
Task	  Mapping	  and	  Par..on	  Alloca.on	  for	  
Mixed-‐Cri.cality	  Real-‐Time	  Systems	  
	  
Domițian	  Tămaș-‐Selicean	  and	  Paul	  Pop	  
Technical	  University	  of	  Denmark	  



2	  

Outline 	  	  

§ Mo@va@on	  

§ System	  and	  applica@on	  models	  

§ Problem	  formula@on	  and	  example	  

§ Op@miza@on	  strategy	  

§ Experimental	  results	  

§ Conclusions	  



3	  

Mo.va.on	  
§ Safety	  is	  the	  property	  of	  a	  system	  that	  will	  not	  endanger	  human	  
life	  or	  the	  environment	  

§ A	  safety-‐related	  system	  needs	  to	  be	  cer.fied	  
	  
§ A	  Safety	  Integrity	  Level	  (SIL)	  is	  assigned	  to	  each	  safety	  related	  
func@on,	  depending	  on	  the	  required	  level	  of	  risk	  reduc@on	  

§ There	  are	  4	  SILs:	  
§ SIL4	  (most	  cri@cal)	  	  
§ SIL1	  (least	  cri@cal)	  
§ SIL0	  (non-‐cri@cal)	  –	  not	  covered	  by	  standards	  

§ SILs	  dictate	  the	  development	  process	  and	  cer@fica@on	  procedures	  	  



4	  

Federated	  Architecture	  

Mo.va.on	  
§  Real	  @me	  applica@ons	  implemented	  
using	  distributed	  systems	  

PE	  
Applica@on	  A	  1	  

Applica@on	  A	  2	  

Applica@on	  A	  3	  

§ Mixed-‐cri@cality	  applica@ons	  share	  the	  
same	  architecture	  

SIL3 

SIL3 

SIL4 

SIL4 

SIL4 SIL1 

SIL2 

SIL1 

Solu@on:	  par@@oned	  architecture	  

Integrated	  Architecture	  



5	  

System	  Model	  

§ Par@@on	  =	  virtual	  dedicated	  machine	  
	  
§ Par@@oned	  architecture	  

§ Spa@al	  par@@oning	  
§  protects	  one	  applica@on’s	  memory	  
and	  access	  to	  resources	  from	  another	  
applica@on	  

§ Temporal	  par@@oning	  
§  par@@ons	  the	  CPU	  @me	  among	  
applica@ons	  



6	  

System	  Model	  

§ Temporal	  par@@oning	  
§ Sta@c	  par@@on	  table	  

§  Repeated	  with	  a	  period	  MF	  
§  Par@@on	  switch	  overhead	  
§  Each	  par@@on	  can	  have	  its	  own	  
scheduling	  policy	  

§  A	  par@@on	  has	  a	  certain	  SIL	  

Par@@on	   Par@@on	  	  
slice	  

Major	  Frame	  

PE	  1	   PE	  2	  

PE	  3	  

PE	  1	  

PE	  2	  

PE	  3	  



7	  

Applica.on	  Model 	  	  
§ Sta@c	  Cyclic	  Scheduling	  



8	  

Problem	  formula.on	  	  
§ Given	  

§  A	  set	  of	  applica@ons	  
§  The	  cri@cality	  level	  (or	  SIL)	  for	  each	  task	  
§  A	  set	  of	  N	  processing	  elements	  (PEs)	  
§  The	  size	  of	  the	  Major	  Frame	  and	  of	  the	  Applica@on	  Cycle	  

§ Determine	  
§  The	  mapping	  of	  tasks	  to	  PEs	  
§  The	  sequence	  and	  length	  of	  par@@on	  slices	  on	  each	  processor	  
§  The	  assignment	  of	  tasks	  to	  par@@ons	  
§  The	  schedule	  for	  all	  the	  tasks	  in	  the	  system	  

§ Such	  that	  
§  All	  applica@ons	  meet	  their	  deadline	  



9	  

Mo.va.onal	  Example	  	  



10	  

Mo.va.onal	  Example	  	  



11	  

Mo.va.onal	  Example	  	  



12	  

Op.miza.on	  Strategy	  
§ Mapping	  and	  Time-‐Par@@oning	  Op@miza@on	  (MTPO)	  strategy:	  

