
Design of Mixed-Criticality
Applications on Distributed

Real-Time Systems

Domiţian Tămaş–Selicean

Kongens Lyngby 2014
PhD-2014-329

Technical University of Denmark
Department of Applied Mathematics and Computer Science
Building 303B, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253031, Fax +45 45881399
compute@compute.dtu.dk
www.compute.dtu.dk
PhD-2014-329

Summary

A mixed-criticality system implements applications of different safety-criticality levels
onto the same platform. In such cases, the certification standards require that appli-
cations of different criticality levels are protected so they cannot influence each other.
Otherwise, all tasks have to be developed and certified according to the highest criti-
cality level, dramatically increasing the development costs. In this thesis we consider
mixed-criticality real-time applications implemented on distributed partitioned archi-
tectures.

Partitioned architectures use temporal and spatial separation mechanisms to ensure that
applications of different criticality levels do not interfere with each other. With tem-
poral partitioning, each application is allowed to run only within predefined time slots,
allocated on each processor. The sequence of time slots for all the applications on a pro-
cessor are grouped within a Major Frame, which is repeated periodically. Each partition
can have its own scheduling policy; we have considered non-preemptive static cyclic
scheduling and fixed-priority preemptive scheduling policies. We assume that the
communication network implements the TTEthernet protocol, which supports Time-
Triggered (TT) messages transmitted based on static schedule tables, Rate Constrained
(RC) messages with bounded end-to-end delay, and Best-Effort (BE) messages, for
which no timing guarantees are provided. TTEthernet offers spatial separation for
mixed-criticality messages through the concept of virtual links, and temporal sepa-
ration, enforced through schedule tables for TT messages and bandwidth allocation for
RC messages.

The objective of this thesis is to develop methods and tools for distributed mixed-
criticality real-time systems. At the processor level, we are interested to determine
(i) the mapping of tasks to processors, (ii) the assignment of tasks to partitions, (iii) the
decomposition of tasks into redundant lower criticality tasks, (iv) the sequence and size
of the partition time slots on each processor and (v) the schedule tables, such that all the
applications are schedulable and the development and certification costs are minimized.
We have proposed Simulated Annealing and Tabu Search metaheuristics to solve these

ii

optimization problems. The proposed algorithms have been evaluated using several
benchmarks.

At the communication network level, we are interested in the design optimization of
TTEthernet networks used to transmit mixed-criticality messages. Given the set of TT
and RC messages, and the topology of the network, we are interested to optimize (i)
the packing of messages in frames, (ii) the assignment of frames to virtual links, (iii)
the routing of virtual links and (iv) the TT static schedules, such that all frames are
schedulable and the worst-case end-to-end delay of the RC messages is minimized.
We have proposed a Tabu Search-based metaheuristic for this optimization problem.
The proposed algorithm has been evaluated using several benchmarks.

The optimization approaches have also been evaluated using realistic aerospace case
studies. In this context, we have shown how to extend the proposed optimization
frameworks to also take into account quality of service constraints. For TTEthernet
networks, we have also proposed a topology selection method to reduce the cost of the
architecture.

Summary (Danish)

Et mikset-kritikalitets system implementerer applikationer med forskellige sikkerheds-
kritikalitets niveauer på samme platform. I sådanne tilfælde kræver certificering stan-
darderne at applikationer fra forskellige kritikalitets niveauer er beskyttede, så de ikke
kan påvirke hinanden. Ellers skal alle opgaver udvikles og certificeres i henhold til det
højeste kritikalitet niveau, hvilket dramatisk øger udviklingsomkostningerne. I denne
afhandling betragter vi mikset-kritikalitets realtidsapplikationer implementeret på di-
stribuerede partitionerede arkitekturer.

Partitionerede arkitekturer benytter tidsmæssige og rumlige separations mekanismer
for at sikre, at applikationer fra de forskellige kritikalitets niveauer ikke forstyrrer hin-
anden. I tidsmæssig opdeling får hver applikation kun lov til at køre inden for fastlagte
tidsintervaller, fordelt på hver processor. Rækkefølgen af disse tidsintervaller, for alle
applikationerne på en processor, er grupperet i en Major Frame, der gentages med jæv-
ne mellemrum. Hver partition kan have sin egen planlægnings politik; vi har betragtet
ikke forebyggende statisk cyklisk planlægning og fast prioriterede planlægnings poli-
tikker. Vi antager, at kommunikationsnetværket implementere TTEthernet protokollen,
som understøtter tidsudløste (TT) meddelelser, der sendes baseret på statiske planlæg-
nings tabeller, rate begrænset (RC) meddelelser, med afgrænset ende-til-ende forsinkel-
se, og bedste forsøgs (BE) beskeder, for hvilke der ikke gives timing garantier. TTEt-
hernet tilbyder rumlig separation af mikset-kritikalitets beskeder via virtuelle forbin-
delser, og tidsmæssig separation, gennemføres ved tidsplans tabeller for TT beskeder
og båndbredde tildeling for RC meddelelser.

Formålet med denne afhandling er at udvikle metoder og værktøjer til distribuerede
mikset-kritikalitets realtidssystemer. På processor niveau, er vi interesseret i at bestem-
me (i) kortlægning af opgaver til processorer, (ii) tildeling af opgaver til partitioner, (iii)
nedbrydning af opgaver i redundant mindre kritiske opgaver, (iv) sekvensen og størrel-
se af partition tidsintervaller på hver processor og (v) tidsplans tabeller, således at alle
applikationer kan planlægges og udviklings og certificerings omkostninger minimeres.
Vi har foreslået Simulated Annealing and Tabu Search metaheuristikker til at løse disse

iv

optimeringsproblemer. De foreslåede algoritmer er blevet evalueret ved hjælp af flere
benchmarks.

På kommunikations og netværks niveau, er vi interesserede i design optimering af
TTEthernet netværk, der anvendes til at overføre mikset-kritikalitets beskeder. Givet
et sæt af TT og RC-beskeder, og topologien af netværket, er vi interesseret i at opti-
mere (i) pakning af meddelelser i frames, (ii) tildeling af frames til virtuelle links, (iii)
routing af virtuelle links og (iv) TT statiske tabeller, således at alle frames kan planlæg-
ges og den værst tænkelige ende-til-ende forsinkelse af RC-beskeder bliver minimeret.
Vi har foreslået en Tabu Search-baseret metaheuristik til dette optimerings problem.
Den foreslåede algoritme er blevet evalueret ved hjælp af flere benchmarks.

Optimerings metoderne er også blevet evalueret ved brug af realistiske rumfart ca-
sestudier. I denne sammenhæng har vi vist, hvordan man kan udvide det foreslåede
optimerings framework til også at tage hensyn til service og kvalitets begrænsninger.
For TTEthernet netværk har vi også foreslået en topologi udvælgelses metode der re-
ducere omkostningerne i arkitekturen.

Preface

This thesis was prepared at the Department of Applied Mathematics and Computer Sci-
ence, Technical University of Denmark in fulfillment of the requirements for acquiring
the Ph.D. degree in computer engineering.

The thesis deals with methods and tools for the optimization of mixed-criticality real-
time embedded systems, to support the system engineers in the early life cycles phases,
where the impact of design decisions is greatest.

The work has been supervised by Associate Professor Paul Pop and co-supervised by
Professor Jan Madsen.

Lyngby, 31 January 2014

Domiţian Tămaş–Selicean

vi

Papers Included in the
Thesis

• Domiţian Tămaş–Selicean and Paul Pop. Optimization of Time-Partitions for
Mixed-Criticality Real-Time Distributed Embedded Systems. Proceedings of
the International Symposium on Object/Component/Service-Oriented Real-Time
Distributed Computing Workshops, 2011. Published.

• Domiţian Tămaş–Selicean and Paul Pop. Design Optimization of Mixed-Criticality
Real-Time Applications on Cost-Constrained Partitioned Architectures. Pro-
ceedings of the Real-Time Systems Symposium, pp. 24–33, 2011. Published.

• Domiţian Tămaş–Selicean and Paul Pop. Task Mapping and Partition Allocation
for Mixed-Criticality Real-Time Systems. Proceedings of the Pacific Rim Inter-
national Symposium on Dependable Computing, pp. 282–283, 2011. Published.

• Sorin O. Marinescu, Domiţian Tămaş–Selicean and Paul Pop. Timing Anal-
ysis of Mixed-Criticality Hard Real-Time Applications Implemented on Dis-
tributed Partitioned Architectures. Proceedings of the International Conference
on Emerging Technologies and Factory Automation, pp. 1–4, 2012. Published.

• Domiţian Tămaş–Selicean, Paul Pop and Wilfried Steiner. Synthesis of Com-
munication Schedules for TTEthernet-Based Mixed-Criticality Systems. Pro-
ceedings of the International Conference on Hardware/Software Codesign and
System Synthesis, pp. 473–482, 2012. Published.

• Domiţian Tămaş–Selicean, Sorin O. Marinescu and Paul Pop. Analysis and
Optimization of Mixed-Criticality Applications on Partitioned Distributed Ar-
chitectures. Proceedings of the IET System Safety Conference, pp. 1–6, 2012.
Published.

viii

• Domiţian Tămaş–Selicean, Didier Keymeulen, Dan Berisford, Robert Carlson,
Kevin Hand, Paul Pop, Winthrop Wadsworth and Ralph Levy. Fourier Trans-
form Spectrometer Controller for Partitioned Architectures. Proceedings of the
Aerospace Conference, pp. 1–11, 2013. Published.

• Domiţian Tămaş–Selicean and Paul Pop. Design Optimization of Mixed-Criticality
Real-Time Systems. Under review in ACM Transactions on Embedded Comput-
ing.

• Domiţian Tămaş–Selicean, Paul Pop and Wilfried Steiner. Design Optimization
of TTEthernet-based Distributed Real-Time Systems. Under review in Real-
Time Systems Journal.

Acknowledgements

I cannot thank Paul Pop enough for his tireless help, continuous involvement and
friendship. His guidance and encouragement were a motivating force throughout my
PhD. I also want to thank Jan Madsen for our insightful conversations and the oppor-
tunities he has created. My Phd studies were not only extremely interesting, but also
inspiring due to their supervision, help and support.

I would also like to thank my friends and colleagues at DTU Compute, for creating
a fun work environment and making the PhD life more pleasant. Special thanks goes
to Karin Tunder for her constant help with the administrative tasks and impromptu
Danish lessons, to Mads Ingwar for translating the summary, and to Michael Reibel
Boesen for his help and door-opening networking. I appreciate the support provided
by the administrative and technical staff.

I am grateful to Wilfried Steiner from TTTech Computertechnik AG, Vienna for our
collaboration and his hospitality. His in-depth suggestions have been of big help in
this work. Many thanks to the people at the Jet Propulsion Laboratory, NASA for the
hospitality, and especially to Didier Keymeulen, for his guidance during my external
stay and for making a dream come true. I am grateful to the ARTEMIS Joint Under-
taking for funding my PhD project, and to Oticon Fonden and Otto Mønsteds Fond for
funding my external research stay.

Last but not least, I am profoundly grateful for their love and patience to my family and
friends.

x

Contents

Summary i

Summary (Danish) iii

Preface v

Papers Included in the Thesis vii

Acknowledgements ix

Abbreviations xxi

Notations xxv

1 Introduction 1
1.1 Mixed-Criticality Systems . 2
1.2 Partitioned Architectures . 3
1.3 Embedded Systems Design . 6
1.4 Design Space Exploration . 10
1.5 Research Contributions . 12
1.6 Thesis Overview . 15
1.7 Related Work . 17

2 System Model 23
2.1 Application Model . 23

2.1.1 Safety Integrity Levels . 24
2.1.2 Task Decomposition . 26
2.1.3 Development Cost Model 28
2.1.4 Protection Requirements . 29

xii Contents

2.2 Architecture Model . 30
2.2.1 Partitioning at PE-Level . 30

2.2.1.1 Elevation and Software-Based Protection 31
2.2.2 Communication Network Model 33

2.2.2.1 Frames . 34
2.2.3 The TTEthernet Protocol . 36

2.2.3.1 Time-Triggered Transmission 38
2.2.3.2 Rate Constrained Transmission 39

3 Design Optimizations at the Processor-Level 43
3.1 Problem Formulation . 44

3.1.1 Optimization of Time-Partitions 44
3.1.2 Partition-Aware Mapping Optimization 47
3.1.3 Partition-Sharing Optimization 49
3.1.4 Task Decomposition . 50

3.2 Design Optimization Strategies . 54
3.2.1 Optimization of Time-Partitions 54
3.2.2 Tabu Search-Based Design Optimization 57

3.3 Degree of Schedulability . 66
3.4 List Scheduling . 66
3.5 Response Time Analysis . 67
3.6 Experimental Results . 69

3.6.1 Optimization of Time-Partition 69
3.6.2 Mixed-Criticality Design Optimization 72

4 Design Optimizations at the Network-Level 77
4.1 Problem Formulation . 77

4.1.1 Straightforward Solution . 78
4.1.2 Message Fragmenting and Packing 82
4.1.3 Virtual Link Routing . 84
4.1.4 Scheduling of TT Messages 84

4.2 Design Optimization Strategy . 86
4.2.1 Tabu Search . 88
4.2.2 Design Transformations . 90
4.2.3 Candidate List . 93

4.2.3.1 Candidates for TT Frames 93
4.2.3.2 Candidates for RC Frames 94
4.2.3.3 Randomly Generated Candidates 95

4.2.4 Tabu Search Example . 95
4.3 Experimental Evaluation . 98

Contents xiii

5 Design Optimizations for Mixed-Criticality Space Applications 103
5.1 Background . 104
5.2 Processor-Level Partitioning . 105

5.2.1 Mars Pathfinder Mission . 105
5.2.2 Fourier Transform Spectrometer Controller for Partitioned Ar-

chitectures . 107
5.2.2.1 Fourier Transform Spectrometry 108
5.2.2.2 Compositional InfraRed Imaging Spectrometer (CIRIS)110
5.2.2.3 CIRIS Controller Implementation 111
5.2.2.4 Evaluation of CIRIS 119
5.2.2.5 Controller Application Model for Integration with

MESUR . 123
5.2.2.6 Quality of Service (QoS) 125
5.2.2.7 Influence of Partitioning on QoS 125
5.2.2.8 Running Signal-to-Noise Ratio (SNR) 127

5.3 Communication-Level Partitioning 127
5.4 Evaluation . 129

5.4.1 Processor-Level Partitioning 129
5.4.2 Communication-Level Partitioning 134

5.4.2.1 Topology Selection 134
5.4.2.2 Optimization for Best-Effort Traffic 137

6 Conclusions and
Future Work 139
6.1 Conclusions . 139
6.2 Future Work . 142

Bibliography 145

xiv Contents

List of Figures

1.1 Federated versus integrated architectures 4
1.2 Integrated versus partitioned architectures 5
1.3 Revenue impact of delayed entry . 8
1.4 A systems engineering life cycle model (from [105]) 9
1.5 Cost committed versus cost incurred during the system life cycle . . . 10
1.6 Design Space Exploration . 11

2.1 Application model example . 25
2.2 Partitioned architecture . 31
2.3 TTEthernet cluster example . 34
2.4 Simplified frame format . 35
2.5 TT and RC message transmission example 37
2.6 Multiplexing two RC frames . 40

3.1 Motivational example . 45
3.2 Motivational example . 48
3.3 Application model example for SIL decomposition 51
3.4 Example decomposition for task τ11 52
3.5 SIL decomposition optimization example 53
3.6 Time-Partition Optimization . 55
3.7 The Simulated Annealing algorithm 56
3.8 Partition slice move examples . 57
3.9 Mixed-Criticality Design Optimization strategy 58
3.10 The Tabu Search algorithm . 59
3.11 Moves and tabu history . 62
3.12 Algorithm to generate the candidate list C 65
3.13 Availability and demand . 68

xvi List of Figures

4.1 Example system model . 79
4.2 Baseline solutions . 80
4.3 Message packing and fragmenting example 83
4.4 Message rerouting examples . 85
4.5 Rescheduling frame f5 to an earlier instant on [ES2, NS1] groups the

TT frames and eliminates the timely block intervals, resulting in the
WCD of the RC messages . 86

4.6 Design Optimization of TTEthernet-based Systems 87
4.7 The Tabu Search algorithm . 89
4.8 Representation of a frame as a tree 92
4.9 Candidate solutions and their tabu list 96
4.9 Candidate solutions and their tabu list 97
4.10 Network topology of the Orion CEV, derived from [126] 100

5.1 Hardware architecture of the Pathfinder spacecraft (from [63]) 106
5.2 Basic Michelson interferometer . 109
5.3 CIRIS interferometer (from [45]) . 110
5.4 CIRIS setup . 112
5.5 Optical encoder output channels logic states 113
5.6 CIRIS high-level acquisition and processing algorithm description . . 115
5.7 Interferogram and resulting spectrum 116
5.8 Running SNR comparison between the spectra at different ZPD positions117
5.9 Detector responsivity . 118
5.10 Comparison between the results obtained with CIRIS and with MIDAC

M4500 FITR . 120
5.11 Angular velocity variation . 121
5.11 Angular velocity variation . 122
5.12 CIRIS task graph . 124
5.13 Comparison of running SNR of an interval size of 50 points, over dif-

ferent number of revolutions . 126
5.14 Orion major elements (from [121]) 128
5.15 Location of ESM on Orion (from [121]) 128
5.16 Partition table configurations . 131
5.17 Topology Selection with DOTTS . 135
5.18 Network topology of the Orion CEV, derived from [126] 136

xvii

xviii List of tables

List of Tables

2.1 ISO/DIS 26262 SIL decomposition schemes 27

3.1 TPO experimental results . 71
3.2 Comparison of MO+PO, MPO and MCDO experimental results . . . 74

4.1 DOTTS experimental results . 99

5.1 Pathfinder mission, exploration mode task set parameters 107
5.2 Rotating refractor velocity mean and standard deviation 122
5.3 Logic state numbers of the ZPD positions 123
5.4 CIRIS task details . 125
5.5 Partition table configuration . 132
5.6 Topology selection experimental results 136
5.7 Optimization of BE traffic experimental results 138

xx List of Tables

Abbreviations

Abbreviation Meaning
ABS Anti-lock Braking System
ADC Analog-Digital Converter
AGC Apollo Guidance Computer
ASAP As-Soon-As-Possible (ASAP)
ASIL Automotive Safety Integrity Level
AVB Audio Video Bridging
BAG Bandwidth Allocation Gap
BE Best-Effort

BEO Beyond Earth Orbit
CA Certification Authority

CAN Controller Area Network
CBS Constant Bandwidth Server
CEV Crew Exploration Vehicle

ChA ChB Channel A, Channel B
ChI Channel I

CIRIS Compositional InfraRed Imaging Spectrometer
CLG Candidate List Generation

COCOMO Constructive Cost Model
CM Crew Module
CPU Central Processing Unit
cRIO CompactRIO
DAC Digital-Analog Converter
DAL Design Assurance Level
DC Development Cost

DOTTS Design Optimization of TTEthernet-based Systems

xxii Abbreviations

DSE Design Space Exploration
ECU Electronic Control Unit
EDF Earliest Deadline First
ES End System

ESA European Space Agency
ESes End Systems
ESM European Service Module
ET Event-Triggered

FFT Fast Fourier Transform
FIFO First In First Out
FPGA Field-Programmable Gate Array
FPS Fixed-Priority Scheduling
FTIR Fourier Transform Infrared Spectrometer
FTS Fourier Transform Spectrometer
FU Filtering Unit
IAP Interferogram Acquisition Process
IC Integrated Circuit

ILP Integer Linear Programming
IMA Integrated Modular Avionics
ISS International Space Station
JPL Jet Propulsion Laboratory
LAS Launch Abort System
LCM Least-Common Multiplier
LS List Scheduling

MCDO Mixed-Criticality Design Optimization
MCU Motor Control Unit

MESUR Mars Environment Survey Pathfinder
MF Major Frame

MMU Memory Management Unit
MO Mapping Optimization

MO+PO Optimization approach where MO is performed separately from PO
MPCV Multi-Purpose Crew Vehicle
MPO Simultaneous Mapping and Partitioning Optimization

NASA National Aeronautics and Space Administration
NC Non-Critical
NIC Network Interface Card
NRE Non-Recursive Engineering
NS Network Switch

NSes Network Switches
OPD Optical Path Difference
PA Partitioned Architecture

xxiii

PC Personal Computer
PCIP Priority-and-Criticality Inversion Protocol
PCCP Priority-and-Criticality Ceiling Protocol

PE Processing Element
PFO Packing and Fragmenting Optimization
PO Partitioning Optimization

QoS Quality-of-Service
RC Rate-Constrained
RM Rate Monotonic
RO Routing Optimization

ROM Read-only Memory
RTOS Real-Time Operating System

SA Simulated Annealing
SC Safety-Critical

SCA Spacecraft Adapter
SCS Static Cyclic Scheduling
SDI Stepper Drive Interface
SFI Software Fault Isolation
SIL Safety-Integrity Level
SM Service Module

SMT Satisfiability Modulo Theory
SNR Signal-to-Noise Ratio
SO Scheduling Optimization
SS Straightforward Solution

SWaP Size, Weight and Power
SysML Systems Modeling Language
TDMA Time-Division Multiple Access

TI Initial Temperature
TL Temperature Length
TP Traffic Policing task

TPO Time-Partitions Optimization
TR Traffic Regulator task
TS Tabu Search
TT Time-Triggered

TTP Time-Triggered Protocol
VL Virtual Link

WCET Worst-Case Execution Time
WCD Worst-Case end-to-end Delay
ZPD Zero Optical Path Difference

xxiv

Notations

Notation Meaning
Γ Set of all applications in the system

Ai ∈ Γ An application
Gi(Vi,Ei) Application graph for application Ai

Vi Set of all the nodes in the application graph
Ei Set of all the edges in the application graph
V Set of all the tasks in the system
E Set of edges in the protection requirements graph

τ j ∈ Vi One task of the application graph
M : Vi→N The mapping of tasks to processing elements

M◦ Initial mapping of tasks to processing elements
L The library of SIL decompositions

D(τi) : V →Di SIL decomposition function
D◦ Initial decomposition of tasks, tasks are not de-

composed
Di Set of SIL decomposition options
N Set of all the PEs in the architecture
Ni A processing element

e jk ∈ Ei Edge in the application graph, indicates that the
output of τ j is the input of τk

mi Message in the application graph
DGi Deadline of application graph Gi
TGi Period of application graph Gi

C
N j
i WCET for τi on each PE N j where τi is considered

for mapping

xxvi Notations

Ri Response time of application Ai
Di Deadline of application Ai or of task τi
Ti Period of task τi

CostT PO Cost function used by TPO
CostMCDO Cost function used by MCDO

δ Degree of schedulability
δsched Percentage improvement in the degree of schedu-

lability
δSC Degree of schedulability for SC applications
δNC Degree of schedulability for NC tasks
wSC Weight for SC application, used by CostT PO
wNC Weight for NC tasks, used by CostT PO
ΓQoS Subset of the soft real-time applications

QoS(Ai) The quality of service for the soft real-time appli-
cation Ai

SIL(τi) The SIL of task τi
DC(τi,SIL j) The development cost of τi and SIL j

DC(Ai) The development cost of the application Ai
DC(Γ) The development cost for the set of all the appli-

cations
δDC Increase in the development costs

Π(V ,E) Protection requirements graph
sri j ∈ E An edge in Π between τi and τ j means that the

two tasks are not allowed to share a partition
φ : V → P Assignment of tasks to partitions

φ◦ Initial assignment of tasks to partitions
P Set of partitions
P ◦ Initial set of partitions
Pj Partition
Pi j Set of partition slices of Pj on Ni

pk
i j The kth partition slice of partition Pj on Ni

Tcycle System cycle
TMF Period of the major
tO Partition switch overhead
S Schedule tables
Ψ Implementation
L Tabu list, or tabu history
l Tabu tenure
C Candidate list

Lready Sorted priority list used by List Scheduling
ε Cooling ratio, used by SA

xxvii

GC(VC,EC) TTEthernet cluster
VC = ES ∪N S Set of all the end systems and network switches in

the cluster
ES Set of all the end systems in the cluster

ESsrc
i The source end system for frame fi

ES dest
i The set of destination end systems for frame fi

N S Set of all the network switches in the cluster
N S? Subset of network switches that are fixed in the

cluster and can not be removed
ESi An end system
NSi A network switch
E Set of physical links

DL Set of dataflow links in the cluster
DL? Subset of dataflow links that are fixed in the clus-

ter and can not be removed
dli A dataflow link

DP Set of dataflow paths in the cluster
d pi A dataflow path
V L Set of virtual links in the cluster
vli A virtual link

BAG(vli) The BAG of vli
B The set of BAG for all VLs
B◦ The initial set of BAG for all VLs

RV L(vli) The routing of virtual link vli
R ◦ The initial routing of virtual links

M = M T T ∪M RC ∪M BE Set of all the messages in the cluster
M T T Set of the TT messages in the cluster
M RC Set of the RC messages in the cluster
M BE Set of the BE messages in the cluster

mi A message
mi.rate The rate of message mi

mi.period The period of message mi
mi.deadline The deadline of message mi

mi.size The size of message mi
Φm(mi) Fragmenting of message mi into message frag-

ments
Φ◦m The initial fragmenting of messages into message

fragments
M + The set of message fragments and messages which

were not fragmented
K The packing of messages

xxviii Notations

K ◦ The initial packing of messages
F Set of all the frames in the cluster

F T T Set of the TT frames in the cluster
F RC Set of the RC frames in the cluster
F BE Set of the BE frames in the cluster

fi A frame
fi.deadline Deadline of fi

fi.size Size of fi
fi.o f f set Offset, i.e., send time relative to the start of the

period of frame fi

fi,x xth instance of frame fi
fi,x. jitter Jitter for fi,x

f
dl j
i,x The xth instance of fi on dataflow link l j

pred(f
dl j
i,x) The set of predecessor frame instances of fi,x on l j

succ(f
dl j
i,x) The set of successor frame instances of fi,x on l j

R fi Worst-case delay of fi
MF(fi) The assignment of frame to virtual links

M ◦
F The initial assignment of frames to virtual links

C[νm,νn]
j Transmission duration of f j on dataflow link

[νm,νn]
B1,T x A transmission buffer
Q1,T x A transmission queue in an ES
QT x An outgoing queue in a NS

Q1,Rx Receiving queue in a ES
T TR Receiver task for TT frames
T TS Sender task for TT frames
RCS Scheduler task for RC frames

S Complete set of local schedules in a cluster
S◦ Initial set of local schedules in a cluster
SR Receive schedule
SS Send schedule

BW (vli) The maximum bandwidth required by vli
CostDOT T S Cost function used by DOTTS

δT T Degree of schedulability for the TT frames
δRC Degree of schedulability for the RC frames
wT T Weight for the TT frames, used to compute the

cost function
wRC Weight for the RC frames, used to compute the

cost function

xxix

Best The best-so-far solution in the Tabu Search algo-
rithm

Current The current solution in the Tabu Search algorithm
Next The solution selected as the next solution in the

Tabu Search algorithm
tabu(Next) The tabu of the move that generated the Next so-

lution
hrlx

T T The TT frame with the highest rate on dataflow
link lx

lglx
T T The largest TT frame on dataflow link lx

BWAvail(l j) The available bandwidth on dataflow link l j
BWReq(l j) The required bandwidth on dataflow link l j

BW BW
% The percentage of BE messages that have their

bandwidth requirements met
MESUR-HC High-criticality MESUR tasks
MESUR-LC Loc-criticality MESUR tasks

wi Busy window
φi The earliest activation of task τi relative to the oc-

currence of the triggering event
ϕi The time interval between the critical instant and

earliest time of the first activation of τi
Bi The maximum blocking time for τi
tc Critical instant

p0,i The index of the first pending instance of τi
nia The number of pending τi jobs at tc

hp(τi) Higher priority tasks from the same application as
τi

Wi(τi,wi) Interference from hp(τi)
hpa(τi) Higher priority tasks from other applications than

τi
W ∗a (τi,wi) Worst-case interference from hpa(τi)

∆NC Percentage increase in the degree of schedulability
for non-critical tasks

∆SC Percentage increase in the degree of schedulability
for safety-critical tasks

ϒ Implementation at the communication level
Ci Transmission time for frame fi
M f Fixed mirror
Mm Mobile mirror
br Recombined beam
xo Initial mirror position

xxx

xmax Final mirror position
ν Wavenumber

∆(ν) Spectrometer resolution
SOE Optical encoder signals
SMA Motor alignment signal
TL Temperature low
TH Temperature high

S(T,ν) Measured spectrum at temperature T and
wavenumber ν

B(T,ν) Spectral radiance at the surface of the blackbody
for temperature T and wavenumber ν

TCalibrated Calibrated transmitted spectrum
T (ν) Transmittance at wavenumber ν

TSample(ν) Sample transmitted spectrum at wavenumber ν

TBackground(ν) Background transmitted spectrum at wavenumber
ν

A(ν) Absorbance at wavenumber ν

N(ν) Spectral noise at wavenumber ν

Nrms(ν) Root-mean-square of the spectral noise at
wavenumber ν

CHAPTER 1

Introduction

The Apollo Guidance Computer (AGC) [180] that landed the Apollo 11 on the moon,
in July 1969, was powered by a 16-bit processor running at 2.048 MHz. AGC, with
an estimated cost of 25 mil. USD in 1969, had a random access memory (RAM) of
2048 words and a read-only memory (ROM) of 36K. In contrast, almost 45 years later,
in 2013, the top smartphones contain processors a thousand times more powerful than
the AGC. For example, the Apple iPhone 5s [21], for less than a 1000 USD, contains a
64-bit dual-core processor at 1.3 GHz, with a minimum of 16 GB of ROM.

Since the invention of integrated circuits (ICs) in the 1950s, the number of transis-
tors on ICs is doubling every two years, following Moore’s Law [119]. This doubling
increases the processing power of the processors and reduces costs, among others, en-
abling the proliferation of computing devices into our everyday life. Most people think
only of desktop and portable computers, when they refer to computing devices. But
only 2% [73] of the manufactured microprocessors are used in such general purpose
computers. The rest of 98% are used in embedded systems.

An embedded system is a computer-based system embedded in a larger system that
it controls, repeatedly carrying out a particular function and not designed to be pro-
grammed by the end user in the same way that a personal computer (PC) is [88, 173].
That is, any special purpose computer-based system, other than a general purpose com-
puter, is an embedded system [173].

2 Introduction

Few people consider that their refrigerator, mobile phone, car, toothbrush, pacemaker
or hearing aid contain computing devices. Embedded system are all around us. Accord-
ing to Ebert and Jobes [73], in 2008 there were around 30 embedded microprocessors
for each person in the developed countries. Current research estimates that by as early
as 2020, there will be 100 processors per person [128], with more than 50 billions con-
nected devices [14]. Embedded systems “enable an every-day object to become a smart
object able to communicate with other smart objects” [11], improving our lives.

The Embedded Systems Institute [16] classifies embedded systems as: (1) infrastruc-
ture systems, i.e., public or industrial systems with a priority on efficient resource man-
agement and control of safety-critical actions; (2) professional systems, i.e., systems
used for work-related purposes (e.g.,medical equipment); (3) automotive systems; (4)
consumer electronics, e.g., domestic appliances or mobile devices; (5) avionics and (6)
defense systems.

1.1 Mixed-Criticality Systems

Many embedded systems are real-time systems, in which “the correctness of the system
behavior depends not only on the logical results of the computations, but also on the
physical time when these results are produced” [102]. Examples of real-time systems
are a vehicle’s cruise control and anti-lock braking system (ABS), and digital audio
players. One key characteristic of any real-time system is its deadline, which is the
latest time instant when the system must complete its execution, or a result must be
produced. Depending on the consequences of missing the deadline, real-time systems
can be soft or hard. Soft real-time systems can miss the deadlines once in a while, as
the system will still function, but with degraded service. Example of such systems are
home entertainment systems and mobile phones. In hard real-time systems, missing a
deadline will lead to the failure of the system. ABS is an example of hard real-time
system.

A safety-critical system is a system whose failure might endanger human life or the en-
vironment. Examples of safety-critical systems are aircraft control systems and pace-
makers. Safety-Integrity Levels (SILs) are assigned to safety-related functions to cap-
ture the required level of risk reduction, and will dictate the development processes and
certification procedures that have to be followed [94], [96], [140]. A mixed-criticality
system is “an integrated suite of hardware, operating system and middleware services
and application software that supports the execution of safety-critical, mission-critical,
and non-critical software within a single, secure computing platform” [35]. The em-
bedded systems in a vehicle form a mixed-criticality system, as they implement safety-
critical applications (e.g., ABS) and non-critical applications (e.g., diagnostics soft-
ware). SILs are standard specific, but in this thesis we consider that there are four

1.2 Partitioned Architectures 3

SIL levels, ranging from SIL 4 (most critical) to SIL 1 (least critical). Certification
standards require that safety functions of different criticality levels are protected (or,
isolated), so they cannot influence each other. For example, without protection, a
lower-criticality task could corrupt the memory of a higher-criticality task.

In this thesis, we are interested in the design optimization of mixed-criticality real-time
applications. We consider heterogenous distributed platforms, consisting of several
processing elements (PEs) interconnected using the TTEthernet communication proto-
col [28]. We assume that the PEs provide mechanisms similar to “Integrated Modular
Avionics” (IMA) [3, 141] to enforce enough separation for the mixed-criticality appli-
cations. At the network level, TTEthernet offers separation for messages of different
time- and safety-criticality.

More and more functionalities are implemented using embedded systems. A good ex-
ample is the automotive industry, where such embedded systems are called “electronic
control units” or ECUs. One of the first ECUs mass-produced and installed in a car
was the Bosch D-Jetronic fuel injection system, in 1967 [71, 50, 44]. After 40 years,
premium-class cars contain between 70 to 100 ECUs, with software and electronics
representing 34–40% of the cost of the car [59]. The software running in ECUs has
increased by 25% between 2011 and 2013 [52], and is expected that more than 80 per-
cent of future car innovations, like the “connected car” or self-driving cars, will come
from such electronic systems [59].

Unfortunately, this increase in microprocessor implemented functionality translates
into an increase in the interactions between the components and in the complexity
of the whole system. Embedded systems developers and engineers identify system
complexity and system integration as top technical challenges [52, 18, 106], with
one study [106] observing that the issue of complexity rose significantly in avionics
projects, from 31% to 51.9% between 2012 and 2013. The cost to develop and imple-
ment embedded systems, relative to the final product price, varies from area to area.
These costs represent 36% in the automotive area, 22% in industrial automation, 37%
in the telecommunication area, 41% in the consumer electronics and 33% in medical
devices [6]. Thus, new design methods are needed to tackle this complexity increase
and help engineer productivity (see Section 1.3).

1.2 Partitioned Architectures

To better understand the increase of complexity we will use as an example the evolution
of embedded systems from “federated” to “integrated” and “partitioned” architectures.
Many embedded applications are implemented as distributed systems, due to various
constraints, e.g, modularity or safety. In a distributed system, the hardware compo-

4 Introduction

Federated Architecture	

PE
Application A 1

Application A 2

Application A 3

SIL3	

SIL3	

SIL4	

SIL4	

SIL4 SIL1

SIL2

SIL1

Integrated Architecture	

SIL4	
 SIL4	

SIL4	

SIL4	

SIL4	
 SIL4	

SIL4	

SIL4	

Figure 1.1: Federated versus integrated architectures

nents, called nodes or PEs, are interconnected in a network. If all the nodes are of the
same type, the system is homogeneous. Otherwise, the system is called heterogeneous.

In “federated architectures”, each node implements at most one function, and the ap-
plications are very loosely coupled [141]. On the left side of Fig. 1.1 we have three
applications of different criticality levels implemented on a distributed architecture, in
a federated manner. Each PE implements one task. If an application is composed of
several tasks, the PEs implementing tasks of the same application are connected using
a point-to-point communication protocol. Such an architecture facilitates fault contain-
ment: unless there is functionality dependency between two applications, a faulty task
in an application will not affect tasks in other applications. This approach allows the
system engineers to integrate into their system nodes from different suppliers. As more
functionality was implemented using embedded systems, the number of such nodes
increased (e.g., over 100 in a premium-class car), together with the associated wiring,
cost and SWaP, i.e., size, weight and power.

An approach to counter this increase is implementing the system using an “integrated
architecture”, by integrating several functions onto the same node [103]. Fig. 1.1
presents this progression from federated to integrated architectures. Implementing the
applications using an integrated architecture (right side of Fig. 1.1), results in several
tasks of possibly different applications implemented on the same PE, thus reducing
the SWaP of the system. A disadvantage of integrated architectures is the complex-
ity increase of the system: new possible interactions will arise among applications of
different criticality implemented on the same platform. In this case, the certification

1.2 Partitioned Architectures 5

Integrated Architecture	
 Partitioned Architecture	

Application A 1 Application A 2 Application A 3

SIL3	
 SIL3	

SIL4	

SIL4	

SIL1	

SIL3	

SIL1	

SIL4	
 SIL4	

SIL4	

SIL4	

SIL4	
 SIL4	

SIL4	

SIL4	

SIL4	

Figure 1.2: Integrated versus partitioned architectures

standards offer two solutions. One solution is to certify all the software in the platform
to the highest level, dramatically increasing the certification costs. This is the case in
Fig. 1.1, where all the tasks have to be certified to the highest SIL among them, which
is SIL4. The other solution is to demonstrate that applications of different criticality
levels are separated, so they cannot influence each other.

To provide separation, embedded system engineers are relying on “partitioned archi-
tectures”, which provide partitioning mechanisms at the platform level. Partitioning
provides “fault containment equivalent to an idealized system in which each partition
is allocated an independent processor and associated peripherals and all inter-partition
communications are carried on dedicated lines” [141]. Fig. 1.2 compares integrated
architectures (left side) with partitioned architectures (right side), in the context of the
example in Fig. 1.1. In case of partitioned architectures, the separation between ap-
plications in Fig. 1.2 is symbolized using the black lines in the PEs. Compared to
the integrated approach, the partitioned architecture offers enough separation between
tasks of different SILs, so the tasks can be developed and certified according to their
initial SIL (shown in the left side of Fig. 1.1), reducing the costs.

Partitioning has two dimensions: spatial and temporal. Spatial partitioning ensures
that an application in a partition will not interfere with the code and data of another
partition [141]. Temporal partitioning ensures that an application’s scheduled access
to shared resources (e.g, processor or communication bus), cannot be affected by an
application in another partition [141].

6 Introduction

For example, in the avionics area, the partitioned architecture is called “Integrated
Modular Avionics” (IMA) [3], and the platform-level separation mechanisms are pro-
vided by implementations of the ARINC 653 standard [17]. With temporal partitioning,
each application is allowed to run only within predefined time slots or partition slices,
allocated on each processor. The sequence of partition slices for all the applications on
a processor are grouped within a Major Frame, which is repeated periodically. Similar
platform-level separation mechanisms are available in other industries [74, 110, 135].
Each partition can have its own scheduling policy. Depending on the partitioned real-
time operating system (RTOS) (i.e., the RTOS that implements partitioning mecha-
nisms), partitions can also run different host operating systems.

Previously, we described partitioning at the processor level. But in a distributed system,
the communication protocol must also have mechanisms to enforce partitioning at the
bus level. For example, space partitioning is attained in SAFEbus [92] by mapping
the messages to unique locations in the inter-module memory, protected by a memory-
mapping hardware in the host, and temporal partitioning is achieved in TTP [102] by
enforcing a Time-Division Multiple Access scheme.

In this thesis, we assume that the bus-level partitioning mechanisms are provided by
a communication protocol such as TTEthernet [28], which provides both spatial and
temporal partitioning, and can handle both static and dynamic communication. TTEth-
ernet is a deterministic, synchronized and congestion-free network based on the IEEE
802.3 Ethernet standard and compliant with the ARINC 664p7. TTEthernet is suitable
for automotive [156], avionics [161] and space applications [79].

We present in Section 2.2 more details on partitioning at the processor level, and in
Section 2.2.2 we talk about partitioning at the communication level, with regards to the
TTEthernet protocol. We describe how the TTEthernet protocol works in Section 2.2.3.

1.3 Embedded Systems Design

Embedded systems have to implement the desired functionality and also meet several
constraints, or “design metrics”. A design metric is “a measurable feature of a system’s
implementation” [173]. Next, we summarize some of the common design metrics. A
more detailed description can be found in [173, 86].

We split these design metrics into two categories, depending on the main impact: the
“project-related” design metrics impact the management and finances of the project,
while “product-related” design metrics impact physical and qualitative characteristics
of the product. Examples of product-related design metrics are:

1.3 Embedded Systems Design 7

• size, weight and power consumption, collectively referred to as SWaP.

• performance: the amount of time necessary to execute the tasks. Most common
measures of performance are latency (the elapsed time between the start and end
of execution) and throughput (number of tasks executed per time unit) [173].

• predictability: is a system property that guarantees that the “requirements are
met subject to any assumptions made” [155]. Thus, when referring to task
scheduling, a real-time system is predictable if one can determine the “evolu-
tion of the tasks and guarantee in advance that all critical timing constraints will
be met” [56].

• worst-case execution time (WCET) of a given task is the guaranteed “upper
bound for the time between the task activation and task termination” [102] and
is used in schedulability analyses. There are several tools that determine a task’s
WCET, e.g., aiT [24, 77]. Wilhelm et al. [181] present an overview of methods
and tools to compute the WCET. Determining the WCET in modern processors
becomes increasingly difficult, as processors include more features that speed up
the common case, but are harder to model. Schoeberl [150] lists the processor de-
sign issues that make WCET analysis difficult, and proposes a time-predictable
architecture that supports WCET analysis to reduce analysis pessimism.

