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Abstrat
Embedded omputing systems are making their way into more and more devies,from household applianes to mobile phones, and from PDAs to ars. Many ofthese systems are battery powered, and hene battery lifetime is a ritial designissue. Also these systems, need to meet the timing onstraints imposed by theirappliation domain.An inreasing number of appliation areas for real-time embedded systems, suhas spae and onsumer appliations, have hard onstraints both in terms of en-ergy and reliability. To address these two simultaneously is hallenging beauselowering the voltage to redue power onsumption, whih is the most ommonapproah, has been shown to exponentially inrease the number of transientfaults. Moreover, time-redundany based fault-tolerane tehniques, suh as re-exeution, and voltage saling-based low-power tehniques are both relying onthe use of proessor idle-time.In addition, suh ompeting requirements have to be met within a given devel-opment and manufaturing ost and time-frame. Therefore, the task of design-ing suh embedded systems is beoming not only inreasingly important, butalso inreasingly di�ult. The objetive of this thesis is to develop tehniqueswhih are able to simultaneously meet both energy and reliability onstraintsat system-level.In this thesis real-time appliations with hard deadlines, mapped on distributedmulti-proessor systems-on-a-hip, are onsidered. The appliations are repre-sented as a set of interating proesses and have hard reliability and timingrequirements. Proesses and messages are statially sheduled using sheduletables. I propose tehniques for the sheduling, mapping, voltage saling and



iiredundany assignment, suh that the energy onsumption of the appliationsis minimised, and the implementations are shedulable and meet the imposedreliability goals.The tehniques have been implemented using a onstraint logi programmingsystem, and have been evaluated using a set of syntheti appliations, as wellas a real-life appliation, onsisting of an MP3-deoder. The experiments showthat, using areful optimisation, it is possible to produe reliable and shedulableimplementations without ompromising energy onsumption.



Resumé
Indlejrede systemer bliver mere og mere almindelige i disse år. Både i app-likationer som mobiltelefoner og PDAer, men også i hjemmets maskiner. Dissesystemer er ofte batteridrevne, og det er derfor nødvendigt, at de sparer påstrømmen. Systemernes funktioner stiller desuden krav til, at de kan operere ireal-time.Et stigende antal anvendelsesområder for indlejrede systemer har tydelige be-grænsninger både inden for energiforbrug og pålidelighed. Den mest almin-delige fremgangsmåde til at sænke energiforbruget er en dynamisk nedsættelseaf spændingen. Men dette giver anledning til en eksponentiel stigning i antalletaf fejl, hvilket gør det besværligt at fremstille systemer med høj pålidelighedog lavt energiforbrug. Energibesparende teknikker konkurrerer desuden medteknikkerne til fejltolerane om at gøre brug af systemets slak, dvs. den tidhvor systemet ikke udfører opgaver.Disse konkurrerende krav skal opfyldes inden for et �rmas tidsplan samt produk-tions- og fremstillingsomkostninger. Dermed bliver det at designe indlejredesystemer, der både har et lavt energiforbrug og en høj pålidelighed, ikke blot enmere vigtig, men også en mere vanskelig opgave. Formålet med dette arbejdeer at udvikle teknikker, der både kan opfylde energikrav og pålidelighedskrav isystemets designfase.Dette arbejde undersøger real-time-applikationer med strenge tidsbegrænsninger.Disse er allokeret på distribuerede multiproessor system-on-a-hip-systemer.Applikationerne repræsenteres som et sæt af kommunikerende proesser, derhar strenge begrænsninger for både pålidelighed og timing. Proessernes start-tider og kommunikation er statisk fastlagt. I dette arbejde præsenteres en række



ivteknikker, der indfører fejltolerane og som samtidig bestemmer starttider, hard-wareallokation og spændingsregulering. På denne måde kan et systems energi-forbrug blive minimeret, samtidig med at et pålidelighedsmål bliver opfyldt.De fremstillede teknikker er blevet implementeret i et onstraint logi program-ming system og er blevet evalueret ved hjælp af syntetiske applikationer. Dertilkommer også en virkelig applikation i form af en MP3 -dekoder. De udførteeksperimenter viser, at det ved hjælp af god optimering er muligt at opnå sys-temer, der både har en høj pålidelighed og et lavt energiforbrug.
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Chapter 1
Introdution

The tendeny has for a long time been for digital systems to make their wayinto more and more everyday applianes. Both in highly advaned devies suhas mobile phones, mp3 players, PDA's and other portable devies, but also ars,and even low teh devies suh as household applianes.These embedded systems are often battery powered, and hene need to havelow power onsumption, in order to yield good battery lifetime. They needto be high performane, to meet the timing onstraints imposed on the devie(e.g. real time voie oding/deoding in mobile phones, musi deoding in musiplayers et.). In addition, the devies need to be small, as they are intended tobe part of the users everyday equipment, or even at as an aessory to expressstyle or interests. These devies need to be reliable, as their funtionality isoften relied upon, as in mobile phones, or may even be safety-ritial as in thesafety systems of ars.The rest of this hapter is organised as follows. Setion 1.1 introdues thedesign �ow for embedded systems. The motivation for this projet is presentedin setion 1.2. Setion 1.3 presents the work by others relevant to this thesis, andthe problem formulation and the ontributions made in this thesis are presentedin setion 1.4.



2 Introdution

Figure 1.1: Design �ow for embedded systems [23℄.1.1 Embedded Systems Design FlowEmbedded systems are single purpose systems, with a well de�ned funtionality.The system-level design �ow for embedded systems is shown in �gure 1.1. The�ow has two inputs, namely: a model of the appliation, and a model of thehardware arhiteture on whih the appliation is to be run. In this thesisthe arhitetures onsidered are multiproessor systems-on-a-hip (MP-SoC s),onsisting of several proessing elements interonneted by a bus.Several design tasks are performed as part of the system-level design task. Thisinludes assigning eah part of the appliation onto a spei� hardware unit onwhih it will run. This design task is alled mapping. Further, a time plan,or shedule, has to be generated whih ditates when the di�erent parts of theappliation should be exeuted. This has to take into aount data dependeniesand deadlines, to ensure orret behaviour of the system. If the system is to usevoltage saling, a voltage shedule will also be derived at this stage.To verify that the system desription arrived at in the design phase is atuallygoing to work orretly, a model is reated of the system. Using this model thebehaviour of the system is analysed to ensure that timing and power require-ments are met. Typially the design phase will be an iterative proess, wherethe design is gradually re�ned as part of an optimisation.



1.2 Motivation 3When a satisfatory system implementation has been found, the system is syn-thesised. This proess reates the atual hardware and software implementa-tions.In this thesis I address hard real-time appliations modelled using proess graphs[17℄. The funtionality is distributed on a heterogeneous system of proessingelements, interonneted by a bus. Proessors and messages are statially shed-uled using shedule tables.In this work the fous will be on the system-level design tasks of sheduling,mapping and redundany assignment.1.2 MotivationTraditionally, embedded systems have been designed by a number of single pur-pose hips assembled on a print-board. To aommodate the need for smalleromponents and better performane, more and more funtionalities are todaybeing integrated on single hips. This allows for making omplete solutions ona single hip, or system-on-hip solutions. These systems will often inlude sev-eral digital proessors, for e.g. speeh oding, radio oding, et., and are heneommonly alled multi-proessor system-on-a-hip (MP-SoC ).The ontinued inrease in integration and omplexity of MP-SoC s is made pos-sible by the on going inrease in available spae on a hip. This phenomenon isdesribed by Moore's Law [27, 28℄ whih onjetures that the amount of tran-sistors that an be �t on a single hip doubles every 18 months [25℄. This law isontinuously upheld, as new tehnologies are developed whih allows for dereas-ing the size of single transistors. The redued feature sizes, lead to an inreasein power onsumption. A predition of the power onsumption of proessors asa funtion of time, is shown in �gure 1.2. This inrease in power onsumption,ombined with the inreasing miniaturisation of features, lead to inreased en-ergy density. The energy density of future integrated iruit tehnologies willapproah that of a nulear power plant [8℄.The inreased miniaturisation also gives rise to another phenomenon, namelyinrease in the amount of faults. Faults in eletronis are random and non-permanent eletrial events, whih are seen as bit �ips in logis or memory.Faults due to internal reasons, suh as leak urrent or ross talk, are alled in-termittent faults. Faults aused by external e�ets are alled transient faults.External e�ets may be aused by eletromagneti radiation from other devies,or exposure to the ever present osmi radiation. The latter is espeially im-



4 Introdution

Figure 1.2: Predition of power onsumption for miro eletronis (from [28℄).
portant in spae appliations where the unshielded radiation an give rise to asmany as 35 faults in 15 minutes [20℄, but is also an important fator in earthbound appliations.In this thesis, I address transient faults, and do not dwellwith their ause, but rather how to handle and reover from them.The failure rates for modern eletronis are plotted in �gure 1.3. The left plotshows that the amount of permanent faults is falling. However the number oftransient faults are inreasing rapidly. The shown plot for transient faults refersto memory units, but also applies to general logi iruitry.The inrease in energy onsumption is often addressed by the use of energymanagement tehniques. One very ommon approah is dynami voltage saling(DVS ). This has been shown to be an easy and e�etive means of onservingpower, but has also been shown to further inrease the probability of faults[30, 32℄. As a onsequene of this e�et, and the generally inreasing probabilityof faults, it is beoming ritial to onsider faults in a system already in thedesign phase.Design tools exist for embedded systems that an reate system level designs.These allow for doing optimisation on di�erent parameters, suh as energy on-sumption, or fault tolerane. As shown in [30℄ these two tasks are not inde-pendent, but in fat greatly interat. Current design tools do not take thisinteration into aount, whih may lead to them reating systems whih areenergy e�ient, but very unreliable.



1.3 Related Work 5

(a) Permanent-failure rate for CMOS devies. (b) Transient-failure rate for CMOS memories.Figure 1.3: Failure rate plots, for permanent faults and transient (soft) faults(from [3℄).1.3 Related WorkSeveral hardware solutions for fault tolerane have been proposed, e.g. MARS[14℄, TTA [13℄, and XBW [2℄, all of whih use hardware redundany to tolerateone permanent fault. These approahes are also able to tolerate transient faults,but they are very ostly in terms of hardware. This ost is only further inreasedif the systems are to tolerate larger number of faults, a point that is inreasinglyimportant as the amount of transient faults is muh larger than permanent faults[3℄.Current researh use ost as the only design onstraint [16℄. The use of redun-dany, however, introdues overhead, in terms of performane, and thus maylead to systems that are unshedulable. Only few researhers [12, 21, 22℄ opti-mise their implementations to minimise the penalty on performane. For these,the optimisation is limited though, and does not onsider the use of severalredundany tehniques.Two system-level approahes that allow an energy/performane trade-o� dur-ing run-time of the appliation are dynami voltage saling (DVS ) and adaptivebody biasing (ABB) [24℄. While DVSaims to redue the dynami power on-sumption by saling down operational frequeny and iruit supply voltage,ABB is e�etive in reduing the leakage power by saling down frequeny andinreasing the threshold voltage through body biasing.The urrent researh has addressed fault-tolerane and low-power requirementsseparately. However, embedded systems using DVSand ABB, are more sus-



6 Introdutioneptible to transient faults, as the rate of these inrease exponentially as thesupply voltage dereases [32℄. Conversely, inreased voltage levels lead to higheron-hip temperatures, whih in turn has a negative e�et on reliability. Fur-ther, the energy management tehniques, and time-redundant fault toleranetehniques, are ompeting for the same slak (unused time in shedules for pro-essors). Initial researh into the interplay of energy/performane trade-o�s andfault-tolerane tehniques has been presented in [6, 20, 30℄. These approahesare very restrited in terms of situations onsidered, and are thus of limitedinterest.1.4 Thesis Objetive and ContributionsIn this thesis hard real-time appliations mapped on distributed multi-proessorsystems-on-a-hip are onsidered. The appliations are represented as a set ofinterating proesses and have hard reliability and timing requirements. Pro-esses and messages are statially sheduled using shedule tables. The objetiveof this thesis is to propose tehniques for the sheduling, mapping, voltage sal-ing and performing redundany assignment, suh that the energy onsumptionof the appliations is minimised, and the implementations are shedulable andmeet the imposed reliability goal.The tehniques have been implemented using a onstraint logi programmingsystem, and have been evaluated using syntheti appliations as well as a real-life example onsisting of an MP3-deoder. The experiments show that, throughareful optimisation, it is possible to obtain reliable and shedulable implemen-tations without ompromising the energy onsumption.The ontributions of the thesis are the following:
• Design optimisation for energy minimisation under reliability and timingonstraints.Energy minimisation is usually done using voltage saling. However, re-searh has shown that lowering the voltage will dramatially derease re-liability. Thus, if the reliability of a system is inreased, by introduingredundany, and then voltage saled (within the deadlines), the reliabil-ity is destroyed. If a minimal-energy system is obtained, and redundanythen introdued, it might not meet the deadlines. The most importantontribution of the thesis is a design optimisation method, whih is ableto produe reliable implementations, that minimise energy at the sametime as meeting the deadlines.



