

Routing Optimization of AVB Streams in TSN Networks

Sune Mølgaard Laursen¹, **Paul Pop**¹ and Wilfried Steiner²

¹Technical University of Denmark

²TTTech Computertechnik AG, Vienna, Austria

DTU Informatics

Department of Informatics and Mathematical Modeling

Outline

- Motivation
- Time Sensitive Networking (TSN)
- Architecture and application models
- Problem formulation and motivational example
- Optimization strategy: GRASP
- Experimental results
- Summary and message

Motivation

Safety-critical Specialized protocols in several areas:

communication Vehicles: CAN, FlexRay

protocols Avionics: SAFEBus

Factories: ProfiNet

Trend: The wired protocol of the Industrial Internet of Things

Deterministic IEEE 802.1 standards for real-time and safety-critical Ethernet applications in process control, industrial automation, audio and video systems, vehicles and aerospace

What is Time Sensitive Networking (TSN)?

- IEEE 802.1 Ethernet standard enhanced for safety-critical and real-time applications
 - IEEE 802.1BA Audio Video Bridging Systems
 - IEEE 802.1Qav Forwarding and Queuing Enhancements for Time-Sensitive Streams
 - IEEE 802.1AS Timing and Synchronization (based on IEEE 1588)
 - IEEE 802.1Qbv Enhancements for Scheduled Traffic
 - IEEE 802.1Qbu Frame Preemption
- Three traffic types:
 - Time-Triggered (TT)
 GCL: Gate Control Lists
 (synchronized schedule tables)
 - Audio-Video Bridging (AVB) Shaped to provide guarantees and prevent the starving of BE CBS: Credit Based Shaper

Best Effort (BE)Regular non real-time traffic

Architecture and application models

Architecture

Application

- AVB streams SAVB
 - Endpoints, Size,Period and Deadline
- TT streams STT
 - Route and schedule tables (GCL)
- BE: Not explicitly modelled

Problem formulation

Given

- The topology of the TSN network G(E, V)
- The set of AVB streams SAVB (endpoints, size, period, deadline)
- The set of TT streams S^{TT} (routing, Gate Control Lists)

Determine

A routing for each AVB stream

Such that

- The Worst-Case end-to-end Delays (WCD) of AVB streams are smaller than their deadlines
- The WCDs and the "network utilization" are minimized

Motivational example

Shortest Path Routing

Streams:

- S_1 AVB A 51% $ES_1 \rightarrow ES_4$
- S_2 AVB A 22% $ES_5 \rightarrow ES_3, ES_4$
- S_3 AVB A 31% $ES_7 \rightarrow ES_2$
- *s*₄ TT 25%
- 25% is left for BE

Motivational example, cont.

Optimized Routing

Streams:

- S_1 AVB A 51% $ES_1 \rightarrow ES_4$
- S_2 AVB A 22% $ES_5 \rightarrow ES_3, ES_4$
- S_3 AVB A 31% $ES_7 \rightarrow ES_2$
- *s*₄ TT 25%
- 25% is left for BE

Optimization strategy

Search-Space Reduction

- Generate all the possible routes for the AVB streams using "K Shortest Paths":
 - K unique routes of increasing length, starting from the shortest route
- Problem: selecting a route for each AVB stream from this generated set

GRASP on the reduced space

- Greedy Randomized Adaptive Search Procedure
 - Meta-heuristic that searches for a solution that optimizes the Cost Function
 - Two phases:
 - Phase 1: Constructs a "Greedy Randomized" initial solution
 Select randomly a stream at a time, and try a number or routes, keeping the best one
 - Phase 2: Uses "Local Search" ("Hill Climbing") to improve the initial solution

Optimization strategy: cost function

$$cost(R) = O_1(R) \cdot W_1 + O_2(R) \cdot W_2 + O_3(R) \cdot W_3$$

- O_1 : The number of AVB streams exceeding their deadlines
 - We use a Worst-Case end-to-end Delay (WCD) analysis
 - This paper: extended "AVB Latency Math" (unsafe, pessimistic)
 - Ongoing work: Network Calculus
 - If all AVB streams meet their deadlines, first term is zero, otherwise we use a large penalty value W_1
- O_2 : WCD values are minimized
 - If all AVB streams meet their deadlines,
 we prefer a solution where WCDs are smaller
- O_3 : Total number of datalinks used for the AVB streams
 - If all AVB streams meet their deadlines,
 we prefer a solution that uses less datalinks for routing

Experimental results

	Architecture			Application		SFS		RO		
ID	ES	BR	Rate	$ \mathbf{S}^{\text{AVB}} $	$ \mathbf{S}^{\mathrm{TT}} $	O_1	O_3	O_1	O_3	cost
MOTIV_T1	7	4	100 Mbps	3	1	1	12	0	14	20.60
SYNTH_T1	10	4	100 Mbps	4	1	4	14	0	18	24.04
ORION_T1	31	15	1 Gbps	20	3	3	139	0	136	170.49
ORION_T2				35	5	8	226	0	223	303.12
ABB_T1				18	1	7	175	0	167	206.99
ABB_T2	20	36	1 Gbps	16	3	5	155	0	145	179.94
ABB_T3				16	6	7	155	1	151	

Algorithms

SFS: Straightforward Solution, uses shortest routes

RO: Our Routing Optimization strategy

Results

• O_1 : The number of AVB streams exceeding their deadlines

• O_3 : Total number of datalinks used for the AVB streams

- Setup: $\alpha = K/2$, $\beta = |\mathbf{S}^{\text{AVB}}|$ and K = 50, $W_1 = 10,000$, $W_2 = 3$ and $W_3 = 1$
 - Java programing language on Intel i7-2600K (15 min. time limit)

Summary and message

Summary

- We have addressed the optimization of the TSN protocol
- The AVB stream routes are determined such that the AVB streams meet their timing constraints, the WCDs and the network utilization are minimized
- We have proposed a GRASP based optimization solution that uses "K Shortest Paths" to reduce the search space

Message

- Configuration and analysis tools are are needed for TSN
- Tools can help to answer "What if?" questions during the development of TSN