• worst-case response time (WCRT): of a given task is the longest possible re-
sponse time, i.e., the time between the task’s release time and the task’s termi-
nation. In the case of offline scheduling, the WCRT of a task is determined
by checking the produced schedule. In the case of preemptive scheduling, the
WCRT of a task is determined by using scheduling policy-specific response-time
analyses.

• dependability: integrates attributes like reliability (continuity of correct service),
availability (readiness for correct service), safety (absence of catastrophic conse-
quences on the users and the environment), integrity (absence of improper system
state alterations), confidentiality (absence of unauthorized disclosure of informa-
tion) and maintainability (ability to undergo repairs and modifications) [32].

Examples of project-related design metrics are:

• cost: which can be broken down into unit cost and nonrecurring engineering
cost (NRE). The unit cost is the cost to produce one copy of the product, while
NRE is the one-time engineering cost to design and develop the system [173].

• time-to-market: the necessary time to design and produce the system to the point
it can be sold. With increasing competition and shortening market windows1,

1The time during which the product would have the highest sales [173].

8 Introduction

Figure 1.3: Revenue impact of delayed entry

this constraint became one of the most demanding. Fig. 1.3, adapted from [173],
presents the revenue impact of delayed market entry. This figure uses a simplified
revenue model, where the revenue of a product is represented by the triangle
area. Entering the market late will reduce the revenues, and will potentially have
a bigger impact than development cost overruns [173].

The design metrics are competing against each other: most often, optimizing one met-
ric will have negative impact on the others. For example, two conflicting metrics are
performance and power consumption. Increasing the performance of the system will
increase the power consumption of the system, reducing the battery life. Thus, op-
timizing the system to meet all the design metrics adds to the difficulty of designing
embedded systems.

Successfully designing an embedded system within the given time frame is increasingly
difficult, taking into account the increasing complexity and the competing design met-
rics. The 2013 Embedded Market Survey [18] revealed that in 2013, 57% of projects
finished late or were cancelled. A survey [52] of the automotive industry states that
some of the top system design challenges are integration problems that delay time-to-
market (46%) and the difficulty of trade-off decisions about system architecture (29%).

In this context, using good practices, processes and methods to engineer systems be-
comes critical. Systems engineering is an “interdisciplinary approach and means to

1.3 Embedded Systems Design 9

Figure 1.4: A systems engineering life cycle model (from [105])

enable the realization of successful systems” [15]. Another source [54] defines sys-
tems engineering as the “discipline that develops, matches, and trades off require-
ments, functions, and alternate system resources to achieve a cost-effective, life-cycle-
balanced product based upon the needs of the stakeholders”. Systems engineering,
as an approach, considers the whole life cycle of the product, i.e., all the phases of a
system, from concept and development to disposal [105].

There are several life cycle models, e.g., ISO/IEC 15288 [97], but in the following we
will focus on a derived systems engineering life cycle model developed by Kossiakoff
and Sweet [105]. This model is presented in Fig. 1.4, and divides the life cycle intro
three stages: a concept development stage, an engineering development stage, and a
post development stage, which are further divided into 8 phases. The concept develop-
ment stage defines the system concept. The engineering development stage translates
the system concept into a system design that meets the imposed constraints. The post
development stage includes the production, operation, support and decommissioning
of the system. More details on this model can be found in [105].

The methods presented in this thesis focus on the early life cycle phases, where the
impact of design decisions is greatest. This impact is shown by comparing, for each
life cycle stage, the actual expenditures (cost incurred) with the planned costs based on
design and engineering decisions (cost committed), see Fig. 1.5 (adapted from [54]).
Although at the end of the engineering development stage, when the final system design
is produced, only about 20% of the cost is incurred, but 80% of the cost is already
committed [54].

Given that 80% of the budget is committed at the end of the engineering stage, what
is the cost of correcting design issues? During system development, the system is
validated, to ensure that it meets the needs of the customer. Design changes require
the system to be validated again. Let us discuss the cost of correcting design issues by
considering the impact of revalidating the system. For example, the average time-to-
market for a power train unit is 24 months, while the validation of such a system takes
5 months [144]. In the case of the instrument cluster, the validation time is 2 months,
representing 16% of the time-to-market (12 months). Thus, bad design decisions will
also increase the time-to-market of the system. We have discussed earlier in this section
the negative impact on revenue of delayed entry in the market (see Fig. 1.3).

10 Introduction

Figure 1.5: Cost committed versus cost incurred during the system life cycle

Thus, more design effort is needed in the early life cycle phases, since the decisions
taken during these phases have a high impact and commit a lot of costs. In this thesis,
we provide methods and tools to be used during the early design stages, to help the
system engineers take better decisions, and thus reduce the costs. The solutions we
propose are useable at the processor level and at the communication network level.
Section 1.5 summarizes the contributions of this thesis.

1.4 Design Space Exploration

During the concept development stage (see Fig. 1.4), the engineers examine potential
system concepts and design alternatives, and select the preferred one [54]. Design
engineers select the preferred alternative after performing a trade-off analysis, which
evaluates several design alternatives in terms of design metrics. The creation and eval-
uation of alternatives is called “design space exploration” (DSE).

Fig. 1.6 presents the DSE technique. DSE starts from models of the application func-
tionality and system platform. There are many ways to model an application function-
ality (see [84] for a description of the common modeling formalisms used in embedded
systems design). In this thesis we use task graphs [138] (also referred to as “dataflow

1.4 Design Space Exploration 11

Operational
architecture	

Application ���
functionality	

Platform ���
model	

System
implementation

model	

Evaluation	

Design ���
tasks	

Figure 1.6: Design Space Exploration

process networks” [108]) and the exact model is presented in Section 2.1. For the
platform, we consider heterogeneous distributed platforms, consisting of processing
elements interconnected using the TTEthernet [28] communication protocol. We as-
sume the platform implements partitioning mechanisms similar to Integrated Modular
Avionics (IMA), so that each application can execute only in its own partition. More-
over, partitions can implement different scheduling policies. In this thesis we con-
sidered several scheduling policies such as non-preemptive static cyclic scheduling or
preemptive fixed-priority scheduling. The details of our platform model are presented
in Section 2.2.

DSE is performed in the “Design Tasks” box. These tasks are done during the early
lifecycle phases. DSE could be done manually for small designs, but in practice it is
typically supported by tools, which perform an automatic DSE. These tools use op-
timization techniques to search for solutions which optimize a set of design criteria
called objectives. There are many optimization approaches. For example, optimiza-
tions based on mathematical methods, such as integer linear programming [51], always
find the optimal solutions, but are impractical for large problems due to prohibitive
search times. In this thesis, we have used metaheuristics such as Tabu Search for auto-
matic DSE. Tabu Search does not guarantee finding the optimal solution, but can often
produce good quality solutions that satisfy the requirements, in a reasonable time, as
the experimental results will show.

12 Introduction

We perform several design tasks, such as mapping of task to processing elements, par-
tition optimization, routing of messages in the communication network and scheduling
of tasks. Section 1.5 presents the full list of design tasks we address in this thesis, and
they are described in detail in Chapter 3 (at the processor level) and Chapter 4 (at the
communication network level).

The solutions are evaluated using objectives. There are multi-objective optimizations
such as Evolutionary Algorithms [60], but we have used Tabu Search, where the mul-
tiple objectives have been collapsed into a single objective using the weighted sum
method [66]. The evaluation of each implementation alternative can be done either
analytically or via simulation. Both methods have advantages and disadvantages. Sim-
ulations are better suited “to investigate dynamic and sporadic, unforeseeable effects
in the system”, but they require a working model [86] and in the context of real-time
systems it cannot provide guarantees that the timing constraints are satisfied. On the
other hand, an analytical approach is usually faster. In this thesis, we used analytical
evaluations.

Once the engineer is satisfied with the solution, the DSE can stop. The obtained solu-
tion defines “operational architecture”. However, if no solution is found, an option is
to go back and change the hardware architecture. We discuss DSE-based architecture
selection in Section 5.4.2.1, where we show how to perform topology selection for a
TTEthernet network.

1.5 Research Contributions

In this thesis, we focus on mixed-criticality applications (both in the safety and time do-
mains), implemented using heterogeneous distributed platforms, consisting of several
processing elements interconnected using the TTEthernet [28] protocol. We assume
that the platform provides both spatial and temporal partitioning, thus enforcing enough
separation for the mixed-criticality applications. We consider that each application is
composed of tasks that communicate using messages.

At the processor level, we consider partitioned systems similar to IMA [3, 141]. Similar
platform-level separation mechanisms are available in other industries [74, 110, 135].
With temporal partitioning, each application is allowed to run only within predefined
time slots or partition slices, allocated to each processor. The sequence of partition
slices for all the applications on a processor are grouped within a Major Frame, which
is repeated periodically. Thus, each partition can have its own scheduling policy. We
have considered two scheduling policies using non-preemptive static cyclic scheduling
or preemptive fixed-priority scheduling.

1.5 Research Contributions 13

At the communication level, messages are transmitted via frames using the TTEthernet
protocol. The TTEthernet protocol has three classes of messages: static time-triggered
(TT) traffic and dynamic traffic, which is further subdivided into Rate Constrained (RC)
traffic that has bounded end-to-end latencies, and Best-Effort (BE) traffic, for which no
timing guarantees are provided. TT messages are transmitted based on static schedule
tables and have the highest priority. RC messages are transmitted if there are no TT
messages, and BE traffic has the lowest priority. TTEthernet offers spatial separation
for mixed-criticality messages through the concept of virtual links, and temporal sepa-
ration, enforced through schedule tables for TT messages and bandwidth allocation for
RC messages.

All of the related work (see Section 1.7) assumes that tasks of different criticality share
the same processor with little or no separation (i.e., there is no spatial-partitioning).
Current certification practice requires separation, and can only remove such a require-
ment if the two tasks are at the same criticality level. This practically means that all the
tasks would have to be developed and certified at the highest criticality level, which is
not feasible, due to the prohibitive development and certification costs. Such research
assumes that in the future the certification practice will change. For example, a vision
of “just-in-time certification” is proposed by [142]. However, the current standards-
based certification practice is unlikely to change in the near future. For this reason, our
work allows tasks with different criticality levels to share a partition only if the lower-
criticality tasks are elevated at the higher-criticality level. We describe our research for
the processor level in Chapter 3.

At the processor level, the main contributions of this thesis are:

• Considering a given architecture, where PEs are connected with a simple stati-
cally scheduled bus, and a fixed mapping of tasks to PEs, we have proposed an
optimization method to determine the sequence and size of the partition slices
within the Major Frame on each PE such that all applications are schedula-
ble [166]. For this problem, we have developed a metaheuristic solution based on
Simulated Annealing. We have shown that only by optimizing the sequence and
length of the time partitions we are able to obtain schedulable implementations.

• Partitioning introduces overheads because it constrains the way tasks can use
the PEs, leading to unused slack inside certain partition slices. We have shown
that by simultaneously optimizing the mapping and partitioning, these overheads
are minimized, increasing thus the chance to find schedulable implementations.
We have proposed an optimization strategy based on Tabu Search to solve this
design problem. Given a set of applications and the physical architecture, our
optimization determines the mapping of tasks to PEs, the assignment of tasks to
partitions, and the sequence and size of the partition slices within each Major
Frame on each PE, such that all applications are schedulable [167].

14 Introduction

• In situations where simultaneously optimizing the mapping and partitioning does
not result in schedulable solutions, the system engineers can upgrade the archi-
tecture, increasing the unit cost of the system. We have shown that an alter-
native is to elevate tasks to higher SILs to allow partition sharing. Thus, the
engineer can keep the same architecture, at the expense of increasing the NRE
costs. We have extended the original task graph model to allow applications
to contain tasks of different SILs. Moreover, we have proposed a development
cost model to capture the development costs associated to a given SIL, and a
separation requirements graph, specifying which tasks are not allowed to share
the same partition. This design problem can be formulated as: given the set of
applications (including the SIL-dependent development costs and the separation
requirements graph) and the architecture, we are interested to determine the map-
ping of tasks to processors, the assignment of tasks to partitions, the partitioning
on each PE, such that all applications are schedulable, and the development costs
are minimized. We have proposed a Tabu Search-based approach to solve this
optimization problem [165].

• Certification standards allow a task of higher SIL to be decomposed as several
redundant tasks of lower SILs, i.e., “task decomposition”. We have shown how
using task decomposition can reduce the NRE costs and can facilitate partition
sharing. The disadvantage is the introduction of more tasks, potentially impair-
ing schedulability. The design problem in this case is determining a decomposi-
tion of tasks such that the timing requirements are satisfied and the development
costs are minimized. We proposed a Tabu Search-based optimization strategy to
solve this problem [168].

• The previously mentioned optimization strategies target hard real-time applica-
tions. We have shown in Chapter 5, using a real-life case study [163], how to
apply these optimizations to systems also containing soft real-time applications.
We have proposed a new cost function, capturing the quality of service for the
soft real-time applications.

• We proposed a response time analysis for tasks scheduled using fixed-priority
preemptive scheduling policy in partitioned architectures [114]. Our proposed
analysis is based on the work presented in [136].

We have proposed design strategies for the optimization of TT schedules. Compared to
the related work (see Section 1.7), our optimizations do not restrict the space inserted
into the TT schedules to evenly-spaced periodic slots. Moreover, our strategies are
able to take into account the RC end-to-end delays during the design space exploration,
and not only as a post-synthesis check. None of the existing related work addresses
packing/fragmenting and routing for TTEthernet (see Section 1.7). We describe our
research for the network communication level in Chapter 4.

1.6 Thesis Overview 15

At the communication network level, the main contributions of this thesis are:

• Given the set of mixed-criticality messages in the system and the topology of
the virtual links on which the messages are transmitted, we have proposed an
optimization to synthesize offline the static schedules for the TT messages, such
that the deadlines for the TT and RC messages are satisfied, and the end-to-end
delay of the RC traffic is minimized. We have implemented a Tabu Search meta-
heuristic to solve this optimization problem. We have shown that by considering
the RC traffic when scheduling the TT frames, the impact of the TT schedule on
the latency of the RC frames can be greatly reduced [169].

• In a similar context, we have shown that by carefully deciding the fragment-
ing and packing of messages to frames, we can improve the schedulability of
messages. We have also shown the importance of optimizing the routing of vir-
tual links. We proposed a design optimization strategy that, for a given network
topology and a given set of TT and RC messages, optimizes the fragmenting and
packing of messages to frames, the routing of virtual links, the bandwidth for
each RC virtual link and the TT schedules, such that the deadlines for the TT
and RC frames are satisfied, and the worst-case end-to-end delay of RC frames
is minimized [170].

• We have proposed in Section 5.4.2.1 an architecture selection method to reduce
the costs of the system. Starting from an initial topology, our approach performs
topology selection by iteratively reducing the number of physical links and net-
work switches, and searching for solutions that satisfy the constraints of the RC
and TT frames.

• Although the main focus of this thesis, at the communication network level, is
on TT and RC frames, in Section 5.4.2.2 we have extended our optimizations to
take into account BE traffic as well. We have shown that our proposed strategy is
flexible, and with minimal changes, it can tackle different optimization problems.

1.6 Thesis Overview

The thesis is structured into six chapters as follows:

Chapter 2 introduces the application and architecture platform models used in this
thesis. This chapter also presents IMA and shows how the TTEthernet protocol
works.

Chapter 3 presents the optimization strategies at the processor-level. The chapter
starts presenting several motivational examples that explain the design problems

16 Introduction

we focus on. The first strategy is a Simulated Annealing-based metaheuristic
that, for a given set of applications and a fixed mapping of tasks to PEs, opti-
mizes the partitioning (i.e., the sequence and size of the partition slices) on each
PE, such that all applications are schedulable. The second strategy, implemented
using Tabu Search, takes into account also the issue of development and certifi-
cation costs. Given the set of applications, the library of possible SIL decompo-
sitions, the separation requirements between tasks and the architecture platform,
the second strategy optimizes the SIL decomposition, the mapping, partitioning
and assignment of tasks to partitions, such that all applications meet their dead-
line and the development costs are minimized. The chapter also describes our
proposed response-time analysis for tasks scheduled using the fixed-priority pre-
emptive scheduling policy in partitioned systems. We evaluated these strategies
using several synthetic and real-life benchmarks.

Chapter 4 describes our optimization strategy at the communication-level, consider-
ing the TTEthernet protocol. Given the topology of the TTEthernet cluster and
the set of TT and RC messages, the strategy optimizes the fragmenting and pack-
ing of messages to frames, the assignment of frames to virtual links, the routing
of virtual links, the bandwidth for each RC virtual link and the TT schedules,
such that the deadlines for the TT and RC frames are satisfied. This optimiza-
tion strategy is implemented as a Tabu Search metaheuristic. We have evaluated
the proposed optimization using several synthetic and real-life benchmarks. The
evaluation confirmed that in many cases, obtaining schedulable solutions is not
possible only by performing TT schedule optimization, but requires performing
all the optimizations simultaneously.

Chapter 5 discusses the issues related to implementing mixed-criticality applications
on partitioned architectures in the context of a given application area, in this case
the aerospace area. If in the previous chapters we focused on hard real-time
applications, in this chapter we show that handling also soft real-time and best-
effort applications is important, using several realistic applications. The appli-
cations at the processor-level consist of the Mars Pathfinder lander software (see
Section 5.2.1) and the controller for a spectrometer (see Section 5.2.2). At the
processor level, we extended the optimization strategy described in Section 3.2.2
to take into consideration soft real-time constraints. At the communication net-
work level, the realistic application is the Orion Crew Exploration Vehicle, de-
scribed in Section 5.3. We extend the optimization strategy presented in Chap-
ter 4 to take into account BE traffic. Moreover, we also propose a topology
selection method, extending the strategy from Chapter 4, to reduce the cost of
the system.

Chapter 6 concludes this thesis and describes future work ideas.

1.7 Related Work 17

1.7 Related Work

Processor-Level. There is a large amount of research on hard real-time systems [102,
56], including task mapping to heterogeneous architectures [53]. There are two ap-
proaches to handling tasks, depending on the triggering mechanism to initiate a pro-
cessing or communication activity. In the Event-Triggered (ET) approach, activities
are initiated whenever a particular event is noted. In the Time-Triggered (TT) ap-
proach, activities are initiated at predetermined points in time. Researchers have ad-
dressed systems with mixed time-criticality requirements, showing how Time Trig-
gered (TT)/Event Triggered (ET) tasks or hard/soft real-time tasks can be integrated
onto the same platform. There has been a long debate in the real-time and embed-
ded systems communities concerning the advantages of each approach [29, 102, 186].
However, there is little research work on the integration of mixed safety-criticality ap-
plications onto the same platform.

In the context of mixed TT/ET systems, Pop et al. [136] have shown how the static
schedules can be optimized such that both the TT applications (scheduled using non-
preemptive static-cyclic scheduling) and the ET applications (scheduled using fixed-
priority preemptive scheduling) are schedulable. Their approach could be extended to
constrain the TT schedules to follow a given partitioning. They have later addressed
the problem of mapping and partitioning, but in their context partitioning means de-
ciding which tasks should be TT and which ET [129]. While in [129, 136] TT and
ET tasks share the same processor, the work in [134] considers that TT and ET tasks
are implemented on different clusters. In this context, partitioning means deciding in
which cluster (TT or ET) to place a task.

Researchers have shown how to integrate mixed hard/soft real-time tasks onto the same
platform. The order of tasks is decided by quasi-static scheduling in [62] (several
schedules are determined offline, and are activated online depending on when tasks
finish executing), such that the hard tasks meet their deadlines and the total “utility” of
soft tasks is maximized. This work has been extended by Izosimov et al. [98] to handle
transient faults, by switching online to backup recovery schedules. Soft real-time tasks
can be integrated in fixed-priority preemptive scheduling using the Constant Bandwidth
Server (CBS) [23], where the server is a hard task providing a desired level of service
to soft tasks. Thus, the CBS-servers provide a time-partitioning between hard and soft
tasks. The optimization of CBS-server capacity in the context of mixed hard and soft
real-time tasks has been addressed by Saraswat et al. [146], such that the hard tasks are
schedulable and the quality of service for the soft tasks is maximized.

Researchers also addressed the problem of mixed-criticality systems. A recent re-
view of the research in the area of mixed-criticality systems was written by Burns and
Davis [55].

18 Introduction

Lee et al. [109] consider an IMA-based system where all tasks are scheduled using
FPS. The time-partition optimization problem is formulated as a static cyclic schedul-
ing problem, where the partitions are statically scheduled such that the FPS tasks are
schedulable. A similar approach to IMA is used in the DEOS operating system [46],
with the difference that FPS is used for scheduling both the partitions (which are nor-
mally scheduled using SCS) and the tasks. Binns [46] has proposed several slack-
stealing approaches, where the unused time in one partition is given to the other parti-
tions, thus the partitions are implicitly adjusted online.

There are several works where mixed-criticality tasks are addressed, mostly targeting
uniprocessor systems. Vestal [175] was the first to extend the task model to include
criticality-level dependent Worst-Case Execution Times (WCETs). He proposes two
fixed-priority preemptive scheduling algorithms based on period transformation [154]
and on Audsley’s algorithm [31], respectively. Dorin et al. [72] prove that Vestal’s
algorithm based on Audsley’s priority assignment algorithm is optimal. Baruah and
Vestal [41] extend the work from [175] and propose for sporadic tasks sets a hybrid-
priority scheduling policy [38], which includes features of the Earliest Deadline First
(EDF) policy as well. Baruah et al. [40] propose a task model that can capture mixed-
criticality functions, together with an associated schedulability analysis.

Several papers [111, 39, 36] base their work on the assumption that the Certification
Authorities (CAs) consider a more pessimistic WCET for the tasks than the system
engineer, leading to inefficient usage of computing resources. Thus, for each task they
take into account two WCETs: a HI WCET, pessimistic, considered by the CA, and a
less pessimistic LO WCET expected by the system engineer. The CAs require, indeed,
the use of guaranteed upper bounds, i.e., WCET, for the tasks when designing the sys-
tem. Li and Baruah [111] propose an algorithm for on-line priority-based scheduling of
mixed-criticality sporadic tasks on uniprocessors. If during a busy period, a high criti-
cality task exhibits HI WCET behavior, that is, its execution time is larger than the LO
WCET assumed by the engineer, the low criticality tasks are discarded, in order to en-
sure the necessary CPU time to all the high criticality tasks. Baruah et al. [36] introduce
a novel scheduling algorithm using fixed-priority scheduling on uniprocessor mixed-
criticality systems which takes into account the criticality level of each task, evaluate
three possible priority assignment schemes, and propose an associated response time
analysis.

Baruah and Fohler [39] offer a solution using Time-Triggered scheduling to the prob-
lem in [40, 111]. They propose a “mode change” approach: using the algorithm
from [111], they compute offline two schedules, a “certification mode” schedule con-
sidering the HI WCET behavior, and a “engineer mode” schedule considering the LO
WCET behavior. In case a task overruns its LO WCET, a mode change is triggered,
and the system runs using the “certification mode” schedule.

1.7 Related Work 19

Similar to the work cited before, de Niz et al. [65] also base their work on two op-
eration modes, which they refer to as “normal mode” and “critical mode”. In [65],
they discuss the issue of “criticality inversion”, similar to the classical priority inver-
sion problem, and propose a “zero-slack scheduling” policy for such a context. This
scheduling algorithm works on top of preemptive priority-based schedulers, uses both
the priority and criticality of a task, and prevents interference from lower-criticality
to higher-criticality. Lakshmanan, de Niz and Rajkumar [107] extend this work with
two protocols: the Priority-and-Criticality Inheritance Protocol (PCIP) and the Priority-
and-Criticality Ceiling Protocol (PCCP). With PCIP, a task holding a lock to a shared
resource inherits the highest criticality and the highest priority of the tasks waiting for
the resource. The PCCP assigns to each lock (resource) the highest priority and the
highest criticality of all the tasks, and thus prevents deadlocks.

Mollison et al. [118] propose a scheduling policy for mixed-criticality tasks on multi-
core systems. In their approach, the high criticality tasks are considered slack genera-
tors, as the WCET predictions are deemed overly pessimistic, and the authors assume
that these tasks will “use only a small fraction of the execution time budgeted for them”.
Employing slack shifting, this approach considers the low criticality tasks slack con-
sumers and are allowed to execute during the slack if it will not have a negative impact
on the timing of the high criticality tasks. Herman et al. [89] experimentally evalu-
ated [118] to asses OS-related implementation issues, e.g., the impact of scheduling
overhead, and to evaluate “the robustness of mixed-criticality analysis” presented in
[118]. Li and Baruah [112] propose a scheduling algorithm for mixed-criticality spo-
radic tasks implemented on homogeneous multiprocessor platforms, were task migra-
tion is permitted. Their algorithm is based on the EDF-VD [42] uniprocessor schedul-
ing algorithm and fpEDF [43] global scheduling algorithm.

Kelly et al. [101] use a SIL-dependent WCET for the tasks, and propose bin-packing
algorithm for mapping of tasks to processor. Furthermore, they focus on fixed-priority
preemptive tasks, and compare the rate monotonic priority assignment algorithm [113]
with Audsley’s algorithm [31], concluding that “in general Audsley’s algorithm offers
a significant advantage over RM assignment”.

Goswami et al. [85] present an Integer Linear Programming (ILP) algorithm for the
schedule synthesis of mixed-criticality tasks on TT platforms. They consider two crit-
icality types, safety-critical (for control applications) and time-critical, and synthesize
the schedules for the tasks and the bus to optimize control performance, while meeting
the deadlines for the time-critical applications. Schneider et al. [148] address a similar
problem, in the context of fixed priority scheduling. They propose an offline priority
assignment algorithm to optimize the quality of control for the control applications,
while satisfying the timing constraints for the time-critical applications.

20 Introduction

Communication Network. The ET/TT duality is also reflected at the level of the
communication infrastructure, where communication activities can be triggered either
dynamically, in response to an event, as with the Controller Area Network (CAN)
bus [4], or statically, at predetermined moments in time, as in the case of Time-Division
Multiple Access (TDMA) protocols such as the Time-Triggered Protocol (TTP) [102].
The trend is towards bus protocols that support both static and dynamic communica-
tion [10, 28].

The problem of the optimization of time-partitions has been addressed at the bus level.
Researchers have shown how a Time-Division Multiple Access bus such as the TTP [130]
and a mixed TT/ET bus such as FlexRay [137] can be optimized to decrease the end-
to-end delays. This optimization problem was also addressed by Schoeberl et al. [151]
in the context of a TDMA network-on-chip designed at the Technical University of
Denmark. The optimization implies deciding on the sequence and length of the com-
munication slots.

Due to an increase in the complexity of control applications and embedded systems,
several companies are offering real-time communication solutions based on Ethernet.
Ethernet, with its low costs and high speeds (100 Mbps and 1 Gbps, and soon 10
Gbps), is known to be unsuitable for real-time and safety-critical applications [7]. For
example, in half-duplex implementations, frame collision is unavoidable, leading to
unbounded transmission times. Decotignie [68] presents the requirements for a real-
time network and how Ethernet can be improved to comply with these requirements.
There are several academic and industrial Ethernet-based solutions: ARINC 664p7,
TTEthernet [28], EtherCAT [19], IEEE Audio Video Bridging (AVB), etc. Audio Video
Bridging is a collection of technical specifications [12, 9, 8, 13] that target synchronized
communication with low jitter and low latency on Ethernet networks. The work in [147,
64, 99] describe and compare the previously mentioned Ethernet-based communication
protocols.

For full-duplex switched Ethernet networks with priority operations, Schneider et al. [149]
have proposed a compositional timing analysis based on real-time calculus [58]. For
ARINC 664p7 systems, researchers [120] have proposed a new real-time switching al-
gorithm that guarantees an upper bound on the switching period. Having such an upper
bound simplifies the worst-case delay analysis. For TTEthernet, Steiner [159] proposes
an approach for the synthesis of static TT schedules, where he ignored the RC traffic
and used a Satisfiability Modulo Theory (SMT)-solver to find a solution which satisfies
an imposed set of constraints. The same author has proposed an SMT-solver approach
to introduce periodic evenly-spaced slots into the static schedules to help reduce RC
delays in [157]. Suethanuwong [162] proposes a scheduling approach of the TT traf-
fic, ignoring RC traffic, that introduces equally distributed available time slots for BE
traffic.

1.7 Related Work 21

Researchers have also addressed the issue of frame packing [133, 143]. Frame packing
is one of the fundamental features for some communication protocols. For example,
EtherCAT [19] is a master/slave protocol, where the master packs several “datagrams”
(i.e., messages) into a single frame, regardless of the destination, and sends the frame
to all the slaves. Recent work has also addressed the ARINC 664p7 protocol. Ayed et
al. [33] propose a packing strategy for multi-cluster networks, where the critical avion-
ics subsystems are based on CAN buses, and are interconnected via ARINC 664p7.
This strategy, meant to minimize the CAN bandwidth through the ARINC 664p7 net-
work, performs packing at the CAN-ARINC 664p7 gateway based on a timer. Mes-
sages are not packed based on destinations, but on availability. As a consequence, all
the messages packed in a frame are delivered to all the possible destinations. Also
for ARINC 664p7, Al Sheikh et al. [25] propose a packing strategy for messages with
the same source and destinations, with the goal of minimizing the reserved bandwidth.
Mikolasek et al. [116] proposed a segmentation algorithm for the standard Ethernet
messages in Time-Triggered Ethernet [104], an academic Ethernet-based protocol that
supports standard Ethernet traffic and time-triggered messages. This algorithm will
fragment the standard Ethernet messages into smaller frames that can be transmitted
between two time-triggered frames, reducing transmission preemption and increasing
throughput. Routing in networks is a very well researched topic. Researchers have also
addressed routing in safety-critical systems [90, 127]. For ARINC 664p7, Al Sheikh et
al. [25] propose a load-balancing routing strategy.

22 Introduction

CHAPTER 2

System Model

In this chapter we present the system models we used in the thesis. A model is a
“reduced representation” [102] of an object, focusing on key aspects of the object,
while ignoring all the others. Models are obtained through a process of abstraction,
and help us deal with complexity. The intended use of the model dictates what are the
key aspects of the modeled object.

First, we present the application and architecture models at the processor level, and
we shortly talk about the certification process and about partitioning (Section 2.1 and
Section 2.2.1). Second, we present the models at the communication level (see Sec-
tion 2.2.2). As previously mentioned, we assume the communication is done using
TTEthernet. Section 2.2.3 presents how the TTEthernet protocol works.

2.1 Application Model

The set of all applications in the system is denoted with Γ. We model an application as
a directed, acyclic graph Gi(Vi,Ei) ∈ Γ. The graph is polar, which means that there is
a source node, i.e., a node that has no predecessors, and a sink node, i.e., a node that
has no successors. Each node τ j ∈ Vi represents one task. The mapping is denoted
by the function M : Vi → N , where N is the set of processing elements (PEs) in the

24 System Model

architecture. For each task τi we know the worst-case execution time (WCET) C
N j
i on

each processing element N j where τi is considered for mapping.

An edge e jk ∈ Ei from τ j to τk indicates that the output of τ j is the input of τk. A
task becomes ready after all its inputs have arrived, and it issues its outputs when
it terminates. Communication between tasks mapped to different PEs is performed
by message passing over the bus. We assume that the message sizes mi.size of each
message mi are known. Section 2.2.2.1 describes how we model applications at the
communication level.

The applications are scheduled using non-preemptive static cyclic scheduling (SCS)
or preemptive fixed-priority scheduling (FPS). For the SCS applications, a deadline
DGi ≤ TGi , where TGi is the period of Gi, is imposed on each application graph Gi.
Regarding FPS tasks, we use the model from [136], which considers arbitrary deadlines
and release times, and also takes into account dependencies. The tasks’ priorities are
specified by the engineer. Moreover, for each task τi, we assume that we know its
period Ti and deadline Di.

An example of mixed-criticality system composed of three SCS applications is pre-
sented in Fig. 2.1a. The periods and deadlines are presented under the application
graphs. The WCETs of tasks are given in Fig. 2.1b for two PEs, N1 and N2. An “x” in
the table means that the task is not considered for mapping on the respective PE. The
size of the messages is depicted on the graph edges. Fig. 2.1c captures the development
costs for each task. These costs are discussed in Section 2.1.3.

If dependent tasks are of different periods, they are combined into a merged graph
capturing all activations for the hyper-period (LCM of all periods). Release times of
some tasks as well as multiple deadlines can be easily modeled by inserting dummy
nodes between certain tasks and the source or the sink node respectively. These dummy
nodes represent tasks with a certain execution time but which are not allocated to any
PE. Thus, by meeting the global deadline, all the local deadlines and release times are
guaranteed [132].

2.1.1 Safety Integrity Levels

As mentioned, a safety-critical system should not endanger human life or the environ-
ment. A hazard is a situation in which there is actual or potential danger to people or
to the environment. Risk is a combination of the frequency or probability of a spec-
ified hazardous event, and its consequence. If, after performing an initial hazard and
risk analysis, a system is deemed safety-related, it has to be certified [160]. Certifica-
tion is a “conformity of assessment” performed by a third party, e.g, an independent
organization or a national authority, namely a “certification authority”.

2.1 Application Model 25

(a) Example mixed-criticality applications

(b) WCET and mapping restrictions

(c) Development costs (kEuro)

Figure 2.1: Application model example

The current certification practice is “standards-based” [142], and requires that the prod-
uct and the development processes fulfill the requirements and satisfy the objectives
of a certain certification standard, depending on the application area. For example,
IEC 61508 [94] is used in industrial applications, ISO 26262 [96] is for the automotive
area, whereas DO 178B [140] refers to software for airborne systems.

During the engineering of a safety-critical system, the hazards are identified and their
severity is analyzed, the risks are assessed and the appropriate risk control measures
are introduced to reduce the risk to an acceptable level. A Safety-Integrity Level (SIL)
captures the required level of risk reduction. SIL allocation is typically a manual pro-
cess, which is done after performing hazard and risk analysis [160], although a few

26 System Model

researchers have proposed automatic approaches for SIL allocation [124]. SILs dif-
fer slightly among areas. For example, the avionics area uses five “Design Assurance
Levels” (DAL), from DAL E (lest critical) to DAL A (most critical), while ISO 26262
specifies for the automotive area four “Automotive Safety Integrity Levels” (ASIL),
from ASIL A (least critical) to ASIL D (most critical). However, the approach pre-
sented in this thesis is applicable to all safety-critical areas, regardless of the standard.
SILs are assigned to tasks, from SIL 4 (most critical) to SIL 0 (non-critical).

Thus, we introduce the function SIL : Vi→ {SIL k}, where k ∈ {0..4}, to capture the
SIL of a task. The tasks of an application may have different SILs. The SILs for the
example in Fig. 2.1a are presented next to the tasks.

2.1.2 Task Decomposition

During the early stages of the design of safety-critical systems, a SIL is allocated to
each safety function. Safety functions are later implemented as software or hardware,
or a combination of both. Let us consider a safety function of SIL i, to be implemented
as software tasks. The certification standards allow several options. For example, the
safety-function could be implemented as one task of SIL i or, using redundancy to
increase dependability, as several redundant tasks of a lower SIL, e.g., SIL i-1. De-
composing a safety function of a higher SIL into several redundant tasks of lower SILs
can reduce the development and certification costs, and could be the right choice in a
particular context. For software redundancy, the standards recommend the use diver-
sity, i.e., different implementations of the same functionality. This is because a fault
(bug) in a software task will lead to a correlated failure in all of the tasks sharing the
same implementation, unless software diversity is used. Often, one of the redundant
tasks will implement a simpler (and maybe less accurate) algorithm as alternative di-
verse implementation.

Certification standards refer to this process as “SIL decomposition” and provide rec-
ommendations on the possible decompositions. For example, ISO/DIS 262621, Part 9,
Section 5, provides the guide shown in Table 2.1 for SIL decomposition. Such a de-
composition guide amounts to a “SIL algebra” [125], i.e., the SIL of the safety function
is the sum of the SILs of the redundant tasks.

We assume that the safety functions are implemented as software tasks running on a
distributed architecture. Let us consider a tasks τA which has to fulfill a safety require-
ment of SIL 3. According to Table 2.1, we can decompose task τA into two redundant
tasks, e.g., τB with SIL 2 and τC of SIL 1. Task τB can be further decomposed into two
SIL 1 tasks.

1As mentioned, ISO 26262 uses the concept of Automotive SIL, or ASIL. To simplify the discussion, we
consider ASIL D to be SIL 4 and ASIL A to be SIL 1.

2.1 Application Model 27

Table 2.1: ISO/DIS 26262 SIL decomposition schemes

SIL Can be decomposed as
SIL 4 SIL 3 + SIL 1 or SIL 2 + SIL 2 or SIL 4
SIL 3 SIL 2 + SIL 1 or SIL 3
SIL 2 SIL 1 + SIL 1 or SIL 2
SIL 1 SIL 1

Furthermore, we assume that, for those tasks which are considered for decomposi-
tion, the engineer will specify a library L of possible decompositions based on the
standard considered, similar to the library in Table 2.1. In this thesis, we are also in-
terested to determine a decomposition of tasks such that the timing requirements are
satisfied and the development costs are minimized. This design problem is presented
in Section 3.1.4. There is very little work on automatic SIL allocation [124] and de-
composition [125, 34]. Parker et al. [125] have proposed a Genetic Algorithm for SIL
decomposition and Azevedo et al. [34] have proposed a Tabu Search metaheuristic.
Both works aim at a SIL decomposition which reduces the development costs, and are
interested in deriving a fault-tolerant architecture. The safety of the resulted architec-
ture is evaluated using Fault-Tree Analysis [174].

Fig. 3.4a shows a two decomposition options for task τ11 of SIL 4 from application
A1 in Fig. 3.3a. We define the decomposition function D(τi), D(τi) : Vi→ Di, where
Di is a set of decomposition options, specified in the decomposition library L . There
are two decomposition options in Fig. 3.4a: D1 in two tasks of SIL 2, namely τ11b
and τ11c, and D2 into tasks τ11 f of SIL 3 and τ11g of SIL 1. Fig. 3.4a also shows
how τ11, once decomposed, is connected to the graph of application A1 from Fig. 3.3a.
We assume that a decomposed task will be connected to the original application graph
via two “connecting” tasks; one task which is distributing the input to the redundant
decomposed tasks (τ11a in Fig. 3.4a) and one task which is collecting the outputs (τ11d).
The SIL of the connecting tasks are given by the engineer based on the communication
constraints as discussed in Section 2.1.4 and on the requirements from the standards.

The redundant decomposed tasks of lower SIL may have a lower WCET than the
original task of higher SIL. Researchers [39] have considered the aspect of criticality-
dependent WCET. Our model can also take into account a SIL-dependent WCET for
each task. However, for simplicity, we do not consider this aspect in our examples,
except in the case of SIL decomposition, as discussed next. One reason for a lower
WCET could be that the redundant tasks may implement only part of the functionality
of the original task, with some functionality implemented in the “connecting” tasks.
Also, as mentioned in the case of software diversity, one of the tasks may use a sim-
plified algorithm (which, for example, produces less accurate results), that will have a
lower WCET. Yet another possibility for the WCET decrease could be the requirements
on compiler optimization imposed by the standard. Such optimizations, for example,

28 System Model

are not allowed for SIL 4, but are allowed for lower SILs. Although compiler optimiza-
tions would affect mainly the average execution times, removing them could lead to a
WCET increase in case of SIL 4 tasks.

The WCETs for our example task τ11 are shown in Fig. 3.4b. Note that in the decom-
position option D1, the sum of the WCETs of the tasks along the longest path of the
task graph replacing τ11, i.e., τ11a→ τ11c→ τ11d , has a value of 6 on N1, compared to
the WCET of 5 for the original τ11 on N1.

2.1.3 Development Cost Model

The SIL assigned to a task will dictate the development processes and certification pro-
cedures that have to be followed. Standards provide checklists of objectives required
to be fulfilled for each SIL. Depending on the SIL, the standard may also impose that
some objectives to be satisfied with independence, to ensure an unbiased evaluation and
to avoid misinterpretation of the requirements [140]. For example, for the verification
process, independence is achieved by using tools and personnel other than those used
throughout the development process.

SIL 0 functions are non-critical and do not impact the safety of the systems, thus are
not covered by the standards. In the case of SIL 1, the processes are similar to those
covered by quality management standards such as ISO 9001 [95]. SIL 2 involves more
reviewing and testing. SIL 3 is significantly more difficult, and requires “semi-formal”
methods. SIL 4 often mandates formal methods, increasing further the development
costs.

The assessment of conformity to the checklist of objectives has to be performed by
independent assessors. For SIL 1 is enough to have an independent person, whereas
for SIL 2 an independent department is required. In the case of SIL 3 and SIL 4, an
independent organization has to be used. Moreover, the number of objectives that have
to be satisfied with independence is also growing. For example, in the case of DO-
178B, the main difference between DAL A and DAL B is the number of objectives to
be satisfied with independence: 25 out of 66 objectives are required for DAL A to be
satisfied with independence, while for DAL B it is only 14 out of 65.

Software development cost estimation is a widely researched topic, and is beyond the
scope of this thesis. The reader is directed to [100, 47] for reviews on this topic.
One of the most influential software cost models is the Constructive Cost Model (CO-
COMO) [48]. Researchers have shown how to take into account the development costs
during the design process of embedded systems [67].

2.1 Application Model 29

The development of safety-critical systems is a highly structured and systematic pro-
cess dictated by standards. These standards increase the development costs due to
additional processes for software development and testing, qualification activities in-
volved in compliance and increased process complexity, shown also by an IBM Ratio-
nal study [93]. Additional development and certification costs may arise from using
development and verification tools, e.g. for binary patching or to achieve partitioning
using compiler and linker mechanisms, since these tools need to be verified or qual-
ified. For DO-178B [140] this means to demonstrate that the tool satisfies the same
objectives as the processes it automates, reduces or replaces, thus increasing the devel-
opment and certification costs. Furthermore, [140] requires that the tool to be qualified
only for use on the specific system where the tool is intended to be used, while the “use
of the tool for other systems may need further qualification”.