1.4 Thesis Objetive and Contributions 7
• An optimisation method that deides the type of redundany.To inrease the reliability of a system, redundany tehniques suh asre-exeution and repliation are needed. It is shown that using just re-exeution is not enough, beause both re-exeution and voltage salingompete for the slak. Using passive repliation in onjuntion with re-exeution, an better exploit the slak. This is beause, if slak is notavailable on one proessor, it might be found on another proessor.
• A onstraint logi programming-based sheduling tehnique whih is ableto quikly produe good quality shedules.Having a good sheduling algorithm an help in inreasing the slak. Withinreased slak, the reliability-energy trade-o�s an better be supported.
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Chapter 2 Preliminaries
In this setion I present the preliminaries for the work in this thesis. Setion2.1 presents the fundamentals of mapping and sheduling. The system andappliation models are presented in setion 2.2 and 2.3 respetively. In setion2.4 the fault model is introdued, and setion 2.5 introdues fault reovery.An alternative appliation model with expliit fault reovery is presented insetion 2.6. In setion 2.7 the onept of reliability is introdued, and equationsare presented. The models for energy and reliability under voltage saling arepresented in setions 2.8 and 2.9. The software model, and the orrespondingsheduler implementations are presented in setion 2.10.2.1 Sheduling and MappingAs mentioned in the introdution, mapping and sheduling are the design tasksof assigning proesses to hardware units, and making a time plan for the exe-ution of the proesses. Both of these problems are individually NP -omplete.Consequently the ombination of the two is also NP -omplete [7, 29℄.This makes the problems omputationally hard, and hene sophistiated al-gorithms are needed to solve these. The work in this thesis uses onstraint
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(a) Arhiteture Voltage Level

PE1 100 % 67 % 34 %
PE2 100 % 67 % 34 %(b) Voltage levelsFigure 2.1: Sample arhiteture with two proessing elements eah with threefrequeny levels.logi programming (CLP) to model the problems, and ahieve optimal solu-tions. Finding optimal solutions is generally not feasible using onventionalprogramming.2.2 System ModelIn this thesis a system model, onsisting of a number of proessing elements PEsthat are onneted by a single bus, is onsidered. These proessing elementsmay be heterogenous and have di�erent performane, and thus take di�erentamounts of time to exeute the same proess. A proessing element an berun at a number of preset frequeny levels FPE . These frequeny levels areexpressed in perent of the proessors maximum performane.A sample arhiteture is shown in �gure 2.1, where both the layout of the pro-essing elements and the available frequeny levels for eah proessing elementare shown.Eah proessing element has a real-time operating system, whih is responsiblefor starting proesses. Proesses are started in aordane with a pre-renderedstati shedule table, or a set of shedule tables (as disussed later). The oper-ating system monitors whether proesses exeute suessfully, and if not, takesmeasures to tolerate the fault in aordane with the fault tolerane poliy.2.3 Appliation ModelAn appliation A is modelled as a direted ayli graph. A graph G onsists ofa set of edges E and verties V suh that G(V , E) ∈ A. Eah vertex representsa proess Pi with a orresponding worst-ase exeution time (c). Sine we



2.4 Fault Model 11(a) FP1
= 100%, c= 2 (b) FP1

= 67%, c= 3 () FP1
= 34%, c= 6Figure 2.2: Voltage saling of a single proess onto PE1 from �gure 2.1. Theheight of the proess illustrates the frequeny its run at, and the length theduration of the proess.operate with a heterogene arhiteture c is spei�ed per proessing element, asit will be a funtion of the proessing elements design and performane. Theommuniation between, and thereby ordering of, proesses, are represented bythe edges. An edge eij ∈ E denotes a ommuniation from proess Pi to Pj .Figure 2.3 shows a sample appliation, with its proess graph and the orre-sponding worst ase exeution times for the arhiteture in �gure 2.1.The spei�ed c for a proess Pi orresponds to the exeution time for the proessrun at FP〉

= 100%. The exeution time cf for a proess run at a lower frequeny
f is given by ([31℄):

cf =
c0

f
(2.1)Figure 2.2 shows a proess sheduled on the same proessor, but at three dif-ferent frequeny levels. To visually apture that the frequeny is lowered in theGantt hart, the height of the proess is dereased. The length of the proessshows how the c of the proess inreases as the frequeny is lowered.For the fault tolerane tehniques desribed in the following, it is onsideredthat the worst ase exeution time of a proess inludes the time needed to doerror detetion, so the c is the sum of the time to do a failed exeution, detetit and lean up and set up for reovery exeution. This allows us to disregardwhih error detetion method is used, as this is outside the sope of this thesis,and this subjet is well researhed in the works of others (for insight on thissubjet the reader is direted towards [11℄ and [25℄).2.4 Fault ModelA system may experiene di�erent kinds of faults during its exeution. It mayeither be permanent faults, or transient or intermittent faults. The work in this
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(a) Proessgraph G

Proess PE1 PE2

P1 2 2
P2 2 2
P3 2 2
P4 2 2
P5 2 2(b) Durations tableFigure 2.3: Sample appliation Athesis only deals with non-permanent faults, as these are muh more frequentthan permanent faults.The arrivals of faults an be modelled by a Poisson distribution with an arrivalrate λ , referred to as the failure rate [11℄. For a single hip system reasonablevalues for the failure rate are in the range 10−8 − 10−6 per seond [32℄. This isequivalent to 100.000 FITs, i.e. failures in time, or failures per billion hours ofuse per megabit. The designer of a system will impose a minimum reliability,a reliability goal Rg, based on the reliability requirements of the appliation.Based on λ and Rg, the number of transient faults that will be tolerated kis determined. In the literature of fault tolerane, reliability goals are oftenstated in terms of the number of nines after the zero. For instane the goal

Rg = 0.9999991 is alled 6 nines (and a 1). This terminology is adopted in thisthesis, when numerial values of reliabilities are disussed. In order to meet thisgoal, the number of faults k to be tolerated by the system is determined.Within a single exeution of an appliation the distribution of faults is random,and may strike any proess. For k > 1 any ombination of proesses or even thesame proess may be struk k times.2.5 Fault ReoveryTo reover from a failed proess it is neessary to add redundany. This re-dundany an be spatial, i.e. the proess is run simultaneously on di�erentproessing elements, this is alled repliation. Alternatively the proess anbe made temporally redundant, i.e. the proess is redundant in time, and issheduled after the failing proess on the same proessing element, this is alled
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(a) Repliation (b) Re-exeution () Passive repliation

(d) Arhiteture Proess PE1 PE2

P1 2 2(e) DurationsFigure 2.4: Reovery tehniques
re-exeution. The latter tehnique has the advantage that the reovery run ofthe proess is only exeuted in the event of a fault. This an be ombinedwith repliation, and is then alled passive repliation, where the proess issheduled after the failing proess, but on another proessing element. All thereovery-tehniques are shown with examples in �gure 2.4.In this thesis, the �rst exeution of a proess is alled the root proess, and thefollowing exeutions are alled reovery proesses. Similarly I use root sheduleand reovery shedule.Another ommonly used fault tolerane tehnique used is hekpointing [20℄.This tehnique an be modelled using re-exeution, and is hene not overedspei�ally in this thesis.To use the presented fault tolerane tehniques it is ritial that the system isable to detet faults. Fault detetion is well overed in the literature. Com-mon tehniques inlude �ngerprinting, where output bits are oded, and time-stamping where the exeution of a proess is timed, and is onsidered faulty ifit does not �nish within its c. How fault detetion is done is outside the sopeof this thesis, and is not overed further. The fault detetion implemented bythe designer is assumed to be su�ient to meet Rg. The interested reader isdireted towards [11℄ and [25℄.



14 Preliminaries
Figure 2.5: A sample onditional proess graph. Proess P1 produes the on-dition CP1 . If this is true P2 will be exeuted, if it is false P3 will be exeuted.
2.6 Fault-Tolerant Conditional Proess GraphsConditional proess graphs are an extension of normal proess graphs, whihadds the notion of guards, or onditions, on some edges. Conditions are boolean,and may be either true or false. A onditional proess Pi, that produes theondition CPi

, will have the onditional output edges eij whih are guarded bythe outome of the ondition.Figure 2.5 shows a simple onditional proess graph. The proess P1 produesthe ondition CP1 . If this evaluates to true the edge guarded by this ondition,marked CP1 is hosen, and proess P2 is exeuted. If the ondition is false, theedge marked CP1 is hosen and P3 is exeuted. These two paths are mutuallyexlusive, as they depend on di�erent outomes of the same ondition.In [9℄ and [10℄ onditional proess graphs are extended to apture all possibleexeution senarios in ase of faults. Suh a graph is alled a fault-tolerantonditional proess graph (FT-CPG). A proess Pi produes a ondition, or-responding to the suess of its exeution. If it fails it will have the ondition
FPi

, and if it exeutes without faults FPi
. An example of a fault tolerant on-ditional proess graph is shown in �gure 2.6(b). For ease of reading, only edgeswhih model faults are marked by the ondition. Tinted proesses are reoveryexeutions. The shown FT-CPG aptures all the fault senarios depited in theexample in �gure 2.10. For example the senario aptured in the shedule in�gure 2.10(b) on page 27 is aptured by the left-most branh in the FT-CPG.Deriving an FT-CPG that aptures all the fault senarios of a proess graphorresponding to k transient faults, is not trivial. In this setion we shall notdwell further on this. An algorithm for deriving suh graphs is presented inappendix A.
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(a) Originalproessgraph (b) FT-CPG for the graph, with k = 1 () FT-CPG for the graph, with
k = 1 and P1 repliatedFigure 2.6: Examples of a proess graph, and its derived FT-CPG graphs for

k = 1. Tinted proesses mark reovery exeutions.2.7 ReliabilityThe reliability of a system is a measure for the probability of its suessfulexeution. In this setion I present the reliability model used in this thesis,�rstly for single proesses. Seondly, I will use the formula for a single proessto derive a general expression for the reliability of a fault tolerant appliation.Illustrations of the di�erent reovery tehniques are shown in �gure 2.4.2.7.1 Single Proess ReliabilityThe reliability R0 of a proess is de�ned as the probability of its suessfulexeution [11℄.
R0 = e−λc = 1− ρ (2.2)Where c is the exeution time of the proess, given by equation 2.1. ρ is theprobability of failure. The term λ is the failure rate, whih desribes the amountof errors that will our within a time unit.



