Task Mapping and Partition Allocation for
Mixed-Criticality Real-Time Systems

Domitian Tamas—Selicean and Paul Pop
DTU Informatics, Technical University of Denmark
Kongens Lyngby, Denmark

Abstract—In this paper we address the mapping of mixed-
criticality hard real-time applications on distributed embedded
architectures. We assume that the architecture provides both spa-
tial and temporal partitioning, thus enforcing enough separation
between applications. With temporal partitioning, each application
runs in a separate partition, and each partition is allocated several
time slots on the processors where the application is mapped. The
sequence of time slots for all the applications on a processor are
grouped within a Major Frame, which is repeated periodically.
We assume that the applications are scheduled using static-cyclic
scheduling. We are interested to determine the task mapping to
processors, and the sequence and size of the time slots within the
Major Frame on each processor, such that the applications are
schedulable. We have proposed a Tabu Search-based approach to
solve this optimization problem. The proposed algorithm has been
evaluated using several synthetic and real-life benchmarks.

1. Introduction

The current trend is towards “integrated architectures”, where
several safety-critical functions, of different criticalities, are
integrated into the same platform. Safety-Integrity Levels (SILs)
capture the criticality level, and will dictate the development
processes and certification procedures that have to be followed.
In avionics, the proposed integration solution is based on
“Integrated Modular Avionics” (IMA) [9], which allows the
integration of mixed-criticality functions as long as there is
enough spatial and temporal partitioning [9].

There is a large amount of research on hard real-time
systems [2], [6]. However, there is little research work on
the integration of mixed-criticality applications onto the same
platform. Lee et al. [7] consider an IMA-based system where all
tasks are scheduled using fixed-priority preemptive scheduling
(FPS). There are several works where mixed-criticality tasks
are addressed, but researchers assume that tasks of different
criticality share the same processor with little or no separation
(i.e., there is no spatial-partitioning) [1], [3].

In this paper we consider distributed embedded systems
composed of heterogeneous processing elements (PEs), that
implement hard real-time applications with different SILs, in-
cluding non-critical functions. We consider that the hardware
and software architecture provides both spatial and temporal
partitioning. A detailed discussion about partitioning is available
in [9]. We assume that the applications are scheduled using
static-cyclic scheduling (SCS).

In [10] we have proposed a Simulated Annealing-based
approach to the optimization of time partitions, considering that
the mapping of tasks to processing elements is fixed. In this
paper, we are interested to determine the mapping of tasks to
PEs, the sequence and length of the time partitions on each PE
such that the applications are schedulable. We have proposed a
Tabu Search-based approach to solve this optimization problem.

II. System Model

On a processing element N;, a partition P; is defined as the
sequence P;; of k partition slices pé‘]-, k > 1. A partition slice pf»‘]-

is a predetermined time interval in which the tasks of application
A; mapped to N; are allowed to use the PE. All the slices on
a processor are grouped within a Major Frame (MF), that is
repeated periodically. The period Ty of the major frame is
given by the designer and is the same on each node. Several
MFs are combined together in a system cycle that is repeated
periodically, with a period T¢ycj.. Within a T;., the sequence
and length of the partition slices are the same across MFs (on
a given PE), but the contents of the slices can differ.

The set of all applications in the system is denoted with I".
The applications can be of different criticality levels, and all
the tasks of an application have the same SIL. We model an
application as a directed, acyclic graph, where a node represents
one task. An edge ¢;; indicates a synchronous communication:
task T; waits for the output of ;. Communication between tasks
mapped to different PEs is performed by message passing over
the bus. The message sizes s, of each message m; are known.
A deadline Dg, < Tg,, where Tg, is the period of G;, is imposed
on each task graph G;.

The mapping of tasks to processors is denoted by the function
M : V. — N, where N\ is the set of PEs in the architecture.
This mapping is not yet known, and will be decided by our
optimization approach. For each task T; we know the worst-
case execution time (WCET) on the processing elements where
it is considered for mapping.