§ Tabu	  Search	  meta-‐heuris@c	  
§  The	  mapping	  of	  tasks	  to	  processors	  
§  The	  sequence	  and	  length	  of	  par@@on	  slices	  on	  each	  PE	  
§  The	  assignment	  of	  tasks	  to	  par@@ons	  

§ List	  scheduling	  
§  The	  schedule	  for	  the	  applica@ons	  

§ Tabu	  Search	  
§ Minimizes	  the	  cost	  func@on	  
§ Explores	  the	  solu@on	  space	  using	  design	  transforma@ons	  



13	  

Op.miza.on	  Strategy	  

§ Degree	  of	  schedulability	  
§ Captures	  the	  difference	  between	  the	  worst-‐case	  response	  @me	  
and	  the	  deadline	  

§ Cost	  Func@on	  

the task will take place online, based on the partition
scheme P loaded into the kernel and tO contains the time
needed to do a context switch to another partition. LS
also schedules the messages on the bus.

VI. EXPERIMENTAL EVALUATION

For the evaluation of our proposed algorithm “Mixed-
Criticality Design Optimization” (MCDO) approach we
used 7 synthetic benchmarks and 3 real life case studies.
The MCDO algorithm was implemented in Java (JDK
1.6), running on SunFire v440 computers with Ultra-
SPARC IIIi CPUs at 1.062 GHz and 8 GB of RAM.

In the first set of experiments we were interested to
evaluate the proposed MCDO in terms of its ability to
find schedulable implementations. Thus, we have used
3 synthetic benchmarks with 3 to 5 mixed-criticality
applications (with a total of 15 to 41 tasks). We have used
MCDO to implement these applications on architectures
with 2 to 5 processing elements. The execution times and
message lengths were assigned randomly within the 1 to
19 ms and 1 to 5 bytes ranges, respectively.

We were interested to compare the number of schedu-
lable implementations found by MCDO with two other
setups: (i) when the sharing of partitions by tasks of
different criticality levels is not allowed, but mapping and
partitioning optimization (MPO) is performed simultane-
ously. In the second setup, (ii) sharing is not allowed,
and in addition, mapping optimization (MO) is performed
separately from partitioning optimization (PO). We call
such an approach MO+PO.

MO+PO and MPO are based on the MCDO strategy
presented in Fig. 4, and use the same Tabu Search
for the optimization. The difference is in the types of
moves performed by TS: there are only mapping moves
for MO (without considering partitions), we use only
partition-related moves in PO, considering mapping fixed,
as determined by MO, and MPO does not allow re-
assignment moves that would lead to partition sharing
by mixed-criticality tasks. Also, MO, PO and MPO use a
slightly different cost function (compared to Eq. 1), where
we do not consider development costs (the term c2), which
are constant since we do not elevate tasks to higher SIL
levels:

Cost(⇥) =

⇢
c1 = ⇤Ai⇥� max(0,Ri �Di) i f c1 > 0
c2 = ⇤Ai⇥�(Ri �Di) i f c1 = 0

(2)
where now the term c2 is used when the applications are

schedulable and captures the “degree of schedulability” of
an implementation. To have a fair comparison, we have
used time limits corresponding to the size of the design
space. Thus, MO+PO has a time limit of 30 minutes,
MPO uses a time limit of 60, while MCDO runs for 480
minutes.

The three strategies, MO+PO, MPO and MCDO corre-
spond to Fig. 3b, Fig. 3c and Fig. 3d, respectively, in the
motivational example discussed in Section IV. The results
for the first set of experiments are presented in Table I
in rows 2-6. The number of schedulable applications,

resulted after implementing the system using MO+PO,
MPO and MCDO are reported in columns 6, 7 and 9,
respectively, in Table I.

As we can see from the comparison between MO+PO
and MPO, there is a significant improvements in the
number of schedulable applications if the optimization
of mapping is considered at the same time with the
optimization of partitioning. For example, for the second
benchmark with 4 applications mapped to 4 PEs, MO+PO
is unable to successfully schedule any of the applications.
MPO, which performs mapping and time optimization in
the same run, is able to schedule 3 out 4 applications.