16 Preliminaries2.7.2 Reliability of Re-ExeutionFor a system with the ability to handle k faults, a proess will have k reoveryexeutions sheduled after the root exeution. For suh a setup, the reliabilityis given by the probability of not all proesses failing. Formally this is expressedas:
RPReex

= 1− (1 −R)1+k (2.3)Where the last term is the probability of all proesses failing in the same run.2.7.3 Reliability of RepliationSimilarly, for a proess sheduled to handle k faults by repliation, the reliabilityis also given by the probability of not all proesses failing, and is written as:
RPRepl

= 1−
k

∏

i=1

(1−Ri) (2.4)Where again the last term is the probability of all exeutions failing. The expres-sion ontains a reliability term for eah exeution of the proess (in ontrast tothe formula for re-exeution) as the proesses are mapped to di�erent proessingelements, whih may have di�erent performane and reliability properties. If allproessing elements are idential the reliability will simplify to equation (2.3).This expression for repliation also holds for passive repliation.2.7.4 Appliation ReliabilityAn appliation onsists of a number of proesses, for eah of whih the aboveequations yield the reliability. Sine all of these proesses must exeute su-essfully, and I assume that the exeution of eah proesses is independent, thereliability of an appliation A is:
RA =

∏

Pi∈A

RPi
(2.5)



2.8 Power Model 17Equipped with this equation and the presented general expressions for alulat-ing reliabilities for single proesses, the reliability for any fault tolerant applia-tion an be evaluated.2.8 Power ModelPower in eletronis is mainly onsumed as dynami power, i.e. the power that isneeded to drive the internal bits from one value to the other. This is alled ativepower. Ative power depends greatly on the lok speed at whih the iruitry isdriven, as it is neessary to use more power to do faster swithing. In ontrast,passive power is the power that dissipates from the iruitry regardless of therunning frequeny.As there is an almost linear relation between the frequeny of a system, and thevoltage needed to drive this [31℄, I shall be using the terms voltage saling andfrequeny saling interhangeably in the rest of the thesis.In this thesis I use the power model from [32℄ whih desribes the onsumedpower as:
P = Ps + ~(Pind + Pd) = Ps + ~(Pind + Cefffm) (2.6)In whih ~ is a boolean variable, whih takes the value 1 if the system is poweredup, and 0 if the system is in sleep mode. PS is the passive power, whih isalways onsumed by the iruit. Pind is the frequeny independent omponentof the ative power. Finally, Pd is the frequeny dependent omponent. Thefrequeny dependent omponent is extended to be desribed as an e�etiveapaitane Ceff and a frequeny fm, where m is the dynami power exponent,an arhiteture dependent number, for whih m ≥ 2 [31℄.In this thesis I assume that the MP-SoC s do not support swithing to sleepmode, thus ~ will always be 1. As the work in this thesis fouses on the en-ergy savings obtainable from using energy management tehniques, the passiveomponent of the power Ps an be disregarded as it will only ontribute as aonstant. In this way we arrive at:

P = Pind + Cefffm (2.7)



18 PreliminariesThis gives the energy onsumption for a proess Pi [30℄:
EPi

= (Pind + Cefffm
Pi

)cPi
(2.8)Where fPi

is the frequeny at whih it is exeuted. Generalising this for a setof proesses P in an appliation A for whih Pi ∈ A we get the power for anappliation:
EA =

∑

Pi∈A

(Pind + Cefffm
Pi

)cPi
(2.9)It should be noted that this is not a preise measure of the exat power on-sumed, as the passive omponents would then need to be part of the equations,but rather a means of omparing di�erent design alternatives. The model allowsfor determining the possible energy savings, and as the aim of this work is todo just that, the model is appropriate.Numerial examples of how to use the energy expressions are given in setion3.3.Preise expressions for the power onsumption of embedded systems are pre-sented in [24℄.2.9 Reliability with Voltage SalingLowering the voltage minimises the energy. However, it has been shown that italso dramatially lowers the reliability [30℄.In this setion, voltage saling is introdued into the reliability formulas fromsetion 2.7, to apture how the reliability of voltage saled systems dereases.As desribed the failure rate of a system is dependent on the frequeny levelthe system is run at. The relation between the two an be desribed by theexpression proposed in [30, 32℄:

λ(f) = λ010
d(1−f)
1−fmin (2.10)
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Scaled frequency f in percent of fmaxFigure 2.7: Plot of the relation between the failure rate multiplier and frequenyintrodued in equation (2.10). The normalised frequeny ranges from 0, theminimum frequeny of the proessor (fmin ≥ 0) to 1, the proessor's fmax.In whih λ0 is the failure rate of the proessor when run at maximum frequeny
fmax, and d is an arhiteture spei� onstant. In �gure 2.7 the frequeny de-pendent λ is plotted for λ0 = 1. The plot shows that the failure rate inrease ismoderate for frequeny levels down to about 60%. However, for lower frequen-ies, the failure rate inreases dramatially, and for a proessor run at minimumfrequeny the failure rate will be 100 times greater.In order to yield best possible reliability, reovery exeutions are always exeutedat full speed. Using the formulas presented in setion 2.7, expressions for thereliability of proesses with voltage saling an now be dedued.
2.9.1 Single Proess ReliabilityUsing equation (2.2), the reliability of a single proess, run at frequeny f is:

Rs = 1− ρs = e−λscs = e−λ(f)cs (2.11)



20 Preliminaries2.9.2 Reliability of Re-ExeutionAs I now have the expressions for saled and unsaled proesses, I an derive thereliability of a proess with fault tolerane. Lets onsider a proess for whihre-exeution provides tolerane for one fault. Bearing in mind that re-exeutionswill always run at the maximum speed, the reliability of re-exeution is:
RReex = 1− (1−R0)(1 −Rs) = 1− (1 − e−λ0c0)(1 − e−λ(f)cs) (2.12)In this expression the �rst parenthesis is the probability of the reovery exeutionfailing. The seond is the probability of root exeution failing. Together theyform the probability of both failing in the same run. This expands into [30℄:

RReex = e−λ(f)cS + (1− e−λ(f)cs)R0 (2.13)Where cs is the exeution time of the voltage saled proess.The generalised expression for a system handling k faults is:
RReex = 1− (1−R0)

k(1−Rs) = 1− (1 − e−λ0c0)k(1 − e−λ(f)cs) (2.14)2.9.3 Reliability of RepliationSine repliated proesses are exeuted at the same time, there are no reoveryproesses, that will be run at full speed afterwards, in ase of an error. As aonsequene, all replias may be voltage saled, and the reliability for repliationis thus di�erent from that for re-exeution.The reliability of a repliated proess, is again the probability of not all exeu-tions failing. For a system that handles 1 fault by exeuting the same proesson two proessing elements, the reliability is:
RRep = 1−ρf,1ρf,2 = 1−(1−Rf,1)(1−Rf,2) = 1−(1−e−λ(f)1c1)(1−e−λ(f)2c2)(2.15)



2.9 Reliability with Voltage Saling 21And generalised for a system that handles k faults by having k + 1 replias:
RRep = 1−

k+1
∏

i=1

(1− e−λ(f)ici) (2.16)2.9.4 Reliability of Passive RepliationPassive repliation is similar to repliation in terms of all proesses being arbi-trarily mapped. But similar to re-exeution in terms of all reovery exeutionsbeing sheduled at full speed. Hene the expression for reliability of passiverepliation is a ombination of the two:
RPRep = 1− (1− e−λ(f)cf )

k
∏

i=1

(1− e−λ0,ic0,i) (2.17)2.9.5 Appliation ReliabilityThe expression for reliability, for an appliation with voltage saling, is the sameas the one presented setion 2.7 for appliations without repliation. Howeverthe expression is repeated here for ompleteness:
RA =

∏

Pi∈A

RPi
(2.18)2.9.6 Reliability ExampleTo show the use of the presented reliability expressions, the reliability for aproess at three di�erent voltage levels is alulated here. The proess used, isthe one previously shown in �gure 2.2. In the examples a failure rate of 1.0·10−6is used.Firstly, we evaluate the reliability of the proess run at full speed with no fault



22 Preliminariestolerane. This is alulated using equation (2.2):
RSingle = e−λc = e−2.0·10−6

= 0.9999980 = 9 nines and 8 (2.19)Now we hoose to repliate the proess to handle one fault (k = 1), suh that itis run simultaneously on two proessing elements. Both replias are run at 66%voltage. The reliability is alulated using equation (2.16):
RRep = 1−

k+1
∏

i=1

(1− e−λ(f)ici) = 1− (1 − e−λ(66)ci)2 (2.20)Using equation (2.10) and assuming that d = 2 we �nd that:
λ(0.66) = λ010

d(1−f)
1−fmin = λ010

2(1−0.66)
1−0.34 = 10λ0 (2.21)and using equation (2.1) the duration of the saled proess is alulated to:

c66,i =
ci

0.66
=

2 · 3

2
= 3 (2.22)hene:

RRep = 1− (1− e−λ(66)ci)2 = 1− (1− e−30.0·10−6

)2

= 0.9999999991 = 9 nines and 1 (2.23)Now we hoose to ahieve the same level of fault tolerane by using re-exeution,and running the root exeution at a mere 34% voltage. Using equation (2.14)and the expression for the saled failure rate we �nd that the reliability of thisis:
RReex = 1− (1− e−λ0c0)(1 − e−λ(0.34)cs)

= 1− (1− e−2.0·10−6

)(1 − e−600.0·10−6

)

= 0.9999999988 = 9 nines and 0 (2.24)



2.10 Software Model 23Using the above approah the reliability of any single proess an be alulated,and using equation (2.18) these an be ombined to produe the reliability foran entire appliation.2.10 Software ModelThe fault-tolerane implementation for a system is managed by the on-linesheduler. This setion presents the software model for the proessors for dif-ferent fault tolerane tehniques.In this thesis three di�erent sheduler implementations are used for shedulingwith fault tolerane. These approahes were introdued in [9℄, as an extensionto the transparent reovery tehnique used in [12℄. In this setion the three faulttolerant sheduler implementations are presented.Eah proessing element of an arhiteture has an online sheduler. In aor-dane with a pre-alulated stati-shedule (or set of shedules) the shedulerwill run proesses. The sheduler detets whether faults our, and similarlyis responsible for exeuting the reovery proesses, also in aordane with thestati shedule. This is ommon for all three shedulers, but the way the statishedules are rendered and are handled, di�ers greatly between the three.2.10.1 Fully Transparent ShedulerThis is the simplest, straightforward, implementation. After eah proess Pi,a reovery slak of length kcPi,0 is sheduled. That means that enough time issheduled to run k re-exeutions and thereby handle k-faults.Thus, proesses are sheduled with a free time slot after it, of a size whih allowsthis proess to re-exeute on failing. This allows for using a single stati sheduletable, and the online sheduler will only have to detet whether a proess failsand simply re-run it if it does. The slak in the shedule table allows for this tobe done without any other proess having to be delayed.This sheduler implementation is fully transparent to fault ourrenes, i.e. noinformation about faults has to known be the shedulers to take deisions.Figure 2.8 shows the proess graph from setion 2.3 sheduled with full trans-pareny. Eah proess has reovery slak sheduled after it, and no proess may
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(a) Shedule (b) Arhiteture () ProessgraphProess PE1 PE2

P1 2 2
P2 2 2
P3 2 2
P4 2 2
P5 2 2(d) Durations

Proess Start Time
P1 0
P2 4
P3 4
P4 8
P5 12(e) Shedule tableFigure 2.8: Fully transparent shedule for k = 1. The shedule shown is thefastest possible for this system on�guration.start until it is guaranteed that all proesses before has had time to re-exeute.