Because of the systematic nature of the development processes dictated by the stan-
dards, we assume that the engineer will be able to estimate the development effort re-
quired for a task. Hence, we define the development cost (DC) function DC(τi,SIL j) to
capture the cost to develop and certify a task τi to safety integrity level SIL j. Fig. 2.1c
shows an example of the development costs for each of the tasks in Fig. 2.1a. Knowing
the DC for each task, we can compute this cost at the application level. The DC of ap-
plication Ai, denoted with DC(Ai), is the sum of the development costs of each task in
the application. Similarly, we define the DC for the set of all the applications, DC(Γ),
as the sum of the costs for each application. An example certification cost estimation
in person-days for an Air Traffic Control radio platform is presented in [139].

2.1.4 Protection Requirements

When several tasks of different SILs share the same processing element, the standards
require that they are developed at the highest SIL among the SILs of the tasks, which is
very expensive. Unless, the standards state, it can be shown that the implementation of
the tasks is “sufficiently independent”, i.e., there is both spatial and temporal separation
among the tasks. Hence, tasks of different SILs have to be protected from each other.
Otherwise, for example, a lower-criticality task could corrupt the code or data area of a
higher-criticality task [57], or block the higher-criticality task from accessing the CPU,
leading thus to a failure.

Protection also imposes constraints on the type of communication that is allowed. Thus,
within an application, a task can only receive an input from a task of the same criticality
level or higher than its own. In addition, we assume that there is no communication
between two applications. Such constraints on communication may be relaxed by im-
plementing a validation middleware, such as the one proposed by [179], which checks
and upgrades the data from lower levels to be used at the higher integrity levels.

30 System Model

Standard practice in certain areas may place additional protection requirements. For
example, it may be recommended that two tasks of SIL 4 from different applications
should be protected, although they are at the same SIL level. To capture such require-
ments, and any additional protection requirements desired by the engineer, we define
the protection requirements graph Π(V ,E) as a bidirectional graph, where V repre-
sents the set of all tasks, and E is a set of edges. An edge sri j ∈ E is a separation
requirement, which means that tasks τi and τ j are not allowed to share a partition. The
communication restrictions are captured implicitly by the structure of the application
graphs Gi ∈ Γ.

2.2 Architecture Model

We consider architectures composed of a set N of PEs which communicate via a
TTEthernet network. Section 2.2.1 presents our partitioning model at the PE-level
and Section 2.2.2 presents our communication-level models. The TTEthernet protocol
is presented Section 2.2.3.

2.2.1 Partitioning at PE-Level

If two tasks are of different SILs, or if they have to be separated according to the
protection requirements graph Π, we consider that the protection is achieved through a
temporal- and space-partitioning scheme similar to Integrated Modular Avionics (IMA)
[141]. Note that partitioning schemes similar to IMA are available in several applica-
tion areas [135], not only in the avionics area. Space partitioning uses mechanisms
such as a Memory Management Unit (MMU) to ensure that, for example, applications
running on different partitions cannot corrupt the memory for the other applications.
Temporal partitioning ensures the access of each application to the CPU, according to
a predetermined partition table. A detailed discussion about partitioning is available
in [141].

We denote the assignment of tasks to partitions using the function φ : V → P , where V
is the set of tasks in the system and P is the set of partitions. On a processing element
Ni, a partition Pj ∈ P is defined as the sequence Pi j of k partition slices pk

i j, k ≥ 1. A
partition slice pk

i j is a predetermined time interval in which the tasks mapped to Ni and
allocated to the partition Pj are allowed to use Ni.

All the slices on a processor are grouped within a time interval called “Major Frame”
(MF), i.e., in a partition table. This partition table is repeated periodically. The period
TMF of the Major Frame is given by the engineer and is the same on each PE. Several

2.2 Architecture Model 31

Figure 2.2: Partitioned architecture

MFs are combined together in a system cycle that is repeated periodically, with a period
Tcycle. Within a Tcycle, the sequence and length of the partition slices are the same across
MFs (on a given PE), but the contents of the slices (i.e., the tasks assigned to the slices)
can differ.

Fig. 2.2 presents the partitions for 3 applications of different SILs, A1, A2 and A3,
implemented on an architecture of 2 PEs, N1 and N2, with TMF = 10 and Tcycle = 2×
TMF = 20. Using the partitions in the figure, the tasks of A3, for example, can execute
only in partition P3 on PE N1 (the light blue rectangles in the timeline on N1), composed
of the sequence P1,3 of partition slices p1

13 and p2
13. In this example, we assume that all

the tasks of A3 have the same SIL. However, as mentioned in Section 2.1.1, the tasks
of an application may have different SILs. Such tasks have to be placed in separate
partitions.

The schedule tables S for the applications have to be constructed such that they take
into account the partitions P . Note that a task can extend its execution over several
partition slices and MFs. When a task does not complete during a partition slice, its
execution is suspended until its partition is activated again. Such an example is task
τ31 on N1 in Fig. 3.2b, which shows the schedule tables for the applications in Fig.2.1a.
The time overhead due to partition switching is denoted with tO, and our optimization
approaches described in Chapter 3 take into account the partition switching overheads.

2.2.1.1 Elevation and Software-Based Protection

As mentioned, tasks of different SILs have to be placed in separate partitions. How-
ever, there might be situations when it would be beneficial (e.g., in terms of schedula-

32 System Model

bility) for two tasks of different SILs to share a partition. This can be achieved through
elevation: increasing the SIL of the lower criticality task to the level of the higher crit-
icality task. Although such elevation to a higher SIL is allowed by the standards, it
will increase the development costs for the elevated task. For example, considering the
application details from Fig. 2.1, in Fig. 3.2d task τ23 shares the partition with tasks τ12
on N2, second MF. As task τ23 has a lower SIL than τ12, which is SIL 3, it has to be
elevated from SIL 1 to SIL 3. This is shown visually in the schedule by raising task τ23
slightly compared to the other tasks which are not elevated.

Such elevation may trigger the elevation of other tasks, depending on the protection re-
quirements graph Π. For example, as mentioned in Section 2.1.4, we assume that a task
can only receive inputs from predecessors of the same or higher SIL. This means that
elevating a task τi to a higher SIL may trigger the elevation of its predecessors. This,
in turn, can trigger the elevation of other tasks, if such predecessors will be assigned
a higher SIL in another partition slice. This is the case for the tasks in application A2,
shown in Fig. 3.2d using green rectangles. As τ22 and τ23 share the partition with τ12,
they have to be elevated from SIL 1 to SIL 3. This in turn triggers the elevation to
SIL 3 of the predecessors of these tasks, namely tasks τ20 and τ21, see the A2 graph in
Fig. 2.1a. Furthermore, τ20 and τ21 share the partition with τ24 and τ25, namely parti-
tion P2 on N1, see Fig. 3.2d. Since tasks τ20 and τ21 were elevated to SIL 3, and tasks
τ24 and τ25 are SIL 1, we need to elevate tasks τ24 and τ25 to SIL 3 to allow the sharing
of partition P2. Thus, all the tasks of application A2 are elevated to SIL 3, increasing
the development costs DC for this application from 19 to 61 kEuro (the development
costs for these tasks are presented in Fig. 2.1c).

For lower SILs, an alternative to using elevation for partition sharing, is to use software-
based protection mechanisms. Such protection mechanisms are typically used to pro-
vide spatial protection for tasks of SIL 1 and SIL 2. At these levels, spatial protection
can also be obtained using methods such as Software Fault Isolation (SFI) [141], or
compiler and linker mechanisms, which can guarantee separation of code and data for
lower SIL tasks [75]. SFI (or sandboxing) [178] is a technique for memory protec-
tion and fault isolation, achieved either by binary patching or during compile time.
This translates into a run-time overhead between 4%–20%, depending on the type of
instructions which are sandboxed, on the CPU architecture and on the implementa-
tion [178, 153]. A survey of isolation techniques is compiled by [176].

Our partitioning model can take into account any of the available protection mech-
anisms. Also, as discussed, some protection mechanisms may introduce additional
overheads, such as performance overhead and/or a development and certification cost
increase. Our model captures these overheads.

2.2 Architecture Model 33

2.2.2 Communication Network Model

A TTEthernet network is composed of a set of clusters. Each cluster consists of End
Systems (ESes) interconnected by links and Network Switches (NSes). The links are
full duplex, allowing thus communication in both directions, and the networks can
be multi-hop. An example cluster is presented in Fig. 2.3, where we have 4 ESes,
ES1 to ES4, and 3 NSes, NS1 to NS3. We address design optimizations performed at
the cluster-level. Each ES consists of a PE and a network interface card (NIC). The
architecture model at the processor level is presented in Section 2.2.

We model a TTEthernet cluster as an undirected graph GC(VC,EC), where VC = ES ∪
N S is the set of end systems (ES) and network switches (N S) and E is the set of phys-
ical links. For Fig. 2.3, VC = ES ∪N S = {ES1,ES2,ES3,ES4}∪ {NS1,NS2,NS3},
and the physical links EC are depicted with thick, black, double arrows.

A dataflow path d pi ∈ DP is an ordered sequence of dataflow links connecting one
sender to one receiver. For example, in Fig. 2.3, d p1 connects ES1 to ES3, while d p2
connects ES1 to ES4 (the dataflow paths are depicted with green arrows). A dataflow
link dli = [ν j,νk]∈DL , where DL is the set of dataflow links in a cluster, is a directed
communication connection from ν j to νk, where ν j and νk ∈ VC can be ESes or NSes.
Using this notation, a dataflow path such as d p1 in Fig. 2.3 can be denoted as [[ES1,
NS1], [NS1, NS2], [NS2, ES3]].

The space partitioning between messages of different criticality transmitted over phys-
ical links and network switches is achieved through the concept of virtual link. Virtual
links are defined by ARINC 664p7 [7], which is implemented by the TTEthernet proto-
col, as a “logical unidirectional connection from one source end system to one or more
destination end systems”.

Let us assume that in Fig. 2.3 we have two applications, A1 and A2. A1 is a high
criticality application consisting of tasks τ1 to τ3 mapped on ES1, ES3 and ES4, re-
spectively. A2 is a non-critical application, with tasks τ4 and τ5 mapped on ES2 and
ES3, respectively. τ1 sends message m1 to τ2 and τ3. Task τ4 sends message m2 to τ5.
With TTEthernet, a message has a single sender and may have multiple receivers. The
flow of these messages will intersect in the physical links and switches. Virtual links
are used to separate the highly critical message m1 from the non-critical message m2.
Thus, m1 is transmitted over virtual link vl1, which is isolated from virtual link vl2, on
which m2 is sent, through protocol-level temporal and spatial mechanisms (which are
briefly presented in Section 2.2.3).

We denote the set of virtual links in a cluster with V L . A virtual link vli ∈ V L is
a directed tree, with the sender as the root and the receivers as leafs. For exam-
ple, vl1, depicted in Fig. 2.3 using dot-dash red arrows, is a tree with the root ES1

34 System Model

Figure 2.3: TTEthernet cluster example

and the leafs ES3 and ES4. Each virtual link is composed of a set of dataflow paths,
one such dataflow path for each root-leaf connection. More formally, we denote with
RV L(vli) = {∀d p j ∈ DP |d p j ∈ vli} the routing of virtual link vli. For example, in
Fig. 2.3, RV L(vl1) = {d p1,d p2}.

For a given message, with one sender and multiple receivers, there are several virtual
links which can be used for transmission. For example, in Fig. 2.3, message m2 from
ES2 to ES3 can be transmitted via vl2, containing dataflow path d p3 = [[ES2,NS1],
[NS1,NS2], [NS2,ES3]], or via vl3 = {d p4}, with d p4 = [[ES2,NS1], [NS1,NS3], [NS3,
NS2], [NS2,ES3]]. Deciding each virtual link vli for a message mi is a routing problem:
we need to decide which route to take from a set of possible routes. This routing
is determined by our optimization approach presented in Chapter 4 and, for real life
systems, which can contain tens to hundreds of connected ESes and NSes, this is not a
trivial problem.

2.2.2.1 Frames

TTEthernet transmits data using frames. The TTEthernet frame format fully complies
with the ARINC 664p7 specification [7], and is presented in Fig. 2.4. A complete
description of the ARINC 664p7 frame fields can be found in [7]. Messages are trans-
mitted in the payload of frames. A bit pattern specified in the frame header identifies
the traffic class of each frame (TT, RC or BE). The total frame header (Ethernet header
and ARINC 664p7 header) is of 42 B, while the payload of each frame varies between

2.2 Architecture Model 35

Figure 2.4: Simplified frame format

a minimum of 17 B and a maximum of 1471 B. In case a frame carries data smaller
than 17 B, the frame payload will be padded with zeroes to reach the minimum payload
of 17 B. Thus, as shown in Fig. 2.4, the total protocol overhead for a frame (including
the frame header, preamble, start frame delimiter and interframe gap) varies from 67
B, for data bigger than 17 B, to 83 B for data of 1 B.

The size mi.size for each message mi ∈M is given, where M is the set of all mes-
sages. As mentioned, TTEthernet supports three traffic classes: time-triggered (TT),
rate constrained (RC) and best effort (BE). We assume that the system engineer has
decided the traffic classes for each message. We define the sets M T T , M RC and M BE ,
respectively, with M = M T T ∪M RC∪M BE . In addition, for the TT and RC messages
we know their periods / rate and deadlines, mi.period or mi.rate, and mi.deadline, re-
spectively. Furthermore, we also know the safety-criticality level for each message.
Safety-criticality levels, referred to as Safety Integrity Levels, or SILs, are discussed
in Section 2.1.1. RC messages are not necessarily periodic, but have a minimum inter-
arrival time. We define the rate of an RC message mi as mi.rate = 1/mi.period.

So far, researchers have assumed that each message mi ∈M is transmitted in the pay-
load of a dedicated frame fi. This was also the assumption of our earlier work, which
focused only on the scheduling of TT frames [169]. However, the payload of a frame
can in practice carry several messages. Moreover, messages can also be fragmented
into several pieces, each carried by a different frame. We extended our optimization
presented in Chapter 4 to also determine the fragmenting and the packing of messages
into frames.

The fragmenting of messages into message fragments is denoted with Φm(mi)= {∀m j ∈
M +|m j ∈mi}, where M + is the set which contains all the message fragments resulted
from fragmenting, and the messages which were not fragmented. The message frag-
ments m j ∈ Φm(mi) inherit the temporal constraints of the original message, and have
equal sizes. For example, let us consider M = {m1,m2}. In this case, M + = M .
Message m1 has a period and deadline of 30 ms, and a size of 300 B. Message m2
has a deadline and period of 24 ms, and m2.size = 1200 B. We fragment m2 into 3
same-sized message fragments, such that Φm(m2) = {m3,m4,m5} and m3, m4 and m5
have the same period and deadline as m2, but their size is 400 B. After fragmenting m2,
M + = {m1,m3,m4,m5}.

36 System Model

The packing of messages and message fragments into frames is denoted with K :
M + → F , K (m j) = fi, where F is the set of all the frames in the cluster. We de-
fine F T T , F RC and F BE , respectively, with F = F T T ∪F RC ∪F BE . A bit pattern
specified in the frame header identifies the traffic class. Each frame is assigned to a vir-
tual link, which specifies among others, the routing for the frame. In TTEthernet, each
virtual link has assigned only one frame. The function MF(fi) = vli,MF : F → V L
captures this assignment of frames to virtual links. Let us consider the example given
in Fig. 2.3, with message m1 sent from ES1 to ES3 and ES4. We assume that m1 is
packed by frame f1, K (m1) = f1. In this case, f1 is assigned to vl1, MF(f1) = vl1.
Fig. 2.3 shows vl1 routed along the shortest route.

The properties of the frames are derived based on what messages or message fragments
are packed, such that the timing constraints are satisfied. Let us consider the prior
example. The packing of message m1 and message fragment m3, m1,m3 ∈M +, in
frame f1 ∈ F , is denoted with K (m1) = f1 and K (m3) = f1, respectively. In this
case, the data packed by f1 has a size of 700 B. Note that, unlike in the case of the
EtherCAT [19] protocol, not all fragmenting and packing combinations are valid (e.g.,
messages packed into a frame must have the same source and destination ESes and
must be of the same safety-criticality level). Also, the timing properties of the new
frame depends on the timing constraints of messages. Our optimization takes care of
these aspects, see Section 3.2 for details. Knowing the size of a frame f j and the given
speed of a dataflow link [νm,νn], we can determine the transmission duration C[νm,νn]

j
of f j on [νm,νn].

2.2.3 The TTEthernet Protocol

Let us illustrate how the TTEthernet protocol works using the example in Fig. 2.5,
where we have two end systems, ES1 and ES2, and three network switches, NS1 to
NS3. Task τ2 on ES1 sends the TT message m2 to task τ4 mapped on ES2, while task τ1
on ES1 sends the RC message m1 to task τ3 on ES2. Let us assume that tasks τ1 and τ3
are part of application A1 and tasks τ2 and τ4 belong to application A2. Furthermore, A1
and A2 are of different safety criticality. The separation of the applications is achieved
at the CPU-level through partitioning. Thus, tasks τ1 and τ3 are placed in partitions
P1,1 and P2,2, respectively, while tasks τ2 and τ4 are assigned to partitions P1,2 and
P2,1, see Fig. 2.5.

Message m1 is sent within application A1 and packed in frame f1. m2 is sent within A2
and packed into the frame f2. The fragmenting and packing of messages is performed
at application level. The different criticality frames are separated by assigning them to
two different virtual links, vl1 and vl2 (not depicted in the figure). Frames f1 and f2
have to transit the switch NS1, which also forwards frames f3 and f4, from NS2 and
NS3, respectively, see Fig. 2.5.

2.2 Architecture Model 37

Fi
gu

re
2.

5:
T

T
an

d
R

C
m

es
sa

ge
tr

an
sm

is
si

on
ex

am
pl

e

38 System Model

2.2.3.1 Time-Triggered Transmission

In this section we present how TT frames are transmited by TTEthernet, using the
example of the TT message m2 sent from task τ2 on ES1, to task τ4 on ES2. We depict
each step of the TT transmission on Fig. 2.5 and mark it with a letter from (a) to (m)
on a blue background.

Thus, in the first step denoted with (a), task τ2 packs m2 into frame f2 and in the second
step (b), f2 is placed into buffer B1,T x for transmission. Conceptually, there is one such
buffer for every TT frame sent from ES1. TT communication is done according to
static communication schedules determined offline and stored into the ESes and NSes.
The complete set of local schedules in a cluster are denoted with S . The schedules S
are derived by our optimization approach. Thus, in step (d), the scheduler task T TS will
send f2 to NS1 at the time specified in the send schedule SS stored in ES1 (c). There are
several approaches to the synchronization of tasks (which could be TT or ET) and TT
messages [122]. Often, TT tasks are used in conjunction with TT messages, and the
task and message schedules are synchronized such that the task is scheduled to finish
before the message is scheduled for transmission.

Next, f2 is sent on a dataflow link to NS1 (e). The computational logic of the TTEth-
ernet protocol is implemented in hardware and, conceptually, consists of several hard-
ware tasks working in parallel to implement the protocol services. Such is the case
of the Filtering Unit (FU) task, which is invoked every time a frame is received by an
NS. The FU checks the integrity and validity of frame f2 (see step (f)) and forwards it
to the TT receiver task T TR (h), which copies it into the sending buffer B1,T x for later
transmission.

The separation mechanisms implemented by TTEthernet to isolate mixed-criticality
frames, such as f1 and f2 in our example, are spread across several hardware tasks.
In addition, TTEthernet provides fault-tolerance services, such as fault-containment, to
the application level. For example, if a task such as τ2 becomes faulty and sends more
messages than scheduled (called a “babbling idiot” failure), the TT sender task T TS
on ES1 will protect the network as it will only transmit messages as specified in the
schedule table SS.

Also, a TT receiver task T TR in an NS will rely on a receive schedule SR (g) stored in
the switch to check if a TT frame has arrived within a specified receiving window. This
window is determined based on the sending times in the send schedules (schedule SS
on ES1 for the case of frame f2), the precision of the clock synchronization mechanism
and the “integration policy” used for integrating the TT traffic with the RC and BE
traffic (see next subsection for details). TT message frames arriving outside of this
receiving window are considered faulty. In order to provide virtual link isolation and
fault-containment, a TT receiver task T TR will drop such faulty frames.

2.2 Architecture Model 39

The schedules S contain the sending times and receiving windows for all the frames
transmitted during an application cycle, Tcycle. A periodic frame fi may contain several
instances (a frame instance is the equivalent of the periodic job of a task) within Tcycle.
We denote the x-th instance of frame fi with fi,x. The sending time of a frame fi
relative to the start time of its period is called the offset, denoted with fi.offset. In [169]
we have assumed a TTEthernet implementation where within an application cycle, the
offset of a frame may vary from period to period. In this thesis we consider a realistic
implementation, where the sending time offset of a frame is identical in all periods,
with the advantage of reducing the size needed to store the schedules.

Let us continue to follow the transmission of f2 in Fig. 2.5. The frame has arrived in
NS1 and has been placed in B1,T x (h). Next, f2 is sent by the TT sender task T TS in NS1
to ES2 at the time specified in the TT send schedule SS in NS1. When f2 arrives at ES2
(k), the FU task will store the frame into a dedicated receive buffer B2,Rx (l). Finally,
when task τ4 is activated, it will read f2 from the buffer (m).

2.2.3.2 Rate Constrained Transmission

This section presents how RC traffic is transmitted using the example of frame f1 sent
from τ1 on ES1 to τ3 on ES2. Similarly to the discussion of TT traffic, we mark each
step in Fig. 2.5 using numbers from (1) to (13), on a green background.

Thus, τ1 packs message m1 into frame f1 (1) and inserts it into a queue Q1,T x (2).
Conceptually, there is one such queue for each RC virtual link. RC traffic consists of
event-triggered messages. The separation of RC traffic is enforced through “bandwidth
allocation”. Thus, for each virtual link vli carrying an RC frame fi the engineer decides
the Bandwidth Allocation Gap (BAG). A BAG is the minimum time interval between
two consecutive instances of an RC frame fi. The BAG is set in such a way to guarantee
that there is enough bandwidth allocated for the transmission of a frame on a virtual
link, with BAGi ≤ 1/ fi.rate.

The BAG is enforced by the Traffic Regulator (TR) task. Thus, T R1 in ES1 in Fig. 2.5
will ensure that each BAG1 interval will contain at most one instance of f1 (3). There-
fore, even if a frame is sent in bursts by a task, it will leave the TR task within a
specified BAG. Thus, the maximum bandwidth used by a virtual link vli which trans-
mits an RC frame fi is BW (vli) = fi.size/BAG(vli). The BAG for each RC frame is
computed offline, based on the requirements of the messages it packs.

Several messages will be sent from an ES. Let us first discuss how RC messages are
multiplexed, and then we will discuss the integration with the TT traffic. In an ES, the
RC scheduler task RCS (such as the one in ES1) will multiplex several RC messages
(4) coming from the traffic regulator tasks, T Ri, such as T R1 and T R2 in ES1. Fig. 2.6

40 System Model

Figure 2.6: Multiplexing two RC frames

depicts how this multiplexing is performed for the frames fx and fy with the sizes and
BAGs as specified in Fig. 2.6(a) and (b), respectively. Fig. 2.6(c) shows how the two
frames will be sent on the outgoing dataflow link [ES1,NS1] by the RCS task. In the
case several TRs attempt to transmit messages at the same time, due to the multiplexer,
the frames waiting to be transmitted will be affected by jitter. This is the case of fy in
Fig. 2.6(c), which is delayed to allow for the transmission of fx. Thus, the fy,1. jitter
jitter for fy,1 equals to the transmission duration of fx.

RC traffic also has to be integrated with TT traffic, which has higher priority. Thus, RC
frames are transmitted only when there is no TT traffic on the dataflow link. Hence,
for our example on ES1, the T TS task on ES1 will transmit frame f1 (5) to NS1 on
the dataflow link [ES1,NS1] only when there is no TT traffic (6). With integration,
contention situations can occur when a TT frame is scheduled for transmission, but an
RC frame is already transmitting.

There are three approaches in to handle such situations [28, 158]: (i) shuffling, (ii)
pre-emption and (iii) timely block. (i) With shuffling, the higher priority TT frame is
delayed until the RC frame finishes the transmission. Thus, in the worst-case scenario,
the TT frame will have to wait for the time needed to transmit the largest Ethernet
frame, which is 1542 Bytes. In the case (ii) of pre-emption, the RC frame is pre-
empted, and its transmission is restarted after the TT frame finished transmitting. In
the case (iii) of timely block, the RC frame is blocked (postponed) from transmission
on a dataflow link if a TT frame is scheduled to be sent before the RC frame would
complete its transmission. Note that, as discussed in the previous subsection, the inte-
gration approaches have an impact on the receiving window of a TT frame, which has
to account for the delays due to shuffling, for example.

When the RC frame f1 arrives at NS1, the Filtering Unit task (7) will check its valid-
ity and integrity. As mentioned, TTEthernet provides services to separate the mixed-
criticality frames, such that a faulty transmission of a lower-criticality frame will not
impact negatively a higher-criticality frame. Fault-containment at the level of RC vir-

2.2 Architecture Model 41

tual links is provided by the Traffic Policing (TP) task, see NS1 in Fig. 2.5. TP im-
plements an algorithm known as leaky bucket [7, 28], which checks the time interval
between two consecutive instances on the same virtual link. If this interval is shorter
than the specified BAG time corrected by the maximum allowed transmission jitter, the
frame instance is dropped. Thus, the TP function prevents a faulty ES to send faulty
RC frames (more often than allowed) and thus to disturb the network.

After passing the checks of the TP task (8), f1 is copied to the outgoing queue QT x (9).
Throughout this thesis we assume that all the RC frames have the same priority, thus
the T TS (10) will send the RC frames in QT x in a FIFO order, but only when there is
no scheduled TT traffic. At the receiving ES, after passing the FU (11) checks, f1 is
copied in the receiving Q2,Rx queue (12). Finally, when τ3 is activated, it will take f1
(13) from this queue.

42 System Model

CHAPTER 3

Design Optimizations at the
Processor-Level

In this chapter we focus on design optimizations at the processor-level, hence we con-
sider a simple statically scheduled bus where the communication takes place accord-
ing to a static schedule table computed offline. Chapter 4 presents the optimization
strategies at the communication level. At the processor-level, we assume the platform
implements partitioning mechanisms similar to IMA [141](see Section 2.2.1). We pre-
sented the architecture and application models we consider in Chapter 2, and we talked
about partitioning and how partitioning constrains the way tasks use the processor in
Section 2.2.1.

We begin by presenting the design optimization problems addressed in the chapter. The
problems are illustrated using four motivational examples. Then we present the opti-
mization strategies we propose to solve these problems. We conclude the chapter with
the experimental evaluations of the proposed optimizations. We used several synthetic
and real-life benchmarks for evaluating the algorithms.

44 Design Optimizations at the Processor-Level

3.1 Problem Formulation

The problem we are addressing in this thesis can be formulated as follows: given a
set Γ of applications, the criticality level SIL(τi) of each task τi, the library of SIL
decompositions L , the separation requirements Π between the tasks, an architecture
consisting of a set N of processing elements, the size of the major frame TMF and the
application cycle Tcycle, we are interested to find an implementation Ψ such that all
applications meet their deadlines and the development costs are minimized. Deriving
an implementation Ψ means deciding on (1) the SIL decomposition D of the tasks for
which the designer has provided alternatives in the library L , (2) the mapping M of
tasks to PEs taking into account the mapping restrictions, (3) the set P of partition
slices on each processor, including their order and size, (4) the assignment φ of tasks to
partitions and (5) the schedule S for all the tasks and messages in the system.

We present four motivational examples that show several aspects of this problem. First,
we consider the problem of optimizing the partition time slots, assuming the mapping
of tasks to processors is given and fixed. Second, we extend the problem by optimizing
the partitioning and the mapping and the same time. In the first two examples we do not
consider the issue of cost. Thus, we do not allow partition sharing by tasks of different
criticality levels (see Section 2.2.1.1), and we do not consider task decomposition (see
Section 2.1.2). Next, we remove these constraints. Third, we optimize the partitioning
and mapping, but also allow tasks to share the same partition by elevating the tasks
of lower criticality levels to the highest criticality level. This will increase the cost of
the system. Fourth, we optimize the mapping, partitioning and partition sharing at the
same time, but also consider task decomposition as a way to lower development costs.

Please note that, for simplicity, we ignore the partition switch overhead in the following
examples.

3.1.1 Optimization of Time-Partitions

First, we consider the case where the mapping of tasks to processor has already been
decided by the system engineer (e.g., due to modularity or physical constraints). At this
point, we do not consider the issue of cost, i.e., partition sharing (see Section 2.2.1.1)
or task decomposition (see Section 2.1.2). To simplify this example, we consider only
two criticality levels: safety-critical and non-critical. We assume the safety-critical
applications are scheduled using non-preemptive static cyclic scheduling (SCS), and
the non-critical tasks are scheduled using preemptive fixed-priority scheduling (FPS)1.

1For this problem we consider a Universal Communication Model bus [69], which has a dynamic segment
used for messages exchanged by FPS tasks.

3.1 Problem Formulation 45

Figure 3.1: Motivational example

46 Design Optimizations at the Processor-Level

Let us illustrate the problem using the example in Fig. 3.1 where we have two SC
applications, A1 and A2, and one NC application, A3 (see Fig. 3.1e). For the SC ap-
plications, each task has next to it the PE it is mapped to and the worst-case execution
time. The period and deadline for the applications are presented under the application
graph. The NC tasks are scheduled using FPS and thus have their worst-case execution
time Ci, deadline Di, period Ti, priority and their PE, specified in the table. We have
set TMF =Tcycle=120 ms. To simplify the discussion, we assume that all NC tasks are
released at time 0 and the communication costs are ignored.

Note that, we consider the mapping of tasks to processing elements as fixed, and given
as indicated in the figure. Very often, the mapping decision is taken based on the ex-
perience and preferences of the engineer, considering aspects such as the functionality
implemented by the task and the type of processing elements available, legacy con-
straints, proximity to sensors and actuators. This could be the reason, for example, that
tasks τ1 and τ2 of A1 are mapped to different processing elements. Many tasks, how-
ever, do not exhibit certain particular features or requirements which lead to an obvious
mapping decision. We address the problem of mapping optimization in Section 3.1.2.

A simple way to do the partitioning is to divide the major frame equally among the 3
applications and to use the same partitioning slices on each PE, as depicted in Fig. 3.1a.
The thin light grey lines are the borders for the partitions slices. Above, respectively
under, each partition slice is specified the application it is assigned to. In this case,
none of the applications meet their deadlines. Tasks τ3 and τ4 from A1 and τ7 from
A2 do not even fit into the system cycle. Note that the deadlines for the NC tasks
are measured from their release time. Task τ8 is released twice during the MF, at
time 0 and 60. Task τ11 is released every second MF. The schedulability of a solution
is defined using the degree of schedulability, defined in Eq. 3.3. For SCS tasks, the
degree of schedulability is the sum of slacks available between the completion time Ri
of an application Ai and its deadline Di. For SCS applications, Ri is determined by the
scheduling in Section 3.4. For the FPS tasks, the degree of schedulability is calculated
at the task level. The completion time Ri of a task τi is determined using the response
time analysis presented in Section 3.5.

The scheduling of SCS tasks is presented in Section 3.4 and the schedulability analysis
for the FPS tasks is presented in Section 3.5.

In order to better accommodate the SC applications, we can try to adjust the size of the
slices and introduce a new slice for A1 on N1 and for A2 on N2, as shown in Fig. 3.1b.
The SC applications meet their deadlines, but the NC tasks τ8 and τ9 miss in this case
theirs. Note that although the slices have the same sizes on the two PEs, they are
assigned to different applications.

Fig. 3.1c presents a way to make the NC task τ8 on N1 meet its deadline. The extra
space from the first partition slice associated to A1 on N1 is assigned to A3, and the

3.1 Problem Formulation 47

second partition slice of A1 is shifted to the right. In this case, both jobs of τ8 will meet
their deadlines. However the NC task τ9 on N2 still has a deadline miss.

With the solution proposed in Fig. 3.1d, the partitioning has been optimized such that
all deadlines are met. In addition, we have also created 3 unused partition slices, de-
picted with a light grey rectangle, which can be used, for example, for future upgrades.
This was managed by moving the time partition slice for the NC task τ9 at the begin-
ning of the partition table on PE N2 and by splitting the SC task τ6 on PE N1 to execute
in two different partition slices.

This example shows that the sequence and length of the partition slices has to be care-
fully optimized in order to find schedulable implementations.

3.1.2 Partition-Aware Mapping Optimization

In the previous subsection we focused on the problem of optimizing the partitioning,
while considering that the engineer has previously decided the mapping of tasks to
processors. Here we assume the mapping is not given and that it has to be decided
by our optimization. Note that here we do not yet consider partition sharing by tasks
of different criticality, which is discussed in Section 3.1.3, nor do we consider task
decomposition, which is discussed in Section 3.1.4.

For simplicity, we consider all applications are scheduled using SCS. We have shown
in the previous section how FPS can be used inside a partition. Compared to the ex-
ample in Section 3.1.1, here we consider that tasks in an application can have different
criticality levels (see Section 2.1.1).

Let us illustrate the problem using the mixed-criticality applications A1, A2 and A3
from Fig. 2.1a, to be implemented on two PEs, N1 and N2. We initially do not consider
task τ12, i.e., it is not part of application A1. We have set TMF to 15 time units and
Tcycle = 2×TMF = 30. The development cost, considering the model from Section 2.1.3
and the lowest SILs of the tasks from Fig. 2.1a is 73 kEuro.

Let us first consider the case when the mapping and partitioning optimizations are
performed separately. Thus, Fig. 3.2a presents the mapping and schedules for the case
when there is no partitioning, i.e., the tasks do not have to be separated, and they can
use the PEs without restrictions. The mapping and scheduling are optimal in terms of
schedulability, captured by the “degree of schedulability” metric from Eq. 3.3, which
is the sum of the slacks available between the completion time Ri of an application
graph Ai and its deadline Di. The “degree of schedulability” cost function is presented
in Eq. 3.3 in Section 3.3. In Fig. 3.2a we show the schedules on each resource, namely,
the PEs N1 and N2 and the bus, using a Gantt chart. The messages on the bus are labeled

48 Design Optimizations at the Processor-Level

(a) Optimal mapping and schedules, without considering partitions

(b) Partitioning, using the previously obtained mapping. τ25 and the second instance of τ11 do
not fit in the schedule

(c) By remapping tasks τ11, τ23 and τ32, and by optimizing the time partitions we manage to
successfully schedule all the applications

(d) By elevating τ22 and τ23 to SIL 3, and thus all the tasks in A2, we manage to successfully
schedule all applications

Figure 3.2: Motivational example

3.1 Problem Formulation 49

with the indices of the sender and receiver task, e.g., the first message on the bus, “20–
22” is sent from task τ20 to τ22. The dashed vertical lines are timeline guides to help
with the visualization of the schedule, and should not be interpreted as partitions, since
we ignore partitions in Fig. 3.2a.

Next, using this optimal mapping, we are interested to obtain the partitions and the
schedules, such that, the separations are enforced and the schedule lengths are min-
imized with the goal of producing a schedulable implementation. Thus, Fig. 3.2b
presents the optimal partitions and schedules (in terms of the same cost function from
Eq. 3.3), considering the fixed mapping decided in Fig. 3.2a. The continuous line at
time 15 represents the major frame boundary, while the shorter continuous lines, such
as the one between tasks τ20 and τ30 represent partition slice boundaries. The partition
slices are denoted with the notation pk

i j introduced in Section 2.2.1. We mark the un-
used CPU time of a partition slice with a hatching pattern, as is the case with partition
slice p1

12 on N1 in the second MF assigned to A2.

With partitioning, tasks can only execute in their assigned partition. Hence, partitioning
may lead to unused slack in the schedule, even in the case of an optimal partitioning and
schedule, as depicted in Fig. 3.2b. In this case, although application A3 is schedulable,
task τ25 of A2 and the second instance of task τ11 of A1 do not fit into the schedule, and
thus applications A1 and A2 are not schedulable.

Our approach presented in Section 3.2.2 is to perform the optimization of mapping
and partitioning at the same time, and not separately. By deciding simultaneously the
mapping and partitioning we have a better chance of obtaining schedulable implemen-
tations. Such a solution is depicted in Fig. 3.2c, where all applications are schedulable.
Compared to the solution in Fig. 3.2b, we have changed the mapping of tasks τ23 and
τ32 from N1 to N2 and of task τ11 from N2 to N1, and we have resized the partition
slices and changed the schedule accordingly. This example shows that by optimiz-
ing the mapping at the same time with partitioning we are able to obtain schedulable
implementations.

3.1.3 Partition-Sharing Optimization

However, there might be cases when obtaining schedulable implementations is not pos-
sible, even if mapping and partitioning are considered simultaneously. For example, let
us consider a similar setup as in the previous section, with the only difference that we
add task τ12 to application A1, see Fig. 2.1a. The development costs, considering the
addition of τ12 at SIL 3 are now 85 kEuro. Due to the addition of τ12 we are now unable
to obtain a schedulable implementation. Note that, although it may seem that task τ12
would fit in-between tasks τ23 and τ33 in the schedule of N2 in Fig. 3.2c, τ12, which
is SIL 3, cannot use that partition, which is for SIL 1 tasks. Moreover, the particular

50 Design Optimizations at the Processor-Level

partition slice cannot be split, because then it would not fit task τ22 in the first major
frame.

For such situations, we consider the elevation of tasks to allow partition sharing, and
we are interested to derive schedulable implementations that minimize the development
costs associated to elevation. Thus, in Fig. 3.2d we allow τ12 of SIL 3 to share the
partition with tasks τ22 and τ23 of SIL 1, by elevating these two tasks to SIL 3. This will
trigger the elevation of the predecessors of τ22 and τ23, namely τ20 and τ21, to SIL 3. In
addition, since τ20 and τ21 share partitions with tasks τ24 and τ25, these will also have
to be elevated to SIL 3, leading to a complete elevation of application A2 from SIL 1 to
SIL 3, which, according to the costs from Fig. 2.1c, means an increase in development
costs from 85 kEuros to 127 kEuros. The solution in Fig. 3.2d is schedulable, and is
optimal in terms of development costs as captured by the cost function from Eq. 3.2
discussed in Section 3.2.2.

Note that, in many application areas, such a development cost increase is preferred to an
increase in unit costs. The optimization approach presented in Section 3.2.2 provides
to a trade-off analysis tool to the engineer, who can decide what is the best option: to
upgrade the platform and increase the unit costs, or to increase the development costs,
but keep the same architecture.

3.1.4 Task Decomposition

We have not yet discussed the issue of SIL decomposition. In Section 3.1.3 we have
shown how to use elevation to achieve partition sharing, which may lead to increased
development costs. Another option is to explore several SIL decompositions for those
tasks for which the engineer has specified a SIL decomposition in the decomposition
library L (see Section 2.1.2). Using SIL decomposition will result in more (redundant)
tasks of lower SILs. Using several tasks of lower SILs has the advantage of lowering
the development costs and may facilitate partition sharing. The disadvantage is the
introduction of more tasks, which have to be placed in the schedule table, potentially
impairing schedulability.

Let us illustrate these issues using the example in Fig. 3.3. We have two applications,
A1 and A2, presented in Fig. 3.3a. The two applications are scheduled using SCS. The
WCETs for the tasks in the two applications are shown in Fig. 3.3b, while Fig. 3.3c
shows the development costs. Let us assume the engineer is considering decompos-
ing task τ11 into two options D1 and D2 as discussed in Section 2.1.2 and shown in
Fig. 3.4a. Fig. 3.4b and Fig. 3.4c present the WCETs and development costs of the
tasks resulted from the decomposition. The TMF is set to 11 time units, and Tcycle is 22.

3.1 Problem Formulation 51

(a) Two applications

(b) WCETs

(c) Development costs (kEuro)

Figure 3.3: Application model example for SIL decomposition

We first show a solution to this example without considering partition sharing and SIL
decomposition. Thus, Fig. 3.5a presents the optimal mapping, partitioning and sched-
ules of tasks, as obtained by running the simultaneous mapping and partitioning op-
timization discussed in Section 3.1.2. In this case, τ22 does not fit into the schedule.
Although A2 has two partition slices on N1, namely p1

12 and p2
12, with a total time of 6

time units out of the 11 time units of the MF, τ22, which is of SIL 1, is allowed to exe-
cute only in p2

12, since it cannot share the partition slice p1
12 with τ21 of SIL 3. Fig. 3.5b

shows a solution where we allow partition sharing, but not SIL decomposition. In this
case, a schedulable solution was obtained by elevating τ22 to SIL 3 to allow τ21 and τ22
to share the same partition slice, namely p1

12. Due to the elevation of τ22, the devel-
opment cost of this solution increased to 194 kEuros, compared to 172 kEuros, if all
the tasks would have been implemented and certified according to their lowest possible
SIL.

