of message mi
mi.period The period of message mi
mi.deadline The deadline of message mi
mi.size The size of message mi

Symbol Meaning
Φm(mi) Fragmenting of message mi into message

fragments
Φ◦m The initial fragmenting of messages into

message fragments
M + The set of message fragments, and mes-

sages that were not fragmented
P The packing of messages
P ◦ The initial packing of messages
Ai An application
τ j A task
F Set of all the frames in the cluster
fi A frame
fi.deadline Deadline for fi
fi.o f f set Offset, i.e., send time relative to the start

of the period of frame fi

fi,x xth instance of frame fi
fi,x. jitter Jitter for fi,x

f
l j
i,x The xth instance of fi on dataflow link l j

pred(f
l j
i,x) The set of predecessor frame instances of

fi,x on l j

succ(f
l j
i,x) The set of successor frame instances of fi,x

on l j
R fi Worst-case delay of fi
MF (fi) The assignment of frame to VLs

C[νm ,νn]
j Transmission duration of f j on dataflow

link [νm,νn]
B1,T x A transmission buffer
Q1,T x A transmission queue in an ES
QT x An outgoing queue in a NS
T TR Receiver task
S Complete set of local schedules
S◦ Initial set of local schedules
SR Receive schedule
SS Send schedule
Tcycle System cycle
BW (vli) The maximum bandwidth required by vli
δT T Degree of schedulability for the TT frames
δRC Degree of schedulability for the RC frames
wT T Weight for the TT frames, used to compute

the cost function
wRC Weight for the RC frames, used to com-

pute the cost function
Best The best-so-far solution in the Tabu Search

algorithm
Current The current solution in the Tabu Search al-

gorithm
Next The solution selected as the next solution

in the Tabu Search algorithm
C Candidate list
L Tabu list
maxLSize Tabu tenure
tabu(Next) The tabu of the move that generated the

Next solution
hrlx

T T The TT frame with the highest rate on
dataflow link lx

lglx
T T The largest TT frame on dataflow link lx

BWAvail(l j) The available bandwidth on dataflow link
l j

BWReq(l j) The required bandwidth on dataflow link
l j

BW BW
% The percentage of BE messages that have

their bandwidth requirements met

34