2.10.2 Slak Sharing ShedulerThe slak sharing sheduler sari�es some of the transpareny in order toahieve better performane. As the fault model ditates that no more than
k faults will our within a single exeution, it is not neessary to handle morethan this. The slak sharing sheduler exploits this information, by allowingproesses on the same proessing element to share re-exeution slak. Figure2.9 shows the same system sheduled using slak sharing. In the shedule wesee that e.g. P4 and P5 share re-exeution slak. As k = 1, only one of the twoproesses may experiene a fault, and hene only a single reovery slak needsto be sheduled.In this sheduler, fault information is shared on the loal proessor, but faultsare still transparent between proessors. In this way, proess P3 has to waituntil time 4 to start, to ensure that proess P1 has had time to reover.
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(a) Shedule (b) Arhiteture () ProessgraphProess PE1 PE2

P1 2 2
P2 2 2
P3 2 2
P4 2 2
P5 2 2(d) Durations

Proess Start Time
P1 0
P2 2
P3 4
P4 8
P5 10(e) Shedule tableFigure 2.9: Slak sharing shedule for k = 1. The shedule shown is the fastestpossible for this system on�guration.2.10.3 Conditional ShedulerFault tolerant sheduling using onditional sheduling has no transpareny, i.e.all online shedulers share the information of faults. This allows the shedulers torespond very e�iently to faults, and hene produe shedules of high e�ieny.In order to do this e�iently, a stati shedule has to be reated for eah faultsenario. The possible shedules for the previous example, are shown in �gure2.10. These apture all possible fault senarios. We see that the shedules arevery e�ient as only exatly k slaks are sheduled.In order to apture all these di�erent possible shedules an advaned onditionalshedule table is needed (shown in �gure 2.10(k)). The online shedulers willalways start by exeuting the failure free shedule, marked true. If a faultis deteted all online shedulers are noti�ed and they will all swith to theorresponding reovery (ontingeny) shedule, marked FP1 through FP5 .The onditional fault tolerant sheduling gives good ontrol in terms of onlysheduling the minimum amount of reovery slak. However this omes at theost of the need of having more advaned online shedulers, more memory tostore the larger shedule tables, and that fault information has to be sharedbetween all proessors, whih inreases bus utilisation. The broadast of ondi-



26 Preliminariestions on the bus is ignored in this thesis. However, we assume that the onlineshedulers an only make deisions based on the fault information they have ata given time. That is, the shedulers do not use information about faults thathave not yet ourred.From �gure 2.10 it is seen that several of the possible shedules have the samedeadline, and in fat are examples of worst ase senarios. Whenever onditionalshedules are shown in the rest of this thesis, they will be one of suh worst-aseshedules.All proesses are noti�ed of all failures. In this way the shedule table for allnodes may/will hange in the event of a proess failure.
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(a) No Fault (b) P1 Failing
() P2 Failing (d) P3 Failing
(e) P4 Failing (f) P5 Failing

(g) Proessgraph (h) Derived FT-CPG Taskgraph for
k = 1

Proess PE1 PE2

P1 2 2
P2 2 2
P3 2 2
P4 2 2
P5 2 2(i) Durations Table

(j) Arhiteture ConditionProess true FP1 FP2 FP3 FP4 FP5

P1 0 0, 2
P2 2 4 2, 4
P3 2 4 2, 4
P4 4 6 6 6 4, 6
P5 6 8 8 8 8 6, 8(k) Conditional Shedule TableFigure 2.10: Illustration of the di�erent possible shedules aptured by a FaultTolerant Conditional Proess Graph. Figure 2.10(a) through 2.10(f) shows theGantt harts for the possible fault senarios, and table 2.10(k) shows the or-responding onditional shedule table (Blank entries are to be exeuted at thetime spei�ed in the true olumn).
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Chapter 3 Problem Formulation
In this setion motivational examples for the problems addressed in this thesisare presented. In the last setion I give an exat problem formulation.3.1 Complete Searh vs. List ShedulingPrevious work in doing fault tolerant sheduling, using onditional proessgraphs, has been presented in [9℄. In this work sheduling is done using thewell known list sheduling algorithm. The list sheduling algorithm is a fastheuristi searh implementation whih o�ers good solutions to sheduling prob-lems. However, as with any heuristi, the algorithm is not guaranteed to produeoptimal results, and may hene produe a good shedule but not the globallyoptimal. In order to produe the optimal solution, it is neessary to exploreall possible solutions. As sheduling problems are inherently NP -omplete [29℄,this exploration is very ostly in terms of time.Using a omplete searh implementation to �nd optimal shedules may produesolutions of signi�antly better quality than list sheduling. As the embeddedsystems onsidered in the thesis all use stati shedules, the extra expense, to doomplete searh, is a one-time ost, and may prove it self well worth it. Considerthe proess graph shown in �gure 3.1(d) with the exeution times shown in �gure



30 Problem Formulation
(a) List sheduling.

(b) Optimal sheduling.
() Arhiteture (d) ProessgraphProess PE1 PE2

P1 2 -
P2 - 4
P3 - 4
P4 - 2
P5 8 -(e) DurationsFigure 3.1: Performane of list sheduling versus optimal sheduling.3.1(e). A �-� in the durations table denotes that a proess annot be mappedon that proessing element. Given this input, a list sheduling algorithm willprodue the solution shown in �gure 3.1(a). List sheduling always selets aproess if it is ready for exeution, i.e. all its predeessors have already beensheduled. Hene list sheduling will shedule P2 to start at time 0, as it has nopredeessors. However this proves to yield a suboptimal solution. The optimalshedule is shown in �gure 3.1(b). This shows that introduing some initialslak, also alled idle time, on proessor PE2 is atually bene�ial.3.2 Poliy AssignmentDetermining whether a proess is to be sheduled using re-exeution or replia-tion is alled poliy assignment. The problem of doing good poliy assignmentis ritial in the optimisation proess. The following example illustrates thisimportane.For a given arhiteture (�gure 3.2(d)) an appliation (�gures 3.2(e) and 3.2(f))with a pre-de�ned mapping is to be sheduled under a reliability goal Rg. Thefastest shedule for the appliation without fault tolerane is shown in �gure3.2(a). This shedule �nishes well within the appliations deadline, but does notmeet the reliability goal. The designer hene wants to introdue redundany tomeet the reliability goal, and thus will introdue re-exeutions of all proessesutilising slak sharing. The result of naively doing this is shown in �gure 3.2(b)
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(a) No fault tolerane
(b) Only re-exeution

() Re-exeution and passive repli-ation

(d) Arhiteture
(e) ProessgraphProess PE1 PE2

P1 2 3
P2 4 6
P3 6 9(f) Durations TableFigure 3.2: Illustration of the importane of onsidering redundany assignmentwhile sheduling. The appliation shown in �gure 3.2(e) with the durationsshown in 3.2(f) is to be sheduled on the arhiteture shown in �gure 3.2(d).Figure 3.2(a) shows the fastest shedule with no fault tolerane. This howeverdoes not meet the reliability goal. Figure 3.2(b) shows the same system shed-uled with redundany to handle one fault, however the deadline is no longermet. To remedy this the re-exeution of P2 is passively repliated on the faster

PE1, this is shown in �gure 3.2().



32 Problem Formulationin whih the reliability goal is met, but the deadline is now missed. Figure3.2() shows the same appliation with an optimal use of both re-exeution andrepliation. The redundany of P2 is now moved to the faster PE1, and theappliation now meets its reliability goal and its deadline.This example shows that it is important to onsider the poliy assignment whendoing sheduling as it may drastially impat on the quality of produed shed-ules.3.3 Power Consumption for Fault Tolerant Shed-ulersThe hoie of fault tolerane sheduler implementation has great impat on thelength of the produed shedule. This means that the hoie of sheduler a�etsthe amount of slak for use with voltage saling to obtain energy savings.Figure 3.3 shows an appliation (�gure 3.3(g)) that is to be sheduled on anarhiteture (�gure 3.3(h)). The appliation is onsidered sheduled with eahof the three shedulers: fully transparent, slak sharing, and onditional. Thefastest possible solutions for eah of these shedulers are shown in the left mostolumn of Gantt harts. It is easily seen that the amount of available slakgreatly inreases with the use of more sophistiated shedulers. Slak sharingyields a slak of 2, where as onditional yields a slak of 6.In this example I only onsider the energy onsumed by the root shedule. Thisis an approximation of the atual energy onsumption, but desribes the bestase onsumption. As it is only the root shedule that is subjet to voltagesaling, it is only this energy that will give rise to energy savings. Hene, thisis a reasonable simpli�ation that makes the evaluation of ahievable energysavings muh easier. As the three shedules in �gures 3.3(a), 3.3(), and 3.3(e)all desribe the same appliation, and all proesses are run at the same voltagelevel, they naturally have the same energy onsumption EA,0.We wish to exploit the available slak to do voltage saling, and minimise theenergy onsumption. As there was no available slak when using fully trans-parent sheduling, no voltage saling an be done and energy onsumption isunhanged.The slak sharing sheduler yielded a slak of 2, and hene energy optimisation ispossible. The energy optimal shedule is shown in �gure 3.3(d). From the Gantthart it is seen that the optimal voltage saling is to run proesses P1, P3, P4,



3.3 Power Consumption for Fault Tolerant Shedulers 33Fastest Shedule Minimum Energy Shedule
Energy = EA,0(a) Fully transparent Energy = EA,0(b) Fully transparent
Energy = EA,0() Slak Sharing Energy = 53%EA,0(d) Slak Sharing
Energy = EA,0(e) Conditional Energy = 33%EA,0(f) Conditional
(g) Proessgraph (h) Arhiteture

Proess PE1 PE2

P1 2 2
P2 2 2
P3 2 2
P4 2 2
P5 2 2(i) DurationsFigure 3.3: Illustration of the obtainable energy savings for di�erent fault tol-erane shemes. The �rst olumn shows the fastest shedules for eah faulttolerane sheduling. The seond olumn shows energy optimal shedules forthe orresponding fault tolerane. The �gures illustrate how more energy an besaved by using more advaned fault tolerane tehniques whih generate moreslak. All the shown shedules an tolerate one transient fault, and have thesame deadline, but the onsumed energy to ahieve this varies greatly with thedi�erent shedules.