II1. Problem Formulation

The problem can be formulated as: given a set I' of appli-
cations, an architecture consisting of a set A of processing
elements, the size of the major frame Tyr and the application
cycle Tiyee, we are interested to find an implementation W
such that all applications meet their deadlines. Deriving an
implementation ¥ means deciding on the mapping M of tasks
to PEs, the set P of partition slices on each PE, the assignment
of tasks to partitions and the schedule S for all the tasks.

The problem is illustrated in Fig. 1a where we have applica-
tions A4;, A, and 43 to be implemented on two PEs, N; and N,.
The size of the messages is specified on the edges. The WCET
for each task on the two PEs is in the table in Fig. la, with
“x” meaning the task cannot be mapped to that PE. We have
Tyr=15 and T;y¢,=30 ms.

Fig. 1b presents the optimal mapping (see the definition of the
cost function in section IV) of tasks to PEs, in case the system
would not be partitioned. The optimal time-partitioning result,
considering the mapping obtained separately from Fig. 1b,
which does not consider time partitions, is depicted in Fig. 1c.
As we can see, this is an unsuccessful implementation where
A, and A4, miss their deadlines.

In order to successfully schedule all the applications, mapping
has to be determined at the same time with the optimization of
time partitions. The optimal mapping and partitioning solution
is depicted in Fig. 1d. All the applications are schedulable.

Moreover, the partitions assigned to applications 4, and 43 have
extra unused time. Such slack can be used for future upgrades.

IV. Mapping and Time-Partition Optimization

The problem presented in the previous section is NP-
complete, hence, we use a Tabu Search (TS) meta-heuristic
to determine the task mapping M and the set of partition
slices P such that the applications are schedulable and the
unused partition space is maximized. TS [5] is a meta-heuristic
optimization, which searches for that solution which minimized
the cost function. We define the cost function as the “degree
of schedulability” [8], which is a sum, for all applications, of
the difference between the end-to-end completion time of the
application and its deadline.

The neighboring solutions of the current solution are gen-
erated using design transformations (or “moves”). Thus, we
apply re-mapping moves by randomly selecting a task from each
application and changing its mapping to a randomly chosen
PE. Also, there are four types of moves applied to partition
slices: resize, swap, join and split. The moves are applied to a
randomly selected partition slice on each PE.

Each alternative provided by TS (a mapping M and a partition
set P) is evaluated using a List Scheduling-based heuristic to
determine the schedule tables .S for each application, which we
have modified [10] to take into account the time partitions.

a4, 2, a, N N,
T
10X N, N,
T 3
T 2 3
2 T3 X 3
T 3 X
@ Ny Npoq, x 6
T 4 9 T3 2 3
T 6 10 Ty 6 9
T 45 1y 2006
Tg,=Dy=15 T ,= Dy = 30 Ty =Dy =30 u x4
(a) Application model
5 10 15 20 25 30
N, Tio \ 20 \ T \ 7] \ T4 \ T \ T3 \ Ts \
N, T \ Ti2 \ T \ T \ B \ 23 \
Bus
(b) Optimal mapping, no partitioning
5 10 15 20 25 30
P | Py | p]zz Piy | Pis | Plzz
Ny [0 w | @ [wi [Ts | [| w | Tig
| I T
| ! L
N, uw [w] T | ’ﬁ o T T2 T3)
T T T 1 | 3 T T | i i Ps3
Py Py Py3 Py Py Py Py3 Py
partition slice
t

boundaries Major Frame (MF)

(c) Optimizing partitioning using the mapping from Fig. 1b — not schedulable.
T15 and T, do not fit in the schedule.

5 10 15 20 25 30
Ph | Pl | Py 5 Piy | Py | P} | Py
N; Ti0 l 20 ”5211 T T T4 | Tia 1 D1 1) 1\ Ti4 \ Tis \
| | 1
N, T \ Ti2 T T \ T3 \] T3 \
| Py P2y Pyl Py, ey

(d) Optimizing mapping and partitioning simultaneously — all applications
schedulable. We remapped 713 and Ty, from Nj to N, and T2 from N to Nj
and resized the partition slices.