We show in Fig. 3.5c the solution when we use SIL decomposition alongside with
partition sharing. In Fig. 3.5c we decompose τ11 of SIL 4 into two tasks, of SIL 3
and SIL 1, respectively, as specified by the decomposition option D2, see Fig. 3.4a.
Decomposing τ11 in this manner increases the cost from 194 kEuros, corresponding
to the solution in Fig. 3.5b, to 242 kEuros. This is because to obtain a schedulable
solution task τ11g is elevated from SIL 1 to SIL 3 and τ13 from SIL 2 to SIL 3 to
share the partition slice p1

21 with the other tasks of SIL 3. Similarly, τ14 is elevated to
SIL 3 to share p1

11 with τ12. Clearly, this decomposition does not help our design, as
it significantly increases the costs. Hence, not all decompositions are improving the
design. Fig. 3.5d presents a solution where we use the SIL decomposition specified by
D1, Fig. 3.4a. Thus, τ11 of SIL 4 is decomposed into two tasks of SIL 2, namely τ11b
and τ11c. Similar to Fig. 3.5b, task τ22 is elevated to SIL 3 to share the partition slice

52 Design Optimizations at the Processor-Level

(a) Library L with two decompositions

(b) WCETs for the tasks resulted from the SIL decomposition

(c) Developments costs for the tasks resulted from SIL decomposition

Figure 3.4: Example decomposition for task τ11

3.1 Problem Formulation 53

(a) No sharing or decomposition, τ22 does not fit into the schedule

(b) By allowing partition sharing, we obtain a schedulable solution

(c) If not selected carefully, SIL decomposition may increase costs

(d) Using an optimized SIL decomposition can lower the development costs

Figure 3.5: SIL decomposition optimization example

54 Design Optimizations at the Processor-Level

p1
12 with τ21. Decomposing in this manner reduces the cost to 160 kEuros, while also

ensuring that all deadlines are satisfied.

This example shows that, in order to reduce costs and obtain schedulable solutions, it
is important to optimize the SIL decomposition.

3.2 Design Optimization Strategies

Next we propose two optimization strategies for the design problems presented in Sec-
tion 3.1. The problem of scheduling tasks on multiprocessors is known to be NP-
complete [171]. Thus, we propose metaheuristics-based optimization strategies to
solve these problems. In Section 3.2.2 we propose a Tabu Search-based (TS) strategy
for the problems presented in Sections design optimization problem presented in Sec-
tion 3.1. However, we first start by presenting in Section 3.2.1 a Simulated Annealing-
based (SA) strategy for the problem of time-partition optimization, presented in Sec-
tion 3.1.1.

3.2.1 Optimization of Time-Partitions

The problem presented in the Section 3.1.1 is NP-complete [171]. Its complexity de-
pends not only on the number of tasks and processors, but also on the number of par-
tition slices on each processor. In order to solve this problem, we will use the opti-
mization strategy Time-Partitioning Optimization (TPO) from Fig. 3.6. TPO takes as
input a set of applications Γ, the set of processing elements N and the mapping of tasks
to processors M, and returns the implementation Ψ consisting of the set of partitions
slices P on each processor and the schedules S for the SC applications. As a reminder,
the problem in Section 3.1.1 considers two criticality levels, safety-critical and non-
critical, with the SC applications scheduled using SCS and NC tasks scheduling FPS.
Moreover, it considers the mapping of tasks to processors as given and fixed. The TPO
strategy has 3 steps:

(1) in the first step, we determine an initial set of partition slices P ◦, line 1 in Fig. 3.6.
P ◦ consists of a simple straight forward partitioning scheme which allocates for each
application A j a total time on PE Ni proportional to the utilization of the tasks of A j
mapped to Ni. The partitions Pi j thus allocated have the same length and they are
distributed with a period equal to the smallest period of a task from A j mapped to Ni.

(2) In the second step, we use a Simulated Annealing metaheuristic to determine the set
of partition slices P such that the applications are schedulable and the unused partition

3.2 Design Optimization Strategies 55

TPO(Γ, N , M)
1 P ◦ = InitialSolution(Γ, N , M)
2 P = SimulatedAnnealing(Γ, N , M, P ◦)
3 S = ListScheduling(Γ, N , M, P)
4 return Ψ =< P ,S >

Figure 3.6: Time-Partition Optimization

space (potentially used for future upgrades) is maximized. The alternatives provided
by Simulated Annealing are evaluated using the cost function from Eq. 3.1.

(3) Finally, given the optimized partitions P obtained in line 2 in Fig. 3.6, we use a List
Scheduling heuristic (presented in Section 3.4) to determine the schedule tables for the
SC applications.

Simulated Annealing (SA) is an optimization metaheuristic that tries to minimize the
cost function in order to find the global optimum by randomly selecting neighboring
solutions of the current solution [22]. The algorithm presented in Fig. 3.7 takes as input
the set of application Γ, the architecture N , the mapping M and the initial partitioning
P ◦, and returns the best solution found P best , i.e., with the smallest cost function (see
line 8 in Fig. 3.7). In order to escape local minima, worse solutions are sometimes
accepted with a probability depending on a control parameter called temperature and
on the deterioration of the cost function (see lines 10 to 13 in Fig. 3.7). Before we call
SA we merge all NC tasks into a single application, since the NC tasks are allowed to
share a partition.

The algorithm is inspired by the process of annealing metals, a thermal process in
which a metal is heated past its melting point and then carefully cooled down so that
the particles arrange themselves with lower internal energy than the initial solution
[22]. The cooling rate of the process influences the quality of the result. The cooling
schedule of SA is defined by the initial temperature T I, the temperature length T L, the
cooling ratio ε and the stopping criterion. The temperature length T L and the cooling
ratio ε decide how fast will the temperature drop. We use a time limit as a stopping
criterion (line 17).

Cost Function. We have defined our cost function as follows:

CostT PO(P) = wSC×δSC +wNC×δNC (3.1)

where δSC is the degree of schedulability for SC applications (scheduled using SCS)
and δNC is the degree of schedulability for NC applications (scheduled using FPS). The
degree of schedulability is presented in Section 3.3.

56 Design Optimizations at the Processor-Level

SimulatedAnnealing(Γ,N ,M,P ◦)
1 temperature = initial temperature T I
2 P now = P best = P ◦
3 repeat
4 for i = 1 to temperature length T L do
5 generate a random neighbor solution P ′ of P now

6 delta = CostT PO(P ′) - CostT PO(P now)
7 if delta < 0 then
8 P now = P best = P ′
9 else

10 generate q = random (0, 1)
11 if q < e−delta/temperature then
12 P now = P ′
13 end if
14 end if
15 end for
16 temperature = ε× temperature
17 until stopping criterion is met
18 return P best

Figure 3.7: The Simulated Annealing algorithm

These are summed together into a single value using the weights wSC and wNC. In case
an application is not schedulable, its corresponding weight is a very big number, i.e.,
a “penalty” value. This allows us to explore unfeasible solutions (which correspond to
unschedulable applications) in the hope of driving the search towards a feasible region.
In case an application Ai is schedulable, we use for the weight a value given by the
engineer, depending on the importance of the application. For example, in our experi-
ments we have used weights for the SC application which are several times greater than
those for the NC applications.

Design Transformations. The neighboring solutions of the current solution P now are
generated using design transformations (or “moves”) applied to P now. There are 4 types
of moves: resize, swap, join and split. The moves are applied to a randomly selected
partition slice from a randomly chosen PE.

The resize move, as its name implies, resizes the selected partition slice. This is done
either by increasing the size of the partition slice at the expense of a neighboring par-
tition slice, or by decreasing it and giving the extra space to a neighboring slice. The
amount with which the partition can be resized is randomly chosen, but we have im-
posed an upper limit (half the size of the partition). The swap move swaps the chosen
partition slice with another randomly chosen partition slice. The join move joins two

3.2 Design Optimization Strategies 57

Figure 3.8: Partition slice move examples

partition slices belonging to the same application, while the split move splits a partition
slice into two, and adds the second slice to the end of the MF. Together with the 4 types
of basic moves, we also apply “improved moves”. An “improved move” is intended to
accelerate the search by performing several basic moves at once.

Fig. 3.8 depicts the basic moves as they are sequentially performed on a single PE,
namely N1. As mentioned, the notation pk

i j means the kth partition slice of the applica-
tion A j on the processing element Ni. There are 4 applications, numbered from 1 to 4,
and the first application has 2 partition slices, p1

11 and p2
11. The current solution P now

is presented in Step 1 in Fig. 3.8. The first move is the split move, which is performed
on the partition slice p1

13 belonging to A3. The slice is split in two equal parts, and the
resulting slice is added to the end of the MF. The second move is a resize with 10 ms,
which affects p1

11 at the expense of p1
12. The third move is a swap of slices p1

12 and
p2

13. The result is shown in the 4th step. The last move is a join move and as previously
mentioned, it can be applied only to partition slices belonging to the same application.
For this move we chose the p1

11 and p2
11 slices. Once a move has been performed on the

partition set P now, the resulted partition set P ′ is evaluated using the cost function from
(3.1), which is executed using List Scheduling and Response Time Analysis, presented
in Section 3.4 and Section 3.5, respectively.

3.2.2 Tabu Search-Based Design Optimization

The problem of scheduling tasks on multiprocessors is known to be NP-complete [171],
while the problem of mapping tasks onto a multiprocessor system is proved to be NP-
hard [37]. In order to solve the problem presented in Section 3.1, we will use the
“Mixed-Criticality Design Optimization” (MCDO) strategy from Fig. 3.9, which is
based on a Tabu Search metaheuristic. MCDO takes as input a set of applications Γ

58 Design Optimizations at the Processor-Level

MCDO(Γ, N , L)
1 < D◦,M◦,P ◦,φ◦ > = InitialSolution(Γ, N)
2 < D,M,P ,φ > = TabuSearch(Γ, N , L , D◦, M◦, P ◦, φ◦)
3 S = ListScheduling(Γ, N , D, M, P , φ)
4 return Ψ =< D,M,P ,φ,S >

Figure 3.9: Mixed-Criticality Design Optimization strategy

(including the SIL information, development costs DC and the separation requirements
graph Π), the SIL decomposition library L and the set of processing elements N , and
returns the implementation Ψ consisting of the SIL decomposition D, the mapping M
of tasks to PEs, the set of partitions slices P on each PE, the assignment φ of tasks to
partitions and the schedules S for the applications. Our strategy has 3 steps:

(1) In the first step, we consider that tasks are not decomposed (denoted with D◦) and
we determine an initial task mapping M◦, an initial set of partition slices P ◦ and an
initial assignment of tasks to partitions φ◦, line 1 in Fig. 3.9. The initial mapping M◦ is
done such that the utilization of processors is balanced and the communication on the
bus is minimized. P ◦ consists of a simple straightforward partitioning scheme which
allocates for each application A j a total time on PE Ni proportional to the utilization of
the tasks of A j mapped to Ni. The initial assignment φ◦ of tasks to partitions consists of
a separate partition for each SIL level in each application, and does not allow partition
sharing.

(2) In the second step, we use a Tabu Search metaheuristic to determine the SIL de-
composition D, the task mapping M, the set of partition slices P and the assignment
of tasks φ to partitions, such that the applications are schedulable and the development
costs are minimized.

(3) Finally, given the SIL decomposition D, the task mapping M, the optimized parti-
tions P and the assignment φ of tasks to partitions obtained in line 2 in Fig. 3.9, we use
a List Scheduling heuristic (see Section 3.4) to determine the schedule tables S for the
applications.

Tabu Search (TS) [83] is a metaheuristic optimization, which searches for that solution
which minimizes the cost function (see Eq. 3.2 for our cost function definition). Tabu
Search takes as input the set of applications Γ, the set of PEs N , the decomposition
library L and the initial solution, consisting of D◦, M◦, P ◦, and φ◦, and returns at the
output the best solution found during the design space exploration, in terms of the cost
function.

Tabu Search explores the design space by using design transformations (or “moves”)
applied to the current solution in order to generate neighboring solutions. To escape lo-

3.2 Design Optimization Strategies 59

TabuSearch(Γ, N , L , D◦, M◦, P ◦, φ◦)
1 Best← Current← < D◦,M◦, P ◦, φ◦ >
2 L←{}
3 while termination condition not reached do
4 remove tabu with the oldest tenure from L if Size(L) = l
5 // generate a subset of neighbors of the current solution
6 C ← GenerateCandidateList(Current,Γ,N)
7 Next← solution from C that minimizes the cost function
8 if CostMCDO(Next) < CostMCDO(Best) then
9 // accept Next as Current solution if better than the best-so-far Best

10 Best← Current← Next
11 add Next to L
12 else if CostMCDO(Next) < CostMCDO(Current) and Next /∈ L then
13 // also accept Next as Current solution if better than Current and not tabu
14 Current← Next
15 add Next to L
16 end if
17 if diversification needed then
18 Current← Diversify(Current)
19 empty L
20 end if
21 if restart needed then
22 Current← Best
23 empty L
24 end if
25 end while
26 return Best

Figure 3.10: The Tabu Search algorithm

cal minima, TS incorporates an adaptive memory (called “tabu list” or “tabu history”),
to prevent the search from revisiting previous solutions, thus avoiding cycling. The size
of the tabu list, that is, the number of solutions marked as tabu, is called tabu tenure. In
case there is no improvement in finding a better solution for a number of iterations, TS
uses diversification, i.e., visiting previously unexplored regions of the search space. In
case the search diversification is unsuccessful, TS will restart the search from the best
known solution.

Fig. 3.10 presents the Tabu Search algorithm. Line 1 initializes the Current and Best
solutions to the initial solution formed by the tuple < D◦, M◦, P ◦, φ◦ >. Line 2 initial-
izes the tabu list L to an empty list. The size l of L, i.e., its tenure, is set by the user.
The Tabu Search algorithm runs until the termination condition is not reached (see
line 3). This termination condition can be, for example, a certain number of iterations

60 Design Optimizations at the Processor-Level

or a number of iterations without improvement, considering the cost function [82]. Our
implementation stops the search after a predetermined amount of time, set by the user.
In case the tabu list L is filled, we remove the oldest tabu from this list (see line 4).

Since it is infeasible to evaluate all the neighboring solutions (see the discussion in this
Section, “Candidate List”), we generate a subset of neighbors of the Current solution
(line 6), called Candidate List and we choose from this Candidate List, as the possible
Next solution, the one that minimizes the cost function (line 7). We accept a solution
as the Current solution from which the exploration continues if: (1) if it has a cost
which is better than the best-so-far solution Best, lines 8–11 in Fig. 3.10, or (2) if it has
a better cost then the Current solution and it is not “tabu”, lines 12–16. The Best and
Current solutions are updated accordingly, lines 10 and 14, respectively, and the Next
solution is added to the tabu list L, lines 11 and 15. Note that in the first case we can
also accept tabu solutions, which is referred to as “aspiration”. In this situation, the
already tabu solution in L will be moved to the tail of the list, thus setting its tenure to
the size l of the list.

In case the algorithm does not manage to improve the current solution after a number
of iterations, it proceeds to a diversification stage (lines 17–20). During this stage, we
attempt to drive the search towards an unexplored region of the design space. Thus,
in the Diversify function call, we randomly decompose tasks that have decomposition
options specified in the library L , and we randomly re-assign a task from each applica-
tion, while keeping the same partition tables. If after a preset number of diversification
stages, the algorithm is still unable to improve the solution, we restart the search from
the best known solution so far (lines 21–24). After a diversification or restart occurs,
the tabu list L is emptied.

Cost Function. For each alternative solution visited by TS we use the List Scheduling-
based heuristic from Section 3.4 to produce the schedule tables S . We define the re-
sponse time Ri of an application Ai as the time difference between the finishing time
of the sink node and the start time of the application. DC(Γ) is the development cost
of the set Γ of all applications (see Section 2.1.3). We define the cost function of an
implementation ψ as:

CostMCDO(ψ) =

{
c1 = ∑Ai∈Γ max(0,Ri−Di) i f c1 > 0
c2 = DC(Γ) i f c1 = 0 (3.2)

This cost function is modified from the degree of schedulability presented in Sec-
tion 3.3. If at least one application is not schedulable, there exists one Ri greater than
the deadline Di, and therefore the term c1 will be positive. However if all the applica-
tions are schedulable, this means that each Ri is smaller than Di, and the term c1 = 0. In
this case, we use c2 as the cost function, since when the applications are schedulable,
we are interested to minimize the development cost.

3.2 Design Optimization Strategies 61

Design Transformations. As previously mentioned, the exploration of the design
space is done by applying design transformations (moves) to the current solution Cur-
rent. We use one re-assignment move, which changes the assignment of a task to
another partition and four types of moves applied to partition slices: resize, swap, join
and split. The partition slice moves are the same as the one used by the TPO algo-
rithm presented in Section 3.2.1. They are presented in Fig. 3.8 and explained in detail
in Section 3.2.1. We also employ SIL decomposition moves, namely decompose and
recompose.

The task re-assignment move re-assigns a task to another partition. The partition can be
an existing one, or newly created. The partition may be on another PE, thus, implicitly,
the re-assignment move will also re-map the task. The re-assignment move respects
the separation requirements graph Π, but does not prevent partition sharing by tasks
of different SILs. In case the move will lead to sharing, we elevate tasks as required,
and update the development costs accordingly. If a re-assignment move results in an
empty partition, the partition is deleted and its assigned CPU time is distributed to a
randomly chosen partition. As a result, the algorithm creates and deletes partitions and
partition slices, as well as resizes them, on the fly as needed, depending on the task
re-assignment moves.

The SIL decomposition moves are applied to the tasks which have decomposition al-
ternatives specified in the library L . The decompose move selects a random decompo-
sition option from the library. The recompose move is applied to a task τi, and it reverts
the task to its initially proposed model, thus undoing any decompose moves that may
have affected τi. These moves are applied during the diversification phase (line 18 in
Fig. 3.10) to randomly selected tasks.

Our algorithm relies on a tabu list with tabu-active attributes, that is, it does not remem-
ber complete solutions in the list L, but rather attributes of the moves that generated the
tabu solutions. In case of the resize and the swap moves, tabu-active attributes are the
involved partition slices. For the split and join moves, the tabu-active attribute is the
partition the move was performed on. As for the re-assignment move, the attributes are
the re-assigned task and the involved partitions.

Let us illustrate in Fig. 3.11 how Tabu Search works. We consider applications A1,
with tasks τ10 and τ11, and A3, with tasks τ30–τ33, from Fig. 2.1, with their periods and
deadlines equal to 16. The size of the major frame TMF is set to 8 and Tcycle is 16. We
are interested to implement these applications on an architecture with two PEs, N1 and
N2. Let us assume that we are running our TS and the current solution, which is also the
best-so-far solution, is the one presented in in Fig. 3.11a. The mapping and assignment
of tasks in this solution is as follows. τ10 ∈ A1 is assigned to partition P2,1 on N2
(composed of partition slice p1

21), while τ11 is assigned to partition P1,1 on N1 (with
partition slice p1

11). In the case of application A3, τ30 and τ31 are assigned to partition
P1,3 on N1 (of slice p1

13), while τ32 and τ33 are assigned to P2,3 on N2 (with slice p1
23).

62 Design Optimizations at the Processor-Level

(a) Current solution

(b) Swap the partitions on N2, results in a solution which is not better than the current solution

(c) Resize τ31’s partition. Best solution so far, although it is a tabu move

(d) Re-assign τ11 to N2. Tabu move and does not improve the solution

(e) Re-assign τ11 to A3’s partition on N1. Best solution so far

Figure 3.11: Moves and tabu history

3.2 Design Optimization Strategies 63

Note that this solution is not schedulable, since tasks τ31 and τ33 from A3 do not fit
into the schedule. Each of the figures from Fig. 3.11b–3.11e presents a neighboring
solution generated from the current solution in Fig. 3.11a, and are intended to illustrate
moves performed by TS and how the tabu list is updated. None of these solutions are
schedulable, but we can see improvements in the cost function, which will drive the
search to a schedulable solution.

Next to each solution we present the value of the cost function associated to the solu-
tion. Since none of these solution are schedulable, the value of the cost function is the
term c1 from Eq. 3.2. Furthermore, we also present for each solution the updated tabu
list (referred to as L in Fig. 3.10). Fig. 3.11a presents the current tabu list. Fig. 3.11b–
3.11e present the updated list, that will be used in case the associated solution is chosen
as the as the Next solution (see Fig. 3.10). For this example, the tabu tenure l is 5. The
tabu most recently added to the list has the highest tenure, while the oldest tabu in the
list has the lowest tenure. For example, in Fig. 3.11a, the most recently added tabu
to the list has a tenure of 5. This tabu is associated to the move that generated this
solution, namely a resize move, and the involved partition slices are p1

21 and p1
23.

Fig. 3.11b presents a neighboring solution obtained from Fig. 3.11a by swapping on
N2 the partition slices p1

21 and p1
23 assigned to A1 and A3, respectively. This move

does not improve the solution, i.e., the value of the cost function is 7 in both cases, and
thus is ignored. Since this solution is ignored, the tabu list is not updated. Fig. 3.11c
shows the solution obtained from Fig. 3.11a obtained by resizing the partition slice
p1

13 on N1. In this solution, p1
13 is increased, while the size of p1

11 is decreased. This
solution was generated by a move that is tabu. Because this solution is better than the
best-so-far solution shown in Fig. 3.11a, in terms of the cost function (the value of the
cost function is 4 in the new solution, compared to 7 in Fig. 3.11a) the tabu status of
the move is ignored. The updated tabu list, in case the search will continue with this
solution as the Current solution, is presented next to the solution.

The solution in Fig. 3.11d is obtained by re-assigning task τ11 from partition P1,1 on
N1 (composed of partition slice p1

11) in Fig. 3.11a to P2,1 on N2 (of slice p1
21). Af-

ter re-assigning τ11, partition P1,1 on N1, composed of p1
11, has no tasks assigned to

it, therefore it is deleted and the algorithm “transfers” the CPU time of P1,1 to P1,3
(composed of p1

13). Thus, on N1, there is only one partition slice executing, i.e., p1
13.

Although this move does improve the solution presented in Fig. 3.11a in terms of the
cost function, it is not better than the solution from Fig. 3.11c, and hence, it is ignored.
Fig. 3.11e presents a solution obtained by re-assigning τ11 from partition P1,1 on N1 in
Fig. 3.11a to P1,3. Similar to the solution from Fig. 3.11d, since partition P1,1 has no
tasks assigned to it, it is deleted and its CPU time given to P1,3. Furthermore, τ11 shares
the partition with τ30 and τ31. Since τ11 is a task with SIL 3, and tasks τ30 and τ31 are
SIL 2 tasks, the two tasks from A3 have to be elevated to SIL 3, thus increasing the
development costs of the system. This move does not result in a schedulable solution,
but it improves the solution in terms of cost function. The value of the cost function

64 Design Optimizations at the Processor-Level

in this case is 3, and is better than the other neighboring solutions. The search will
continue with this solution as the Current solution, and the tabu list will be accordingly
updated.

Candidate List. The neighborhood of the Current solution is composed of all the so-
lutions which are “one move away”, that is, obtained by applying a move to the Current
solution. To decide which move to select as the Next solution, we need to determine
which of the neighbors minimizes the cost function (line 7 in Fig. 3.10). Calculating the
cost function (Eq. 3.2) means determining the schedule tables for all the applications
(term c1 in Eq. 3.2) and, if they are schedulable, a sumation of the development costs
for all tasks (term c2). Since the size of a neighborhood is large, calculating the cost
function for every neighbor would take a very long time, rendering the search process
infeasible. Instead, only a part of the neighborhood is considered, and neighbors are
placed on a so called candidate list C . One option is to select randomly the neighbors
to be placed on the candidate list. However, we use a heuristic approach that selects
those neighbors which have a higher chance to lead quickly to good quality solutions.

The candidate list generation algorithm is presented in Fig. 3.12. The algorithm takes as
input the Current solution, the set of applications Γ and the set of processing elements
N , and returns a list C of candidate solutions. The algorithm is called on line 6 in our
Tabu Search from Fig. 3.10.

The algorithm starts with an empty candidate list C (line 1 in Fig. 3.12). The neighbors
placed in C are obtained by performing moves on the Current solution. The following
moves are considered. On each PE, the algorithm performs partition related moves (re-
size, swap, join and split moves) on random partition slices (lines 3–5). On each PE,
the algorithm chooses as a candidate the most oversized partition, that is, the partition
with the lowest ratio of used CPU time compared to actual allocated time (line 6), and
resizes (shrinks) this partition. This is done to transfer “unused” CPU time from an
oversized partition to another partition, in the hope of improving the overall schedula-
bility of the system. Similarly, there might exist situations where we have undersized
partitions, that is, partitions that have more tasks assigned than allocated CPU time, or
partitions where the allocated time is not enough for all the assigned tasks to execute
before their deadline. For such situations, on each PE, the algorithm selects the most
undersized partition, i.e., the partition with the highest ratio of required CPU time com-
pared to the actual allocated time, and resizes this partition, increasing its size (line 7).

Such an example is given in Fig. 3.11c, obtained from Fig. 3.11a. The most undersized
partition in Fig 3.11a, on PE N1 is partition P1,3 containing partition slice p1

13. This
partition has an allocated time of 8 time units during the MF, and has assigned to it
tasks τ30 and τ31, requiring 10 time units for execution. Thus, it has a ratio of required
to allocated CPU time of 125%. The other partition on N1, P1,1, has only τ11 assigned to

3.2 Design Optimization Strategies 65

GenerateCandidateList(Current,Γ,N)
1 C ← {}
2 for Ni ∈N do
3 for all move ∈ {resize, swap, join, split} do
4 C ← C ∪{New|New← apply move to a random partition slice on N j in Cur-

rent}
5 end for
6 C ← C ∪{ New| New← resize most oversized partition on N j in Current}
7 C ← C ∪{ New| New← resize most undersized partition on N j in Current}
8 end for
9 if perform moves on tasks then

10 for all applications Ai that missed their deadlines do
11 C ← C ∪{New|New← re-assign random task τ j ∈ Ai to random partition in

Current}
12 end for
13 for all PEi ∈N do
14 C←C ∪{New|New← re-assign random task τ j from Ni to a random partition

on Nk 6= PEi in Current}
15 C ← C ∪{New|New← re-assign random task τ j from Ni to another partition

on Ni in Current}
16 C ← C ∪{New|New← re-assign random task τ j from Ni to another applica-

tion’s partition in Current}
17 end for
18 end if
19 return C

Figure 3.12: Algorithm to generate the candidate list C

it, which requires only 3 time units for execution, out of the 8 allocated to the partition.
The ratio of required to allocated CPU time for this partition is only 37.5%. Hence,
the most undersized partition, i.e., P1,3, is increased, by transferring CPU time from
partition slice p1

11 to p1
13. The candidate solution generated by this move is presented

in Fig. 3.11c, and is better than the solution shown in Fig. 3.11a, in terms of the cost
function.

The diversification stage presented in Fig. 3.10, line 18, randomly re-assigns a task
from each application, while keeping the same partition tables. Furthermore, during
this phase, randomly selected tasks that have decomposition options specified in the
decomposition library L , are decomposed. The introduction of the decomposed tasks
may decrease the schedulability of the diversified solution. In order to allow TS to im-
prove on the schedulability by adapting the partition table to the new mapping scheme
and to the decomposed tasks, we do not allow any re-assignment moves for a certain
number of iterations. This condition is shown in line 9, in Fig. 3.12. Thus, we force the

66 Design Optimizations at the Processor-Level

TS to explore this new design space area, while keeping the assignment of tasks to par-
titions fixed. When this restriction is lifted, the algorithm focuses on the applications
that miss their deadlines, in order to make them schedulable (lines 10–12 in Fig. 3.12).
For this, the algorithm selects a random task from each application missing its dead-
line, and re-assigns it to another partition. Furthermore, on each PE we perform three
types of re-assign moves (lines 13–17), in hope to thoroughly explore the design space.
The algorithm re-assigns a random task τi to another PE, but to the same application’s
partition (line 14); a random task to the same PE, but to another partition (line 15); and
another task to another PE, to another application’s partition (line 16).

3.3 Degree of Schedulability

The degree of schedulability, defined in [131], is calculated as:

δ =

{
c1 = ∑i max(0,Ri−Di) if c1 > 0
c2 = ∑i(Ri−Di) if c1 = 0 (3.3)

For applications scheduled using SCS, δ is computed at application level, and thus Ri is
the response time of the application (i.e., the finishing time of the sink node) as resulted
from List Scheduling (see Section 3.4), while Di is the deadline of the application. For
tasks scheduled using FPS, δ is computed at task level. Thus, Ri is the worst-case
response time and Di is the deadline of each task. The response time for each task is
computed according to the response time analysis presented in Section 3.5.

If at least one FPS task or SCS application is not schedulable, there exists one Ri greater
than the deadline Di, and therefore the term c1 will be positive. However if all the tasks
(applications) are schedulable, this means that each Ri is smaller than Di, and the term
c1 = 0. In this case, we use c2 as the degree of schedulability, since it can distinguish
between two schedulable solutions [131].

3.4 List Scheduling

Given a partition set P , we use a List Scheduling (LS)-based heuristic to determine
the schedule tables S for each application scheduled using SCS. LS heuristics use a
sorted priority list, Lready, containing the tasks ready to be scheduled. A task τi is ready
if all the predecessor tasks have finished executing and all the incoming messages are
received. We use the Modified Partial Critical Path priority function [132] to sort Lready.

3.5 Response Time Analysis 67

We define the response time Ri of an application Ai as the time difference between
the finishing time of the sink node and the start time of the application. Thus, LS is
applied to each SCS application. We have modified the classical LS algorithm to take
into account the partitions. Thus, when scheduling a task, we are allowed to use only
the corresponding partitions slices from P . If a partition slice finishes before a task
has completed its execution (as is the case with τ31 ∈ A3 in Fig. 3.2b), we assume
that the task is suspended and will continue its execution in the next partition where is
assigned. Our LS implementation takes into account the partition switching overhead
tO. The suspension of the task will take place online, based on the partition scheme P
loaded into the kernel and tO captures the time needed to do a context switch to another
partition. LS also derives the schedules tables for the messages on the bus.

3.5 Response Time Analysis

To determine the schedulability of FPS applications we use a response-time analy-
sis [56] to calculate the worst-case response time Ri of every FPS task τi, which is
compared to its deadline Di. The basic analysis presented in [56] has been extended
over the years. For example, the state-of-the-art analysis from [123] considers arbi-
trary arrival times and deadlines, offsets and synchronous inter-task communication
(where a receiving task has to wait for the input of the sender task). Audsley and
Wellings [30] have proposed a schedulability analysis for FPS tasks using temporal
partitioning (IMA), which, when analyzing a FPS task in a certain partition, consid-
ers the other time-partitions as higher priority tasks. This analysis assumes that the
deadlines are smaller or equal to the periods, that the tasks are independent, and that
the start times of partition slices within a major frame are periodic. Pop et al. [136]
have proposed a schedulability analysis for ET tasks, which extends the schedulability
analysis with static and dynamic offsets in [123] to consider the influence of the TT
tasks on the worst-case response times of the ET tasks.

In this thesis, we have extended the analysis from [136] to consider the influence of
time-partitions on the schedulability of the FPS tasks. In [136], the authors introduce
the notion of ET demand and ET availability, used to compute the length of the busy
window wi, which is needed in order to compute the worst-case response time Ri of a
task τi. The busy window wi is the longest time interval during which tasks of priority
equal or greater than τi are continuously executing [78]. The worst-case response time
is determined using Eq. 3.4, considering a certain length of the busy window wi, and
all the higher priority tasks:

Ri = wi−ϕi− (p−1)×Ti +φi (3.4)

where p is the number of activations of task τi in the busy window wi, Ti is the period of
τi, the offset φi is the earliest activation of τi relative to the occurrence of the triggering

68 Design Optimizations at the Processor-Level

event and the phase ϕi is the time interval between the critical instant and earliest time
of the first activation of τi. The worst-case response time Ri for the task τi is the
maximum value of the result in Eq. 3.4, considering all the critical instants initiated by
higher priority tasks and by τi and also all the job instances. During the calculation,
if the available time does not satisfy the demand of τi then the algorithm increases
iteratively the length of the busy window wi which is analyzed [136].

Similar to the notion of ET demand from [136], we introduce FPS demand, associated
with a FPS task τi on a time interval t, as the maximum amount of CPU time which
can be demanded by higher or equal priority FPS tasks and by τi. Fig. 3.13 shows
the analysis for a task τi, considering the busy window that starts at the critical instant
qTi + tc, initiated by task τa and ends at the moment qTi + tc +wi, when all the higher
priority tasks (τa and τb) and τi itself have finished execution, and when all the partition
slices interrupting τi have finished.

During the busy window wi, the demand Hi associated with task τi scheduled in a parti-
tion Pk is equal with the length of the busy window that would result when considering
that Pk would be the only partition on the processor. Thus, similar to [136] and [123],
the FPS demand is:

Hi(wi) = Bi +(p− p0,i +1)×Ci +

Wi(τi,wi)+ ∑
∀(a∈Aa 6=Ai)

W ∗a (τi,wi) (3.5)

where Bi is the maximum blocking time for τi. The job activations of task τi during wi

are denoted with p and positive values are assigned to instances arriving after tc, while
zero and negative values indicate the instance arrived before tc. Thus, p0,i is the index
of the first pending instance of τi and is computed as follows:

p0,i = 1−nia = 1−
⌊

Ji +ϕi

Ti

⌋
, (3.6)

where nia is the number of pending τi jobs at tc, during the busy window wi initiated by
τa.

Figure 3.13: Availability and demand

3.6 Experimental Results 69

Wi(τi,wi) is the interference from higher priority tasks hp(τi) in the same application
Ai as τi:

Wi(τi,wi) = ∑
j∈hp(τi)

(

⌊
J j +ϕi

Ti

⌋
+

⌈
wi−ϕi

Ti

⌉
)×C j (3.7)

and W ∗a (τi,wi) is the worst-case interference from higher priority hpa(τi) tasks from
other applications than the application Ai that τi belongs to:

W ∗a (τi,wi) = max(Wk(τi,wi)),∀k ∈ hpa(τi) (3.8)

Fig. 3.13 shows that the FPS demand of task τi during the busy window wi is the sum
of the worst case execution times of the higher priority FPS tasks, Ca and Cb, and the
worst-case execution time Ci of τi.

We extend the concept of availability from [136] as the processing time available dur-
ing wi for Pk. Considering we are using time partitions and that task τi can execute only
during its own partition Pk, the availability is computed by subtracting from wi the time
reserved for the “other partitions”. In Fig. 3.13 the other partitions are illustrated with
hashed rectangles and their duration denoted with s1 and s2.

3.6 Experimental Results

We have implemented the algorithms presented in Section 3.2 in Java (JDK 1.6), run-
ning on SunFire v440 computers with UltraSPARC IIIi CPUs at 1.062 GHz and 8 GB
of RAM. We have evaluated our algorithms using synthetic and real-life benchmarks.
We will first present the evaluation of the TPO algorithm, described in Section 3.2.1,
and then the evaluation of MCDO, described in Section 3.2.2.

3.6.1 Optimization of Time-Partition

The problem of the optimization of time partitions addresses was presented in Sec-
tion 3.1.1, and the TPO algorithm was described in Section 3.2.1. As a reminder, TPO
assumes that the mapping of tasks is given. Moreover, we do not consider the issue of
cost. Therefore, TPO does not address partition sharing or task decomposition. TPO
considers that the safety-critical applications are scheduled using SCS, while the non-
critical tasks are scheduled using FPS.

For the evaluation of our proposed algorithm we used 10 synthetic benchmarks and
2 real life case studies. In the first set of experiments we were interested to evaluate

70 Design Optimizations at the Processor-Level

the proposed TPO strategy in terms of its ability to find schedulable implementations.
Thus, we have used 5 synthetic benchmarks with 3 to 5 SC applications (with a total
of 15 to 53 SC tasks). All the NC tasks have been merged into a single NC appli-
cation, with 5 to 9 tasks. The resulted mixed-criticality system has been mapped on
architectures ranging from 2 to 6 processing elements. The mapping has been done
such that the utilization on the PEs is balanced and the communication over the bus is
minimized. The execution times and message lengths were assigned randomly within
the 1 to 19 ms and 1 to 5 bytes ranges, respectively. The weights used for computing
the cost function were wSC = 400 for SC applications and wNC = 100 for NC tasks (see
Section 3.2.1).

We have used two time limits for the experiments: 10 minutes and 120 minutes. The
results obtained with TPO using a time limit of 120 minutes are presented in Table 3.1,
under the heading “TPO, 120 min. time limit”.

We were interested to determine the quality of our SA-based TPO strategy. Hence, we
have used an exhaustive search to determine the optimal solutions. Since the runtime
of the exhaustive search is prohibitively large, we were only able to run it for smaller
examples, benchmarks labelled “1.1”, “2.1” and “2.2” in Table 3.1. In these cases,
our SA-based approach is capable of obtaining (in 120 minutes) solutions which are
very close to the optimum. For the benchmarks labelled “1.1”, “2.1” and “2.2” the
difference in term of the cost function is only 4.51%, 0.16% and 1.9%, respectively.

Together with TPO, Table 3.1 also presents the results obtained using a Straightforward
Solution (SS), which implements the approach from the InitialSolution function pre-
sented in Section 3.2.1. SS is an approach that a good engineer would use if TPO would
not be available. Columns 3 and 5 in Table 3.1 present the number of SC applications,
and the NC tasks, respectively. The number of schedulable applications and tasks (out
of the total) obtained by our proposed TPO strategy are presented in columns 9 and
10, respectively, while columns 7 and 8 present the results obtained using SS. Columns
11 and 12 represent the percentage increase in the degree of schedulability for SC ap-
plications, ∆SC, and NC tasks, ∆NC, (see Section 3.3) as obtained by the TPO strategy
compared to the SS, considering a time limit of 120 minutes. A negative value for ∆NC
means that our optimization has decreased the degree of schedulability for the NC tasks
in order to guarantee that all SC applications are schedulable. Note that the NC tasks
are still schedulable in this case, but their response times have increased, compared to
SS, which over-dimensioned the NC partitions. Column 13 represents the average of
the percentage increase in the degree of schedulability for the whole system.

We have also run TPO with a time limit of 10 min. TPO is able to obtain schedulable
solutions in all cases, except for the case study in line 4 in Table I. The average devi-
ation of the percentage increase of the cost function (as captured by Eq. 3.1) for the
schedulable results, compared to the results obtained with TPO using a 120 min. time
limit, is of 10.48%.

3.6 Experimental Results 71

Ta
bl

e
3.

1:
T

PO
ex

pe
ri

m
en

ta
lr

es
ul

ts

Se
t

B
en

ch
m

ar
k

SC
N

C
PE

s
SS

T
PO

,1
20

m
in

.t
im

e
lim

it
A

pp
s

Ta
sk

s
Ta

sk
s

Sc
he

d.
SC

A
pp

s
Sc

he
d.

N
C

Ta
sk

s
Sc

he
d.

SC
A

pp
s

Sc
he

d.
N

C
Ta

sk
s

∆
SC

∆
N

C
av

g.
%

in
cr

ea
se

in
δ

1

1.
1

3
15

5
2

1
of

3
A

ll
A

ll
A

ll
17

09
.7

6
-4

4.
00

83
2.

88
1.

2
3

20
6

3
1

of
3

A
ll

A
ll

A
ll

10
7.

94
-5

3.
23

27
.3

6
1.

3
4

34
6

4
N

on
e

A
ll

A
ll

A
ll

16
9.

68
7.

14
88

.4
1

1.
4

4
40

10
5

N
on

e
A

ll
A

ll
A

ll
14

7.
54

-0
.4

0
73

.5
7

1.
5

5
53

9
6

3
of

5
A

ll
A

ll
A

ll
54

2.
78

14
.6

6
27

8.
72

2

2.
1

1
6

6
4

A
ll

A
ll

A
ll

A
ll

78
.3

8
0.

00
39

.1
9

2.
2

2
12

6
4

A
ll

A
ll

A
ll

A
ll

59
.2

0
-2

.8
7

28
.1

7
2.

3
3

20
6

4
N

on
e

5
of

6
A

ll
A

ll
51

8.
06

14
53

.8
5

98
5.

96
2.

4
4

30
6

4
1

of
4

A
ll

A
ll

A
ll

21
1.

66
0.

00
10

5.
83

2.
5

5
34

6
4

2
of

5
5

of
6

A
ll

A
ll

46
6.

36
67

3.
33

56
9.

85

3
au

to
3

19
5

3
N

on
e

A
ll

A
ll

A
ll

22
7.

33
0.

57
11

3.
95

te
le

co
m

4
19

6
3

A
ll

A
ll

A
ll

A
ll

13
5.

29
-1

1.
56

61
.8

7

72 Design Optimizations at the Processor-Level

As we can see from “Set 1”, SS which does not perform optimization, is not able
to find schedulable implementations. For example, for the largest benchmark, with
5 SC application and 9 NC tasks mapped on 6 PEs only 3 out of 5 SC applications
are schedulable. All the NC tasks are schedulable. Note that SS leads to schedulable
NC implementations. This is because it distributes the partition slices to match the
smallest period of the tasks. However, since the slices have equal lengths, there is
a lot of wasted space in the schedules of SC applications, which leads to missed SC
deadlines. However, by applying our proposed TPO approach, we are able to optimize
the time partitions such that all applications are schedulable. We have measured the
ability of TPO to improve over SS by using a percentage average increase in the degree
of schedulability over all applications, presented in the last column. As we can see
there is a dramatic increase in the degree of schedulability over all applications, when
using TPO. This means that we can potentially implement the applications on a slower
(cheaper) architecture.

In the second set of applications, labeled “Set 2”, we were interested to see how TPO
performs as the utilization of the system increases. We have mapped 2 to 6 applications
on the same architecture of 4 PEs. As we can see, TPO is able to find schedulable
implementations even as the utilization increases.

Finally, we have also used 2 real life benchmarks derived from the Embedded Systems
Synthesis Benchmarks Suite (E3S) version 0.9 [70]. We have used the auto-indust-
cowls and telecom-mocsyn benchmarks, labelled as “auto” and “telecom” in Table 3.1.
In the case of the “auto”, the first 3 applications are considered SC, while the last one
is NC. In the case of “telecom” test case, the applications numbered as 0, 1, 2 and 4
were used as SC, and applications numbered as 3, 5, 6 and 7 were merged into one NC
application. In both cases the applications are mapped on an architecture of 3 PEs. The
results obtained from these real-life benchmarks confirm the results of the synthetic
benchmarks.