If MPO produces a schedulable solution, i.e., the appli-
cations are schedulable without using sharing, we do not
have to run MCDO. This is indicated in the table using
a dash “–” in the MCDO columns. However, MPO is
not able to find schedulable implementations in the first
two cases. In such situations, using elevation to allow
partition sharing can find schedulable implementations in
all cases. There are situations where MCDO is able to
find schedulable implementations using partition sharing,
but without the need of elevating tasks (the tasks have
the same criticality level). Such a situation is in line 2
and in line 11 in the table, where the zero development
cost means that the solution was produced without using
elevation.

Once a schedulable implementation is found by using
elevation, the cost function from Eq. 1 will drive MCDO
to solutions that minimize the development cost. The
increase in development cost that we have to pay in order
to find schedulable implementations, compared to MPO
which does not perform SIL elevation, is reported in the
last column of Table I.

We have also compared MPO to MO+PO in terms of
the cost function. The percentage improvement in the cost
function, i.e., the “degree of schedulability” is reported in
column 8. An increase in the “degree of schedulability”,
in the case of a schedulable implementation, as is the
case for the third test case, means that it is possible to
implement the solution on a slower (cheaper) architecture.

In the second set of experiments, labeled “Set 2” in
Table I, we were interested to see how MCDO performs
compared to MO+PO and MPO as the utilization of the
system increases. Thus, we have mapped the number of
mixed-criticality applications from 3 to 6, but we have
used the same architecture of 4 PEs. As we can see, for
the smaller benchmarks of 3 and 4 applications, MO+PO
is able to find schedulable implementations. Optimizing
the mapping and time partitions using MPO leads to
more schedulable implementations. However, as the sys-
tem utilization increases, as is the case for the largest
benchmark in this set, where we used 6 applications on
4 PEs, only MCDO, which considers elevation to allow
partition sharing by tasks of mixed-criticality, is able to
provide schedulable solutions.

Finally, we have also used 3 real life benchmarks de-
rived from the Embedded Systems Synthesis Benchmarks
Suite (E3S) version 0.9 [10]. We have used the consumer-
cords, networking-cords and telecom-cords benchmarks.



14	  

Op.miza.on	  Strategy:	  Design	  Transforma.ons	  



15	  

Op.miza.on	  Strategy:	  Design	  Transforma.ons	  



16	  

Op.miza.on	  Strategy:	  Design	  Transforma.ons	  



17	  

Op.miza.on	  Strategy:	  Design	  Transforma.ons	  



18	  

Op.miza.on	  Strategy:	  Design	  Transforma.ons	  

§ Task	  re-‐assignment	  
	  



19	  

Experimental	  Results	  
§ Benchmarks	  

§ 5	  synthe@c	  	  
§ 3	  real	  life	  test	  cases	  from	  E3S	  

§ MTPO	  compared	  to:	  
§ MO+TPO	  	  

§  Op@miza@on	  where	  first	  we	  do	  a	  mapping	  op@miza@on,	  	  
	  without	  considering	  par@@oning	  (MO),	  and	  then	  we	  perform	  	  
	  a	  par@@oning	  op@miza@on,	  considering	  the	  mapping	  	  
	  obtained	  previously	  as	  fixed	  (TPO)	  



20	  

Experimental	  Results	  



21	  

Conclusions	  

§ Mixed-‐cri@cality	  systems,	  with	  applica@ons	  of	  different	  	  
	  cri@cali@es	  running	  on	  the	  same	  processors,	  are	  implemented	  
using	  a	  par@@oned	  architecture.	  

	  	  
§ Op@mizing	  the	  @me	  par@@ons	  and	  the	  task	  alloca@on	  to	  par@@ons	  
leads	  to	  schedulable	  solu@ons	  with	  improved	  resource	  u@liza@on.	  

§ We	  proposed	  a	  Tabu	  Search	  based	  op@miza@on	  algorithm.	  



22	  

Thank	  you!	  
	  
	  
	  
	  
	  
Domițian	  Tămaș-‐Selicean	  	  
dota@imm.dtu.dk	  