34 Problem Formulationand P5 at the same frequeny fA, and P2 at frequeny fP2 . The relations forthe frequeny levels is derived as the following two equations:
Deadline = 16 = 3cfA

+ cfP2
+ c0 (3.1)

Deadline = 16 = 4cfA
+ 3c0 (3.2)Solving this we �nd the exeution times of the saled proesses:

cfA
=

16− 3c0

4
=

10

4
(3.3)

cfP2
= 16− 3cfA

− c0 = 16− 3
10

4
− 2 =

26

4
(3.4)Using equation (2.1) the frequenies they are run at an be found:

fA =
c0

cfA

=
2 · 4

10
= 80% (3.5)

fP2 =
c0

cfP2

=
2 · 4

26
= 31% (3.6)With these values the energy onsumption for proesses at the two frequeniesan be alulated. To do so equation (2.8) is used. As the deadline is �xedfor the appliation the frequeny independent power would ontribute with thesame amount for any shedule, and is hene disregarded of. The power exponentis assumed to be m = 3 whih is a reasonable value [30℄:

EP2 = Cefffm
P2

cP2 = Ceff

(

8

26

)3
26

4
= 0.189Ceff = 9.4%E0 (3.7)

EP1 = Cefffm
A cA = Ceff

(

8

10

)3
10

4
= 1.28Ceff = 64%E0 (3.8)Where E0 is the energy onsumed by a proess run at full speed. Summing theenergy ontributions we �nd the total energy onsumed for the shedule, using
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EA,slack = 4EP1 + EP2 = (4 ∗ 1.28 + 0.189)Ceff = 5.31Ceff = 53%EA,0 (3.9)Using the slak sharing sheduler we an ahieve a system with the same levelof fault tolerane as for the transparent shedule, but whih only onsumes 53%of the energy.The onditional sheduler yielded a slak of 6 and hene has even greater po-tential for voltage saling. The energy optimal onditional shedule is shown in�gure 3.3(f). From the shedule we see that:

Deadline = 16 = 4cfA
+ c0 (3.10)

⇓

cfA
=

16− c0

4
=

14

4
(3.11)Whih leads to:

fA =
c0

cfA

=
2 · 4

14
= 57% (3.12)From this we �nd the energy onsumption for the onditional sheduler to be:

EA,cond = 5Cefffm
A cfA

= 5Ceff

(

8

14

)3
14

4
= 3.27Ceff = 33%EA,0 (3.13)The onditional sheduler gives the same level of redundany, but onsumesonly 33 % of the energy of the transparent sheduler.We see that, using more advaned fault reovery shedules, the energy on-sumption of an appliation an be redued dramatially, while the level faulttolerane is maintained.



36 Problem Formulation3.4 Reliability and ShedulingAs shown in previous setions 3.2 and 3.3 sheduling has great impat on theobtainable slak, and thereby the amount of voltage saling that an be per-formed. In this example the e�et of voltage saling on system reliability isinvestigated.Figure 3.4 shows an appliation to be sheduled suh that energy onsumptionis minimised, while a required reliability goal of 9 nines is met.Using slak sharing sheduling the fastest shedule is shown in �gure 3.4(a). Theenergy is EA,0, and the deadline is met, however the energy onsumption is notminimised. The reliability for the shedule is alulated using equations (2.14)and (2.16) in similar manner to the example in setion 2.7, using the onstants
d = 2, λ0 = 10−6 and the frequenies listed in �gure 3.4(e).Optimising the appliation for minimum energy onsumption, with the deadlineas a hard onstraint, results in the shedule shown in �gure 3.4(b). Due to theprobability of faults being dependent on the frequeny, the reliability of thesystem is lowered. The probability of error is inreased by:

∆ρ =
1−Rmin_energy

1−Rfastets

≃ 13 (3.14)The onsumed energy is redued to merely 56% of the fastest shedule, but thereliability goal is missed.To ensure meeting the reliability goal, this is imposed as a hard onstraintalong with the deadline. The optimal shedule under these onstraints is shownin �gure 3.4(). Now all onstraints are met and, under these, the energy isminimised. For this shedule the energy is redued to 74% of the energy forthe fastest shedule. In order to produe a minimal energy shedule under thereliability goal, the proesses on PE2 are fored to swap plaes.This example shows that reliability has to be onsidered at the same time asdoing sheduling and voltage saling in order to produe optimal shedules. Ifthis is not done, the designed system may beome very unreliable. Further,optimal shedules under reliability onstraints will need to sari�e some energysavings in order to be reliable.However, my optimisation algorithms are able to produe shedules with on-strained reliability, whih yield energy savings omparable to shedules with



3.4 Reliability and Sheduling 37
Finish Time 20 msEnergy EA,0Reliability 10 nines(a) Fastest Possible Shedule

Finish Time 24 msEnergy 55.7%EA,0Reliability 8 nines and 4(b) Minimum Energy
Finish Time 24 msEnergy 73.7%EA,0Reliability 9 nines and 2() Constrained Reliability, 9 nines

(d) ArhitetureVoltage Level
PE1 100 % 67 % 34 %
PE2 100 % 67 % 34 %(e) Voltage Levels

(f) Proess graphProess PE1 PE2

P1 1 1
P2 7 7
P3 4 4
P4 4 4
P5 4 4
P6 5 5(g) Durations TableFigure 3.4: Example of the neessity of onsidering reliability when doingsheduling and energy optimisations. The appliation is shown in �gure 3.4(f)with the orresponding proess durations in �gure 3.4(g). The appliation isto be mapped onto the arhiteture shown in �gure 3.4(d) with orrespondingvoltage levels in �gure 3.4(e) using slak sharing fault tolerane sheduling. In�gure 3.4(a) the shedule has been optimised for speed alone. Figure 3.4(b)shows the same system optimised for minimal energy onsumption. Note that

P3 and P5 have swapped plaes on PE2 to allow for better voltage saling. Fi-nally �gure 3.4() shows the system optimised for minimal energy onsumptionunder the reliability goal of 9 nines. Again the proesses swap plaes to allowfor the best saling under this onstraint.



38 Problem Formulationunonstrained reliability.3.5 Problem FormulationConsidering an appliation A with the proess graph G, and a distributed arhi-teture onsisting of a number of proessing elements onneted by a single bus,we determine a reliability goal orresponding to fault-tolerane for k transientfaults. For this system we wish to perform the following design tasks. Createa shedule, i.e. determine the start time for eah proess. Do mapping, thatis the alloation of eah proess onto proessing elements. Do voltage salingto minimise the energy onsumption. Apply a fault-tolerane poliy, either re-exeution or passive repliation, to eah proess suh that the appliations istolerant to k transient faults. All of these tasks have be onsidered simultane-ously to produe a design in whih the appliation is shedulable, the energy isminimised, and the reliability goal is met.



Chapter 4Energy-Optimisation underReliability and TimingConstraints
In this hapter I present the optimisation algorithms for energy minimisationunder reliability and timing onstraints. Setion 4.1 and 4.2 introdue onstraintlogi programming and ECLiPSe respetively. Setion 4.3 presents the logionstraints that orrespond to general embedded systems design tasks. Theonstraints spei� to fault tolerane are presented in setion 4.4. The objetivefuntion of the optimisation is desribed in setion 4.5. The searh strategyused in the optimisation is presented in setion 4.6.4.1 Constraint Logi ProgrammingLinear programming (LP) has been a popular tool for modelling and doingoptimisations for many years, espeially in operations researh. LP models areomposed by a set of algebrai equations whih desribe the system. To �nd asolution, general purpose solvers are used to searh the design spae. This hasthe great advantage that all models will be able to use the same solver, andhene improvements to this solver an be shared by all users of the LP system.



40 Energy-Optimisation under Reliability and Timing ConstraintsThis has given rise to very sophistiated solvers with very good performane.However, algebra is a very limited tool for modelling. A muh more powerfulmathematial tool is logis. Logi programming is also a well established ap-proah, based on languages suh as prolog. Logi programming is oneptuallyidential to LP in that a set of rules desribe a solution, and a solver searhes to�nd this solution. However for many appliations outside arti�ial intelligene,logi programming has rather poor performane.Reent years have seen the advent of a hybrid of the two paradigms, the on-straint logi programming (CLP). The added onstraints allow for speifyingalgebrai onstraints on the systems de�ned by the use of logis. This has givenrise to CLP systems with the modelling apabilities of logis, as well as theperformane of LP. CLP has espeially proven to yield good performane insolving NP-hard problems.Programming in CLP is based on logi onstraints. A system is desribed bya set of onstraints whih de�ne valid onditions for the system variables. Asolution to the modelled problem is an enumeration of all system variables, suhthat there are no on�iting onstraints.
4.2 The ECLiPSe-CLP SystemECLiPSe is a prolog based CLP system. Its logi kernel, and all omponentsfor it are programmed in prolog. The atual programming language is howevernot standard prolog, but o�ers onstruts spei� to CLP.ECLiPSe was originally developed by the European Computer-Industry Re-searh Centre (ECRC) in Munih and later by IC-Par at Imperial College ofLondon, but has been open-soured in the summer of 2006 and is now publilyavailable as a ommunity projet [5℄ supported by Ciso Systems.The ECLiPSe system inludes a wide variety of libraries and extensions, as wellas a simple baktraking solver. The language o�ers primitives to allow for easyonstrution of ustom solvers, both for omplete searh, as well as heuristis.Further details about ECLiPSe are available in [1, 5℄.
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(a) Shedule (b) Proess GraphFigure 4.1: Illustration of the preedene onstraint. Proess Pj in the proessgraph annot start untill it has reeived data from its predeessor Pi.4.3 Constraints for Embedded SystemsIn this setion I present a series of logi onstraints, whih have been used inthe literature to model embedded systems design tasks. These model generalthings like proessor and data behaviour, and are as suh appliable to all typesof systems. The onstraints spei� to fault tolerane are presented in the nextsetion.4.3.1 Preedene ConstraintsThe sequene of proesses in an appliation A is determined by their inter-ommuniations E (see setion 2.3 for de�nition). No proess an be exeutedbefore all the proesses, from whih it depends on ommuniations from, havebeen exeuted. Realling that an edge eij denotes a ommuniation from proess

Pi to Pj the preedene onstraint an be formalised as:
Start(Pj) >= ∀eij

Start(Pi) + Duration(Pi) (4.1)whih must hold for all proesses Pj ∈ A. An example of the onstraint is shownin �gure 4.1. The example shows how the data dependeny eij in the proessgraph fores Pj to start after Pi has �nished.4.3.2 Resoure ConstraintThe resoure onstraint enfores the onstraint that a proessor an only exeutea single proess at a time. Two proesses may either be exeuting on di�erentproessors, or exeute suh that their exeutions do not overlap in time. Thisis formally expressed by:
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(a) Shedule A (b) Shedule B () Shedule C (d) Proess graphFigure 4.2: Illustration of resoure onstraint. Two proesses annot oupy thesame proessing element at the same time. The three Gantt harts illustratevalid shedules.

Mapping(Pi) 6= Mapping(Pj)

∨Start(Pi) 6= Start(Pj) + Duration(Pj)

∨Start(Pj) 6= Start(Pi) + Duration(Pi) (4.2)whih must hold for all proess pairs Pi and Pj where i 6= j. Three shedules,that adhere to this onstraint, are shown in �gure 4.2. Two proesses withno dependenies are to be sheduled. They an either be mapped on di�erentproessors (�gure 4.2(a)), as expressed by the �rst lause of the onstraint, theymay exeute non-overlappingly on the same proessor (�gure 4.2(b) and 4.2()).4.3.3 Timing, Reliability and Energy ConstraintsFurther, all variables onerning time, an be onstrained to be within thedeadline. For the start times of proesses this an be formally written as:
Start(Pi) + Duration(Pi) ≤ Deadline (4.3)whih must hold for all proesses Pi ∈ A. In fat, this onstraint must onlyhold for the end proess(es) of an appliation. Speifying it for all proesses,allows the underlying CLP engine to restrit the possible values for the timingvariables. This, in turn, makes it easier for the solver to prove optimality, andmakes searhing for solutions faster.The onstraints for voltage saling, reliability, and energy are diret implemen-tations of the equations, presented in setions 2.3, 2.7 and 2.8 respetively, andare not repeated here. The use of these equations are shown in examples insetion 2.9.6 and 3.3.