3.6.2 Mixed-Criticality Design Optimization

Next we evaluate our proposed “Mixed-Criticality Design Optimization” (MCDO)
strategy described in Section 3.2.2, which addresses the complete set of optimization
problems presented in Section 3.1. To remind the assumptions of MCDO, the mapping
of tasks to processors and the partitioning are not given, but have to be decided by
MCDO. Furthermore, MCDO performs partition sharing and task decomposition. For
simplicity, we consider all applications scheduled using SCS, but MCDO can be easily
extended to consider FPS tasks.

For the evaluation of our MCDO algorithm we used 7 synthetic benchmarks and 2
real-life case studies. In the first set of experiments we were interested to evaluate the

3.6 Experimental Results 73

proposed MCDO in terms of its ability to find schedulable implementations. Thus,
we have used 3 synthetic benchmarks with 3 to 5 mixed-criticality applications (with
a total of 15 to 41 tasks). We have used MCDO to implement these applications on
architectures with 2 to 5 processing elements. The execution times and message lengths
were assigned randomly within the 1 to 19 ms and 1 to 5 bytes ranges, respectively. The
details of each benchmark, namely the benchmark number, the number of applications,
the number of tasks and the number of processing elements are presented in Table 3.2,
columns 2–5. For all the experiments, we used the decompositions in Table 2.1.

We were interested to compare the number of schedulable implementations found by
MCDO with two other setups. In one of the setup, SIL decomposition is not used
and the sharing of partitions by tasks of different criticality levels is not allowed, but
mapping and partitioning optimization is performed simultaneously. Let us call this
simultaneous “mapping and partitioning optimization”, MPO. In the other setup, shar-
ing and decomposition are not allowed, and in addition, mapping optimization (MO)
is performed separately from partitioning optimization (PO). We call such an approach
MO+PO.

MO+PO and MPO are based on the MCDO strategy presented in Fig. 3.9, and use the
same Tabu Search for the optimization. The difference is in the types of moves per-
formed by TS: there are only mapping moves for MO (without considering partitions),
we use only partition-related moves in PO, considering mapping fixed, as determined
by MO. In addition, MPO does not allow decomposition moves and re-assignment
moves that would lead to partition sharing by mixed-criticality tasks. Further, MO, PO
and MPO use as cost function the “degree of schedulability” (see Section 3.3).

The termination condition of our Tabu Search is a time limit given by the engineer. Very
long runs were performed with MCDO and the best solution obtained was considered
the near-optimal solution. Then, we have set the time limit for the experiments such
that this near-optimal solution is found and the time is as small as possible. The time
imposed for each individual experiment is 480 minutes.

The results for the first set of experiments are presented in Table 3.2 in the rows cor-
responding to “Set 1”. The number of schedulable applications, resulted after imple-
menting the system using MO+PO, MPO and MCDO are reported in columns 6, 7 and
9, respectively, labelled with the respective acronym and “Sched. apps.”.

As we can see from the comparison between MO+PO and MPO, there is a significant
improvement in the number of schedulable applications if the optimization of mapping
is considered at the same time with the optimization of partitioning. For example, for
the second benchmark (benchmark “1.2” in Set 1) with 4 applications mapped to 4
PEs, MO+PO is unable to successfully schedule any of the applications. MPO, which
performs mapping and time optimization simultaneously, is able to schedule 3 out 4
applications. We have also compared MPO and MO+PO in terms of the degree of

74 Design Optimizations at the Processor-Level

Table 3.2: Comparison of MO+PO, MPO and MCDO experimental results

Set Benchmark Apps Tasks PE
MO+PO MPO MCDO
Sched.
Apps

Sched.
Apps

δSched
(%)

Sched.
Apps

δDC
(kEuro)

1
1.1 3 15 2 2 2 450 All 59
1.2 4 34 4 0 3 3600 All 19
1.3 5 41 5 3 All 235 – –

2

2.1 3 20 4 All All 1.10 – –
2.2 4 30 4 All All 23.96 – –
2.3 5 34 4 4 All 13.27 – –
2.4 6 39 4 3 5 208.11 All 470

3
consumer 2 12 3 0 1 343.45 All 123

networking 4 13 3 2 2 31.78 All 40

schedulability (see Section 3.3). The percentage improvement δsched of MPO over
MO+PO is presented in column 8. An improvement in the degree of schedulability
means that there is more slack available in the schedule, which can be used for future
upgrades, for example.

If MPO produces a schedulable solution, i.e., the applications are schedulable without
SIL decomposition or partition sharing, we do not have to run MCDO. This is indicated
in the table using a dash “–” in the MCDO columns. However, MPO is not able to
find schedulable implementations in the first two cases. In such situations, MCDO,
which optimizes the SIL decompositions and the partition sharing at the same time
with mapping and partitioning, can find schedulable implementations in all cases.

Once a schedulable implementation is found by using decomposition and elevation,
the cost function from Eq. 3.2 will drive MCDO to solutions that minimize the de-
velopment cost. Elevation for partition sharing will increase the development costs,
whereas SIL decomposition has the potential to reduce these costs. The increase δDC
in development cost that we have to pay in order to find schedulable implementations,
compared to MPO which does not perform SIL elevation or decomposition, is reported
in the last column of Table 3.2.

In the second set of experiments, labeled “Set 2” in Table 3.2, we were interested to
see how MCDO performs compared to MO+PO and MPO as the utilization of the sys-
tem increases. Thus, we have an increasing number of mixed-criticality applications,
from 3 to 6 and we have used the same architecture of 4 PEs. As we can see, for
the smaller benchmarks of 3 and 4 applications (benchmarks “2.1” and “2.2”, respec-
tively), MO+PO is able to find schedulable implementations. Optimizing the mapping
and time partitions using MPO leads to more schedulable implementations, i.e., “All”
applications are schedulable in benchmark “2.3”. However, as the system utilization

3.6 Experimental Results 75

increases, as is the case for the largest benchmark in this set (“4.4”), where we used 6
applications on 4 PEs, only MCDO, which considers decomposition and elevation to al-
low partition sharing by tasks of mixed-criticality, is able to find schedulable solutions.
Therefore, MCDO is able to integrate successfully more mixed-criticality applications
on the same integrated architecture, thus saving product unit costs by avoiding costly
architecture upgrades across the product line.

Finally, we have also used 2 real life benchmarks derived from the Embedded Sys-
tems Synthesis Benchmarks Suite [70] version 0.9. We have used the consumer-cords
and networking-cords benchmarks. In both cases we were interested to implement
the applications to an architecture of 3 PEs. The results obtained from these real-life
benchmarks are reported in the last 2 lines in Table 3.2 and confirm the results of the
synthetic benchmarks.

76 Design Optimizations at the Processor-Level

CHAPTER 4

Design Optimizations at the
Network-Level

The previous chapter has presented design optimizations for mixed criticality applica-
tions implemented on distributed heterogeneous architectures. We have assumed a sim-
ple statically scheduled bus for the communication. In this chapter we address mixed-
criticality applications in the context of a realistic communication protocol, namely
TTEthernet. The TTEthernet protocol and the models used at the communication level
have been presented in Sections 2.2.3 and 2.2.2, respectively.

4.1 Problem Formulation

The problem we are addressing in this chapter can be formulated as follows: given
(1) the topology GC of the TTEthernet cluster, (2) the set of TT and RC messages
M T T ∪M RC and (3) for each message mi the size, deadline, period / rate, SIL and
the source and destination End Systems, we are interested to determine an optimized
implementation ϒ such that the deadlines for the TT and RC frames are satisfied. De-
termining an implementation means deciding on the (i) fragmenting Φm of messages
and packing K of messages and messages fragments into frames, (ii) the assignment
MF of frames to virtual links, (iii) the routing RV L of virtual links, (iv) the bandwidth
for each RC virtual link and (v) the set of TT schedule tables S .

78 Design Optimizations at the Network-Level

Once both TT and RC frames are schedulable several optimization objectives can be
tackled. In this chapter we are interested to optimize the network configuration such
that all frames are schedulable and the end-to-end delay of RC frames is minimized.
Section 4.2.1 presents the cost function used for the optimization. We ignore the BE
traffic in this chapter, but a quality-of-service measure for the BE traffic could easily
be added to the objective function, as we will show in Chapter 5. In this chapter we are
not concerned with scheduling redundant message delivery for fault-tolerance, since
TTEthernet networks can be physically replicated. The schedules we derive for TT
messages are used for all the replicated channels. The design optimization problems
addressed in this chapter are illustrated in the next subsections using several motiva-
tional examples.

4.1.1 Straightforward Solution

Let us illustrate the design optimization problem using the setup from Fig. 4.1, where
we have a cluster composed of five end systems, ES1 to ES5 and three network switches
NS1 to NS3 (see Fig. 4.1a) and an application with five TT messages, m1 to m5, and
two RC messages, m6 and m7, see the table in Fig. 4.1b. The periods mi.period and
deadlines mi.deadline of each message mi are given in the table. For simplicity, in this
example we assume all messages to have the same SIL. Although the standard TTEth-
ernet speed is 100 Mbps or higher, for the sake of this example we consider a link speed
of only 2 Mbps, and that all the dataflow links have the same speed. In Fig. 4.1b we
also specify the source and destination for each message. For simplicity, we considered
one destination for each message. The table also contains the transmission times Ci for
each message mi in our setup, considering for the moment that each message is packed
into its own frame. We take into account the total overhead of the protocol for one
frame (67 B for each frame).

Our problem is to determine the (i) message fragmenting and packing, (ii) the assign-
ment of frames to virtual links, (iii) the routing of virtual links, (iv) the bandwidth for
each RC virtual link and (v) the TT schedules S such that all the TT and RC frames are
schedulable. The schedulability of a TT frame fi is easy to determine: we just have to
check the schedules S to see if the times are such that the TT frame fi is received before
its deadline fi.deadline. To determine the schedulability of an RC frame f j we have
to compute its Worst-Case end-to-end Delay (WCD), from the moment it is sent to the
moment it is received. We denote this worst-case delay with R f j . In [169], we have
presented a schedulability analysis technique to determine the WCD of an RC frame.
By comparing R f j with the deadline f j.deadline, we can determine if an RC frame f j
is schedulable. For this example we consider that the RC and TT traffic are integrated
using a “timely block” policy (see Section 2.2.3), i.e., an RC frame will be delayed if
it could block a scheduled TT frame.

4.1 Problem Formulation 79

(a) Example architecture model
period deadline size Ci Source Dest(ms) (ms) (B) (ms)

m1 ∈M T T 40 40 233 1.2 ES1 ES4
m2 ∈M T T 40 40 683 3 ES2 ES4
m3 ∈M T T 10 10 433 2 ES3 ES4
m4 ∈M T T 40 40 1183 5 ES1 ES4
m5 ∈M T T 10 10 183 1 ES2 ES4
m6 ∈M RC 40 32 233 1.2 ES1 ES5
m7 ∈M RC 20 16 483 2.2 ES2 ES5

(b) Example application model

Figure 4.1: Example system model

A Straightforward Solution (SS) to our optimization problem is to (i) pack each mes-
sage into its own frame and (ii) assign this frame to a virtual link, (iii) route each virtual
link on the shortest paths from the frame source to its destinations, (iv) set the band-
width for each RC virtual link to the minimum required for the respective RC frame
rate, and (v) schedule the TT frames using As-Soon-As-Possible (ASAP) scheduling.
Such a straightforward solution would be chosen by a good engineer without the help of
our optimization tool. For the example in Fig. 4.1, this solution is depicted in Fig. 4.2a.
Let us discuss it in more detail.

(i) Fragmenting, packing: SS does not fragment messages, and packs each message
mi into a frame fi, with fi inheriting the size, period and deadline of mi. (ii) Frame
assignment and (iii) VL routing. We assign each frame fi to a virtual link vli and route
the VL along the shortest path in the physical topology. The resulted VLs are vl1 to vl5
and they are depicted with dot dash red arrows in Fig. 4.1a. (iv) Each RC VL carrying

80 Design Optimizations at the Network-Level

(a) Straighforward Solution, each message assigned to one frame,
routed along the shortest path, and scheduled ASAP, results in
f7 missing its deadline in the worst-case scenario

(b) Alternative baseline solution, using SS approach for message
packing and frame routing, but a different TT schedule. In this
case f7 misses its deadline in the worst-case scenario

Figure 4.2: Baseline solutions

4.1 Problem Formulation 81

an RC frame has an associated bandwidth parameter called BAG, from Bandwidth
Allocation Gap (see Section 2.2.3). BAG(vli) is the minimum time interval between
two consecutive instances of an RC frame fi on VL vli. SS will set the BAG in such a
way to guarantee the rate of the frame fi, while respecting the protocol constraints on
BAG sizes (see Section 2.2.3.2). Thus, the BAG(vli) for each VL vli of an RC frame is
chosen as the largest value 2i, i=0..7, not greater than the minimum inter-arrival time.
If this minimum inter-arrival time is greater than 128 ms, the BAG is set to 128 ms.
Thus, the BAG for f6 is 32 ms, while for f7 is 16 ms.

(v) Scheduling of TT frames. As mentioned, SS uses ASAP scheduling to derive the
TT frame schedules. Fig. 4.2a presents these schedules for our example. Instead of
presenting the actual schedule tables, we show a Gantt chart, which shows on a time-
line from 0 to 25 ms what happens on the eight dataflow links of interest, [ES1,NS1],
[ES2,NS1], [ES3,NS2], [NS1,NS2], [NS1,NS3], [NS2,NS3], [NS3,ES4] and [NS3,ES5].
For the TT frames f1 through f5, the Gantt chart captures their sending times (the left
edge of the rectangle) and transmission duration (the length of the rectangle). A peri-
odic frame fi has several frame instances. We denote with fi,x the xth instance of fi. In
the Gantt chart, for readability, the rectangles associated to each frame fi, j are labelled
only with i,j. We can see in Fig. 4.2a that all the TT frames are schedulable (they are
received before their deadlines).

Since the transmission of RC frames is not synchronized with the TT frames, there are
many scenarios that can be depicted for the RC frames f6 and f7, depending on when
the frames are sent in relation to the schedule tables. Because we are interested in
the schedulability of the RC frames f6 and f7, we show in the Gantt charts their worst-
case scenario, i.e., the situation which has generated the largest (worst-case) end-to-end
delay for these frames. Thus, in Fig. 4.2a, the worst-case end-to-end delay (WCD) of
the RC frame f6, namely f6,1, is 18.6 ms, smaller than its deadline of 32 ms, and hence,
it is schedulable. For f7 though, the WCD is 17.4 ms, larger than its deadline of 16 ms,
thus frame f7 is not schedulable. This worst-case for f7 happens for the frame instance
f7,1, see Fig. 4.2a, when f7,1 is ready for transmission by ES2 at 0 ms, depicted with
a downward pointing green arrow. The worst-case arrival time for f6, which leads to
the largest WCD R f6 , is depicted with a downward pointing red arrow. In this case, as
the network implements the timely block integration algorithm, the frame f7 cannot be
sent if its transmission interferes with the TT schedule. Thus, f7,1 cannot be sent by
ES2 until the TT frame f2,1 finishes transmitting and it cannot be forwarded by NS1 to
NS3 until f4,1 is completely relayed by NS1.

Let us illustrate the optimizations that can be performed to reduce the WCD of RC
frames, and thus make frame f7 schedulable. In order to show all the optimizations
that can be performed, we propose to use Fig. 4.2b as the alternative initial solution.
The solution presented in Fig. 4.2b is built using the SS approach of packing messages
into frames and routing the frames, but has an alternative schedule table. In this case,
the TT frames are schedulable, and the WCD for the RC frames are 19.6 ms for f6, and

82 Design Optimizations at the Network-Level

24.4 ms for f7. Thus f7 misses its deadline, leading to an unschedulable solution. As
the network implements the timely block integration algorithm, the frame f7,1 cannot be
sent until there is a big enough time interval to transmit the frame without disturbing the
scheduled TT frames. We denote these “blocked” time intervals with hatched boxes.
The first big enough interval on dataflow link [NS1, NS3] starts only at time 20 ms,
right after f5,2 is received by NS3, which is too late to meet f7’s deadline.

4.1.2 Message Fragmenting and Packing

Let us perform the following modification to the solution from Fig. 4.2b. We fragment
the largest message on [NS1, NS3], message m4, into two frames, namely f4/1 and f4/2.
The two new frames will have each a payload of 592 B, and a transmission time of
2.63 ms. The schedules for the new solution are shown in Fig. 4.3a. The period of both
frames is 40 ms. By fragmenting message m4, we increase the available time interval
for transmission on [NS1, NS3] between frames f4/1,1 and f5,1. Thus, in this solution,
the worst-case scenario for the RC frames is an end-to-end delay of 12.2 ms for f6 and
17 ms for f7. Although we reduced the WCD of f7 from 24.4 ms in Fig. 4.2b to 17 ms
in this solution, frame f7 is still missing its deadline. As it can be seen, the fragmenting
of TT messages increases the porosity of the schedule.

An alternative to the solution in Fig. 4.3a, depicted in Fig. 4.3b, is to fragment the RC
message m7 into two frames f7/1 and f7/2. Thus, we can use the existing empty time
slots between the TT frames on dataflow link [NS1, NS3]. The new RC frames, with
a C7/1,1 = C7/2,1 = 1.25 ms and a BAG of 16 ms, can be transmitted in the available
time between f2,1– f5,1, and f5,1– f4,1, respectively. This solution reduces the WCD
for message m6 to 13.4 ms and for m7 to 12.5 ms, thus making all the RC messages
schedulable. Fragmenting RC messages allows the RC frames to better use the existing
available time slots between the TT frames.

Another alternative is presented in Fig. 4.3c. We pack messages m1 and m4 into frame
f1+4. The new frame has thus a payload of 1416 B, and a total transmission time of
5.93 ms, with a period and deadline of 40 ms. This will reduce the WCD of f7 by
5 ms, because it eliminates the blocked time intervals on dataflow link [NS1, NS3], see
Fig. 4.3c. However, this WCD reduction is not enough to make f7 schedulable.

The packing move is especially advantageous to small messages, as it reduces the ratio
of protocol overhead to frame payload. Consider 3 RC messages mRC1, mRC2 and
mRC3, with the same SIL, transmitted from the same source to the same destinations.
Messages have a size of 18 B, 10 B and 21 B, respectively, and a deadline of 20 ms,
19 ms and 50 ms. If each message is packed in its own frame, the corresponding frames
would have a size of 85 B, 81 B and 88 B, respectively, with a BAG of 16, 16 and 32
ms, respectively. If we pack the three messages into one frame, the new frame would

4.1 Problem Formulation 83

(a) Fragmenting TT message m4 into frames f4/1,1 and f4/2,1 fur-
ther reduces the WCD of f7, but it still remains unschedulable

(b) Fragmenting RC message m7 into two frames, reduces the WCD
to 12.5 ms, below its deadline.

(c) Packing two TT messages into one frame, namely m1 and m4
into f1+4, reduces the WCD of f7, but enough to make it schedu-
lable

Figure 4.3: Message packing and fragmenting example

84 Design Optimizations at the Network-Level

have a size of 116 B with a BAG of 16 ms. Thus, with an increase in the frame size
of less than 50% compared to the smallest frame, we can deliver all three messages at
once, reducing also the delivery time of the frames. Moreover, the benefits of packing
several TT messages into one frame has the advantage of consolidating the available
time intervals for RC transmission, between scheduled TT frames, into bigger chunks,
as shown in Fig. 4.3c.

The examples in Fig. 4.3 show that by carefully deciding the fragmenting and packing
of messages to frames, we can improve the schedulability of messages.

4.1.3 Virtual Link Routing

Fig. 4.1a shows for vl1 to vl5 the routing of VLs as performed by the Straightforward
Solution, which selects the shortest route. Let us assume, however, that we route the
RC frame f7, which goes from ES2 to ES5, using vl6 via NS2. This is a longer route
vl6 = {[[ES2, NS1], [NS1, NS2], [NS2, NS3], [NS3, ES5]]}, compared to the shortest
route vl5={[[ES2, NS1], [NS1, NS3], [NS3, ES5]]}. We consider the same packing and
scheduling as in Fig. 4.2b, and we show the WCD of f7 on this new route in Fig. 4.4a.
Thus, the WCD of f7 has been reduced to 12.8 ms, and that of f6 to 13.4 ms, which are
both schedulable.

Another routing alternative is to keep f7 on the shortest route, but to route the TT
frame f4 (from ES1 to ES4) via the longer route through NS2 ([[ES1, NS1], [NS1, NS2],
[NS2, NS3], [NS3, ES4]]), instead of the shortest route ([[ES1, NS1], [NS1, NS3], [NS3,
ES4]]). Thus, in Fig. 4.4b we can see we have a WCD of 9.6 ms and 14.4 ms for RC
frames f6 and f7, respectively, which are schedulable.

These two examples show that by selecting, counterintuitively, a longer route for a
message, we can improve the schedulability.

4.1.4 Scheduling of TT Messages

In [169] we have shown how carefully deciding the schedules for the TT messages can
improve schedulability. Compared to [169], which has focused only on scheduling,
in this chapter we also address fragmenting, packing and routing. In addition, we also
consider realistic scheduling constraints imposed by the current TTEthernet implemen-
tations. In [169] we have assumed that the offset of a TT frame instance on a dataflow
link can vary across periods. Thus, frame instances of the same TT frame may have
different offsets. However, this is not supported by the current TTEthernet implemen-

4.1 Problem Formulation 85

(a) Rerouting the RC frame f7 is an alternative to obtain a schedu-
lable solution

(b) Rerouting TT frame f4 via NS2 frees up traffic on dataflow link
[NS1, NS3], reducing the WCD of the RC messages, compared
to Fig. 4.2b

Figure 4.4: Message rerouting examples

86 Design Optimizations at the Network-Level

Figure 4.5: Rescheduling frame f5 to an earlier instant on [ES2, NS1] groups the TT
frames and eliminates the timely block intervals, resulting in the WCD of
the RC messages

tations, and hence in this chapter we impose the scheduling constraint that all the frame
instances of a TT frame on a dataflow link should have the same offset in all periods.

Fig. 4.5 presents the impact of rescheduling a TT frame, in the context of the example
in Fig. 4.2b. We reschedule the TT frame f5 for an earlier transmission on [ES2, NS1].
Although this move increases the worst-case delay for f7 on that dataflow link, the
move groups the TT frames together on the dataflow link [NS1, NS3]. Consequently,
this move eliminates the timely blocked intervals that block the transmission of RC
frames, thus reducing the overall WCD for both RC frames.

4.2 Design Optimization Strategy

The scheduling problem presented in Section 4.1 is similar to the flow-shop scheduling
problem and is shown to be NP-complete [81], with the packing and fragmenting of
frames adding to the complexity of the problem. In order to solve this problem, we
propose the “Design Optimization of TTEthernet-based Systems” (DOTTS) strategy
from Fig. 4.6, which is based on a Tabu Search metaheuristic. DOTTS takes as input the
topology of the network GC and the set of TT and RC mesages M T T ∪M RC (including
the size, period/rate and deadline), and returns the best implementation ϒ. Such an
implementation consists of (i) the fragmenting of messages Φm and packing in frames
K , (ii) the assignment of frames to virtual links MF , (iii) the routing RV L of virtual
links, (iv) the bandwidth for each RC virtual link and (v) the schedules S for the TT
frames.

4.2 Design Optimization Strategy 87

Figure 4.6: Design Optimization of TTEthernet-based Systems

Our strategy has 2 steps, see the two boxes in Fig. 4.6: (1) In the first step we determine
an initial solution using the straightforward approach introduced in Section 4.1.1. The
initial packing K ◦ is done such that there is no fragmenting (i.e., Φ◦m = /0) and each
message is packed into its own frame, with the frame inheriting the message’s size,
period and deadline. The initial set B◦ of BAGs for each RC VL is set as explained in
Section 4.1.1.

The initial routing of virtual links R ◦V L is done to minimize the paths. We use Prim’s
algorithm [61] for minimum spanning tree to determine the initial vl◦i for each frame
fi. We call Prim’s algorithm for each frame fi. Let ESsrc

i be the source of frame fi

and ES dest
i be the set of destinations of frame fi. The input to Prim’s algorithm is the

topology graph GC from which we have removed all the ESes, except ESsrc
i ∪ES dest

i .
That is, we are interested in the minimum spanning tree in the graph that connects
the ESes involved in a particular frame’s transmission. For frame f1 packing m1 in
Fig. 2.3, the graph is composed of vertices {ES1, NS1, NS2, ES3, ES4} and the edges
interconnecting these vertices. The virtual link routing for frame f1 is the minimum
spanning tree in this graph, depicted with a red dash-dotted arrow, see Fig. 2.3.

The initial schedules S◦ for the TT messages are built using the ASAP scheduling,
where the ESes, NSes and dataflow links are considered the resources onto which the
frame instances have to execute. The initial routing for the example in Fig. 4.1 is

88 Design Optimizations at the Network-Level

presented in Fig. 4.1a using VLs vl1 to vl5 with red dash-dotted arrow, and the ini-
tial schedule results from the one-to-one packing and ASAP scheduling depicted in
Fig. 4.2a.

(2) In the second step, we use a Tabu Search meta-heuristic (see Section 4.2.1) to
determine the fragmenting Φm and packing K of messages in frames, the final set of
virtual links V L , the assignment of frames to virtual links MF , the routing of virtual
links RV L, the BAGs for the RC VLs and the TT schedules S , such that the TT and RC
frames are schedulable, and the end-to-end delay of RC frames is minimized.

4.2.1 Tabu Search

Tabu Search (TS) [83] is a meta-heuristic optimization, which searches for that solution
that minimizes the cost function. Tabu Search takes as input the topology of the network
GC, the set of TT and RC messages M T T ∪M RC (including the size, period/rate and
deadline), and returns at the output the best configuration of (i) message fragmenting
Φm and packing K , (ii) the assignment of frames to virtual links MF , (iii) the routing
of virtual links RV L, the (iv) the bandwidth for each RC virtual link and (v) the TT
schedules S found during the design space exploration, in terms of the cost function.
We define the cost function of an implementation ϒ as:

CostDOT T S(ϒ) = wT T ×δT T +wRC×δRC (4.1)

where δT T is the “degree of schedulability” for the TT frames and δRC is the degree of
schedulability for the RC frames. These are summed together into a single value using
the weights wT T and wRC, given by the engineer. In case a frame is not schedulable, its
corresponding weight is a very big number, i.e., a “penalty” value. This allows us to
explore unfeasible solutions (which correspond to unschedulable frames) in the hope
of driving the search towards a feasible region. Once the TT frames are schedulable we
set the weight wT T to zero, since we are interested to minimize the end-to-end delays
for the RC frames. The degree of schedulability for TTEThernet frames is calculated
as:

δT T/RC =

{
c1 = ∑i max(0,R fi − fi.deadline) if c1 > 0
c2 = ∑i(R fi − fi.deadline) if c1 = 0

(4.2)

If at least one frame is not schedulable, there exists one R fi greater than the deadline
fi.deadline, and therefore the term c1 will be positive. However if all the frames are
schedulable, this means that each R fi is smaller than fi.deadline, and the term c1 = 0.
In this case, we use c2 as the degree of schedulability, since it can distinguish between
two schedulable solutions.

Tabu Search explores the design space by using design transformations (or “moves”)
applied to the current solution in order to generate neighboring solutions. In order to

4.2 Design Optimization Strategy 89

TabuSearch(GC, M T T ∪M RC, K ◦, M ◦
F , R ◦V L, B◦, S◦)

1 Best← Current← < K ◦, M ◦
F , R ◦V L, B◦, S◦ >

2 L←{}
3 while termination condition not reached do
4 remove tabu with the oldest tenure from L if Size(L) = l
5 // generate a subset of neighbors of the current solution
6 C ← CLG(Current,GC,M T T ∪M RC)
7 Next← solution from C that minimizes the cost function
8 if Cost(Next) < Cost(Best) then
9 // accept Next as Current solution if better than the best-so-far Best

10 Best← Current← Next
11 add tabu(Next) to L
12 else if Cost(Next) < Cost(Current) and tabu(Next) /∈ L then
13 // also accept Next as Current solution if better than Current and not tabu
14 Current← Next
15 add tabu(Next) to L
16 end if
17 if diversification needed then
18 Current← Diversify(Current)
19 empty L
20 end if
21 end while
22 return ϒ =< Φm, K , MF , RV L, B , S >

Figure 4.7: The Tabu Search algorithm

increase the efficiency of the Tabu Search, and to drive the search intelligently towards
the solution, these “moves” are not performed randomly, but chosen to improve the
search. If the currently explored solution is better than the best known solution, it is
saved as the “best-so-far” Best solution. To escape local minima, TS incorporates an
adaptive memory (called “tabu list”), to prevent the search from revisiting previous so-
lutions. Thus, moves that improve the search are saved as “tabu”. In case there is no
improvement in finding a better solution for a number of iterations, we use diversifica-
tion, i.e., we visit previously unexplored regions of the search space.

Fig. 4.7 presents the Tabu Search algorithm. Line 1 initializes the Current and Best
solutions to the initial solution formed by the tuple < K ◦, M ◦

F , R ◦V L, B◦, S◦ >. Line 2
initializes the tabu list L to an empty list. The size of the tabu list, i.e., its tenure, is set
by the user. The TS algorithm runs until the termination condition is not reached (see
line 3). This termination condition can be, for example, a certain number of iterations
or a number of iterations without improvement, considering the cost function [82]. Our
implementation stops the search after a predetermined amount of time set by the user.
In case the tabu list L is filled, we remove the oldest tabu from this list (see line 4).

90 Design Optimizations at the Network-Level

Evaluating all the neighboring solutions is infeasible, therefore we generate a subset
of neighbors of the Current solution (line 6), called Candidate List, by running the
Candidate List Generation (CLG) algorithm (see Section 4.2.3), and the algorithm
chooses from this Candidate List, as the Next solution, the one that minimizes the cost
function (line 7). In case this Next solution is better than the best-so-far Best solution
(lines 8–11), TS sets the Best and Current solutions as the Next solution. TS accepts a
solution generated by a tabu move only if it is better than the best known solution Best.
Accepting a solution generated by a tabu move is referred to as “aspiration criteria”.
Then, the TS algorithm adds the move that generated this solution to the tabu list, to
prevent cycling. If the move is already a tabu, it will be added to the head of the list,
thus setting its tenure to the size of the list. If Next improves the cost function compared
to the Current solution, but not to the Best, and furthermore, the move that generated
Next is not a tabu, TS accepts it as the Current solution, and adds the move to the tabu
list.

In case the TS algorithm does not manage to improve the current solution after a num-
ber of iterations (lines 17–20), TS proceeds to a diversification stage (line 18). During
this stage, TS attempts to drive the search towards an unexplored region of the design
space. As such, the algorithm randomly re-assign a task from each application, while
keeping the same partition tables. After such a diversification stage, the tabu list L is
emptied.

4.2.2 Design Transformations

We use three classes of moves in our Tabu Search: (1) routing moves applied to virtual
links, (2) packing moves applied to messages and (3) scheduling moves applied to the
TT frames.

(1) The reroute move is applied to a virtual link vli carrying a frame fi. This move
returns a new tree for the virtual link vli, which has the same source and destinations,
but goes through different dataflow links and network switches. The new tree is ran-
domly selected, but the reroute move can also have a parameter specifying a dataflow
link dli to avoid in the new tree, because, for example, we have determined that dli is
too congested.

The reroute move selects from the complete set of trees that can be used to route a
virtual link vli. This set is determined only once, before TS is run, for every message
mi. We use breadth-first search to find every path between the source of mi and it’s
destinations, and we combine these paths to obtain a complete set of unique trees.
When several messages are packed into a frame, we take the union of sets of trees for
each message in the frame.

4.2 Design Optimization Strategy 91

(2) The fragmenting / packing moves change the structure of the extended messages set
M + and the assignment of messages to frames K . There are two types of fragmenting
moves: fragment message and un-fragment message, and two types of packing moves:
pack messages and unpack frames. The fragment message move splits a message mi
into several same-sized message fragments m j ∈M +,m j ∈ Φm(mi). Each message
fragment inherits the period and deadline of the message mi. In case of the RC mes-
sages, each vl j carrying the RC frame f j that is packing one message fragment m j, will
inherit the BAG of vli carrying mi. The un-fragment message undoes the fragment mes-
sage move, and regroups all the fragments m j ∈Φm(mi) back into the original message
mi.

The pack messages move packs into the same frame several messages and/or message
fragments that (i) have the same source and destinations, (ii) belong to the same traffic
class, (iii) have the same SIL and (iv) that the sum of their size does not exceed the
maximum allowed payload size of 1471 B. In case we pack messages with different
periods and deadlines, the new frame fi will inherit the tightest deadline and the small-
est period of the composing messages and fragments. For RC messages, the new frame
fi will inherit the smallest BAG of the composing messages.

Packing of message fragments from different frames can further reduce the WCD of
the messages involved, similarly to the example of packing RC frames given in Sec-
tion 4.1.2. Although packing message fragments of different messages is possible, we
do not consider this to be realistic, hence we do not employ this in our optimization.
Also note that the ARINC 664p7 protocol has a restriction of 4096 VLs per cluster.
The pack messages move can be used to circumvent this restriction, in case there are
more than 4096 messages to be sent.

The unpack move applied to frame fi assigns each m j ∈M +,K (m j) = fi, to a new
frame f j, on a one-to-one basis.

For example, let us consider M = {m1,m2,m3}. By fragmenting m1 into 3 fragments,
we obtain Φm(m1) = {m1/1,m1/2,m1/3}, with the periods and deadlines equal to m1,
and their size equal to dm1.size/3e. Similarly, fragmenting m3 into 2 fragments, we get
Φm(m3) = {m3/1,m3/2}. Thus, M + = {m1/1,m1/2,m1/3,m2,m3/1,m3/2}. Performing
the un-fragment move on m3 will result in M + = {m1/1,m1/2,m1/3,m2,m3}. If we
pack m1/1 and m2 into frame fx, such that K (m1/1) = fx and K (m2) = fx, fx.deadline
is determined as min(m1/1.deadline,m2.deadline) and for TT messages, fx.period =
min(m1/1.period,m2.period), while for RC messages, fx.rate=min(m1/1.rate,m2.rate).
An example of packing TT messages into the same frame is presented in Fig. 4.3c.

(3) Let us now discuss the scheduling moves. A periodic frame fi has several frame
instances. For the scheduling moves we introduce the following notations: we denote
with fi,x the xth instance of frame fi, and with f

[ν j ,νk]
i,x the instance sent on the dataflow

92 Design Optimizations at the Network-Level

Figure 4.8: Representation of a frame as a tree

link [ν j,νk]. All the frame instances f
[ν j ,νk]
i,x of frame fi have the same offset across all

periods. Let us consider the topology presented in Fig. 4.1a, and frame fi transmitted
from ES1 to ES4 and ES5 along the shortest route, that is vl1={[[ES1, NS1], [NS1,
NS3], [NS3, ES4], [NS3, ES5]]}. The tree model that represents the frame fi is shown
in Fig. 4.8. Each frame fi is assigned a virtual link vli. A virtual link is a tree structure,
where the sender is the root and the receivers are the leafs. In the case of a virtual
link, the ESes and NSes are the nodes, and the dataflow links are the edges of the
tree. However, in our tree model of a frame, the dataflow links are the nodes and the
edges are the precedence constraints. Naturally, frame instance fi,1 on dataflow link
[NS3,ES5] cannot be sent before it is transmitted on [NS1,NS3] and received in NS3.
Such a precedence constraint is captured in the model using an edge, e.g., f [NS1,NS3]

i,1 →

f [NS3,ES5]
i,1 . We denote with pred(f

[ν j ,νk]
i,x) the set of predecessor frame instances of the

frame instance fi,x on dataflow link [ν j,νk] and with succ(f
[ν j ,νk]
i,x) the set of successor

frame instances of the frame instance f
[ν j ,νk]
i,x .

We propose 4 scheduling moves: advance, advance predecessors, postpone and post-
pone predecessors. The advance move will advance the scheduled send time offset of a
TT frame fi from node ν j on a dataflow link [ν j,νk] to an earlier moment in time. The
advance predecessors applied to a frame fi will advance the scheduled send time offset
for all its predecessors. Similarly, the postpone move will postpone the schedule send
time offset of a TT frame from a node, while postpone predecessors will postpone the
send time offset for one random predecessor of that frame.

The maximum amount of time a frame instance is advanced or postponed at a node
ν j ∈VC is computed such that the frame instance will not be sent before it is scheduled
to be received, or sent too late to meet its deadline. For each node ν j, we compute
the latest absolute send time for frame fi so that it may still meet its deadline, ignoring
other traffic. Also, after each move we may need to adjust the schedules (move other
frame offsets later or earlier) to keep the solution valid, i.e., the schedules respect the
precedence and resource constraints.

Tabu Search relies on a memory structure called “tabu list” to prevent the search from
cycling through previously visited solutions, back to a local optima. Our algorithm

4.2 Design Optimization Strategy 93

relies on a tabu list with tabu-active attributes, that is, it does not remember whole
solutions, but rather attributes of the moves that generated the tabu solutions. For each
tabu, we record the move that generated it, and the affected frames or messages.

4.2.3 Candidate List

As previously mentioned, Tabu Search drives the search towards schedulable solutions
by applying “moves” to the current solution in order to generate neighboring solutions.
The number of neighbors for each solution is very large, therefore evaluating all the
neighboring solutions is infeasible. Instead, our algorithm evaluates only a subset of
neighbors of the Current solution, called Candidate List. One option is to randomly
select the neighbors placed on the candidate list. However, our algorithm uses a heuris-
tic approach that selects those neighbors which have a higher chance to quickly lead
to a good result. The Candidate List Generation (CLG) algorithm is described in the
following. Each candidate solution is obtained by performing moves on the Current
solution.

We consider the following classes of candidates: (1) candidates for TT frames, (2)
candidates for RC frames and (3) randomly generated candidates.

4.2.3.1 Candidates for TT Frames

CLG generates a set of candidates for the unschedulable TT frames, and another set
for schedulable TT frames. First we describe the candidates for unschedulable frames.
For each unschedulable TT frame fT T , CLG identifies the first dataflow link dlx ∈
RV L(MF(fT T)) where fT T is unschedulable, i.e., where f dlx

T T is sent too late for fT T to
reach its deadline. CLG creates candidate solutions by performing reschedule, reroute,
packing and fragmenting moves to f dlx

T T separately on the Current solution. In case
fT T is packed, CLG performs an unpack move instead. Similarly, if fT T is fragmented,
CLG performs an unfragment move. Next, CLG targets TT frames that might delay fT T
excessively. The high rate frames and the very “large” frames on dlx are such frames.
CLG reroutes the TT frame with the highest rate on dlx to another link, thus decon-
gesting dlx and increasing fT T ’s chances to be schedulable. Similarly, CLG reroutes
the largest TT frame to another randomly selected route. Furthermore, CLG reroutes a
random frame on dlx to another randomly selected route.

Our optimization is driven by the cost function specified in Eq. 4.1 (see Section 4.2.1).
Thus, TS searches for a solution that makes TT and RC frames schedulable, and min-
imizes the end-to-end delay of the RC frames. Therefore, once the TT frames are
schedulable, TS does not look for solutions that reduce the end-to-end delay of the

94 Design Optimizations at the Network-Level

TT frames. Instead, it applies moves to the schedulable TT frames to minimize the
end-to-end delay of the RC frames. Thus, the next moves focus on schedulable TT
frames.

In this context, first, the CLG algorithm selects the TT frames with the highest degree
of schedulablity and generates a candidate solution by rerouting each such frame to
another route. Although this move may reduce the degree of schedulability of the
rerouted frames, as a side effect, it may decongest some dataflow links. Furthermore,
CLG also generates other candidates by rescheduling these frames.

Second, CLG selects schedulable TT frames with lowest degree of schedulability, and
reroutes each such frame on a randomly chosen alternative route. Third, CLG generates
candidates by packing the smallest schedulable TT frames, to consolidate the schedule.
Fourth, similarly with the previous candidates, CLG fragments in equally sized frame
fragments the largest TT frames. For the pack and fragment moves, CLG randomly
choses the number of the frames and the number of the fragments, respectively, so the
size of the resulting frames respect the size constraints (see Section 2.2.2.1).

4.2.3.2 Candidates for RC Frames

Similarly with the candidates for TT frames (previously described), CLG generates two
sets of candidates: one set for the unschedulable, and another set for schedulable RC
frames. For each fRC unschedulable RC frame, the CLG algorithm identifies the first
dataflow link dlx where fRC is unschedulable. Then, CLG creates candidate solutions
by applying the following moves separately on the current solution: (i) CLG reroutes
fRC to another, randomly selected route, (ii) fragments and (iii) packs fRC. In case fRC
is already fragmented, CLG unfragments the frame instead. Similarly, if the frame is
already packed, CLG unpacks it.

There are cases where a high rate TT frame might greatly delay RC frames. Let hrdlx
T T

be the TT frame on dlx with the highest rate. Rerouting hrdlx
T T to another, randomly

selected, route decongests dlx, possibly reducing the delay for fRC on this dataflow link.
Rescheduling hrdlx

T T might create sufficient time to reduce fRC’s delay. CLG also creates
candidates by packing and fragmenting hrdlx

T T . Similarly to the high rate TT frame hrdlx
T T

on dlx, there are cases where large TT frame will delay RC frames. Let lgdlx
T T be the

largest TT frame on dlx. CLG applies moves that reroute, pack and fragment lgdlx
T T and

moves that advance and postpone lgdlx
T T on dlx, just like in the case of hrdlx

T T .

