

Task Mapping and Partition Allocation for Mixed-Criticality Real-Time Systems

Domițian Tămaș-Selicean and Paul Pop Technical University of Denmark

Reduced Certification Costs for trusted Multi-core Platforms

DTU Informatics Department of Informatics and Mathematical Modeling

Outline

Motivation

- System and application models
- Problem formulation and example
- Optimization strategy
- Experimental results
- Conclusions

Motivation

- Safety is the property of a system that will not endanger human life or the environment
- A safety-related system needs to be certified
- A Safety Integrity Level (SIL) is assigned to each safety related function, depending on the required level of risk reduction
- There are 4 SILs:
 - SIL4 (most critical)
 - SIL1 (least critical)
 - SILO (non-critical) not covered by standards
- SILs dictate the development process and certification procedures

Motivation

 Real time applications implemented using distributed systems

- **Federated Architecture** SIL4 SIL1 SIL3 SIL3 SIL2 SIL4 SIL4 SIL1 PF Application \mathcal{A}_1 Application \mathcal{A}_2 Application \mathcal{A}_3
- Mixed-criticality applications share the same architecture

Integrated Architecture

Solution: partitioned architecture

System Model

- Partition = virtual dedicated machine
- Partitioned architecture
 - Spatial partitioning
 - protects one application's memory and access to resources from another application
 - Temporal partitioning
 - partitions the CPU time among applications

System Model

Application Model

Static Cyclic Scheduling

Problem formulation

Given

- A set of applications
- The criticality level (or SIL) for each task
- A set of N processing elements (PEs)
- The size of the Major Frame and of the Application Cycle

Determine

- The mapping of tasks to PEs
- The sequence and length of partition slices on each processor
- The assignment of tasks to partitions
- The schedule for all the tasks in the system
- Such that
 - All applications meet their deadline

Motivational Example

Mixed-criticality applications

WCET and mapping restrictions

Motivational Example

Optimal mapping, without considering partitions.

Motivational Example

Partitioning, using the previously obtained mapping. τ_3 and τ_{14} miss their deadline.

Optimization Strategy

- Mapping and Time-Partitioning Optimization (MTPO) strategy:
 - Tabu Search meta-heuristic
 - The mapping of tasks to processors
 - The sequence and length of partition slices on each PE
 - The assignment of tasks to partitions
 - List scheduling
 - The schedule for the applications
- Tabu Search
 - Minimizes the cost function
 - Explores the solution space using design transformations

Optimization Strategy

Degree of schedulability

 Captures the difference between the worst-case response time and the deadline

Cost Function $Cost(\Psi) = \begin{cases} c_1 = \sum_{\mathcal{A}_i \in \Gamma} \max(0, R_i - D_i) & ifc_1 > 0 \\ c_2 = \sum_{\mathcal{A}_i \in \Gamma} (R_i - D_i) & ifc_1 = 0 \end{cases}$

Task re-assignment

Experimental Results

Benchmarks

- 5 synthetic
- 3 real life test cases from E3S

- MTPO compared to:
 - MO+TPO
 - Optimization where first we do a mapping optimization, without considering partitioning (MO), and then we perform a partitioning optimization, considering the mapping obtained previously as fixed (TPO)

Experimental Results

Test Case	Apps	Tasks	PE	MO+TPO	MTPO	% increase
1	3	15	2	0	3	261.54
2	3	20	3	2	3	223.81
3	4	34	4	2	3	78.13
4	4	40	5	2	4	153.66
5	5	53	6	4	5	3116.67
consumer	2	12	3	2	2	19.88
networking	4	13	3	4	4	55.52
telecom	9	30	3	3	9	100.01

Conclusions

- Mixed-criticality systems, with applications of different criticalities running on the same processors, are implemented using a partitioned architecture.
- Optimizing the time partitions and the task allocation to partitions leads to schedulable solutions with improved resource utilization.
- We proposed a Tabu Search based optimization algorithm.

Thank you!

Domițian Tămaș-Selicean dota@imm.dtu.dk