4.4 Constraints for Fault Tolerane 434.4 Constraints for Fault ToleraneIn this setion the onstraints spei� to fault tolerane are presented. Thepresented onstraints form an addition to the general onstraints presented inthe previous setion, and as suh are an inremental addition to add support forfault tolerane to the already presented model. The onstraints are presentedindividually per fault tolerane tehnique. Examples of shedules with eah ofthe presented tehniques an be found in �gure 3.3.4.4.1 Fully Transparent ShedulerIn fully transparent sheduling, reovery slak is sheduled after eah proess.This is modelled by setting the length of a proess to the length of the rootexeution, plus the length of k reovery exeutions:
Start(Pj) >= ∀eij

Start(Pi) + Duration(Pi)(1 + k) (4.4)Whih must hold for all proesses Pj ∈ A. This is an adaption of the preedeneonstraint from setion 4.3.1. If voltage saling is applied, this will e�et onlythe length of the root exeution, as all re-exeutions will still be exeuted at fullspeed. The expression is then:
Start(Pj) >= ∀eij

Start(Pi) + Durationf (Pi) + Duration(Pi)k (4.5)Whih again must hold for all proesses Pj ∈ A.4.4.2 Slak-Sharing ShedulerWhen sheduling with fault tolerane using the slak sharing tehnique, pro-esses with dependenies on the same proessor and on other proessors need tobe treated di�erently. The onstraints for eah of these ases is hene treatedseparately in the following.
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(a) Example 1
(b) Example 2

() Proess Graph (d) ArhitetureExample 1 Example 2Proess PE1 PE2 PE1 PE2

P1 2 - 4 -
P2 4 - 2 -
P3 - 2 - 2(e) DurationsFigure 4.3: Illustration of the availability of data in a slak sharing shedule, forproesses sheduled on di�erent proessing elements. The Gantt harts showthe ritial re-exeution shedule.Proesses on the Same Proessing ElementProesses exeuted on the same proessor share reovery slak. This slak willalways be sheduled after the root proesses. Hene the root proesses an besheduled without any further onstraints. Thus the onstraint for proesses onthe same proessing element is simply:

Mapping(Pi) = Mapping(Pj) (4.6)Proesses on Di�erent Proessing ElementsThings are more omplex if the two proesses are mapped on di�erent proes-sors. As just desribed, proesses on the same proessor share reovery slak.Proesses on di�erent proessors however annot be started until reovery oftheir preedents is guaranteed.The situation where to proesses on di�erent proessors have to ommuniate,an be split into two speial ases. These are illustrated in �gure 4.3. Theonstraints for the two ases are presented below individually.



4.4 Constraints for Fault Tolerane 45data is available to be transmitted to another proess an be desribed by twospeial ases, both illustrated in �gure 4.3, and the onstraints are presentedbelow.Example 1: We onsider the dependeny between proess P2 and P3. In �gure4.3(), P2 is sheduled after a shorter proess. The �gure shows the ritialreovery path. This is the path whih determines when data is available to betransmitted. In this example the longest reovery path is k re-exeutions of P2,and hene P3 an start at time:
Start(P3) >= Start(P2) + Durationf (P2) + Duration(P2)k (4.7)Example 2: In �gure 4.3(d), P2 is sheduled after a longer proess. In this asethe longest reovery path to P3 is k re-exeutions of P1 plus a single exeutionof P2. That is, the availability of data is not only determined by the sendingproess, but also the proess sheduled before this. The start time of P3 isonstrained by:

Start(P3) >= Start(P1) + Durationf(P1) + Duration(P1)k + Duration(P2)(4.8)These two shedule examples show that the availability of data, does not onlydepend on the two proesses whih ommuniate, but also on all the proesseswith whih the sending proess shares slak. To generalise the shown onstraints,in a way that an be used in an CLP model, detailed information of the reoveryshedule is needed. This is ahieved by reating a separate shedule for thereovery proesses. For the examples shown in �gure 4.3, the reated reoveryshedule in fat is idential to the reovery shedule shown in eah Gantt hart.The reovery shedule is set up in the following way. For eah proess Pi areovery proess Si is inserted into the reovery shedule with an edge ePi,Si
. Inthe reovery shedule the same preedene and resoure onstraints are imposedas presented in setion 4.3.1 and 4.3.2. The �nishing times of the proesses inthe reovery shedule is desribed by:

Finish(Si) ≥ Start(Pi) + Durationf(Pi) + Duration(Pi)k

∧Finish(Si) ≥ Start(Si) + Duration(Pi) (4.9)As seen in the previous example (espeially �gure 4.3(d)), the duration of the



46 Energy-Optimisation under Reliability and Timing Constraintsreovery proess, is dependent on its predeessors. Hene the above onstraint,annot be written as elegantly in terms of the duration, and is hene kept inthis form.Note that the �rst part of the expression, up to the ∧ operator, aptures thereovery shedule in example 1. Similarly the rest desribes example 2.Using the reovery shedule, the general logi onstraint for proesses on di�er-ent proessors an now be written:
Start(Pj) >= Finish(Si) (4.10)General ExpressionWith the previous de�nitions of the reovery shedules and onstraints for pro-esses on the same, and on di�erent proessors, a general onstraint for slaksharing an be derived:

Mapping(Pi) = Mapping(Pj) ∧ Start(Pj) ≥ Start(Pi) + Durationf (Pi)

∨ Start(Pj) ≥ Finish(Si) (4.11)In the last part of the expression it is not expliitly stated that Mapping(Pi) 6=
Mapping(Pj), as this is an impliit onsequene of the �rst part of the lause.4.4.3 Conditional ShedulerThe onditional sheduler implementation is based on the FT-CPGs presentedin setion 2.6.The use of onstraint logi programming for sheduling onditional proessgraphs is desribed in [15℄. The onstraints presented in this setion is anextension of that work to allow for sheduling FT-CPGs.The onditional edges in the FT-CPG form mutually exlusive paths throughthe graph. As a onsequene two proess, whih depend on mutually exlusiveonditions, will never be exeuted in the same run of an appliation. As an



4.4 Constraints for Fault Tolerane 47example, onsider P5,2 and P5,3 in �gure 2.6(b). P5,2 depends on the failureof P1,1 and P5,3 depends on P1,1 not failing (and P2,1 failing). Consequentlythese two proesses will never be ative in the same exeution. Beause of this,proesses whih are part of mutually exlusive paths an be sheduled to thesame resoure at the same time. This addition to the resoure onstraint fromequation (4.2) is written:
MutuallyExclusive(Pi, Pj)

∨Mapping(Pi) 6= Mapping(Pj)

∨Start(Pi) >= Start(Pj) + Duration(Pj)

∨Start(Pj) >= Start(Pi) + Duration(Pi) (4.12)whih must hold for all proess pairs Pi and Pj where i 6= j. The funtion
MutallyExclusive determines whether the two proesses are on two disjuntivepaths (as desribed in the above paragraph). This funtion is omputationallyheavy, as it involves reursively searhing through the lists of onditions foreah proess. These ondition lists are reated as part of deriving the FT-CPG.Therefore, the lists are available to optimisation tool when it loads the FT-CPG.As the onditions for proesses are independent of the sheduling, the reursivesearh to determine mutual exlusiveness of proesses an be done as a one timee�ort as part of the setup of the internal model. In the atual implementationthe funtion to determine mutual exlusiveness is run �rst. If the two proessesare mutually exlusive, they do not onstrain eah other, and nothing further isdone. If they are part of the path, the onstraints presented above are invoked.The logi expression shown above aptures this behaviour onisely.In [15℄, Kuhinski does onditional sheduling by using a graphial methodto draw proesses whih depend on di�erent onditions with di�erent width.In his work, he only operates with a single ondition, for whih his approahworks well, and is very intuitive, due to its visual resemblane to Gantt harts.However, in the appliation of fault tolerane, with the inherently large num-ber of onditions, the graphial approah would beome impratial (proesseswould beome impratially �thik� in the graph). Further to use this graphi-al method Kuhinksi exploits a built-in prediate in the CHIP onstraint logiprogramming system. This prediate is not available in ECLiPSe, and hene thegraphial solution is not an option in this implementation. Most importantly,his implementation will evaluate mutual exlusiveness as part of model whilesearhing for solutions. For large numbers of onditions, this will beome verytime onsuming. The solution presented in this thesis is more e�ient, as theostly omparison of onditions is only done a single time, as part of loading themodel. This gives less logi onstraints to evaluate at searh time, and hene



48 Energy-Optimisation under Reliability and Timing Constraintssigni�antly faster searh performane of the sheduler.4.5 Objetive FuntionThe tool uses reliability and deadline as hard onstraints. The CLP solver usesthis to onstrain the design spae, suh that for any found solution, these twoonstraints will always be satis�ed.The optimisation an hene fous on the onsumed energy alone. The equationsused to express the energy are the ones presented in setion 2.8. As the goal ofthe tool is to ahieve energy savings from using power management tehniques,we are only interested in getting a measure for this saving. The optimisationproess only applies voltage saling to the root shedule, and therefore onlythis will ontribute to energy savings. Hene, the tool optimises the energyonsumption of the root shedule only. This is the same approah as used inthe example in setion 3.3. This approah makes the evaluation of the energysimpler, and hene faster, while still enabling the tool to preisely determine theenergy savings.4.6 Searh StrategyA CLP program is omposed by a set of logi onstraints. To �nd solutions forsuh a model, the solver will searh through all possible values of all variables,to �nd ombinations of values whih satisfy all onstraints.Consider a single proess to be sheduled and mapped to run on an arhiteturewith two proessing elements, and be optimised for fastest exeution. Thisexample is illustrated in �gure 4.4. The appliation has a deadline of 4, andthe proess has a duration of 5 on PE1 and 1 on PE2. It should be obviousthat the proess an only be mapped on PE2 in order to meet its deadline, apoint I shall return to shortly. To map and shedule this proess the solverhas two design tasks to deide: mapping and sheduling. Due to the onstraintspei�ed in equation (4.3), whih states that the start time plus the duration ofall proesses will always be smaller than the deadline, the solver will limit thevalue spae for the start times of the proess, to the interval 0-3.In the searh tree in �gure 4.4(d) the start times are onsidered �rst, and then,for eah start time, the mappings are onsidered. This gives rise to the shownsearh tree, whih has three internal-nodes, and six leaf-nodes (orresponding to
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(a) Proess graph Proess PE1 PE2

P1 1 5(b) Durations () Arhiteture
(d) Searh tree 1 (e) Searh tree 2

(f) Searh tree with pruningFigure 4.4: Illustration of searh trees for a simple mapping and shedulingexample. The appliation is to be mapped to the arhiteture. The shedule isto be optimised for speed, and �nish within a deadline of 4.the six permutations of the values for the two variables). An alternative searhtree where mappings are onsidered �rst, and then start times, is shown in �gure4.4(e). This tree has only two internal nodes, yet naturally the same six leaf-nodes. Hene, this tree is preferable to the other, as it will end up at the sameresults, but visit less internal states in the proess, and hene be faster. Thisshows that the order in whih the design tasks are performed, has a big impatof the number of states that needs to be visited while searhing for solutions.Let us return to the fat that the proess runs too slowly on PE1. Using theordering of design tasks from the optimal searh tree from �gure 4.4(e), and asolver that will always selet the smallest value �rst, the solver will perform thesearh shown in �gure 4.4(f). In this tree, the proess is �rstly mapped on PE1.The solver evaluates the onstraints, and �nds that due the proess' durationbeing longer than the deadline of the appliation, this mapping is not valid.It hene baktraks and maps the proess on PE2 instead. While doing this,the solver does not try any values for start times. These branhes are ut of, orpruned. With the new mapping the solver will try the three di�erent start times,and determine that 0 yields the fastest shedule. Using pruning, the solver onlyhad to visit 6 nodes in the searh tree, out of the total 9. This illustrates that