Next, CLG focuses on schedulable RC frames to improve their schedulability. For these
candidates, first, CLG targets the fRC RC frames with highest degree of schedulability,
rerouting each such frame to another route. Although this move may reduce the degree

4.2 Design Optimization Strategy 95

of schedulability of fRC, as a side effect, it may decongest some dataflow links, reduc-
ing the worst-case end-to-end delay (WCD) of other RC frames. Second, CLG focuses
on schedulable RC frames with the lowest degree of schedulability, rerouting them in
order to increase their schedulability. Third, CLG focuses on the smallest and largest
RC frames. Thus, CLG creates candidates by packing the smallest RC frames, and by
fragmenting the largest RC frames, respectively. The packing and fragmenting moves
are done such that they respect the constraints presented in Section 4.2.2.

4.2.3.3 Randomly Generated Candidates

As the previous moves are targeting specific frames, in order to increase the degree of
schedulability, CLG introduces a third set of candidates. On a randomly selected set of
frames, CLG randomly applies packing, fragmenting or routing moves.

4.2.4 Tabu Search Example

We illustrate next how Tabu Search works. We consider the applications from Fig. 4.1.
The current solution, which is also the best-so-far solution, is presented in Fig. 4.9a.
This solution is also presented in Fig. 4.4b, and is obtained from Fig. 4.2b by rerouting
the TT frame f4 via NS2. The following 5 solutions, Fig. 4.9b to Fig. 4.9f show possible
candidate solutions obtained from Fig. 4.9a. Next to each solution, we present the
associated tabu list. We consider a tabu tenure of 5. The current state of the tabu list is
shown next to Fig. 4.9a.

To reduce the delays, the CLG algorithm proposes candidates which fragment the
largest TT frames (see Section 4.2.3). Fig. 4.9b shows a candidate solution obtained
in this way. Frame f4 is the largest frame in the system. Thus, fragmenting m4 into
two frames f4/1 and f4/2, reduces the delay on [ES1, NS1] for f6 from 7.2 to 4.83 ms.
Unfortunately, reducing the delay for f6 on [ES1, NS1] does not improve the overall
WCD for f6. This solution does not improve the current solution, and hence, is ignored.
CLG generates candidates also by rescheduling the largest TT frame on the dataflow
link where it delays RC frames. Fig. 4.9c presents such a candidate solution, advanc-
ing f4 in the schedule of [ES1, NS1]. This solution is tabu (tenure 4), and because this
candidate is not better than the Best solution, it is ignored.

Another set of candidate solutions is obtained by fragmenting a given percentage of
the largest RC frames in the system. Fig. 4.9d presents such a solution. Message m7
is fragmented into f7/1 and f7/2. The newly created frames have the same BAG as f7,
of 16 ms, and a transmission duration of C7/1 = C7/2 = 1.25 ms. Thus, f7/1,1 can be
transmitted on [NS1, NS3], in the interval between f2,1 and f5,1, which previously was

96 Design Optimizations at the Network-Level

(a) Current solution

(b) Fragmenting message m4, does not improve the current solution

(c) Reschedule f4 does not improve the best-so-far solution and is
tabu, thus ignored

Figure 4.9: Candidate solutions and their tabu list

4.2 Design Optimization Strategy 97

(d) Fragment message m7. Better than the current solution

(e) Pack m2 and m5 in f2+5. f4 does not fit into the schedule, thus
results in the worst solution so far and is ignored

(f) Reroute f2 via NS2. Although tabu, the move results in a so-
lution better than the current solution, and thus accepted as the
best so far and set as current

Figure 4.9: Candidate solutions and their tabu list

98 Design Optimizations at the Network-Level

timely blocked for f7. This move reduces the WCD of m7 to 12.5 ms, thus improving
the solution. Overall, this solution is better than the Current solution. If this candidate
solution is chosen as the next solution, the tabu for the fragmenting m7 is added to the
head of the tabu list, with a tenure of 5. The tenures of the other tabus in the list are
decremented, and the “Reroute f2” tabu, previously with a tenure of 1, is removed from
the list. The update tabu list is in Fig. 4.9d.

Fig. 4.9e presents a solution obtained by packing m2 and m5 into a single frame, f2+5.
CLG generates candidate solutions by packing the smallest frames, to reduce the re-
served bandwidth and the delay on the network. Frame f5 is the smallest frame in
our example. As previously mentioned in Section 4.2.2, only messages with the same
source and destination ESes may be packed into one frame. For f2+5, the size of the
frame equals the sum of the messages involved, that is 933 B, with C2+5 = 3.73 ms. The
period of f2+5 is the smallest of the messages involved, i.e., 10 ms. In this new frame
configuration, f4 does not fit in the schedule of dataflow link [NS3, ES4]. The candidate
solution in Fig. 4.9e is the worst solution so far, and consequently, it is ignored.

Rerouting f2 via NS2, see Fig. 4.9f, reduces the WCD for f7 from 14.4 to 10.6 ms.
Although the move is tabu, the solution is better than the Current and Best solutions,
and thus, is accepted as the Current and best-so-far Best solution. The next TS iteration
will continue with this solution as Current. The updated tabu list is also presented in
Fig. 4.9f.

4.3 Experimental Evaluation

For the evaluation of our proposed optimization approach, “Design Optimization of
TTEthernet-based Systems” (DOTTS), we used 7 synthetic benchmarks and two real-
life case studies. The DOTTS algorithm was implemented in Java (JDK 1.6), running
on SunFire v440 computers with UltraSPARC IIIi CPUs at 1.062 GHz and 8 GB of
RAM.

The details of the benchmarks are presented in Table 4.1. For the synthetic benchmarks,
we have used 6 network topologies, and we have randomly generated the parameters
for the frames, taking into account the details of the TTEthernet protocol. All the
dataflow links have a transmission speed of 100 Mbps. In columns 3–6, we have the
details of each benchmark: the number of ESes, NSes, the load of the system and
the number of messages, respectively. The load within an application cycle Tcycle is
calculated as the ratio of the sum of the sizes of all frame instances divided by the
network speed. The number of frame instances in the network, considering a one-to-
one mapping of messages to frames, can be found in column 7. This number is much
larger than the number of messages: there is a frame instance for each dataflow link on

4.3 Experimental Evaluation 99

which a message is transmitted to reach its destination. The number of frame instances
will be influenced by packing and fragmenting.

With the first set of experiments, “Set 1”, we were interested to evaluate DOTTS in
terms of its ability to find schedulable implementations. Thus, we used synthetic bench-
marks where we gradually increased the size of the system, both in number of messages
and number of network nodes. The results obtained by DOTTS were compared with
four other optimization approaches. The first approach is the Straightforward Solu-
tion (SS) presented in Section 4.1.1 and implemented by the box “Initial Solution” in
Fig. 4.6. This is what a good engineer would do without the help of our optimiza-
tion tool. The other three approaches are based on the same Tabu Search optimization
as DOTTS, but they restrict the type of optimization performed. Thus, Routing Opti-
mization (RO) optimizes only routing, using SS for packing and scheduling. Packing
and Fragmenting Optimization (PFO) optimizes only fragmenting and packing, and
not routing and scheduling. Scheduling Optimization (SO) optimizes the schedules
but keeps the packing and routing from SS. These TS implementations correspond to
the boxes RO, PFO and SO in Fig. 4.6, where only the respective type of moves are
performed in the TS.

The results for Set 1 are presented in Table. 4.1, lines 2–6. We are interested in find-
ing schedulable implementations. Thus, for each optimization algorithm, we report
the percentage of schedulable messages in the system, after applying the respective
optimization. We used a time limit of 45 minutes for all algorithms. In these experi-
ments, we were interested to determine how DOTTS performs as the complexity of the
system increases from 25 to 45 ESes and NSes. The load of the system is 40–90 %,
and the number of frame instances grows from 2305 to 5509. As we can see from the
results, DOTTS is able to find schedulable implementations (all the TT and RC mes-
sages are schedulable) for the benchmarks in the Set 1, see column 12, in Table 4.1. SS
performs poorly, with only 48% schedulable messages for example for benchmark 13
(column 8). This shows that performing the design optimization of TTEthernet-based
systems is very important.

Table 4.1: DOTTS experimental results

Set Benchmark ES NS Load Messages Frame SS RO PFO SO DOTTS
Instances Sched.% Sched.% Sched.% Sched.% Sched.%

1

1.1 37 8 40 43 2305 53.48 86.04 81.39 95.34 100.00
1.2 20 5 60 84 2388 52.38 67.85 68.86 97.19 100.00
1.3 37 8 40 77 2441 48.05 70.12 64.93 99.52 100.00
1.4 35 8 40 132 4064 63.63 66.66 68.18 98.48 100.00
1.5 20 5 90 145 5509 58.62 62.96 63.88 81.37 100.00

2
2.1

30 8
40 180 5809 48.88 53.33 55.00 100.00 –

2.2 50 220 6871 50.00 53.18 54.09 78.18 100.00
2.3 60 220 7811 50.00 51.81 54.54 74.09 100.00

3 auto 15 7 50 79 5180 53.16 58.22 72.34 89.87 100.00
orion 31 14 40 187 6130 46.52 58.82 57.75 100.00 –

100 Design Optimizations at the Network-Level

Figure 4.10: Network topology of the Orion CEV, derived from [126]

The next comparison of DOTTS is with RO, PFO and SO. The question is, where
is the improvement of DOTTS coming from, compared to SS, from which kind of
optimization: routing, packing/fragmenting or scheduling? As expected, SO, which
performs schedule optimization, obtains the best result among RO, PFO and SO, but
very rarely does it obtain schedulable solutions. Furthermore, PFO and RO are not
consistently better one than the other. The conclusion is that they should all be used
together, as we do in DOTTS.

For the second set of experiments, labeled “Set 2” in Table 4.1, we were interested in
determining how our optimization approach DOTTS handles increased loads (while the
architecture does not change). We have used an architecture of 38 ESes and NSes and
we have increased the number of messages leading to loads of 40 to 60%. In the case of
benchmark 21, Table 4.1, SO is able to find a schedulable implementation. In this case,
we do not run DOTTS for this benchmark anymore. As the load of the system increase
to 50 and 60% (benchmarks 22 and 23), SO does not perform well, but DOTTS is able
to find schedulable implementations.

In the third set of experiments, labelled with “Set 3”, we used two real-life benchmarks.
The first benchmark is derived from [117], based on the SAE automotive communica-
tion benchmark [2]. In this benchmark we have 22 network nodes (ESes and NSes), and
79 messages (with the parameters generated based on the messages presented in [117]).
The results for this benchmark are shown in Table 4.1, in the row labelled “auto”. The
other benchmark is derived from [126], based on the Orion Crew Exploration Vehicle

4.3 Experimental Evaluation 101

(CEV), 606E baseline [126] and labeled in Table 4.1 with “orion”. In this benchmark
we have 45 network nodes (ESes and NSes) and 187 messages (with the parameters
generated based on the messages presented in [126]). This benchmark is described in
detail in Section 5.3. The topology for this benchmark is shown in Fig. 4.10. The results
obtained for the real-life benchmarks confirm the results of the synthetic benchmarks.

102 Design Optimizations at the Network-Level

CHAPTER 5

Design Optimizations for
Mixed-Criticality Space

Applications

We have presented the evaluation of our proposed optimization strategies on several
benchmarks, including real-life case studies. The assumptions so far were that all
the applications, including the non-critical ones, are hard real-time. The purpose of
this chapter is to discuss the issues related to implementing mixed-criticality applica-
tions (both in safety and time domains) on partitioned architectures in the context of a
given application area (space) and realistic applications. In this context, handling also
soft real-time and best-effort requirements is important. For optimizations at the pro-
cessing level we consider two applications: the Mars Environment Survey (MESUR)
Pathfinder Rover (described in Section 5.2.1) and the Compositional Infrared Imaging
Spectrometer (CIRIS; see Section 5.2.2). At the communication level, we consider the
Orion Crew Exploration Vehicle (see Section 5.3). Part of this work (i.e., the controller
for CIRIS) was done at the Jet Propulsion Laboratory (JPL), National Aeronautics and
Space Administration (NASA), during a five-month research visit.

In this chapter we will discuss how the methods and tools we presented in Chapter 3
and in Chapter 4 can be extended to consider soft real-time and best effort require-
ments. The chapter is organized as follows. First, we introduce the space application
area. Second, we present the applications used at the PE-level. Third, we present

104 Design Optimizations for Mixed-Criticality Space Applications

the application used at the communication level. Fourth, we present and evaluate the
extensions we made to our optimizations to handle soft real-time constraints.

5.1 Background

Researchers from the European Space Agency (ESA) have advocated the use of parti-
tioned architectures (PAs) in spacecraft avionics, as a way to “manage the growth of
mission functions implemented in the on-board software” [185]. A similar case was
made by researchers from NASA [91]. The number of missions carrying payloads
from different stakeholders increases, resulting in more integration into the same plat-
form to reduce the size, weight and power consumption (SWaP) of the system. In most
cases, these components have different criticality levels. Some are safety-critical (e.g.,
life support systems in a space craft), mission-critical (e.g., propulsion system) or non-
critical (e.g., scientific instruments that are not part of the primary mission). In such
cases, safety and security constraints require that the platform has protection mech-
anisms to ensure that applications do not interfere with each other. PAs implement
the protection mechanisms to handle the safety constraints. Currently, ESA is work-
ing on adding security components to PAs [184]. Furthermore, ESA views PAs as an
intermediate step to introducing multi-core processors in spacecraft computers [184].

Partitioned architectures rely on partitioning mechanisms at the platform level to en-
sure temporal and spatial separation between applications of different criticality lev-
els, and thus to allow the safe integration on the same platform (see Section 2.2.1
for more details). Spatial partitioning protects the private data or devices of an ap-
plication in a partition from being tampered with, by another application. It usually
relies on hardware mechanisms such as Memory Management Units (MMUs). Alter-
natives were proposed for spatial partitioning in spacecraft processors that do not have
MMUs [172]. An example of a spacecraft that could have benefited from a partitioned
architecture implementation is the Phobos I spacecraft, lost due to the failure of a non-
critical application (i.e., keyboard buffer overflow) interfering with the flight critical
software [141].

A detailed discussion on the benefits of PAs for spacecraft can be found in [183, 91].
To name just a few of the advantages for spacecraft platforms of using partitioned
architectures: they allow the safe and secure integration of applications of different
criticality levels and from different stakeholders, reduce the the SWaP of the system
and the development, verification and integration costs.

5.2 Processor-Level Partitioning 105

5.2 Processor-Level Partitioning

For the processor-level evaluation of partitioning, we chose two applications of dif-
ferent criticality levels. The proposed scenario is two have two applications of dif-
ferent safety and time criticality integrated onto the same processor. One application
is the Mars Pathfinder Mission [63], mixed-criticality application, described in Sec-
tion 5.2.1. The other application is non-critical; the controller for the Compositional
Infrared Imaging Spectrometer (CIRIS), which is a Fourier Transform Spectrometer is
described in Section 5.2.2. The controller for CIRIS was developed during a research
visit at JPL, NASA. First we describe the CIRIS controller, and then we present another
version that is considered for integration with the Mars Pathfinder Mission.

We assume the two applications are running on a single processor, under a partitioned
operating system. We present the results of our evaluation in Section 5.4.1.

5.2.1 Mars Pathfinder Mission

The Mars Pathfinder, also known as the Mars Environment Survey (MESUR) Pathfinder,
was a spacecraft designed, built and operated by JPL, NASA. The mission was second
in NASA’s Discovery program, which aimed at making cheaper spacecrafts to explore
the Solar System. The spacecraft was launched on 4 December 1996, landing on Mars
on 4 July 1997, using airbags as a new landing method. The spacecraft contained a
lander, later named as the “Carl Sagan Memorial Station”, and a robotic rover, named
Sojourner, controlled by an Earth-based operator. Both the lander and rover exceeded
their planned lifetimes. During the mission, the lander returned 2.3 gigabits of infor-
mation, including images from both the lander and rover, chemical analyses of rocks
and soil, and atmospheric measurement conditions. The scientific analyses results sug-
gest that in a distant past Mars was a warm planet, with liquid water and a thicker
atmosphere [1].

The hardware architecture of the Mars Pathfinder is presented in Fig. 5.1. The main
processor of the spacecraft is the RS 6000 microprocessor on the lander, running the
VxWorks real-time operating system [182]. The rover contains an Intel 8085 proces-
sor that performs automatic controls. The main processor is connected to the memory,
camera and the radio providing connection to Earth via a VME bus, and to the sci-
entific instruments via a 1553 Bus. The communication between the rover and the
lander is performed through the 1553 Bus via a wireless link inherited from the Cassini
spacecraft [63].

Although the software consists of over 25 tasks, the mission had several operating
modes, with tasks being active only in specific operating modes. We focus on the tasks

106 Design Optimizations for Mixed-Criticality Space Applications230 9 CASE STUDIES

Pathfinder lander

VME Bus

RadioCamera

Thrusters Valves

Coupler Interface 1

Processor

Interface 2 Interface 3

Altimeter Accelerometer

1553 Bus

Memory Interface 1 Interface 2

Sun
sensor

Star
analyser

Coupler Interface 4 Interface 5 Interface 6 Interface 7

1553 Bus

Rover Sojourner

Meteorological
device(ASI/MET)

Bus interface

Figure 9.9 Hardware architecture of Pathfinder spacecraft

The hardware on the rover part includes two kinds of devices:

• Control devices: thrusters, valves, etc.

• Measurement devices: a camera, a sun sensor and a star scanner.

9.2.3 Functional specification

Given the hardware architecture presented above, the main processor of the Pathfinder
spacecraft communicates with three interfaces only:

• radio card for communications between lander and Earth;

• lander camera;

• 1553 bus interface linked to control or measurement devices.

Figure 5.1: Hardware architecture of the Pathfinder spacecraft (from [63])

active in exploration mode. This set of tasks is listed in Table 5.1. The “Bus schedul-
ing” task has top priority, as it is sets up and verifies the transactions on the 1553 Bus.
The “Data distribution” task has the second highest priority in the exploration mode.
This task collects data from the instruments into the shared data module [63]. The
“Control task” is responsible with controlling the Sojourner rover. The rover has two
types of hardware devices: control devices and measurement devices [63]. The “Radio
task” manages the radio communication between the lander and Earth. We consider
these four tasks as highly critical, while the three tasks with the lowest priority have a
lower criticality level. The “Camera task” controls the camera on the lander. During its
mission, the lander sent back 16500 images back to Earth. The “Measure task” collects
measurements, while the “Meteo task” is responsible with the meteorological data [63].

5.2 Processor-Level Partitioning 107

Table 5.1: Pathfinder mission, exploration mode task set parameters

Set Task name Priority Parameters
Ci Ti

1

Bus scheduling 7 25 125
Data distribution 6 25 125
Control task 5 25 250
Radio task 4 25 250

2
Camera task 3 25 250
Measure task 2 50 5000
Meteo task 1 75 5000

In Section 5.4.1 we will discuss how our optimization strategy can be extended to con-
sider soft-real time applications. For this, we will integrate the MESUR tasks with the
CIRIS application (see Section 5.2.2.5) onto the same processor. In this case, parti-
tioning is necessary due to safety and timing separation requirements. The MESUR
tasks are mixed-critical, with 4 high-criticality and 3 low-criticality tasks, while the
CIRIS application is non-critical. Furthermore, the MESUR tasks are hard real-time,
while the CIRIS tasks are soft real-time. Moreover, applications are scheduled using
different policies. The MESUR tasks use FPS, while the CIRIS tasks use SCS.

The MESUR tasks are hard real-time applications, and they are scheduled using a fixed
priority preemptive policy, i.e., “Rate Monotonic” (RM). In RM scheduling, the task
with the smallest period has the highest priority. Liu and Layland [113] proved that a
sufficient condition for schedulability for RM scheduled tasks set is if the utilization is
below a bound, which depends on the number of tasks. In the case of an unpartitioned
OS the processor utilization of this task set is equal to 0.725, lower than 0.729, i.e.,
the sufficient condition for RM scheduling for 7 tasks. But in partitioned systems,
this schedulability condition is not useful anymore, as the RM tasks execute inside a
partition and their execution is interrupted not only by higher priority tasks, but also by
the other partitions. In such cases, we require a response time analysis, similar to the
one presented in Section 3.5, to determine the schedulability of a task set.

5.2.2 Fourier Transform Spectrometer Controller for Partitioned
Architectures

Spectroscopic techniques allow scientists to determine the composition of remote sub-
stances. Although there are numerous such techniques, most space-based spectrom-
eters are dispersive spectrometers that measure the absorption of light in the near-
infrared spectrum (wavelengths between 1 to 5 µm). Fourier Transform Infrared (FTIR)
spectrometers are better suited for remote sensing, as they offer a considerable higher

108 Design Optimizations for Mixed-Criticality Space Applications

throughput (called the Jacquinot or throughput advantage) compared to the dispersive
spectrometers [145], and also due to the mid-infrared range they operate in, which
contains the fundamental vibrations for most of the relevant compounds.

In the following, we will describe the implementation of the controller for a FTIR spec-
trometer developed at JPL, NASA, for space exploration and field measurements in
rugged conditions. The instrument is the Compositional InfraRed Imaging Spectrom-
eter (CIRIS), based on the TurboFT [177] spectrometer design. Anderson et al. [27]
propose a similar FTIR instrument based on the TurboFT spectrometer that can be
used for Mars missions, as well as in Antarctic field studies. A similar concept to the
TurboFT instrument was developed for a spectrometer onboard the European Mars Ex-
press mission [80]. CIRIS is operational in the spectral range of 2.8 to 18 µm, or 3571
to 555 cm−1, detecting various organic and inorganic compounds that are relevant for
scientist.

The CIRIS controller is a soft real-time application. The real-time requirements of
CIRIS stem from the fact that it has to acquire a 8192 points interferogram over a period
of 33 ms every 100 ms. We have presented in Section 1.1 the difference between soft
and hard real-time systems, and we talk in Section 5.2.2.6 about the Quality-of-Service
function we defined for the CRIS application.

The structure of this section is as follows. Section 5.2.2.1 presents the traditional
Fourier Transform Spectrometer (FTS). Section 5.2.2.2 talks in greater detail about
CIRIS. Section 5.2.2.3 describes the CIRIS controller. Section 5.2.2.4 evaluates the
implementation and compares it with a commercial FTS. Throughout Section 5.2.2 we
present the implementation developed at JPL. In Section 5.2.2.5 we present the task
model we propose for integration with MESUR on one processor. This task model has
several changes compared to the FPGA implementation, the main difference being that
the FFT is performed on the processor, and not on the FPGA.

5.2.2.1 Fourier Transform Spectrometry

The schematic of a traditional Michelson FTIR spectrometer is shown in Fig. 5.2. The
basic configuration is comprised of a beam splitter and two mirrors, with the plane
of the fixed mirror M f perpendicular on the plane of the moving mirror Mm. As the
beam of light passes through the beam splitter, it is divided into two separate beams,
b1 and b2. The reflected beam b1 travels a fixed distance. The transmitted beam b2 is
reflected by the moving mirror Mm, and thus travels a variable distance, depending on
the position of Mm. The beams recombine at the beam splitter and the intensity of the
recombined beam br is detected by the Detector.

5.2 Processor-Level Partitioning 109

Figure 5.2: Basic Michelson interferometer

Mm moves in a linear trajectory between positions x0 and xmax. When Mm is in the x0
position, the distance travelled by beams b1 and b2 is equal. In this case, the optical path
difference (OPD) between the two beams, i.e., the difference in the distance travelled
by the beams, is zero. Consequently, constructive interference occurs as the two beams
recombine at the beam splitter, and the intensity of the recombined beam br at the
detector is maximized.

As the mirror Mm linearly moves away from the x0 position, the OPD increases and a
phase shift is introduced between the two beams. Thus, at each position of Mm, the
recombined beam contains a different combination of wavelengths, and its intensity
varies. The recorded intensity of the recombined beam, as a function of the OPD is
called an interferogram. By processing the interferogram using a Fast Fourier Trans-
form (FFT), we obtain the spectrum of the input beam, as the intensity of each wave-
length.

According to the Reyligh criterion [87], the resolution ∆(ν) of the spectrometer is
determined by the maximum motion of the moving mirror (which in turn determines
the OPD):

∆(ν) = 1/max(OPD) (5.1)

The reader is directed to [145, 87] for more details on the subject of Fourier Transform
spectroscopy instrumentation and engineering.

110 Design Optimizations for Mixed-Criticality Space Applications

5.2.2.2 Compositional InfraRed Imaging Spectrometer (CIRIS)

In the case of the CIRIS instrument (see Fig. 5.3), the OPD between the two beams
is modified using a rotating refractor, instead of a linear moving mirror like in the
traditional Michelson FTS. The refractor spins at a constant velocity, thus the OPD can
be easily determined for each refractor angle. The OPD is zero when the refractor’s
plane is parallel or perpendicular on the beam splitter, that is, both beams travel at an
angle of 45◦ through the refractor, and thus both beams travel the same length. The
OPD has a maximum value when the refractor is perpendicular on one of the beams,
and thus, one beam’s path is maximized, while the other one’s is minimized. Since
during each revolution the refractor has four positions with zero OPD (ZPD), each
complete refractor revolution yields 4 interferograms.

The linear motion system of the Michelson interferometer presented in Section 5.2.2.1
is very sensitive to vibrations and non-linear errors. An incorrect angle of the moving
mirror causes optical path length errors [145], affecting the quality of the output spec-
tra. Moreover, a monochromatic reference laser is usually used as a sampling clock
signal, adding to the complexity of the spectrometer and can lead to data sampling
errors.

The rotating refractor design of the CIRIS instrument increases the robustness of the
FTS, reducing the alignment errors. Furthermore, this design eliminates the need for
a reference laser, as the position of the refractor can be accurately reported using an
optical encoder mounted on the DC servomotor controlling the refractor. The TurboFT
spectrometer, on which CIRIS bases its design, was tested aboard helicopters for re-
mote sensing applications in Australia, confirming the ruggedness of this design [177].

To obtain a non-distorted interferogram, the light is acquired in the optical region where
the OPD is a linear relation with the angle of the refractor. The linear region cor-
responds to a scan angle limited to ±15 degrees around the ZPD position [177] and
to a duty cycle of 33%. The rotation speed of the refractor is limited by frequency

Figure 5.3: CIRIS interferometer (from [45])

5.2 Processor-Level Partitioning 111

bandwidth (50 kHz) of a very low noise (1 f A/
√

Hz) high gain (108) transimpedance
preamplifier needed to observe icy moons. In summary, the TurboFT spectrometer has
an angular speed of 2.5 revolutions per second, and a single interferogram is captured
during 33 ms every 100 ms.

The CIRIS instrument is operational in the spectral range of 2.8 to 18 µm, or 3571 to
555 cm−1. The 4 cm−1 resolution is limited by the aperture of the instrument and the
refractor thickness, while the optical bandwidth is limited by the scan angle. The FTS
spectra has a resolution of 754 points between 3571 and 555 cm−1 (2.8 and 18 µm).
The spectra can be computed from a single sided interferogram with 1508 points or
from a double sided interferogram (insensitive to phase change), with at least 3016
points. While 4096 interferograms points acquired over 33 ms will be sufficient, our
CIRIS implementation records 8192 interferograms data points for each interferogram.
As a consequence, we add more data points at the short wavelength of the spectrum,
while the interesting part of the spectrum is further away from the Nyquist frequency,
compared to the spectrum obtained from 4096 points. This improves the anti-aliasing
of the signal. Considering that the scan period is of 33 ms, the sampling frequency is
set to 4 µs per interferogram data point.

More details on the spectrometer can be found in [177]. Researchers presented in [45]
the testing results of the prototype, together with several detectors.

5.2.2.3 CIRIS Controller Implementation

Considering the real-time requirements of the CIRIS instruments presented in the pre-
vious Section, as well as the environment it will operate in, we implemented the con-
troller on a CompactRIO (cRIO) platform from National Instruments (NI). cRIO is a
“small rugged control and acquisition system” [20] for industrial use. A cRIO plat-
form contains a cRIO 9025 controller module processor running a real-time operating
system (RTOS), a back-plane cRIO 9118 with a reconfigurable, user-programmable
FPGA and hot-swappable I/O modules such as NI 9223 with 4 ADC channels 16-Bit
1 MSamples/s1 and NI 9263 4-Channel DAC 16-Bit 100 kSamples/s2.

We implemented the CIRIS controller on a cRIO 9025 rugged controller, which con-
tains an 800 MHz PowerPC processor running the VxWorks RTOS from WindRiver.
The chassis is a NI 9118 Reconfigurable Embedded Chassis, containing a Xilinx Virtex-
5 LX110 reconfigurable FPGA core, which executes at a default rate of 40 MHz.

Fig. 5.4a presents the schematic of our CIRIS setup, while Fig. 5.4b shows a photo
of the physical setup in the lab. The cRIO 9025 controller is depicted in the figure

1A sampling frequency of 1 MHz.
2A sampling frequency of 100 KHz.

112 Design Optimizations for Mixed-Criticality Space Applications

(a) CIRIS setup schematic

(b) Physical setup of CIRIS

Figure 5.4: CIRIS setup

5.2 Processor-Level Partitioning 113

1

cycle

ChA

ChB

ChI

Time [ms]

1 0 0

0 0 1 1

397.400

397.124

396.848

396.572

396.296
276
[ns]

Figure 5.5: Optical encoder output channels logic states

with “RT Host” box, while the NI 9118 chassis is represented by the “FPGA” box.
The Motor Control Unit (MCU) controls the velocity of the rotating refractor using
the output signals of the optical encoder and is currently running in a full independent
analog loop.

In order to meet the real-time requirement of reading an interferogram data point every
4 µs, we use a NI 9223 Simultaneous Analog Input module (depicted with ADC in
Fig. 5.4a) to convert the detector signal SD reading. The NI 9223 is capable of simulta-
neously reading from its 4 channels, at a rate of 1 MSamples/s, or 1 Sample/µs, making
it highly suitable for our application.

The correctness of the resulted spectrum depends not only on the noise of each point of
the interferograms, but also on the proper data sampling of the interferogram. We use
the angle of the rotating refractor to determine the sampling. In the CIRIS instrument,
the angle of the refractor is signaled by a FAULHABER E2-360I [76] optical incre-
mental encoder mounted on the DC servomotor controlling the rotating refractor. The
E2-360I optical encoder completes 360 cycles during a revolution. It employs three
outputs: Channel A and Channel B, with 90◦ phase shift, encode the logic state of the
cycle, while Channel Index signals the completion of a revolution. Fig. 5.5 presents the
logic states of the output channels. These optical encoder signals SOE are converted by
the ADC and used as inputs in our application.

Due to external forces, mirror misalignment may occur during the lifetime of operation,
affecting the quality of the resulting interferograms. Alignment correction is performed
using the 4 mirrors of the interferometer. A NI 9512 Stepper Drive Interface (SDI)
Module, depicted in Figure 3, controls the stepper motor linear actuators connected
to each mirror, through the mirror alignment signal SMA. The optical alignment is

114 Design Optimizations for Mixed-Criticality Space Applications

achieved by maximizing the power at the detector for a zero path delay configuration
of the refractor.

Fig. 5.6 presents the high-level description of our acquisition and processing controller
algorithm. This algorithm is partly implemented on the FPGA, and partly on the Real-
Time Host (RT Host). We mark the number of the algorithm steps in green circles. In
the first step, the controller identifies the rotating refractor position (1), by using the
optical encoder signals from channels A, B and I, respectively. In case the refractor is
at−15◦ from ZPD of one of the 4 rotational positions, the controller starts sampling for
8192 data points. The read data is filtered (3) using a bandpass filter between 3 and 100
kHz. After the ZPD position is identified (4), the interferogram can be zero-centered
(5). Steps 1 to 5 compose the Interferogram Acquisition Process (IAP). The centered
interferogram is Fast Fourier Transformed (FFT) (6), resulting in a raw spectrum. This
spectrum is handed over to the RT Host, where it is further processed separately for
each rotational position, with rotational position dependant coefficients. For each of the
rotational positions (7), the spectra are averaged per position (8), dispersion corrected
in the wave number domain (9) and the amplitude of the spectra is calibrated to spectral
radiance in W/(m2×µm) (11). Finally, the average of the resulting spectra is computed
(13). These steps are described in greater detail below.

Interferogram Acquisition. The interferogram acquisition process uses the optical
encoder outputs Channel A and Channel B (ChA ChB) to identify the angle of rotat-
ing refractor. ChA ChB output signals each have 360 cycles per revolution, and they
generate 1440 states per revolution. Fig. 5.5 presents the logic states of the output
channels. Each state corresponds to a turn of 0.25◦ angle of the rotating refractor. An
interferogram covering approximately 30◦ spans over 120 ChA ChB states. Once the
IAP identifies that the current ChA ChB logic state corresponds to the first logic state
of the 120 covered by an interferogram (step 1 in Fig. 5.6), it starts sampling (step
2) for 8192 points. IAP samples using an FPGA hardware clock with a frequency of
250 kHz. The Channel I encoder output signals the complete turn of the refractor, and
triggers the reset of the sampling counters.

The read data is filtered using a band pass filter between 3 kHz and 100 kHz (step 3
in Fig. 5.6). As a state of the encoder covers around 69 samples (we are sampling
the interferogram for 8192 points over 120 logic state numbers) and to get the double
interferogram as symmetric as possible, the IAP centers the ZPD of the interferogram
before performing the FFT. This is done first by identifying the ZPD (step 4 in Fig. 5.6)
in the filtered data and then choosing 8192 points around the ZPD to obtain a centered
interferogram (step 5), ready for the FFT (step 6 in Fig. 5.6). Fig. 5.7a presents the
ZPD centered interferogram reading at rotational position 1.

5.2 Processor-Level Partitioning 115

Average

Identify
refractor angle

Identify ZPD

Sample
250 kHz

Filter

FFT
[cm-1]

Detector

Extract Spectra from
Rotational Position

Average Calibrated Transmitted Spectrum
[W/(m2×µm)]

FPGA

RT Host

SOE
sample
trigger

1
2

4

3

5

7

13

14

rotational
position index

Optical
Encoder

SD

Zero-centered
Interferogram

[cm]

6

Average

Dispersion
Correction

Calibration

)

Rotational
Position 1

Dispersion
Corrected
Spectrum

[A/(m2×µm)]

Calibrated
Transmitted
Spectrum

[W/(m2×µm)]

11

12

Average

Dispersion
Correction

Calibration

Rotational
Position 2

Dispersion
Corrected
Spectrum

[A/(m2×µm)]

Calibrated
Transmitted
Spectrum

[W/(m2×µm)]

Average

Dispersion
Correction

Calibration

Rotational
Position 3

Dispersion
Corrected
Spectrum

[A/(m2×µm)]

Calibrated
Transmitted
Spectrum

[W/(m2×µm)]

Average

Dispersion
Correction

Calibration

Rotational
Position 4

Dispersion
Corrected
Spectrum

[A/(m2×µm)]

Calibrated
Transmitted
Spectrum

[W/(m2×µm)]

8

9

10

Figure 5.6: CIRIS high-level acquisition and processing algorithm description

116 Design Optimizations for Mixed-Criticality Space Applications

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

OPD [cm]

C
u

rr
e

n
t

A
C

 c
o

u
p

le
d

 [
 µ

A
 /

 m
2
]

Interferogram reading at rotational position 1
Sensor Raytheon; 800um;sr570 current to voltage gain=20 uA/V

Center with Zero OPD; Current AC Couple; Band pass filter: 3KHz and 100kHz

(a) Interferogram reading at rotational position 1

5001000150020002500300035004000
0

1

2

3

4

5

6

7

8
x 10

−4

Wavenumber [cm−1]

C
u
rr

e
n
t
d
e
n
si

ty
 o

n
 t
h
e
 d

e
te

ct
o
r

[
µ

A
 /
 (

m
2
 x

 µ
m

)
]

Uncalibrated spectrum obtained from rotational position 1
Sensor Raytheon; 800um;sr570 current to voltage gain=20 uA/V

(b) Uncalibrated spectrum obtained from rotational position 1

Figure 5.7: Interferogram and resulting spectrum

5.2 Processor-Level Partitioning 117

5001000150020002500300035004000
0

10

20

30

40

50

60

70

80

Wavenumber [cm−1]

S
N

R

Running SNR between the spectra of each ZPD position and position 1
Interval size = 50 points

Sensor Raytheon; 800um;sr570 current to voltage gain=20ua/volt
Band pass filter: 3KHz and 100kHz; No dispersion correction; No calibration

ZPD Position 2 vs Position 1
ZPD Position 3 vs Position 1
ZPD Position 3 vs Position 1

Figure 5.8: Running SNR comparison between the spectra at different ZPD positions

Position-Dependent Processing. Fig. 5.7b presents the uncalibrated spectrum ob-
tained after the FFT of the interferogram in Fig. 5.7a. The spectra obtained after the
FFT on the FPGA (step 6 in Fig. 5.6) are further processed on the RT Host, which
has a dedicated floating point unit. This processing is refractor position specific, as the
path delay of the beam is not exactly the same for each refractor position (see Fig. 5.3).
Fig. 5.8 shows that there are differences between the spectra obtained at different rota-
tional positions, by using the running signal to noise ratio (SNR), with an interval of 50
points (see Section 5.2.2.8 for more details on the computation of the running SNR).
As such, the controller averages the resulted spectra, per each rotational position (step
8 in Fig. 5.6) and processes the averaged spectra with position specific coefficients.

The dispersion correction process (step 9 in Fig. 5.6) improves the wavenumber scale
generated by the FFT, taking into consideration the rotational position of the spectra.
The correction is an offset in wavenumbers (cm−1), to the linear scale generated from
the FFT. The form of the offset is computed using the equation below:

Xcorrected = X f f t + c+10m×X f f t+b (5.2)

For ZnSe optics, m = 0.000172 and b = 0.993, while c is rotational position specific,
and can be easily obtained by comparing the CIRIS spectra for each rotational position
with a reference spectrum.

118 Design Optimizations for Mixed-Criticality Space Applications

5001000150020002500300035004000
−0.5

0

0.5

1

1.5

2

2.5

Wavenumber [cm−1]

D
e

te
ct

o
r

re
sp

o
n

si
vi

ty
 [

A
/W

]

Detector responsivity
Sensor Raytheon; 800um;sr570 current to voltage gain=20uA/V

Figure 5.9: Detector responsivity

Amplitude Calibration. In order to provide consistent results over different mea-
surements, the spectral amplitude has to be calibrated. This is done by reading the
spectra corresponding to a blackbody at low and high temperature TL and TH , respec-
tively, for each rotational position. We denote with S(T, ν) the measured spectrum of
the blackbody at temperature T in function of the wavenumber ν. Next, we compute
the theoretical spectral radiance corresponding to the two temperatures, using Planck’s
law. We denote with B(T, ν) the spectral radiance at the surface of the blackbody at the
temperature T for wavenumber ν. For the measured spectrum S(T, ν), we compute the
calibrated reading TCalibrated using the equation below:

TCalibrated(T,ν) =
S(T,ν)−S(TH ,ν)

S(TL,ν)−S(TH ,ν)
× (B(TL,ν)−B(TH ,ν))+B(TH ,ν) (5.3)

This equation can be rewritten as:

TCalibrated(T,ν) = S(T,ν)×
1

Responsivity(ν)
+O f f set(ν) (5.4)

The responsivity of the detector Responsivity(ν) and the Offset(ν):

Responsivity(ν) =
S(TL,ν)−S(TH ,ν)

B(TL,ν)−B(TH ,ν)
(5.5)

5.2 Processor-Level Partitioning 119

O f f set(ν) = S(TH ,ν)×
B(TL,ν)−B(TH ,ν)

S(TL,ν)−S(TH ,ν)
+B(TH ,ν) (5.6)

The values for Responsivity and Offset are computed a priori of performing the cal-
ibration presented in step 11 in Fig. 5.6. Fig. 5.9 presents the detector responsivity
computed using TL = 338.7 K and TH = 422 K.

Transmittance and Absorbance. The calibrated transmitted spectrum (step 14 in
Fig. 5.6) is obtained by averaging the calibrated spectra (step 12) over the four ro-
tational positions (step 13). The transmittance T(ν) of a sample at wavenumber ν is
measured by computing the ratio of the sample transmitted spectrum TSample(ν) over
the background transmitted spectrum TBackground(ν). The background spectrum is ob-
tained by measuring the spectrum without sample.

T (ν) =
TSample(ν)

TBackground(ν)
(5.7)

The absorbance of A(ν) of a sample at wavenumber ν is computed using the equation
below.

A(ν) =−log10(T (ν)) (5.8)

5.2.2.4 Evaluation of CIRIS

We evaluate the quality of our implementation by comparing the results from the CIRIS
instrument with the results obtained from a MIDAC M4500 FTIR spectrometer. The
MIDAC spectrometer uses ZnSe optics with HgCdTe detector. It has a resolution of
4 cm−1, covering wavenumbers from 6000 to 600 cm−1. Fig. 5.10a and Fig. 5.10b
present the transmittance and absorbance, respectively, of a plastic sample obtained
with the CIRIS instrument and with the Michelson-based FTIR instrument (MIDAC
M4500). The spectral features are similar.

The MIDAC absorbance is smoother due to the differences in data acquisition and pro-
cessing: the MIDAC instrument acquires 4096 points per interferogram and average
over 1024 spectra, while the CIRIS instrument acquired 8192 points per interferogram
and average over 480 spectra. In addition, the MIDAC spectrometer performs triangle
apodization of the interferogram [145], and Mertz phase correction [115]. The differ-
ence in the amplitude of the absorbance peak between the two instruments is attributed
to the black body calibration of the CIRIS instrument and the different experimental
setup of the CIRIS instrument compared to the MIDAC.