Fig. 1: Motivational example

TABLE I: Experimental results for benchmarks
[Test Case [Apps [Tasks[[PE [[MO+TPO| MTPO [[% increase]

1 3 15 2 0 3 261.54

2l 3 20 3 2 3 223.81

3l 4 34 4 2 3 78.13

4] 4 40 5 2 4 153.66

5/ 5 53 6 4 5 3116.67
consumer| 2 12 3 2 2 19.88
networking| 4 13 3 4 4 55.52
telecom| 9 30 3 3 9 100.01

V. Experimental Evaluation

For the evaluation of our proposed algorithm we used 5
synthetic benchmarks and 3 real life case studies from the
Embedded Systems Synthesis Benchmarks Suite (E3S) [4].

In the first set of experiments we were interested to evaluate
the proposed MTPO strategy in terms of its ability to find
schedulable implementations. We used 5 synthetic benchmarks
(lines 2—6 in Table I). Columns 2, 3 and 4 in the table present the
number of applications, tasks and PEs, respectively. Table I also
presents the results obtained using another approach, MO+TPO,
where we first optimize the mapping (MO), but without con-
sidering partitioning, and using this mapping we perform a
time partition optimization (TPO). The number of schedulable
applications obtained by MO+TPO strategy is presented in
column 5, while column 6 presents the results obtained using
our proposed MTPO. We have used a time limit of 4 hours for
all experiments.

As we can see, MO+TPO which does not perform simulta-
neous mapping and partition optimization, is not able to find
schedulable implementations in all the cases. However, with
MTPO, we are able to optimize the mapping and the time
partitions concurrently, such that all applications are schedu-
lable. We have measured the ability of MTPO to improve
over MO+TPO by using a percentage average increase in the
degree of schedulability over all applications, presented in
the last column. There is a large increase in the degree of
schedulability when using MTPO, which means that we can
potentially implement the applications on a slower (cheaper)
platform.

The results obtained from the real-life benchmarks are pre-
sented in lines 7-10, and confirm the results of the synthetic
benchmarks.

References

[1]1 S. Baruah, H. Li, and L. Stougie. Towards the design of certifiable
mixed-criticality systems. In Real-Time and Embedded Technology and
Applications Symp., pages 13 =22, 2010.

[2] G. Buttazzo. Hard Real-Time Computing Systems: Predictable Scheduling
Algorithms and Applications. Kluwer Academic Publishers, Boston, 1997.

[3] D. de Niz, K. Lakshmanan, and R. Rajkumar. On the scheduling of
mixed-criticality real-time task sets. In Proc. of the Real-Time Systems
Symposium, pages 291-300, 2009.

[4] R. Dick. Embedded system
http://ziyang.eecs.umich.edu/ dickrp/e3s/.

[5] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers,
Norwell, MA, USA, 1997.

[6] H. Kopetz. Real-Time Systems-Design Principles for Distributed Embed-
ded Applications. Kluwer Academic Publishers, 1997.

[71 Y.-H. Lee, D. Kim, M. Younis, J. Zhou, and J. McElroy. Resource
scheduling in dependable integrated modular avionics. In Proc. of
Dependable Systems and Networks, pages 14 23, 2000.

[8] P. Pop, P. Eles, and Z. Peng. Analysis and Synthesis of Communication-
Intensive Heterogenous Real-Time Systems. Kluwer Acad. Publ., 2004.

[9] J. Rushby. Partitioning for avionics architectures: Requirements, mecha-

nisms, and assurance. NASA Contractor Report CR-1999-209347, NASA
Langley Research Center, June 1999.
D. Tamas-Selicean and P. Pop. Optimization of Time-Partitions for Mixed-

Criticality Real-Time Distributed Embedded Systems. In Proc. of the
Workshop AMICS, 2011.

synthesis benchmarks suite.

(10]