50 Energy-Optimisation under Reliability and Timing Constraintsthe order in whih the design tasks are performed, a�ets both the number ofinternal nodes in the searh tree, and the solvers ability to do e�ient pruning.These two things both have very signi�ant performane impat.For the proposed optimisation algorithm, it has been found that performingdesign tasks in the following order yields best searh performane: mapping,voltage saling, and sheduling.In the previous example we used a solver whih onsidered variable values, fromthe smallest value and up. This is not always the best strategy. Aelerat-ing searhes by hanging the sequene in whih values are onsidered, is alledvalue seletion, and is a searh heuristi, whih does not sari�e optimality.The implemented solver in the presented work, uses the following value sele-tion shemes for eah variable: Mappings: random, Voltage levels: from theminimum, and Start times: from the minimum. This has been found to yieldthe best performane. Evaluating the voltage levels from the smallest �rst, willbias the searh towards �nding the shedules with the least energy onsumption�rst.4.6.1 Optimality vs. Fast SolutionsFor larger appliations eah design task onsists of assigning values to a largenumber of variables, e.g. all proesses will have a mapping and a start timevariable. Eah of these variables will be assigned a value using the strategy pre-sented above, but the sequene in whih the variables are hosen to be assignedis also an important part of the solver implementation. Speeding up searh, byhanging the way in whih variables are hosen for assignment is alled variableseletion, and is too a searh heuristi.ECLiPSe o�ers prediates to implement a number of di�erent variable seletionshemes. The most onstrained sheme, will selet the variable in the urrentset, e.g. mappings or start times, that has most onstraints assoiated with it.The variable will be assigned a value, and then the seond most onstrainedvariable is seleted. This is repeated until the set is empty. A similar approahis the �rst fail sheme, whih tries to guess whih variable will be the �rst tolead to an invalid solution. This is done in a simpler and faster way than themost onstrained sheme. The aim of these two approahes, is to try to �ndinvalid solutions �rst, in an attempt to do pruning of the searh tree as soonas possible. Early pruning, e�etively redues the size of the searh tree, andonsequently makes it easier for the solver to prove optimality of a solution(whih it an only do after having visited all valid solutions). However as a lotof the initial searhes are intentionally direted down searh paths that hold



4.6 Searh Strategy 51no solutions, these two approahes may take very long time to �nd the �rstsolution, however this �rst solution will often be the optimal.As an alternative, ECLiPSe o�ers the anti �rst fail seletion sheme, whih willtry to �nd a path that produes solutions as fast as possible. This approah willprodue a lot of solutions, that gradually get better. But these will generallystart out being very bad, as the variable seletion hoose the paths throughthe searh tree that represent the easy solutions. This seletion sheme mayprodue good solutions, but will take muh longer time to prove them optimal.This is beause the variable seletion sheme auses the searh to visit a lot ofsolutions, whih pruning ould have shown to be suboptimal.In the proposed implementation, the main interest is to �nd the optimal so-lutions, and I hene use the �rst fail variable seletion approah for all designtasks. This has been found to yield a good trade-o� between the speed of �ndingsolutions, and the solvers ability to prove the optimality of solutions.
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Chapter 5 Experimental Results
In this setion I present the experiments performed, in order evaluate the pro-posed sheduling and optimisation approahes. The experiments have beenonduted on two sets of test data, a set of syntheti appliations presented insetion 5.1, and a ase study of an MP3-deoder, presented in setion 5.2. Theremaining setions of this hapter present the onduted experiments.5.1 Syntheti AppliationsA large set of syntheti appliations have been generated using the task graphsfor free tool (TGFF ) [4, 26℄. This tool generates pseudo-random proess graphsin a platform independent and general way, allowing researhers to experimentwith their results, on similar input material. I have on�gured TGFF to gener-ate series parallel graphs, whih resemble graphs for real appliations. In �gure5.1 a sample TGFF series parallel graph is shown, together with the inputparameters used to reate it.The test set is omposed of graphs with N ∈ 10, 15, 20, 25, 30 proesses. Foreah graph size, I have generated a total of ten graphs. Half of the proesses inthe graphs have been randomly hosen to be made redundant. The remainder



54 Experimental Results

tg_nt 5task_nt 15 1gen_series_parallel trueperiod_laxity 1period_mul 1, 1, 1tg_writeeps_writevg_writepe_write(a) Input parameters (b) Generated graph ex-ample
() Arhiteture

Voltage Level
PE1 100 % 67 % 34 %
PE2 100 % 67 % 34 %
PE3 100 % 67 % 34 %(d) Voltage levelsFigure 5.1: Parameters used for TGFF and an example of a orrespondinggenerated proess graph. Also the arhiteture used in the syntheti experimentsis shown.



5.2 MP3-deoder Case Study 55of the proesses are onsidered non-ritial, and are not made redundant.Where not expliitly stated otherwise, the arhiteture shown in �gure 5.1()is used. The arhiteture onsists of three proessing elements, onneted bya single bus. Eah proessing element an be run at three voltage levels. Theappliations have been randomly mapped unto the arhiteture.In the experiments, the fully transparent shedule has been used as referene.This shedule is the straightforward approah, that an experiened designerwould determine, without using my tool. The deadline for the graphs in theexperiments, has been set to the length of the optimal fully transparent shedule.Similarly, the reliability goal is determined based on the reliability of the fastestfully transparent shedule. The reliability goal is de�ned as:
Rg = 1− 10(1−Rtransparent) (5.1)whih means, the probability of faults may be no more than ten times greaterthan in the transparent shedule.5.2 MP3-deoder Case StudyThe experiments have also been onduted on a real appliation. This is anMP3-deoder, for whih a proess graph, as well as detailed timing informationis available. This example has previously been used in [18℄ and [24℄.The proess graph for the MP3-deoder is shown in �gure 5.2. The graph hastwo parallel exeutions, with idential durations, and two intersets. This isbeause the deoded MP3 -stream is stereo, and the two hannels are deodedindependently. The durations shown in the �gure are written as the number ofyles they need to omplete. The deadline for the appliation is 25ms.The MP3-deoder is exeuted on an arhiteture with two proessing elements,shown in �gure 5.2(). The individual proessors an be run at three voltagelevels. The voltage levels have been set slightly higher than in the arhiteturefor the random proess graphs. This is due to proesses P13 through P16 beingrelatively expensive in terms of exeution time. With the lower voltage levels,these proesses an not be voltage saled within the deadline, and the slak annot be e�iently used for energy management.
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(a) Proess graphsDesription Proess PE1 PE2Preproessing P1 1071 1071Sale P2, P3 476 476Hu�man Deoder P4, P5 36781 36781De-quantisation P6, P7 14172 14172III-Stereo P8 63914 63914Reorder P9, P10 2568 2568Antialise P11, P12 21305 21305IDCT P13, P14 144924 144924Sub-Band Synthesis P15, P16 266687 266687(b) Durations
() Arhiteture Voltage Level

PE1 100 % 75 % 50 %
PE2 100 % 75 % 50 %(d) Voltage levelsFigure 5.2: Proess graph forMP3-deoder. The desriptions are from [24℄. Theexeution times are here listed as the amount of yles they need to exeute.The arhiteture the is also shown, along with the available voltage levels.



5.3 Optimisation Parameters 57name Constant ValueE�etive apaitane Ceff 1.11 · 10−9 FPower exponent m 3Frequeny independent power Pind 0 mJInitial failure rate λ0 1.0 · 10−6 faults per seondFailure rate onstant d 2Figure 5.3: Constants used in experiments. The failure rate is assuming a 100megabit hip [32℄.5.3 Optimisation ParametersThe algorithms have been evaluated onsidering two situations. In the �rst ase,the appliation must tolerate one transient fault (k = 1), and in the seond ase,they tolerate two faults (k = 2).All experiments have been onduted with a fault tolerane level of k ∈ {1, 2}.The onstants used for the numerial alulations are shown in �gure 5.3. Allexperiments are onduted with a hard deadline. The system is assumed to beonline ontinuously, hene the frequeny independent power, Pind, an safely beset to naught, as it will only ontribute with a onstant to the energy expressionfrom equation (2.9), with value Deadline · Pind.The onstant values are taken from [30℄ and [19℄.The CLP solver that searhes for shedules, is set to have a timeout of 15minutes. For some shedules optimality is proved within this deadline. Othersearhes may produe intermediate results, but not be able to prove optimal-ity. Finally, some searhes may not �nd any solutions within this deadline.How many searhes fall into whih ategory is listed for eah experiment in thefollowing.The experiments have been onduted using the ECLiPSe version 5.10_44,running on 3.5 Ghz AMD 64-bit omputers with 2 gigabytes ram.5.4 Performane of Fault-Tolerant ShedulersTo ompare the three implemented shedulers against eah other, two experi-ment runs have been performed. In the �rst, the optimisation riteria is �nish
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(a) k = 1 (b) k = 2No. of ProessesNo. Faults 10 15 20 25 30Fully transparent

k = 1 10/0/0 9/1/0 7/3/0 5/3/2 2/5/3
k = 2 10/0/0 10/0/0 7/2/1 6/4/0 3/4/3Slak sharing
k = 1 10/0/0 9/1/0 7/3/0 5/3/2 2/4/4
k = 2 10/0/0 10/0/0 7/2/1 6/4/0 3/4/3Conditional
k = 1 4/6/0 2/8/0 0/10/0 0/8/0 0/7/3
k = 2 3/7/0 0/10/0 0/9/1 0/10/0 0/7/3() Finishing status of searhesFigure 5.4: Comparison of the fastest possible shedules obtainable with thethree shedulers. All values are relative to those of the fully transparent shed-uler. Smaller values are better. The table shows the number of optimal /intermediate / none shedules for eah graph size.time, and their ability to produe fast shedules is ompared. The results forthis experiment is shown in the graphs in �gure 5.4. The x-axis marks the sizeof the graphs, and the y-axis is the length the produed shedule, relative tothe shedule produed using the fully transparent approah. The plotted pointsare the average of the ten graphs generated for eah graph size. The number ofoptimal / intermediate / none results for the searhes are shown in the tablein �gure 5.4(). Optimal results are those whih have been found within thetimeout. Sine the searh has stopped before the timeout, the found shedule isknown to be optimal. Intermediate results are the best known shedule, whenthe searh reahed timeout. The searhes marked as none, did not �nd any validsolutions within the timeout.From the graphs we see that for systems tolerating one transient fault, the slaksharing approah produes results that are onsistently 10-15% shorter thanthose for the fully transparent sheduler. The onditional approah is 20-30%



5.4 Performane of Fault-Tolerant Shedulers 59Fault Tolerane Tehnique
k = 1 Fully Trans. Slak Shr. ConditionalFinishing time 1103796 919280 818585
k = 2Finishing time 1655694 1286662 1085272Figure 5.5: Minimal �nishing times for MP3-deoder.

better. This tendeny is even more obvious for k = 2, where the slak sharingsheduler performs 20% better, the onditional sheduler an amazing 50% thanthe transparent sheduler.To see how large energy savings an be ahieved by exploiting the slak produedby the better performing shedulers, we now minimise the energy for the designs.The deadline used is that of the fastest slak sharing shedule, and no reliabilitygoal is set. The results of this experiment is shown in �gure 5.6. For the energyplot ,the y-axis is the energy onsumption relative to that of the fastest fullytransparent shedule, alulated similarly to the �nishing times in the previousexperiment. For the reliability plot, the y-axis is the absolute reliability.We see that the slak sharing shedule gives a dynami energy saving of 30% and45-50% for one and two faults respetively. The onditional shedule produesshedules that saves as muh as a 70% for k = 2. However, we see that theonditional sheduling is not able to produe any results at all for graph sizeslarger than 15. This is beause of the use of FT-CPGs to apture all possiblefault senarios. The size of a FT-CPG grows drastially, with growing graphsizes. For graphs with 15 proesses the average number of proesses in the orre-sponding FT-CPG, is 70.9 for k = 1 and 270.9 for k = 2. With 20 proesses thisinreases to 104.9, and 483.4 respetively, whih renders the searh infeasible.The reliability plots show the energy savings are obtained at a very high relia-bility ost.The �nishing time optimisation results for the MP3-deoder are shown in �gure5.5. For k = 2 the slak sharing shedule is about 25% faster, and the ondi-tional about 30% faster. This is omparable to the syntheti appliations. The�nishing times ahieved using the fully transparent sheduling sheme, are usedas deadlines in the remaining experiments. Realling that the appliation has adeadline of 25ms, the proessor that runs the appliation, will have to exeute
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(a) Energy for k = 1 (b) Reliability for k = 1

() Energy k = 2 (d) Reliability k = 2No. of ProessesNo. Faults 10 15 20 25 30Fully transparent
k = 1 10/0/0 8/2/0 8/1/1 4/3/3 0/6/4
k = 2 10/0/0 10/0/0 10/0/0 6/2/2 0/7/3Slak sharing
k = 1 9/0/1 9/1/0 2/6/2 3/3/4 0/2/8
k = 2 9/1/0 10/0/0 3/5/2 2/6/2 0/4/6Conditional
k = 1 4/1/5 0/3/7 0/0/10 0/0/10 0/0/10
k = 2 5/0/5 1/0/9 0/0/10 0/0/10 0/0/10(e) Finishing status of searhesFigure 5.6: Comparison of the obtainable energy savings for di�erent shedulers.The fastest shedule for fully transparent sheduling has been used as deadline,and energy minimised under this. The energies are relative to the energy forrunning all proesses at full speed, hene for energy smaller values are better.The reliability plots are in absolute values, and higher values are better.