120 Design Optimizations for Mixed-Criticality Space Applications

80010001200140016001800200022002400
0

10

20

30

40

50

60

70

80

90

100

Wavenumber [cm−1]

T
ra

n
sm

itt
a
n
ce

Transmittance comparison.
 MIDAC acquires 1024 scans, 4096 points per scan

CIRIS acquires 480 scans, 8192 points per scan
Sensor Raytheon; 800um;sr570 current to voltage gain=20ua/volt

MIDAC M4500 FTIR

CIRIS average of positions 1, 2 and 3

(a) Transmittance comparison

80010001200140016001800200022002400
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Wavenumber [cm−1]

A
b

so
rb

a
n

ce

Absorbance comparison.
 MIDAC acquires 1024 scans, 4096 points per scan

CIRIS acquires 480 scans, 8192 points per scan
Sensor Raytheon; 800um;sr570 current to voltage gain=20ua/volt

MIDAC M4500 FTIR
CIRIS average of positions 1, 2 and 3

(b) Absorbance comparison

Figure 5.10: Comparison between the results obtained with CIRIS and with MIDAC
M4500 FITR

5.2 Processor-Level Partitioning 121

(a) Angular velocity variation, relative to the duration of a ChA ChB logic state

0 5 10 15 20 25 30

16.066

16.067

16.068

16.069

16.07

16.071

16.072

16.073

Time [s]

A
n

g
u

la
r

ve
lo

ci
ty

 [
ra

d
/s

]

Refractor angular velocity, relative to the duration of a revolution
Measured over 80 revolutions

FAULHABER E2−360I optical incremental encoder; 360 cycles per revolution

(b) Angular velocity variation, relative to the duration of a revolution, as reported by ChI

Figure 5.11: Angular velocity variation

122 Design Optimizations for Mixed-Criticality Space Applications

0 2 4 6 8 10 12 14

16.02

16.022

16.024

16.026

16.028

16.03

16.032

16.034

16.036

16.038

Refractor angular velocity, relative to the time between two ZPD positions
Measured over 36 revolutions

FAULHABER E2−360I optical incremental encoder; 360 cycles per revolution

Time [s]

A
n

g
u

la
r

sp
e

e
d

 [
ra

d
/s

]

(c) Angular velocity variation, relative to the duration of a revolution, as reported by the ZPD for
each rotational position

Figure 5.11: Angular velocity variation

Table 5.2: Rotating refractor velocity mean and standard deviation

Frequency [Hz] Mean velocity [rad/s] Standard deviation [rad/s]
3600 15.834 0.606000

10 16.028 0.003611
4 16.069 0.001211

We also identified points to improve in the instruments. In the current setup, the motor
control unit (MCU) is considered as a separate application, implemented on an analog
board. Fig. 5.11a presents the rotating refractor angular velocity measured by the du-
ration between two logic codes defined by a ChA ChB. Fig. 5.11b presents the angular
velocity variation, relative to the duration of a complete revolution, as reported by ChI.
Fig. 5.11c reports the velocity variation measured between two consecutive ZPD peaks.

Table 5.2 summarizes the results in Fig. 5.11, and shows the mean and the standard
deviation of the refractor velocity measured at 3600 Hz using ChA ChB signals, at
2.5 Hz using the ChI signal and at 10 Hz using the ZPD.

As shown in Table 5.3, the encoder signals ChA and ChB measure accurately the me-
chanical position of the refractor. The table presents the ChA ChB logic state number
for each of the four ZPD positions over 40 revolutions. Each of the four ZPD positions
are located at the same logic state number. Thus, replacing the analog implementa-

5.2 Processor-Level Partitioning 123

Table 5.3: Logic state numbers of the ZPD positions

ZPD position Mean value of ChA ChB logic state number Standard deviation
1 233 0
2 595 0
3 956 0
4 1315 0

tion of MCU with a digital one will improve the acquisition process, and the resulting
spectra, consequently.

5.2.2.5 Controller Application Model for Integration with MESUR

The CIRIS application, although non-critical, has soft real-time constraints: the inter-
ferometer produces every 100 ms an interferogram that has to be acquired and pro-
cessed before the next 100 ms interval. We present next the task model for the CIRIS
controller, for the integration scenario with the MESUR application (see Section 5.2.1),
onto the same processor. In this scenario, we consider the FFT tasks executing on the
processor, and not on the FPGA. Furthermore, CIRIS acquires interferograms over 40
revolutions, totaling 160 samples.

The FFT tasks are marked with f f ti, with i from 1 to 160. Tasks avg j, dc j and cal j
perform rotational-specific processing: they process the spectra obtained from the rota-
tional position j, with j = 1..4. Task avg j performs the averaging of all the spectra ob-
tained from rotational position j, and is marked as step 8 in Fig 5.6. Task dc j performs
the dispersion correction for the averaged spectrum at position j (step 9 in Fig 5.6),
while task cal j performs the calibration (step 11 in Fig. 5.6). The wR task saves the
resulting spectrum to the system.

The CIRIS application does not have a global deadline. Instead, the FFT tasks f f ti,
i = 1..160, have individual soft deadlines of 100 ms after their release times. The
details for the CIRIS tasks are shown in Table 5.4. Since tasks avg1–avg4 have the
same characteristics, we grouped them in Table 5.4 as avg j. We did the same for the
FFT tasks, the dispersion correction tasks dc j and the calibration tasks cal j. We mark
with “—” if the characteristic is not applicable, e.g., this is the case for dc j, which does
not have a release time or a deadline.

124 Design Optimizations for Mixed-Criticality Space Applications

Figure 5.12: CIRIS task graph

5.2 Processor-Level Partitioning 125

Table 5.4: CIRIS task details

Task name Release time Deadline WCET
τs — — 2

f f ti (i−1)×100 i×100 10
avg j — — 30
dc j — — 5
cal j — — 10
avg — — 30
wR — — 100

5.2.2.6 Quality of Service (QoS)

CIRIS is a soft real-time application (if CIRIS misses a deadline, the application will
still function, but with degraded service). Therefore we do not use the degree of schedu-
lability metric (presented in Section 3.3) to characterize the application implementa-
tion. Instead, we define a QoS function. The QoS function for CIRIS is the ratio
between the number of FFT tasks executed and the total number of FFT tasks. Thus, a
QoS of 1 means that all the FFT tasks executed. A QoS of 0 means that none executed.
The QoS is shown in Eq. 5.9:

QoS(CIRIS) =
executed FFT tasks

total FFT tasks
(5.9)

Section 5.2.2.7 presents the impact of partitioning on the QoS.

5.2.2.7 Influence of Partitioning on QoS

The proposed implementation scenario is that CIRIS is integrated on the same proces-
sor with MESUR or other applications of different criticality levels. In case this archi-
tecture is not partitioned, all applications need to be developed and certified according
to the same standards and processes as the applications with the highest criticality level.
This will increase the development and integration costs of the CIRIS instrument. The
integration of the controller for the CIRIS instrument on an unpartitioned architecture
will affect the signal to noise performance of the instrument, as the real-time require-
ments may not be met.

The signal to noise performance of the instrument is degraded if the real-time require-
ments of the controller are not achieved, as the measurements have to be interrupted to

126 Design Optimizations for Mixed-Criticality Space Applications

Figure 5.13: Comparison of running SNR of an interval size of 50 points, over differ-
ent number of revolutions

handle other applications with higher priority. For example, let us assume the CIRIS
spectrometer is aboard a satellite making spectral measurements of a particular spot on
the surface of an icy moon. In this case, the instrument will need to take continuous
measurements of the same spot for a number of scans to increase the SNR. Moreover,
these measurements will need to be continuously processed. A usual number of re-
quired scans to average is in the range of a several hundreds, thus the interferogram
acquisition and processing spans over tens of seconds. When the applications han-
dling the acquisition and processing of the spectra share the computing resource, there
are situations when mission-critical applications (navigation and power management)
might unnecessarily monopolize the CPU, preventing the CIRIS controller from exe-
cuting. In this case, the number of processed spectra will be reduced, severely affecting
the signal to noise of the resulting spectra.

Fig. 5.13 shows the impact of the number of spectral scans used during averaging pro-
cessed over the SNR of the final spectrum. We compute the running SNR with an
interval size of 50 points. This figure shows that reducing the number of spectral scans
by 32 reduces the SNR of the final spectrum by 6, as expected for white noise.

Considering the QoS function defined in Section 5.2.2.6, the running SNR correspond-
ing to the spectrum obtained after 160 revolutions (640 measurements) corresponds to
a QoS of 1. In comparison, the running SNR corresponding to the spectrum obtained

5.3 Communication-Level Partitioning 127

after 5 revolutions (20 measurements) corresponds to a QoS of 0.03125. Thus, a higher
QoS value means a better SNR and a signal of higher quality.

5.2.2.8 Running Signal-to-Noise Ratio (SNR)

SNR measures “the ability to reproduce the spectrum from the same sample and the
same conditions” [1]. Thus, SNR is a measure of the signal quality. We compute the
SNR according to the formulas presented [1]:

SNR =
1

Nrms
(5.10)

using the root-mean-square Nrms of the spectral noise N(ν):

SNR =

√
1
n
×

n

∑
i=1

[N(νi)]2 (5.11)

where n is the number of wavelengths in the spectrum. The spectral noise between two
spectra Ta and Tb of the same sample measured at different times is computed according
to the following equation:

N(ν) = 1−
Ta(ν)

Tb(ν)
(5.12)

With the running SNR, we compute the SNR over an interval of a given number of
points of the two output spectra. We shift this interval one point at the time, to cover
the whole spectral interval.

We present in Section 5.4.1 how to extend our proposed “Mixed-Criticality Design
Optimization” algorithm (see Section 3.2.2) to take into account soft real-time appli-
cations. We evaluate this extension using the MESUR application, presented in Sec-
tion 5.2.1, and a modified version of the CIRIS controller, described in Section 5.2.2.
Section 5.4.1 also presents the results of our experimental evaluation.

5.3 Communication-Level Partitioning

The Orion Crew Exploration Vehicle (CEV) was planned to replace the Space Shut-
tle. Orion was part of the Constellation Program, implementing the Vision for Space
Exploration [5] plan announced in 2004. The Orion project was awarded to Lockheed

128 Design Optimizations for Mixed-Criticality Space Applications

American Institute of Aeronautics and Astronautics

3

Figure 3 highlights
some of the major
milestone of the Orion
program since the Prime
development contract
was awarded to
Lockheed Martin Space
Systems Company in
2006. The program has
completed system
requirements reviews,
preliminary and critical
design reviews, a phase
one safety review,
subsystem and system
level testing, and is on
schedule for the
Exploration Flight Test
one (EFT-1) in
September 2014.

A summary of the Orion
subsystem and system
level progress follows.

Summary of Orion Production status

The Orion MPCV consists of four major systems; 1) launch abort system (LAS), 2) Crew Module (CM), 3) service
module (SM), and 4) Spacecraft Adapter (SA). The following section provides a production status of the EFT-1
configuration. Figure 4 shows the major elements of the Orion MPCV.

Figure 3: Orion Major Milestones

Figure 4: Orion Major Elements

D
ow

nl
oa

de
d

by
 P

et
er

 D
er

yc
z

on
 D

ec
em

be
r 4

, 2
01

3
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

10
.2

51
4/

6.
20

13
-5

47
6

Figure 5.14: Orion major elements (from [121])

American Institute of Aeronautics and Astronautics

5

Landing and recovery systems including the parachutes and water drop tests are being completed by NASA at their
facilities in Arizona’s Yuma’s proving grounds and at Langley’s water drop test facility (see Figure 8).

Service Module and Spacecraft
Adapter

NASA has recently entered into an
agreement with the European Space
Agency (ESA) to provide a European
Service Module (ESM) to be
integrated with the Lockheed Martin
provided crew adapter module,
spacecraft adapter (SA), and
spacecraft adapter jettison panels.
Figure 9 shows the ESM’s position
under the crew module adapter. The
ESM will provide the bulk of the
propulsion, environmental control,
and power subsystems. ESA, NASA,
and Lockheed Martin are currently
working together leveraging the
design development to date and
defining interface control documents (ICD’s). The first flight of the ESM will be on the Exploration Flight Test 1
(EM-1) in 2017. In order to support the EFT-1, Lockheed Martin has developed a test version of the SM structures,
spacecraft adapter and SA jettison panels including only the subsystems necessary to support the primary test
objectives. Therefore, the EFT-1 SM will not include primary propulsion, solar arrays, or life support systems.
Figure 10 shows the crew adapter module and SM structure in the assembly facility in the
Operations and Checkout (O&C) facility at Kennedy Space Center (KSC). and the jettison panels prior to the first
separation test at LM’s test facility in Sunnyvale.

Figure 9: ESM location on Orion (image courtesy NASA)

Figure 10: EFT-1 crew module adapter (l) and jettison panels (r)

Figure 8: Parachute test at Yuma (l), Water Landing at Langley (r) (images courtesy NASA)

D
ow

nl
oa

de
d

by
 P

et
er

 D
er

yc
z

on
 D

ec
em

be
r 4

, 2
01

3
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

10
.2

51
4/

6.
20

13
-5

47
6

Figure 5.15: Location of ESM on Orion (from [121])

5.4 Evaluation 129

Martin in 2006. The Constellation Program was cancelled in 2010 due to budget con-
straints, however Orion was reformulated as the Orion Multi-Purpose Crew Vehicle
(MPCV) [121].

Initially, Orion CEV was planned for lunar return missions, travel to the International
Space Station (ISS) and be extensible for future Mars missions. Accordingly, the re-
quirements for Orion CEV were: transport two to four people to the moon and zero
up to six to the ISS, land anywhere on the moon, provide continuous habitat for up
to 6 months and enable “any time” return [152]. Compared to Orion CEV the design
requirements, the Orion MPCV does not have major changes. However, Orion MPCV
will be used also for Beyond Earth Orbit (BEO) missions [121]. See [152] for a more
detailed description of the Orion CEV design requirements, and [121] for the project
status of the Orion MPCV in 2013.

Orion MPCV has no major design changes, compared to Orion CEV. Orion consists of
four major elements, displayed in Fig. 5.14: a launch abort system (LAS), a crew mod-
ule (CM), a service module (SM) and a spacecraft adapter (SCA). The LAS provides
safety-critical functionality to the crew in case of malfunctioning on the pad or during
ascent, by detaching the CM from the SM and the launch vehicle [152]. The CM is a
reusable component that holds four people, can transport pressurized and unpressurized
cargo, can dock with other vehicles and can perform re-entry and landing [152]. The
SM contains life support systems, and delivers propulsion and power to the CM and is
discarded before re-entry. In addition, SM can also transport scientific payload. In 2013
NASA announced that the European Space Agency (ESA) will provide a European SM
(ESM) to be integrated with the crew adapter module and SCA [121]. Fig. 5.15 shows
the location of the ESM on Orion.

The Orion case study used in this chapter is derived from [126], based on the Orion
Crew Exploration Vehicle (CEV), 606E baseline [126]. In this case study we have
45 network nodes (ESes and NSes) and 187 messages (with the parameters generated
based on the messages presented in [126]). The topology for this case study is shown
in Fig. 5.18.

5.4 Evaluation

5.4.1 Processor-Level Partitioning

In Chapter 3 we proposed design optimization strategies for mixed-criticality applica-
tions, aiming at minimizing the worst-case response times and the development costs.
In the following, we propose a new cost function (Eq. 5.13) for our proposed “Mixed-
Criticality Design Optimization” (MCDO) algorithm presented in Section 3.2.2. This

130 Design Optimizations for Mixed-Criticality Space Applications

new cost function captures, besides the schedulability of hard real-time applications,
also the quality of service of the soft real-time applications. For this setup we con-
sider two applications, the MESUR application presented in Section 5.2.1 as the hard
real-time application, and the CIRIS application (Section 5.2.2) as the soft real-time
application. These application also differ in their criticality levels. MESUR is mixed-
criticality, containing high-criticality and low-criticality tasks, while CIRIS is a non-
critical application.

In Section 5.2.2.7 we presented how the number of the acquired and processed interfer-
ograms affects the signal to noise performance of the instrument, which is a measure
of the quality of service (QoS). In Section 5.2.2, CIRIS was implemented on a dedi-
cated processor. Here, we assume that CIRIS shares the processor with the MESUR
application. Given a fixed assignment of tasks to partitions, we are interested to find
the sequence and size of partition slots such that all MESUR tasks are schedulable and
the QoS for CIRIS is maximized.

The MCDO algorithm proposed in Section 3.2.2 can be modified to search for the
solution in which the hard real-time applications are schedulable, and the soft real-time
applications have their quality of service maximized. This can be achieved by changing
the cost function (Eq. 3.2 in Section 3.2.2) to the following:

Cost(ψ) =
{

c1 = ∑Ai∈Γ max(0,Ri−Di) ifc1 > 0
c2 =−∑A j∈ΓQoS

QoS(A j) ifc1 = 0 (5.13)

If at least one hard real-time application Ai from the set Γ is not schedulable, there
exists one Ri greater than the deadline Di, and therefore the term c1 will be positive.
The term c1 in the equation above is the same in Eq. 3.2, and drives the search towards
schedulable solutions. If all the hard real-time applications in Γ are schedulable, this
means that each Ri is smaller than Di, and the term c1 = 0. In this case, we use c2
as the cost function, since when the hard real-time applications are schedulable, we
are interested to maximize the QoS for the soft real-time applications, denoted with
ΓQoS. We denote with QoS(A j) the quality of service function for application A j. This
function is specific for each application. In case of the CIRIS application, this function
is defined in Eq. 5.9.

In the following, we will show several partition table configurations visited by MCDO,
including the final solution, and their effect on the soft real-time CIRIS application.
Fig 5.16 presents the partition tables as Gantt charts, with the green partitions corre-
sponding to CIRIS. Section 5.2.1 and Table 5.1 present the MESUR tasks. We refer
with MESUR-HC to the set of high-criticality tasks (Set 1 in Table 5.1). The MESUR-
HC tasks are assigned to the red partition slices in Fig. 5.16. The set of low-criticality
MESUR tasks (Set 2 in Table 5.1), is denoted with MESUR-LC and is assigned to the
blue slices in Fig. 5.16.

5.4 Evaluation 131

(a) Initial solution. All the hard real-time tasks are schedulable, but CIRIS processes
only 4 out of 5 interferograms.

(b) The MESUR-HC tasks are schedulable. The CIRIS QoS increases to 0.837, but the
MESUR-LC “Camera task” is not schedulable.

(c) All the MESUR tasks are schedulable, but the CIRIS QoS drops to 0.493.

(d) Although the CIRIS processes all interferograms, there are 2 MESUR-HC and 1
MESUR-LC tasks missing their deadlines.

(e) Final solution, all the tasks are schedulable.

Figure 5.16: Partition table configurations

Table 5.5 summarizes the impact of the partition tables on the applications considered.
The first column, named “Partition table”, indicates the partition table configuration
used, and corresponds to the partition tables from Fig 5.16. Column 2 presents the size
of the major frame for each configuration, while Columns 3, 4 and 5 show the sum
of partition slice sizes assigned to the CIRIS, MESUR-HC and MESUR-LC tasks, re-
spectively. Column 6 and 7 present the number of successfully acquired and processed
interferograms and the value of the QoS function (Eq. 5.9 in Section 5.2.2.6) for the
CIRIS application. Columns 8 and 9 show the number of schedulable MESUR-HC and
MESUR-LC tasks.

The MCDO algorithm, presented in Section 3.2.2 starts from an initial solution which
considers that all the tasks in the system are hard real-time. In this extension, we modify
the initial solution algorithm to divide the processor time based on the priority of the
applications. Moreover, we have added another design transformation, “resize major
frame”, which modifies the Major Frame size. This new move, increases or decreases
the size of the major frame, proportionally adjusting the size of the partition slices. See
Section 3.2.2 for the design transformations used by MCDO.

132 Design Optimizations for Mixed-Criticality Space Applications

Ta
bl

e
5.

5:
Pa

rt
iti

on
ta

bl
e

co
nfi

gu
ra

tio
n

Pa
rt

iti
on

M
aj

or
Fr

am
e

To
ta

lp
ar

tit
io

n
sl

ic
e

si
ze

(m
s)

C
IR

IS
M

E
SU

R
Sc

he
d.

ta
sk

ta
bl

e
si

ze
(m

s)
C

IR
IS

M
E

SU
R

-H
C

M
E

SU
R

-L
C

N
o.

of
in

te
rf

er
og

ra
m

s
Q

oS
M

E
SU

R
-H

C
M

E
SU

R
-L

C
a

12
5

34
75

16
12

8
0.

80
0

4
/4

3
/3

b
12

0
20

80
20

92
0.

57
5

4
/4

2
/3

c
20

0
10

16
0

30
79

0.
49

3
4

/4
3

/3
d

12
0

40
60

20
16

0
1.

00
0

2
/4

2
/3

e
10

0
12

64
24

16
0

1.
00

0
4

/4
3

/3

5.4 Evaluation 133

Fig. 5.16a presents the initial solution, computed according to the changes presented
previously. The initial solution starts with a TMF = 125 ms, given by the designer.
Thus, the MESUR-HC tasks, composed of high-criticality hard real-time tasks, have
their processor time assigned first. Since the MESUR-HC tasks have a processor uti-
lization of 0.6, the tasks are assigned to a partition 75 ms long. Then, the MESUR-LC
tasks, which are low-criticality hard real-time, have their processor time assigned. The
MESUR-LC, with a utilization of only 0.125, are assigned to a partition 16 ms long.
The rest of the processor time (34 ms) is assigned to the CIRIS tasks, which are non-
critical soft real-time. This configuration is presented in Table 5.5, labelled as “a”. In
this case, all the hard real-time tasks are schedulable, but CIRIS has a QoS of only 0.8.

The second partition table, shown in Fig. 5.16b and described in Table 5.5 as the “b”
configuration, has a TMF = 120 ms. The MESUR-HC tasks are assigned to a partition
composed of two partition slices, summing 80 ms processor time. The MESUR-LC
partition is increased to 20 ms, but the CIRIS partition is reduced to 20 ms. In this
configuration, all the high criticality tasks are schedulable, and the QoS for the CIRIS
application increased to 0.837, but the low-criticality “Camera task” is not schedulable
anymore. Considering the hard real-time tasks, this solution is worse than the initial
solution.

Fig. 5.16c presents the “c” partition table from Table 5.5. This partition table has
a size of 200 ms, and the processor time is distributed among the tasks as follows.
MESUR-HC is assigned to two partition slices representing 160 ms of processing time.
MESUR-LC is assigned to two partition slices totaling 30 ms, while CIRIS is assigned
to a partition slice of 10 ms. In this configuration all the MESUR tasks are schedulable,
but for the CIRIS application, only 79 interferograms (out of 160) are acquired and
processed. The QoS for CIRIS is 0.493 in this case. With regards to the CIRIS tasks,
this partition table is worse than the initial solution.

The “d” partition table from Table 5.5 is shown in Fig. 5.16d. CIRIS processes all the
interferograms, resulting in a QoS of 1, which corresponds to a high-quality signal (see
Section 5.2.2.7 for a discussion on the impact of the number of processed interfero-
grams on the quality of the signal). In this case, not all the hard real-time tasks are
schedulable. The MESUR-HC “Control task” and “Radio task”, and the MESUR-LC
“Camera task” miss their deadline. This is the worst solution found so far.

The final solution is presented in Fig. 5.16e, labelled with “e” in Table 5.5. In this
case, the TMF = 100 ms, and the MESUR-HC tasks are assigned to two partition slices
summing 64 ms of processor time; the MESUR-LC tasks are assigned to two slices
summing 24 ms, while the CIRIS tasks have 12 ms of processor time. In this case, all
the hard real-time tasks are schedulable, and CIRIS processes all the interferograms,
resulting in a high-quality result (QoS of 1).

134 Design Optimizations for Mixed-Criticality Space Applications

This example demonstrates that our MCDO algorithm, presented in Section 3.2.2, is in
fact an extensible framework that, with minor changes, can optimize systems according
to different objectives. Thus, MCDO can be applied to a wide variety systems and
design optimization problems.

5.4.2 Communication-Level Partitioning

The Design Optimization of TTEthernet-based Systems (DOTTS) strategy is presented
in Section 4.2, Chapter 4. DOTTS is a Tabu Search-based metaheuristic that given
the topology of the network and the set of messages, returns the packing of messages
into frames, the assignment of frames to virtual links, the routing of virtual links, the
bandwidth for each RC virtual link and the schedules for the TT frames. DOTTS is a
flexible framework, that can be extended and modified to optimize different aspects of
TTEthernet-based systems. In Section 5.4.2.1 we describe how we can modify DOTTS
to perform topology selection in a TTEthernet-based system, and in Section 5.4.2.2 we
show how to modify DOTTS to take into consideration best-effort traffic.

5.4.2.1 Topology Selection

In Chapter 4, we considered that the topology of the TTEthernet network is given. But
designing the network topology for a system is not an easy task: it depends on the
number of end systems, network switches and links, on the network traffic, but also on
constraints like cost and SWaP (size, weight and power) of the system. In this section
we show how DOTTS can be used to optimize the network topology of a TTEthernet-
based system. Given an initial topology of the system, which can contain redundant
links and network switches, and the set of messages in the system, we want to find
an implementation that reduces the cost of the network implementation, such that all
messages are schedulable. In this section, we compute the cost of the system as the
number of network switches and links in the system:

Cost(ϒ) = ∑
i

dli +∑
j

NS j (5.14)

We propose an iterative algorithm to solve this design problem, based on DOTTS. The
algorithm is presented in Fig. 5.17. Starting with an initial topology (line 1 in Fig. 5.17),
given by the system engineer, we run DOTTS to obtain a schedulable implementation
(line 2). We denote with N S? the subset of NSes that, based on the embedded system
engineer’s decision, are fixed in the topology of the network and may not be removed.
Similarly, DL? is the subset of dataflow links that may not be removed. We denote with

5.4 Evaluation 135

TopologySelection(G◦C, M T T ∪M RC)
1 GCurrent

C ← G◦C
2 ϒCurrent ← DOTTS(G◦C, M T T ∪M RC)
3 while termination condition not reached do
4 GNew

C ← GCurrent
C \{NSi∨dl j|NSi ∈N SCurrent \N S?

,dl j ∈DLCurrent \DL?}
5 ϒNew← DOTTS(GNew

C , M T T ∪M RC)
6 if Cost(ϒNew) < Cost(ϒCurrent) then
7 GCurrent

C ← GNew
C

8 ϒCurrent ← ϒNew

9 end if
10 end while
11 return < GCurrent

C ,ϒCurrent >

Figure 5.17: Topology Selection with DOTTS

ϒ the tuple < Φm, K , MF , RV L, B , S > obtained by running the DOTTS algorithm,
where Φm is the fragmenting of messages, K is the packing of messages into frames,
MF is the assignment of frames to virtual links, RV L is the routing of virtual links, B is
the bandwidth allocation for the RC virtual links, and S is the set of schedules for the
TT frames (see Section 4.2).

Next, we iteratively (1) modify the current network topology (line 4), by removing a
network switch NSi ∈N SCurrent \N S? or a dataflow link dl j ∈DLCurrent \DL?. We
denote with N SCurrent and DLCurrent the set of NSes and dataflow links in GCurrent

C .
Then (2) we rerun DOTTS with the new topology GNew

C to find a new schedulable im-
plementation ϒNew (line 5). In case the cost of the new implementation ϒNew is smaller
than of the current implementation ϒCurrent , in terms of the Eq. 5.14, we continue the
search with the new topology (lines 6–9). The proposed topology selection algorithm
can be applied iteratively, until a stopping condition is met. Our condition was a cost
budget on the cost of the system, but this can be easily changed, allowing to tackle
different optimization problems.

We evaluated the algorithm from Fig. 5.17 using the real-life case study Orion CEV,
described in Section 5.3. The experimental results for this evaluation are presented in
Table 5.6. For each topology, the number of ESes and messages is the same (columns
2 and 5). Column 3 presents the number of NSes, and Column 4 presents the cost of
the system, in term of Eq. 5.14. Columns 6 and 7 show the number of resulting frame
instances obtained after running DOTTS and the percentage of schedulable messages.
The initial network topology, shown in Fig. 5.18, is marked in Table 5.6 with “orion 1”.
The Orion CEV case study has 31 ESes and 187 messages, with parameters generated
based on the messages presented in [126].

136 Design Optimizations for Mixed-Criticality Space Applications

Figure 5.18: Network topology of the Orion CEV, derived from [126]

Table 5.6: Topology selection experimental results

Topology ES NS Cost Messages Frame Sched.%Instances
orion 1

31
14 124

187
6250 100

orion 2 13 115 7240 100
orion 3 12 106 8804 100

The initial topology “orion 1” has 14 NSes, with a cost of 124 (see Eq. 5.14). Run-
ning DOTTS, we obtain a schedulable implementation with 6,250 frame instances. In
the first iteration of the algorithm from Fig. 5.17, the algorithm removes NS8, and the
connecting dataflow links, depicted with dotted lines. The results of the benchmark
corresponding to the topology “orion 2” are presented in Table 5.6. DOTTS finds a
schedulable implementation in this case as well. In the second iteration, the algorithm
removes both NS7 and NS8 from the initial topology. In this case too, labelled with
“orion 3” in Fig. 5.6, DOTTS is able to find a successful implementation, thus deliv-
ering a solution with a cheaper implementation (cost of 106), compared to the initial
topology “orion 1”, which has a cost of 124.

5.4 Evaluation 137

5.4.2.2 Optimization for Best-Effort Traffic

Although backward compatibility with Ethernet traffic is one of TTEthernet’s strong
points, there is no research that we are aware of that optimizes BE traffic in TTEthernet
networks. Throughout Chapter 4 we focused on hard real-time traffic transported via
TT and RC frames. In this section, we turn our attention to best-effort traffic, which
has no real-time or quality of service guarantees.

DOTTS is a flexible framework. We have shown in Section 5.4.2.1 how DOTTS can
be used to optimize the topology of a TTEthernet network. DOTTS that can be used
to optimize different aspects of a TTEthernet network, by changing its cost function.
In this section, we want to modify DOTTS to obtain schedulable implementations that
maximize the available bandwidth for the BE traffic. We do this by changing the cost
function used by DOTTS from Eq. 4.1 to the following:

Cost =

c1 = ∑i max(0,R fi − fi.deadline) ifc1 > 0, fi ∈MT T ∪MRC

c2 = ∑i max(0,BWReq(dl j)−BWAvail(dl j)) ifc1 = 0 and c2 > 0,dl j ∈DL
c3 = ∑i(BWReq(dl j)−BWAvail(dl j)) ifc1 = 0 and c2 = 0,dl j ∈DL

(5.15)

Once all the TT and RC frames are schedulable, i.e., each R fi is smaller than the dead-
line fi.deadline, and as such, c1 = 0, DOTTS will search for a solution that satisfies
the bandwidth requirements of the BE frames. If at least one dataflow link dl j ∈ DL
exists, where the BWReq(dl j) bandwidth required by the BE frames routed via dl j is
larger than the available bandwidth BWAvail(dl j), the BE traffic has insufficient band-
width, i.e., c2 > 0, and DOTTS will use c2 as the value of the cost function. The
available bandwidth BWAvail(dl j) is computed for each dataflow link, by subtracting
from the dataflow link’s maximum bandwidth, the bandwidth required by the TT and
RC frames. In case all the dataflow links have sufficient available bandwidth to satisfy
the BE traffic, c2 is 0, and the value of the cost function will be c3. This cost func-
tion will drive DOTTS towards solutions that maximize the available bandwidth for
BE frames.

In TTEthernet networks, BE traffic can be either statically routed, or be routed via ad-
dress learning in the switches. For this optimization, we assume that the BE traffic is
statically routed. We evaluated this approach using the Orion CEV case study, more
specifically, the topology “orion 3” obtained Table 5.6 and shown in Fig. 5.18 (without
NS7, NS8 and the dash-dotted links) . For BE traffic, we added messages with band-
width requirements that vary between 96 kbps (the average internet radio stream) and
10 Mbps (the read/write speed of DVD at 1x speed). The results are presented in Ta-
ble 5.7. We have 4 benchmarks, denoted with “be 1” to “be 4”. The number of BE

138 Design Optimizations for Mixed-Criticality Space Applications

Table 5.7: Optimization of BE traffic experimental results

Benchmark ES NS TT and RC BE Frame
BW BE

%Messages Messages Instances
be 1

31 12 187

41 8588 100
be 2 63 8500 100
be 3 83 8824 100
be 4 101 8810 100

messages (see Column 5) increase from 41 in benchmark “be 1”, to 101 in benchmark
“be 4”. Columns 2, 3 and 4 present the number of ESes, NSes and TT and RC frames
in the “orion” benchmark, using the “orion 3” topology. Column 6 presents the number
of frame instances, and column 7 shows BW BW

% , the percentage of BE messages that
have their bandwidth requirements met.

As the results in Table 5.7 show, DOTTS can be used also to optimize a TTEthernet
network to take into account BE traffic. Even though the BE traffic is increasing,
DOTTS is able to find solutions such that all the TT and RC frames meet their real-time
constraints and the BE frames have their bandwidth requirements met. Furthermore,
this evaluation shows that our proposed metaheuristic is flexible, and that we can tackle
different optimization problems by changing the cost function.

CHAPTER 6

Conclusions and
Future Work

This chapter discusses the conclusions of this thesis and presents future work ideas in
the context of mixed-criticality real-time embedded systems.

6.1 Conclusions

In this thesis we have proposed methods and tools for mixed-criticality distributed real-
time embedded systems. Mixed-criticality systems integrate on the same platform ap-
plications of different criticality levels. In such cases, the certification standards require
that the applications of different SILs are developed and certified according to the high-
est level, dramatically increasing the certification costs. The other option is to provide
separation mechanisms such that the applications of different criticality levels are iso-
lated, so they cannot influence each other.

In this thesis, we consider that the platform enforces separation by implementing par-
titioning mechanisms similar to Integrated Modular Avionics [3]. At the communi-
cation network level we consider that the network implements the TTEthernet proto-
col, which provides both temporal and spatial partitioning. Chapter 2 presented our
platform model, describing in detail partitioning at the processor and communication
network level. Regarding the application model, we consider that each application is

140 Conclusions and Future Work

composed of tasks that communicate using messages. The application model has been
presented in Chapter 2.

The methods we have proposed in this thesis focus on the early life cycle phases of
the system, where the impact of design decisions is greatest. We have highlighted in
Section 1.3 the need for methods and tools to support the system engineers in taking
design decisions. We have proposed several design optimization strategies that we have
implemented as design space exploration tools.

To summarize our design optimization strategies at the processor-level:

• We have proposed an optimization approach that, for a given architecture and a
fixed mapping of tasks to PEs, determines the sequence and size of the partition
slices within the Major Frame on each PE. We have implemented this optimiza-
tion as a Simulated Annealing metaheuristic. The experimental evaluations have
shown that optimizing the partitioning is necessary to obtain schedulable imple-
mentations.

• We have discussed in Section 3.1.2 how partitioning constrains the way tasks
use the PEs, introducing overheads. We have shown that by simultaneously op-
timizing the mapping and partitioning, the overheads are minimized, increasing
thus the chance to find schedulable implementations. We have proposed a Tabu
Search-based optimization strategy for this simultaneous optimization problems.

• For situations where the simultaneous optimization of mapping and partitioning
does not find schedulable solutions, we have proposed an alternative to perform-
ing a costly upgrade of the architecture. Our approach elevates tasks to higher
SILs to allow partition sharing, reducing the partitioning overheads at the ex-
pense of increasing the development and certification costs. We have presented
this approach in Section 3.1.3. We have proposed a development cost model
that captures the development costs associated to a given SIL (presented in Sec-
tion 2.1.3). We have implemented this optimization approach as a Tabu Search
metaheuristic.

• In Section 3.1.4 we have proposed another method to reduce the development
costs. Safety-standards allow a task of higher SIL to be “decomposed”, using
redundancy to increase dependability, as several redundant tasks of lower SILs.
We have extended our model to take into account task decomposition and we de-
scribed decomposition in Section 2.1.2. We have proposed a Tabu Search-based
strategy to optimize the task decomposition, mapping, partitioning and partition
sharing such that the timing requirements are satisfied and the development costs
are minimized.

• We have shown in Section 5.4.1 how to extend the MCDO algorithm from Sec-
tion 3.2.2 to consider also soft real-time applications, in the context of realistic

6.1 Conclusions 141

space applications. We have proposed a cost function that captures, besides the
schedulability of hard real-time applications, also the quality of service of the
soft real-time applications. The experimental evaluation has shown that MCDO
is an extensible framework, which, with minor changes, can tackle multiple de-
sign optimization problems.

• We have proposed a response time analysis to calculate the worst-case response
times of tasks scheduled using fixed-priority preemptive scheduling (FPS) pol-
icy. The response time analysis extends the analysis from [136] to consider the
influence of time-partitions on the schedulability of the FPS tasks. Compared
to the analysis proposed by Audsley and Wellings [30] for partitioned PEs, our
analysis dos not assume that the start time of partition slices within a major frame
are periodic. This analysis was presented in Section 3.5.

To summarize our design optimization strategies at the communication network-level:

• In Section 4.1 we have proposed three optimization strategies to improve the
schedulability of messages. In Section 4.1.2 we have shown that optimizing the
fragmenting and packing of messages into frames can improve the schedulabil-
ity of messages. In Section 4.1.3 we have proposed to optimize the routing of
virtual links as an approach to increase the number of schedulable messages. In
Section 4.1.4 we have shown that considering the RC traffic when scheduling the
TT frames can greatly increase the schedulability of the RC frames. We have im-
plemented the three strategies as Tabu Search optimizations. The experimental
evaluations have proven that all the three approaches improve the schedulability
of messages.

• Section 4.2 describes the DOTTS optimization strategy that includes the ap-
proaches described in Section 4.1. We have implemented the strategy using a
Tabu Search metaheuristic. Given the network topology and the set of TT and
RC messages, this strategy optimizes the fragmenting and packing of messages,
the routing of virtual links and the schedules for the TT frames, such that the TT
and RC frames are schedulable, and the end-to-end delay of the RC frames is
minimized. The experimental evaluations have confirmed that the simultaneous
optimization of fragmenting and packing, routing and scheduling is consistently
better than any of the separate optimizations, and that this simultaneous opti-
mization is necessary to find schedulable solutions.

• We have proposed in Section 5.4.2.1 a method to perform topology selection
using DOTTS, to reduce the cost associated with the network implementation.
Given the set of messages and an initial network topology we want to find a
network implementation that reduces the number of network switches and links,
such that all messages are schedulable. We have evaluated our proposed topol-
ogy selection method using a realistic space application, i.e., the Orion Crew

142 Conclusions and Future Work

Exploration Vehicle. The experimental evaluations have shown that DOTTS can
be used for topology selection and that our method reduces the cost.

• We have shown in Section 5.4.2.2 how to extend the DOTTS optimization from
Section 4.2 to consider also best-effort messages. We have proposed an alter-
native cost function that captures, besides the schedulability of the TT and RC
frames, also the bandwidth requirements of the BE frames. The experimental
evaluations have shown that DOTTS is in fact an extensible framework and can
tackle different optimization problems with minor changes.

6.2 Future Work

In this section we present research challenges to be considered for future work.

• In this thesis we treat separately the optimizations at processor-level and at the
communication network-level, and it is not trivial to integrate them. We have pro-
posed in [164] an iterative method for a joint optimization of tasks and messages.
At the system level, we will look into joint tasks and messages optimization.

• Partitioned architectures provide protection mechanisms to ensure that one ap-
plication does not affect the performance of another application, in the safety
domain. In some cases, systems have to be certified not only for safety, but
also for security. As future work, the model provided in Chapter 2 and the opti-
mization strategies proposed in Chapter 3 and Chapter 4 can be extended to take
into account security models with different security levels. For example, Mul-
tiple Independent Levels of Security (MILS) [26, 49] is a security architecture
that ensure secure integration of applications of different security levels and con-
trolled information flow. MILS implements separation mechanisms similar to
IMA (described in Section 2.2), but focusing on security. We already did a first
step in this direction, by extending our model at the processor level to consider
a separation requirements graph that specifies which tasks are not allowed to
share partitions (see Section 2.1.4). Such a separation graph will also be needed
at the communication network-level, to make sure our algorithms do not pack
messages of different security levels into the same frame.

At the processor-level:

• The strategies proposed in Chapter 3 optimize the task decomposition, parti-
tioning, partition sharing and mapping considering the architecture fixed. These
strategies can be extended to also perform architecture selection. Given a library

6.2 Future Work 143

of PEs, with different costs and capabilities, the optimization will return an ar-
chitecture implementation that satisfies all the timing constraints and minimizes
costs. Such an architecture implementations consists of: the set of chosen PEs,
the mapping of tasks, the task decomposition, the partitioning and the partition
sharing.

• We have shown in Section 5.4.1 how to extend the strategies from Chapter 3 to
consider also soft real-time tasks. Our optimization strategies can be extended to
take into account other constraints too, such as power consumption.

At the communication network-level:

• The optimization strategies proposed in Chapter 4 focus on design issues at the
cluster level. But a TTEthernet network can consist of different clusters that
have different time bases. For future work, our optimizations can be extended to
consider multi-cluster networks. Since the clusters have different time bases, TT
frames are transmitted between two clusters as RC frames. Thus, the extension
will also have to take into account the conversion of TT frames into RC frames
and vice versa.

• Due to legacy, safety or modularity constraints, or due to components having dif-
ferent communication requirements, the network of some systems contains sub-
networks implementing different protocols interconnected using gateways. For
example, a vehicle will have different networks for the body control, for the in-
fotainment system or for the power train unit. Examples of protocols used in ve-
hicular networks are the Controller Area Network (CAN) [4] and FlexRay [10].
A direction for future research is to extended the optimizations from Chapter 4
to consider networks composed of heterogeneous clusters, implementing TTEth-
ernet and different communication protocols.

144 Conclusions and Future Work

Bibliography

[1] Mars Pathfinder. http://www.nasa.gov/mission_pages/mars-pathfinder/.

[2] SAE Technical Report J2056/1: Class C Application Requirement considera-
tions. Technical report, SAE International, 1993.

[3] ARINC 651-1: Design Guidance for Integrated Modular Avionics. ARINC
(Aeronautical Radio, Inc), 1997.

[4] ISO 11898: Road Vehicles – Controller Area Network (CAN). International
Organization for Standardization (ISO), Geneva, Switzerland, 2003.

[5] The Vision for Space Exploration. Technical report, National Aeronautics and
Space Administration, 2004.

[6] Study of Worldwide Trends and RD Programmes in Embedded Systems in View
of Maximising the Impact of a Technology Platform in the Area. Technical
Report MSU-CSE-00-2, F.A.S.T., Munchen, Germany, November 2005.

[7] ARINC 664P7: Aircraft Data Network, Part 7, Avionics Full-Duplex Switched
Ethernet Network. ARINC (Aeronautical Radio, Inc), 2009.

[8] IEEE 802.1Qav - IEEE Standard for Local and Metropolitan Area Networks -
Virtual Bridged Local Area Networks Amendment 12: Forwarding and Queue-
ing Enhancements for Time-Sensitive Streams. IEEE, 2009.

[9] IEEE 802.1Qat - IEEE Standard for Local and Metropolitan Area Networks -
Virtual Bridged Local Area Networks Amendment 14: Stream Reservation Pro-
tocol. IEEE, 2010.

[10] ISO 10681: Road vehicles – Communication on FlexRay. International Organi-
zation for Standardization (ISO), Geneva, Switzerland, 2010.

146 Bibliography

[11] ARTEMIS Strategic Research Agenda. Technical report, ARTEMIS Industry
Association, 2011.

[12] IEEE 802.1AS - IEEE Standard for Local and Metropolitan Area Networks -
Timing and Synchronization for Time-Sensitive Applications in Bridged Local
Area Networks. IEEE, 2011.

[13] IEEE 802.1BA - IEEE Standard for Local and Metropolitan Area Networks -
Audio Video Bridging (AVB) Systems. IEEE, 2011.

[14] More than 50 billion connected devices. White Paper 284 23-3149 Uen, Erics-
son, February 2011.

[15] Systems Engineering Handbook V3.2. INCOSE, 2011.

[16] Strategic Research Agenda. Technical report, Embedded Systems Institute,
2012.

[17] ARINC 653P0: Avionics Application Software Standard Interface, Part 0,
Overview of ARINC 653. ARINC (Aeronautical Radio, Inc), 2013.

[18] Embedded Market Study. Technical report, UBM Tech Electronics, 2013.

[19] ETG 1000 EtherCAT Specification. EtherCAT Technology Group, 2013.

[20] NI CompactRIO, 2013. http://www.ni.com/compactrio/.

[21] The Teardown: Apple iPhone 5s. Engineering and Technology, 8:84–85,
November 2013.

[22] Emile Aarts, Jan Korst, and Wil Michiels. Simulated annealing. In Edmund
Burke and Graham Kendall, editors, Search Methodologies, pages 187–210.
Springer, 2005.

[23] L. Abeni and G. Buttazzo. Integrating multimedia applications in hard real-time
systems. In Proceedings of Real-Time Systems Symposium, pages 4 –13, 1998.

[24] AbsInt. aiT Worst-Case Execution Time Analyzers. http://www.absint.
com/ait/.

[25] Ahmad Al Sheikh, Olivier Brun, Maxime Chéramy, and Pierre-Emmanuel
Hladik. Optimal design of virtual links in AFDX networks. Real-Time Systems,
49(3):308–336, 2013.

[26] Jim Alves-Foss, Paul W Oman, Carol Taylor, and W Scott Harrison. The MILS
architecture for high-assurance embedded systems. International Journal of Em-
bedded Systems, 2(3):239–247, 2006.

http://www.ni.com/compactrio/
http://www.absint.com/ait/
http://www.absint.com/ait/

Bibliography 147

[27] Mark S. Anderson, Jason M. Andringa, Robert W. Carlson, Pamela Conrad,
Wayne Hartford, Michael Shafer, Alejandro Soto, Alexandre I. Tsapin, Jens Pe-
ter Dybwad, Winthrop Wadsworth, and Kevin Hand. Fourier transform infrared
spectroscopy for Mars science. Review of Scientific Instruments, 76(3), 2005.

[28] AS 6802. Time-Triggered Ethernet. SAE International, 2011.

[29] N. Audsley, K. Tindell, and A. Burns. The end of the line for static cyclic
scheduling. In Proceedings of Euromicro Workshop on Real-Time Systems,
pages 36–41, 1993.

[30] N. Audsley and A. Wellings. Analysing APEX applications. In Proceedings of
the Real-Time Systems Symposium, pages 39–44, 1996.

[31] N.C. Audsley. Optimal priority assignment and feasibility of static priority tasks
with arbitrary start times. Technical report, Department of Computer Science,
University of York, UK, November 1991.

[32] Algirdas Avizienis, Jean-Claude Laprie, and Brian Randell. Fundamental con-
cepts of dependability, 2001.

[33] H. Ayed, A. Mifdaoui, and C. Fraboul. Frame packing strategy within gate-
ways for multi-cluster avionics embedded networks. In Emerging Technologies
Factory Automation, pages 1–8, 2012.

[34] Luis Silva Azevedo, David Parker, Martin Walker, Yiannis Papadopoulos, and
Rui Esteves Araujo. Automatic decomposition of safety integrity levels: Op-
timization by tabu search. In Workshop on Critical Automotive applications:
Robustness and Safety, 2013.

[35] James Barhorst, Todd Belote, Pam Binns, Jon Hoffman, James Paunicka,
Prakash Sarathy, John Scoredos, Peter Stanfill, Douglas Stuart, and Russel Urzi.
A research agenda for mixed-criticality systems. In Cyber-Physical Systems
Week, 2009.

[36] S. K. Baruah, A. Burns, and R. I. Davis. Response-time analysis for mixed
criticality systems. In Proceedings of the Real-Time Systems Symposium, pages
34–43, 2011.

[37] Sanjoy Baruah. Task partitioning upon heterogeneous multiprocessor platforms.
In Proceedings of the Real-Time and Embedded Technology and Applications
Symposium, pages 536–543, 2004.

[38] Sanjoy Baruah and Nathan Fisher. Hybrid-priority scheduling of resource-
sharing sporadic task systems. In Proceedings of the Real-Time and Embedded
Technology and Applications Symposium, pages 248–257, 2008.

148 Bibliography

[39] Sanjoy Baruah and Gerhard Fohler. Certification-cognizant time-triggered
scheduling of mixed-criticality systems. In Proceedings of the Real-Time Sys-
tems Symposium, pages 3–12, 2011.

[40] Sanjoy Baruah, Haohan Li, and Leen Stougie. Towards the design of certifiable
mixed-criticality systems. In Real-Time and Embedded Technology and Appli-
cations Symposium, pages 13–22, 2010.

[41] Sanjoy Baruah and Steve Vestal. Schedulability analysis of sporadic tasks with
multiple criticality specifications. In Proceedings of the Euromicro Conference
on Real-Time Systems, pages 147–155, 2008.

[42] Sanjoy K. Baruah, Vincenzo Bonifaci, Gianlorenzo D’Angelo, Alberto
Marchetti-Spaccamela, Suzanne van der Ster, and Leen Stougie. Mixed-
criticality scheduling of sporadic task systems. In Annual European Symposium
on Algorithms, pages 555–566, 2011.

[43] S.K. Baruah. Optimal utilization bounds for the fixed-priority scheduling of
periodic task systems on identical multiprocessors. IEEE Transactions on Com-
puters, 53(6):781–784, 2004.

[44] Von Günther Baumann. Eine elektronisch gesteuerte kraftstoffeinspritzung für
ottomotoren. Bosch Techn. Berichte, (3):107–114, November 1967.

[45] Daniel F. Berisford, Kevin H. Hand, Paulo J. Younse, Didier Keymeulen, and
Robert Carlson. Thermal testing of the compositional infrared imaging spec-
trometer. In International Conference on Environmental Systems, Jul. 2012.

[46] P. Binns. A robust high-performance time partitioning algorithm: the digital
engine operating system (DEOS) approach. In Conference on Digital Avionics
Systems, volume 1, pages 1B6/1–1B6/12, 2001.

[47] B. Boehm, C. Abts, and S. Chulani. Software development cost estimation
approaches–A survey. Annals of Software Engineering, 10(1):177–205, 2000.

[48] Barry W. Boehm, Clark, Horowitz, Brown, Reifer, Chulani, Ray Madachy, and
Bert Steece. Software Cost Estimation with Cocomo II. Prentice Hall PTR,
Upper Saddle River, NJ, USA, 1st edition, 2000.

[49] C. Boettcher, R. DeLong, J. Rushby, and W. Sifre. The MILS component inte-
gration approach to secure information sharing. In Proceedings of the Digital
Avionics Systems Conference, pages 1.C.2–1–1.C.2–14, 2008.

[50] Bosch automotive. A product history. Journal of Bosch History. Supplement 2.

[51] Robert Bosch and Michael Trick. Integer programming. In Edmund Burke
and Graham Kendall, editors, Search Methodologies, pages 69–95. Springer US,
2005.

Bibliography 149

[52] Michelle Boucher. Sector Insight: Keeping Automotive Competitive with Em-
bedded Systems. Technical report, Aberdeen Group, August 2013.

[53] Tracy D Braun, Howard Jay Siegel, Noah Beck, Ladislau L Bölöni, Muthu-
cumaru Maheswaran, Albert I Reuther, James P Robertson, Mitchell D Theys,
Bin Yao, Debra Hensgen, and Richard F Freund. A comparison of eleven static
heuristics for mapping a class of independent tasks onto heterogeneous dis-
tributed computing systems. Journal of Parallel and Distributed Computing,
61(6):810 – 837, 2001.

[54] Dennis M. Buede. Introduction to systems engineering. In The Engineering
Design of Systems: Models and Methods, pages 3–36. John Wiley & Sons, Inc.,
2000.

[55] Alan Burns and Rob Davis. Mixed criticality systems – a review. Jul 2013.

[56] Giorgio C. Buttazzo. Hard Real-Time Computing Systems: Predictable Schedul-
ing Algorithms and Applications. Springer, 3 edition, 2011.

[57] Certification Authorities Software Team (CAST). CAST-2: Guidelines for as-
sessing software partitioning/protection schemes. Position Paper, Federal Avia-
tion Administration, 2001.

[58] S. Chakraborty, S. Kunzli, and L. Thiele. A general framework for analysing
system properties in platform-based embedded system designs. In Proceedings
of the Design, Automation and Test in Europe Conference and Exhibition, pages
190–195, 2003.

[59] Robert N. Charette. This car runs on code. IEEE Spectrum, 2009. Avail-
able online at http://spectrum.ieee.org/green-tech/advanced-cars/
this-car-runs-on-code.

[60] Carlos A. Coello Coello, David A. Van Veldhuizen, and Gary B. Lamont. Evo-
lutionary algorithms for solving multi-objective problems. Kluwer Academic,
2007.

[61] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

[62] L.A. Cortés, P. Eles, and Z. Peng. Quasi-static scheduling for real-time systems
with hard and soft tasks. In Proceedings of the Conference on Design, automa-
tion and test in Europe, pages 21176–21181, 2004.

[63] Francis Cottet, Joëlle Delacroix, Claude Kaiser, and Zoubir Mammeri. Schedul-
ing in Real-Time Systems. John Wiley & Sons, LTD, 2002.

http://spectrum.ieee.org/green-tech/advanced-cars/this-car-runs-on-code
http://spectrum.ieee.org/green-tech/advanced-cars/this-car-runs-on-code

150 Bibliography

[64] Rodney Cummings, Kai Richter, Rolf Ernst, Jonas Diemer, and Arkadeb Ghosal.
Exploring Use of Ethernet for In-Vehicle Control Applications: AFDX, TTEth-
ernet, EtherCAT, and AVB. SAE International Journal of Passenger Cars - Elec-
tronic and Electrical Systems, 5(1):72–88, 2012.

[65] Dionisio de Niz, Karthik Lakshmanan, and Ragunathan Rajkumar. On the
scheduling of mixed-criticality real-time task sets. In Proceedings of the Real-
Time Systems Symposium, pages 291–300, 2009.

[66] Kalyanmoy Deb. Search Methodologies, chapter Multi-Objective Optimization.
Springer, 2005.

[67] James A. Debardelaben, Vijay K. Madisetti, and Anthony J. Gadient. Incor-
porating cost modeling in embedded-system design. IEEE Design and Test of
Computers, 14:24–35, July 1997.

[68] J. D. Decotignie. Ethernet-based real-time and industrial communications. Pro-
ceedings of the IEEE, 93(6):1102–1117, 2005.

[69] T. Demmeler and P. Giusto. A universal communication model for an automotive
system integration platform. In Proceedings of Design, Automation and Test in
Europe, pages 47–54. IEEE, 2002.

[70] Robert Dick. Embedded system synthesis benchmarks suite, 2005.
http://ziyang.eecs.umich.edu/d̃ickrp/e3s/.

[71] D-jetronic history and fundamentals. Web Page. http://members.rennlist.
com/pbanders/djetfund.htm.

[72] Francois Dorin, Pascal Richard, Michael Richard, and Joel Goossens. Schedu-
lability and sensitivity analysis of multiple criticality tasks with fixed-priorities.
Real-Time Systems, 46(3):305–331, 2010.

[73] Christof Ebert and Capers Jones. Embedded software: Facts, figures, and future.
Computer, 42(4):42–52, April 2009.

[74] Rolf Ernst. Certification of Trusted MPSoC Platforms. 10th International Forum
on Embedded MPSoC and Multicore, 2010.

[75] EUROCAE ED-94B. Final report for clarification of ED-12B "Software Con-
siderations in Airborne Systems and Equipment Certification". The European
Organization for Civil Aviation Equipment, 2001.

[76] Faulhaber. Series E2 Optical Incremental Encoders datasheet, 2008. http:
//www.micromo.com/Micromo/Encoder2/E2_MME.pdf.

[77] C. Ferdinand and R. Heckmann. Verifying timing behavior by abstract interpre-
tation of executable code. Correct Hardware Design and Verification Methods,
3725:336–339, 2005.

http://members.rennlist.com/pbanders/djetfund.htm
http://members.rennlist.com/pbanders/djetfund.htm
http://www.micromo.com/Micromo/Encoder2/E2_MME.pdf
http://www.micromo.com/Micromo/Encoder2/E2_MME.pdf

Bibliography 151

[78] C.J. Fidge. Real-time schedulability tests for preemptive multitasking. Real-
Time Systems Journal, 14(1):61–93, JAN 1998.

[79] Fletcher, Mitch. Progression of an open architecture: from Orion to Altair and
LSS. Technical report, Honeywell, International, 2009.

[80] V. Formisano, F. Angrilli, G. Arnold, S. Atreya, G. Bianchini, D. Biondi,
A. Blanco, M.I. Blecka, A. Coradini, L. Colangeli, A. Ekonomov, F. Espos-
ito, S. Fonti, M. Giuranna, D. Grassi, V. Gnedykh, A. Grigoriev, G. Hansen,
H. Hirsh, I. Khatuntsev, A. Kiselev, N. Ignatiev, A. Jurewicz, E. Lellouch,
J. Lopez Moreno, A. Marten, A. Mattana, A. Maturilli, E. Mencarelli,
M. Michalska, V. Moroz, B. Moshkin, F. Nespoli, Y. Nikolsky, R. Orfei, P. Or-
leanski, V. Orofino, E. Palomba, D. Patsaev, G. Piccioni, M. Rataj, R. Rodrigo,
J. Rodriguez, M. Rossi, B. Saggin, D. Titov, and L. Zasova. The Planetary
Fourier Spectrometer (PFS) onboard the European Mars Express mission. Plan-
etary and Space Science, 53(10):963 – 974, 2005.

[81] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA,
1979.

[82] M. Gendreau. An Introduction to Tabu Search. Centre for Research on Trans-
portation, July 2002.

[83] Fred Glover and Manuel Laguna. Tabu Search. Kluwer Academic Publishers,
Norwell, MA, USA, 1997.

[84] Luis Gomes, J. Barros, and A. Costa. Modeling formalism for embedded system
design. In R. Zurawski, editor, Embedded systems handbook, chapter 5. CRC
Press, 2005.

[85] D. Goswami, M. Lukasiewycz, R. Schneider, and S. Chakraborty. Time-
triggered implementations of mixed-criticality automotive software. In Pro-
ceedings of Design, Automation, and Test in Europe Conference and Exhibition,
pages 1227–1232, 2012.

[86] M. Gries. Methods for evaluating and covering the design space during early
design development. Integration - The VLSI Journal, 38(2):131–183, 2004.

[87] Joern Gronholz and Werner Herres. Understanding FT-IR data processing. Part
2: details of the spectrum calculation. Instruments and Computers, 3:10–16,
1985.

[88] Steve Heath. Embedded systems design. Newnes, 2002.

[89] Jonathan L. Herman, Christopher J. Kenna, Malcolm S. Mollison, James H. An-
derson, and Daniel M. Johnson. RTOS Support for Multicore Mixed-Criticality
Systems. In Proceedings of the Real-Time and Embedded Technology and Ap-
plications Symposium, pages 197–208. IEEE, 2012.

152 Bibliography

[90] T. Herpel, B. Kloiber, R. German, and S. Fey. Routing of Safety-Relevant Mes-
sages in Automotive ECU Networks. In Vehicular Technology Conference Fall,
pages 1–5, 2009.

[91] Greg Horvath, Seung H. Chung, and Ferner Cilloniz-Bicchi. Safety-critical par-
titioned software architecture: A partitioned software architecture for robotic
spacecraft. In Proceedings of the Aerospace Conference, 2011.

[92] K. Hoyme and K. Driscoll. SAFEbus. IEEE Aerospace Electronic Systems
Magazine, 8:34–39, 1993.

[93] IBM. DO-178B compliance: turn an overhead expense into a competitive ad-
vantage. White paper, IBM Rational, 2010.

[94] IEC 61508. IEC 61508: Functional safety of electrical/electronic/programmable
electronic safety-related systems. International Electrotechnical Commission,
2010.

[95] ISO 9001. Quality management systems - Requirements. International Organi-
zation for Standardization, 2008.

[96] ISO/DIS 26262. ISO/DIS 26262 - Road vehicles — Functional safety. Interna-
tional Organization for Standardization / Technical Committee 22 (ISO/TC 22),
2009.

[97] ISO/IEC 15288. ISO/IEC 61508: Systems and software engineering – System
life cycle processes. International Organization for Standardization and the In-
ternational Electrotechnical Commission, 2008.

[98] V. Izosimov, P. Pop, P. Eles, and Z. Peng. Scheduling of fault-tolerant embedded
systems with soft and hard timing constraints. In Proceedings of the conference
on Design, Automation and Test in Europe, pages 915–920, 2008.

[99] M. Jakovljevic and A. Ademaj. Ethernet protocol services for critical embedded
systems applications. In Proceedings of the Digital Avionics Systems Confer-
ence, pages 5.B.3–1–5.B.3–10, 2010.

[100] M. Jorgensen and M. Shepperd. A systematic review of software development
cost estimation studies. IEEE Transactions on Software Engineering, 33(1):33–
53, 2007.

[101] Owen R. Kelly, Hakan Aydin, Baoxian Zhao, Guojun Wang, Stephen R. Tate,
Jian-Jia Chen, and Kouichi Sakurai. On partitioned scheduling of fixed-priority
mixed-criticality task sets. In Proceedings of the International Joint Confer-
ence on Trust, Security and Privacy in Computing and Communications. IEEE
Computer Society, 2011.

Bibliography 153

[102] H. Kopetz. Real-Time Systems: Design Principles for Distributed Embedded
Applications. Springer, 2011.

[103] Hermann Kopetz. An integrated architecture for dependable embedded systems.
In Proceedings of the International Symposium on Reliable Distributed Systems,
pages 160–161, 2004.

[104] Hermann Kopetz, A. Ademaj, P. Grillinger, and K. Steinhammer. The time-
triggered Ethernet (TTE) design. In Proceedings of the International Symposium
on Object-Oriented Real-Time Distributed Computing, pages 22–33, 2005.

[105] Alexander Kossiakoff and William N. Sweet. The system development process.
In Systems Engineering Principles and Practice, pages 50–89. John Wiley &
Sons, Inc., 2005.

[106] Jerry Krasner. DO 178B-Redux: Looking at Developer Preferences, Issues and
Vendor Cost. Technical report, EmbeddedMarket Forecasters, 2013.

[107] Karthik Lakshmanan, Dionisio de Niz, and Ragunathan (Raj) Rajkumar. Mixed-
criticality task synchronization in zero-slack scheduling. In Proceedings of the
Real-Time and Embedded Technology and Applications Symposium, pages 47–
56. IEEE Computer Society, 2011.

[108] Edward A Lee and Thomas M Parks. Dataflow process networks. Proceedings
of the IEEE, 83(5):773–801, 1995.

[109] Yann-Hang Lee, Daeyoung Kim, M. Younis, J. Zhou, and J. McElroy. Resource
scheduling in dependable integrated modular avionics. In Proceedings of De-
pendable Systems and Networks, pages 14–23, 2000.

[110] Bernhard Leiner, Martin Schlager, Roman Obermaisser, and Bernhard Huber. A
Comparison of Partitioning Operating Systems for Integrated Systems. Com-
puter Safety, Reliability, and Security, pages 342–355, 2007.

[111] Haohan Li and Sanjoy Baruah. An algorithm for scheduling certifiable mixed-
criticality sporadic task systems. In Proceedings of the Real-Time Systems Sym-
posium, pages 183–192, 2010.

[112] Haohan Li and Sanjoy Baruah. Global mixed-criticality scheduling on multi-
processors. In Euromicro Conference on Real-Time Systems, pages 166–175,
2012.

[113] C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming
in a hard-real-time environment. Journal of the ACM, 20(1):46–61, January
1973.

154 Bibliography

[114] Sorin O. Marinescu, Domiţian Tămaş-Selicean, V. Acretoaie, and P. Pop. Tim-
ing analysis of mixed-criticality hard real-time applications implemented on dis-
tributed partitioned architectures. In Proceedings of the Conference on Emerging
Technologies Factory Automation, pages 1–4, 2012.

[115] L. Mertz. Auxiliary computation for Fourier spectrometry . Infrared Physics,
7(1):17 – 23, 1967.

[116] V. Mikolasek, A. Ademaj, and S. Racek. Segmentation of standard ethernet
messages in the Time-Triggered Ethernet. In Proceedings of the International
Conference on Emerging Technologies and Factory Automation, pages 392–399,
2008.

[117] Utayba Mohammad and Nizar Al-holou. Development of an automotive com-
munication benchmark. Canadian Journal on Electrical and Electronics Engi-
neering, 1(5):99–115, 2010.

[118] Malcolm S. Mollison, Jeremy P. Erickson, James H. Anderson, Sanjoy K.
Baruah, and John A. Scoredos. Mixed-criticality real-time scheduling for mul-
ticore systems. In Proceedings of the Conference on Computer and Information
Technology, pages 1864–1871, 2010.

[119] G.E. Moore. Cramming more components onto integrated circuits. Proceedings
of the IEEE, 86(1):82–85, 1998.

[120] Min-Young Nam, Jaemyun Lee, Kyung-Joon Park, Lui Sha, and Kyungtae
Kang. Guaranteeing the End-to-End Latency of an IMA System with an In-
creasing Workload. IEEE Transactions on Computers, 99(PP):1, 2013.

[121] Scott D. Norris and Paul F. Marshall. Orion project status. AIAA SPACE 2013
Conference and Exposition, 2013.

[122] R. Obermaisser. Time-Triggered Communication. CRC Press, Inc., 2011.

[123] J.C. Palencia and M. Gonzalez Harbour. Schedulability analysis for tasks with
static and dynamic offsets. In Proceedings of Real-Time Systems Symposium,
pages 26–37, 1998.

[124] Y. Papadopoulos, M. Walker, M.-O. Reiser, M. Weber, D. Chen, M. Törngren,
David Servat, A. Abele, F. Stappert, H. Lonn, L. Berntsson, Rolf Johansson,
F. Tagliabo, S. Torchiaro, and Anders Sandberg. Automatic allocation of safety
integrity levels. In Proceedings of the 1st Workshop on Critical Automotive
applications: Robustness and Safety, pages 7–10, 2010.

[125] David Parker, Martin Walker, LuísSilva Azevedo, Yiannis Papadopoulos, and
RuiEsteves Araújo. Automatic decomposition and allocation of safety integrity
levels using a penalty-based genetic algorithm. In Recent Trends in Applied Ar-
tificial Intelligence, volume 7906 of Lecture Notes in Computer Science, pages
449–459. Springer Berlin Heidelberg, 2013.

Bibliography 155

[126] Michael Paulitsch, E Schmidt, B Gstöttenbauer, C Scherrer, and H Kantz. Time-
triggered communication (industrial applications). In Time-Triggered Commu-
nication, pages 121–152. CRC Press, 2011.

[127] P. Pedreiras and L. Almeida. Message routing in multi-segment FTT networks:
the isochronous approach. In Proceedings of Parallel and Distributed Process-
ing Symposium, pages 122–129, 2004.

[128] Alain Petrissans, Stephane Kraqczyk, Lorenzo Veronesi, Grabriella Cattaneo,
Nathalie Feeney, and Cyril Meunier. Design of future embedded systems to-
ward system of systems: trends and challenges. Technical report, European
Commission.

[129] P. Pop, P. Eles, Z. Peng, and T. Pop. Analysis and optimization of distributed
real-time embedded systems. ACM Transactions on Design Automation of Elec-
tronic Systems, 11(3):593–625, 2006.

[130] Paul Pop, Petru Eles, and Zebo Peng. Scheduling with optimized communica-
tion for time-triggered embedded systems. In Proceedings of the International
Workshop on Hardware/Software Codesign, pages 178–182, 1999.

[131] Paul Pop, Petru Eles, and Zebo Peng. Bus access optimization for distributed
embedded systems based on schedulability analysis. In Proceedings of the Con-
ference on Design, Automation and Test in Europe, pages 567–575, New York,
NY, USA, 2000. ACM.

[132] Paul Pop, Petru Eles, and Zebo Peng. Analysis and Synthesis of Communication-
Intensive Heterogeneous Real-Time Systems. Kluwer Academic Publishers,
2004.

[133] Paul Pop, Petru Eles, and Zebo Peng. Schedulability-driven frame packing for
multicluster distributed embedded systems. ACM Transasctions on Embedded
Computing Systems, 4(1):112–140, Feb. 2005.

[134] Paul Pop, Petru Eles, Zebo Peng, Viacheslav Izosimov, Magnus Hellring, and
Olof Bridal. Design optimization of multi-cluster embedded systems for real-
time applications. In Proceedings of the Conference on Design, Automation and
Test in Europe, pages 21028–21033, 2004.

[135] Paul Pop, Leonidas Tsiopoulos, Sebastian Voss, Oscar Slotosch, Christoph
Ficek, Ulrik Nyman, and Alejandra Ruiz. Methods and tools for reducing cer-
tification costs of mixed-criticality applications on multi-core platforms: the
RECOMP approach. In Proceedings of the Workshop of Industry-Driven Ap-
proaches for Cost-effective Certification of Safety-Critical, Mixed-Criticality
Systems, 2013.

156 Bibliography

[136] Traian Pop, Paul Pop, Petru Eles, and Zebo Peng. Analysis and optimisation
of hierarchically scheduled multiprocessor embedded systems. International
Journal of Parallel Programming, 36(1):37–67, 2008.

[137] Traian Pop, Paul Pop, Petru Eles, Zebo Peng, and Alexandru Andrei. Tim-
ing analysis of the FlexRay communication protocol. Real-Time Systems, 39(1-
3):205–235, 2008.

[138] Yves Robert. Task graph scheduling. In David Padua, editor, Encyclopedia of
Parallel Computing, pages 2013–2025. Springer US, 2011.

[139] Rockwell-Collins. Certification cost estimates for future communication radio
platforms. Technical report, Rockwell-Collins, 2009.

[140] RTCA DO-178B. Software Considerations in Airborne Systems and Equipment
Certification. Radio Technical Commission for Aeronautics (RTCA), 1992.

[141] John Rushby. Partitioning for avionics architectures: Requirements, mecha-
nisms, and assurance. NASA Contractor Report CR-1999-209347, NASA Lan-
gley Research Center, June 1999.

[142] John Rushby. Just-in-time certification. In Proceedings of Conference on the
Engineering of Complex Computer Systems (ICECCS), pages 15–24, 2007.

[143] Rishi Saket and Nicolas Navet. Frame packing algorithms for automotive appli-
cations. Journal of Embedded Computing, 2(1):93–102, January 2006.

[144] A. Sangiovanni-Vincentelli. Electronic-system design in the automobile indus-
try. IEEE Micro, 23(3):8–18, 2003.

[145] V. Saptari. Fourier-Transform Spectroscopy Instrumentation Engineering. SPIE
Press, 2004.

[146] Prabhat Kumar Saraswat, Paul Pop, and Jan Madsen. Task mapping and band-
width reservation for mixed hard/soft fault-tolerant embedded systems. Real-
Time and Embedded Technology and Applications Symposium, pages 89–98,
2010.

[147] Stefan Schneele and Fabien Geyer. Comparison of IEEE AVB and AFDX. In
Proceedings of the Digital Avionics Systems Conference (DASC), pages 7A1–1–
7A1–9, 2012.

[148] Reinhard Schneider, Dip Goswami, Alejandro Masrur, and Samarjit
Chakraborty. QoC-oriented efficient schedule synthesis for mixed-criticality
cyber-physical systems. In Proceedings of the Forum on Specification and De-
sign Languages, pages 60–67, 2012.

Bibliography 157

[149] Reinhard Schneider, Licong Zhang, Dip Goswami, Alejandro Masrur, and
Samarjit Chakraborty. Compositional analysis of switched ethernet topologies.
In Proceedings of the Design, Automation Test in Europe Conference Exhibition,
pages 1099–1104, 2013.

[150] Martin Schoeberl. Time-predictable computer architecture. EURASIP Journal
on Embedded Systems, 2009:2:1–2:17, January 2009.

[151] Martin Schoeberl, Florian Brandner, Jens Sparsø, and Evangelia Kasapaki.
A statically scheduled time-division-multiplexed network-on-chip for real-time
systems. In Proceedings of the International Symposium on Networks on Chip,
pages 152–160, 2012.

[152] Kathleen E. Schubert, Frank Gati, James M. Free, and Harry A. Cikanek III.
Orion crew exploration vehicle preliminary design. Proceedings of the Interna-
tional Astronautical Congress, 5:3620–3634, 2010.

[153] David Sehr, Robert Muth, Cliff Biffle, Victor Khimenko, Egor Pasko, Karl
Schimpf, Bennet Yee, and Brad Chen. Adapting software fault isolation to con-
temporary CPU architectures. In Proceedings of the USENIX Conference on
Security, pages 1–1, 2010.

[154] Lui Sha, John P. Lehoczky, and Ragunathan Rajkumar. Solutions for some prac-
tical problems in prioritized preemptive scheduling. In Proceedings of the Real-
Time Systems Symposium, pages 181–191. IEEE Computer Society, 1986.

[155] John A. Stankovic and Krithi Ramamritham. What is predictability for real-time
systems? Real-Time Systems, 2(4):247–254, 1990.

[156] Till Steinbach, Hyung-Taek Lim, Franz Korf, Thomas C. Schmidt, Daniel
Herrscher, and Adam Wolisz. Tomorrow’s In-Car Interconnect? A Competi-
tive Evaluation of IEEE 802.1 AVB and Time-Triggered Ethernet (AS6802). In
Proceedings of the Vehicular Technology Conference, pages 1–5. IEEE Press,
September 2012.

[157] W. Steiner. Synthesis of Static Communication Schedules for Mixed-
Criticality Systems. In Proceedings of the International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing Work-
shops, pages 11–18, 2011.

[158] W. Steiner, G. Bauer, B. Hall, M. Paulitsch, and S. Varadarajan. TTEthernet
Dataflow Concept. In Proceedings of the International Symposium on Network
Computing and Applications, pages 319–322, 2009.

[159] Wilfried Steiner. An Evaluation of SMT-based Schedule Synthesis For Time-
Triggered Multi-Hop Networks. In Proceedings of the Real-Time Systems Sym-
posium, pages 375–384, 2010.

158 Bibliography

[160] Neil R. Storey. Safety Critical Computer Systems. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1996.

[161] J.F. Suen, R.B. Kegley, and J.D. Preston. Affordable avionic networks with Gi-
gabit Ethernet assessing the suitability of commercial components for airborne
use. In Proceedings of SoutheastCon, pages 1–6, 2013.

[162] E. Suethanuwong. Scheduling time-triggered traffic in TTEthernet systems. In
Emerging Technologies Factory Automation, pages 1–4, 2012.

[163] D. Tămaş-Selicean, D. Keymeulen, D. Berisford, R. Carlson, K. Hand, P. Pop,
W. Wadsworth, and R. Levy. Fourier transform spectrometer controller for par-
titioned architectures. In Proceedings of the Aerospace Conference, pages 1–11,
2013.

[164] Domiţian Tămaş-Selicean, S. O. Marinescu, and Paul Pop. Analysis and op-
timization of mixed-criticality applications on partitioned distributed architec-
tures. In Proceedings of the IET System Safety Conference. Institution of Engi-
neering and Technology, 2012.

[165] Domiţian Tămaş-Selicean and Paul Pop. Design Optimization of Mixed-
Criticality Real-Time Applications on Cost-Constrained Partitioned Architec-
tures. In Proceedings of the Real-Time Systems Symposium, pages 24–33, 2011.

[166] Domiţian Tămaş-Selicean and Paul Pop. Optimization of time-partitions for
mixed-criticality real-time distributed embedded systems. In Proceedings of
the International Symposium on Object/Component/Service-Oriented Real-Time
Distributed Computing Workshops, pages 1–10, 2011.

[167] Domiţian Tămaş-Selicean and Paul Pop. Task mapping and partition alloca-
tion for mixed-criticality real-time systems. In Proceedings of the Pacific Rim
International Symposium on Dependable Computing, pages 282–283, 2011.

[168] Domiţian Tămaş-Selicean and Paul Pop. Design optimization of mixed-
criticality real-time systems. ACM Transactions on Embedded Computing, 2014.
Submitted to.

[169] Domiţian Tămaş-Selicean, Paul Pop, and Wilfried Steiner. Synthesis of Com-
munication Schedules for TTEthernet-based Mixed-Criticality Systems. In Pro-
ceedings of the International Conference on Hardware/Software Codesign and
System Synthesis, pages 473–482, 2012.

[170] Domiţian Tămaş-Selicean, Paul Pop, and Wilfried Steiner. Design Optimiza-
tion of TTEthernet-based Distributed Real-Time Systems. Real-Time Systems
Journal, 2014. Submitted to.

[171] J. D. Ullman. NP-complete scheduling problems. J. Comput. Syst. Sci.,
10(3):384–393, 1975.

Bibliography 159

[172] Santiago Urueña, José A. Pulido, Jorge López, Juan Zamorano, and Juan A.
Puente. A new approach to memory partitioning in on-board spacecraft software.
In Reliable Software Technologies – Ada-Europe 2008, volume 5026 of Lecture
Notes in Computer Science, pages 1–14. Springer Berlin Heidelberg, 2008.

[173] Frank Vahid and Tony Givargis. Embedded system design - a unified hardware /
software introduction. Wiley, 2002.

[174] W. E. Vesely, F. F. Goldberg, N. H. Roberts, and D. F. Haasl. Fault Tree Hand-
book. U.S. Nuclear Regulatory Commission, Washington, DC, 1981.

[175] Steve Vestal. Preemptive scheduling of multi-criticality systems with varying
degrees of execution time assurance. In Proceedings of the Real-Time Systems
Symposium, pages 239–243, 2007.

[176] Arun Viswanathan and BC Neuman. A survey of isolation techniques. 2009.

[177] Winthrop Wadsworth and Jens-Peter Dybwad. Rugged high-speed rotary imag-
ing Fourier transform spectrometer for industrial use. Proceedings of SPIE,
4577:83–88, 2002.

[178] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. Ef-
ficient software-based fault isolation. Operating Systems Review, 27:203–216,
1993.

[179] Armin Wasicek and Thomas Mair. Secure Information Sharing in Mixed Crit-
icality Systems. In Proceedings of the World Conference on Engineering and
Science, 2013.

[180] Wikipedia. Apollo guidance computer, December 2013. http://en.
wikipedia.org/wiki/Apollo_Guidance_Computer.

[181] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan
Thesing, David Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heck-
mann, Tulika Mitra, Frank Mueller, Isabelle Puaut, Peter Puschner, Jan Staschu-
lat, and Per Stenstroem. The worst-case execution-time problem - overview of
methods and survey of tools. ACM Transactions on Embedded Computing Sys-
tems, 7(3), 2008.

[182] WindRiver. Vxworks. Web Page. www.windriver.com/products/vxworks.

[183] James Windsor, M.-H. Deredempt, and R. De-Ferluc. Integrated modular avion-
ics for spacecraft – user requirements, architecture and role definition. In Pro-
ceedings of the Digital Avionics Systems Conference, pages 8A6–1–8A6–16,
2011.

[184] James Windsor, K. Eckstein, P. Mendham, and T. Pareaud. Time and space
partitioning security components for spacecraft flight software. In Proceedings
of the Digital Avionics Systems Conference, pages 8A5–1–8A5–14, 2011.

http://en.wikipedia.org/wiki/Apollo_Guidance_Computer
http://en.wikipedia.org/wiki/Apollo_Guidance_Computer
www.windriver.com/products/vxworks

160 Bibliography

[185] James Windsor and K. Hjortnaes. Time and space partitioning in spacecraft
avionics. In Proceedings of the International Conference on Space Mission
Challenges for Information Technology, pages 13–20, 2009.

[186] J. Xu and D. L. Parnas. On Satisfying Timing Constraints in Hard-Real-Time
Systems. Transactions on Software Engineer, 19(1):70–84, 1993.

	Summary
	Summary (Danish)
	Preface
	Papers Included in the Thesis
	Acknowledgements
	Contents
	Abbreviations
	Notations
	1 Introduction
	1.1 Mixed-Criticality Systems
	1.2 Partitioned Architectures
	1.3 Embedded Systems Design
	1.4 Design Space Exploration
	1.5 Research Contributions
	1.6 Thesis Overview
	1.7 Related Work

	2 System Model
	2.1 Application Model
	2.1.1 Safety Integrity Levels
	2.1.2 Task Decomposition
	2.1.3 Development Cost Model
	2.1.4 Protection Requirements

	2.2 Architecture Model
	2.2.1 Partitioning at PE-Level
	2.2.1.1 Elevation and Software-Based Protection

	2.2.2 Communication Network Model
	2.2.2.1 Frames

	2.2.3 The TTEthernet Protocol
	2.2.3.1 Time-Triggered Transmission
	2.2.3.2 Rate Constrained Transmission

	3 Design Optimizations at the Processor-Level
	3.1 Problem Formulation
	3.1.1 Optimization of Time-Partitions
	3.1.2 Partition-Aware Mapping Optimization
	3.1.3 Partition-Sharing Optimization
	3.1.4 Task Decomposition

	3.2 Design Optimization Strategies
	3.2.1 Optimization of Time-Partitions
	3.2.2 Tabu Search-Based Design Optimization

	3.3 Degree of Schedulability
	3.4 List Scheduling
	3.5 Response Time Analysis
	3.6 Experimental Results
	3.6.1 Optimization of Time-Partition
	3.6.2 Mixed-Criticality Design Optimization

	4 Design Optimizations at the Network-Level
	4.1 Problem Formulation
	4.1.1 Straightforward Solution
	4.1.2 Message Fragmenting and Packing
	4.1.3 Virtual Link Routing
	4.1.4 Scheduling of TT Messages

	4.2 Design Optimization Strategy
	4.2.1 Tabu Search
	4.2.2 Design Transformations
	4.2.3 Candidate List
	4.2.3.1 Candidates for TT Frames
	4.2.3.2 Candidates for RC Frames
	4.2.3.3 Randomly Generated Candidates

	4.2.4 Tabu Search Example

	4.3 Experimental Evaluation

	5 Design Optimizations for Mixed-Criticality Space Applications
	5.1 Background
	5.2 Processor-Level Partitioning
	5.2.1 Mars Pathfinder Mission
	5.2.2 Fourier Transform Spectrometer Controller for Partitioned Architectures
	5.2.2.1 Fourier Transform Spectrometry
	5.2.2.2 Compositional InfraRed Imaging Spectrometer (CIRIS)
	5.2.2.3 CIRIS Controller Implementation
	5.2.2.4 Evaluation of CIRIS
	5.2.2.5 Controller Application Model for Integration with MESUR
	5.2.2.6 Quality of Service (QoS)
	5.2.2.7 Influence of Partitioning on QoS
	5.2.2.8 Running Signal-to-Noise Ratio (SNR)

	5.3 Communication-Level Partitioning
	5.4 Evaluation
	5.4.1 Processor-Level Partitioning
	5.4.2 Communication-Level Partitioning
	5.4.2.1 Topology Selection
	5.4.2.2 Optimization for Best-Effort Traffic

	6 Conclusions and Future Work
	6.1 Conclusions
	6.2 Future Work

	Bibliography