5.5 List Sheduling vs. Optimal Shedules 61Fault Tolerane Tehnique
k = 1 Fully Trans. Slak Shr. ConditionalEnergy 46123.2084 24529.21914375 20598.871287222Reliability 9 nines and 6 8 nines and 6 8 nines and 6
k = 2Energy 46123.2084 15234.397575 14606.184732684Reliability 14 nines and 5 12 nines and 9 12 nines and 8Figure 5.7: Energy and reliability for MP3-deoder.at a minimum of:

fk=1 =
1103796

25ms
= 44.15Mhz (5.2)for k = 1 to �nish within the deadline. For the implementation tolerating twofault, the minimum lok frequeny is:

fk=2 =
1655694

25ms
= 66.23Mhz (5.3)Provided an arhiteture is given, whih supports the two levels of fault tol-erane using the straightforward fully transparent sheduling, the use of themore advaned shedulers ould provide the same level of fault-tolerane whileonsuming the energy shown in �gure 5.7. Both slak sharing and onditionalsheduling give an energy saving of about 65% for k = 2.The experiments show that signi�ant savings in terms of slak, and energy, areavailable by the use of more sophistiated fault tolerant sheduling. The energyminimisation experiment learly illustrates that energy management should beused with are, as the reliability of the produed shedules drops rapidly asthe graphs sizes inrease (i.e. the amount of slak inreases). The experimentsfurther show, that the onditional sheduling, although it produes very goodresults, is impratially slow.5.5 List Sheduling vs. Optimal ShedulesTo evaluate the e�ieny of the proposed sheduling tehniques, I have om-pared their performane against the algorithm presented in [10℄. I have used



62 Experimental Resultsa version of the original ode, whih shedules an FT-CPG representation ofa graph using list sheduling. In these experiments 100% of the proesses areonsidered to be reovered in ase of fault.The graphs are sheduled on an arhiteture with 4 proessing units. The samemapping is used for all experiments. The optimisation riterion is �nishing time.The results of the omparison with the list sheduling are shown in �gure 5.8.In the plots the y-axis is the �nishing time relative to that of the list sheduler.We see that the slak sharing sheduler performs 25% better for k = 1. For
k = 2 the slak sharing approah still produes better results, but somewhatless so (about 20%). Again we see that the onditional sheduling, does notprodue any results for larger graphs. For the shedules found, however, we seethat the list sheduling results, are far from optimal. In fat, for k = 2 theoptimal shedules are as muh as 60% better.The results for the MP3-deoderare shown in �gure 5.7. For the ase study,we see that the slak sharing sheduling is performing nearly as good as theonditional. We also note that the energy onsumption is indeed lower for theshedules that handle two faults. This is beause they have been sheduledwith a di�erent deadline. We reall that the deadline is set to the length of thefastest transparent shedule. The advantage of using more advaned shedulingalgorithms over the transparent beomes more apparent as k inreases, andhene there is more slak for voltage saling.These experiments show that the proposed slak sharing sheduling performssigni�antly better than the list sheduling algorithm proposed in [10℄.5.6 The E�ets of Poliy AssignmentThe impat of poliy assignment and mapping on the quality of obtainableshedules is evaluated by sheduling the same graph with three di�erent degreesof mapping. Firstly, with all proesses mapped, and all reovery exeutionsmapped on the same proessing element, i.e. only with re-exeution. Seondly,with all root proesses mapped, but reovery exeutions unmapped, i.e. om-bination of re-exeution and passive repliation. And �nally with all proessesunmapped. These experiments are run on the arhiteture shown in �gure 5.9.This is a heterogeneous arhiteture, with three proessors, eah with di�erentperformane. The performane ratios are written inside the proessing elementsin the �gure. The ratios mean, that a proess mapped on PE2 will have a du-ration that is twie as long as if it were mapped on PE1. For this experiment
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(a) k = 1 (b) k = 2No. of ProessesNo. Faults 10 15 20 25 30Slak sharing
k = 1 10/0/0 7/1/2 5/3/2 7/0/3 4/0/6
k = 2 10/0/0 6/1/3 6/1/2 10/0/0 8/0/2Conditional
k = 1 7/3/0 0/10/0 0/10/0 0/0/10 0/0/10
k = 2 4/6/0 0/10/0 0/1 /10 0/0/10 0/0/10() Finishing status of searhesFigure 5.8: Fastest possible shedules with three di�erent shedulers. Theheuristi list sheduling approah is used for referene, and all other numbersare relative to this. Smaller values are better.the optimisation riteria is �nishing time.The results of these experiments are shown in �gure 5.10 for the syntheti appli-ations. The graphs show that using a ombination of re-exeution and passiverepliation, my implementation an produe shedules whih are onsistently10% better than those with only re-exeution. We also see that if the optimi-sation tool is allowed to determine the mapping, as well as the poliy assign-ment, the results beome even better. The plot for this ase, however behavesstrangely, and the results beome inreasingly bad, and for 30 proesses, evenprodues shedules that are worse than those with re-exeution only. This isbeause the size of this design spae being signi�antly larger in this ase. Inturn, this is seen in the status table, where nearly no searhes �nish withinthe timeout. Hene the shedules plotted are intermediate results and are thussub-optimal. If the searhes had �nished, an improvement in the �nishing time,similar to that where k = 1 should be expeted.The MP3-deoder is sheduled on the same, homogeneous, arhiteture as in
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Figure 5.9: Arhiteture for the experiments in setion 5.6. The performaneratios for the proessors are written above eah proessor.

(a) k = 1 (b) k = 2No. of ProessesNo. Faults 10 15 20 25 30Only re-exeution
k = 1 10/0/0 6/2/2 10/0/0 8/2/0 2/0/8
k = 2 10/0/0 10/0/0 8/0/2 10/0/0 8/0/2Re-exeution andpassive repliation
k = 1 10/0/0 6/4/0 6/2/2 8/2/0 0/0/10
k = 2 10/0/0 6/4/0 8/0/2 8/2/0 0/6/4Both and mapping
k = 1 6/4/0 0/8/2 0/10/0 0/10/0 0/2/8
k = 2 4/6/0 0/10/0 0/8/2 0/10/0 0/8/2() Finishing status of searhesFigure 5.10: In�uene of poliy assignment on quality of solutions. The shed-ules with all proesses mapped are used as referene, and the other values arerelative to this. Smaller values are better.



5.7 Energy Trade-O�s for Reliability 65Fault-tolerane poliy
k = 1 Re-ex. Re-ex. & pas. repl. Both & mappingFinishing Time 919280 896671 835325
k = 2Finishing Time 1286662 1241444 1118752Figure 5.11: In�uene of poliy assignment on shedule quality forMP3-deoder.The results are for: all proesses mapped, only the root proesses mapped, andall proesses unmapped.the other experiments. The results are shown in �gure 5.11. Again, we see animprovement when using both passive repliation and re-exeution, and an evenbigger improvement if the mapping is also onsidered part of the optimisation.The �nishing times are improved by a few perent when passive repliationis introdued, and by about 10% when mapping is also deided. Consideringthat the MP3-deoder has a highly parallel struture, and is sheduled on twoidential proessors, these improvements are in fat quite high.These experiments show that onsidering poliy assignment and mapping isritial to produe shedules of high quality.5.7 Energy Trade-O�s for ReliabilityIn this experiment the obtainable energy savings possible under a reliabilitygoal Rg have been investigated. The optimisation is done using slak sharingsheduling, whih, through the previous examples, has been shown to behavewell, both in terms of the quality of the produed shedules, and also in termsof exeution time.Two energy optimisations are done for eah graph, one where the reliabilityis not onstrained, and one where the reliability goal Rg is imposed as hardonstraint. The imposed reliability goal is the one presented in setion 5.3. Theenergy is ompared to that of the fastest transparent shedule, the �nishing timeof whih, is used as deadline.The results of these experiments are shown in �gure 5.12. The plots learlyshow, that lowering the voltage to minimise energy onsumption, without on-ern for reliability produes extremely unreliable systems. The reliability de-reases dramatially with inreasing appliation size and k. If, however, relia-bility is onstrained to meet a reliability design goal, this is avoided. The plots



66 Experimental Resultsfor energy show that, the di�erene in energy is only very little, however thereliability bene�ts greatly from the introdued reliability goal. This shows thatonsidering reliability as part of the optimisation proess, my approah is ableto dramatially improve the reliability of designed systems at very little sari�eof energy.To illustrate this, let us onsider the probability of error, for k = 1 and 20proesses. This is improved by a fator of:
∆ρ =

1−Runconstrained

1−Rconstrained

=
1− 0.9634

1− 0.9906
= 3.9150 (5.4)At the ost of an inrease in energy onsumption by a mere:

∆E =
Econstrained − Eunconstrained

Eunconstrained

=
0.6993− 0.6917

0.6917
= 0.88% (5.5)And the trend is only more obvious if examples for k = 2 are onsidered.The results for the MP3-deoder show the same tendeny. Firstly, it should benoted that the reliability for this example is far greater than that of the randomgraphs. This is due to all proesses being redundant. In the syntheti examplesonly 50% are made redundant, and hene the other half will ontribute to thesystems unreliability.We see that, for k = 1, the unonstrained shedule onsumes:

∆E =
Eunconstrained

Etransparent

=
24529.21914375

46123.2084
= 53.2% (5.6)of the energy of the transparent shedule. However, the reliability is missed.The onstrained shedule yields a shedule whih onsumes:

∆E =
Econstrained

Etransparent

=
29020.2215625

46123.2084
= 62.9% (5.7)energy and meets the reliability goal. By sari�ing an energy saving of 9%, wehave made the designed system meet its reliability goal. The energy ost, forahieving this, in this ase is a bit larger than for the syntheti appliations.
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(a) Energy for k = 1 (b) Reliability for k = 1

() Energy for k = 2 (d) Reliability for k = 2No. of ProessesNo. Faults 10 15 20 25 30Fully transparent
k = 1 10/0/0 9/0/1 7/3/0 5/4/1 2/6/2
k = 2 10/0/0 10/0/0 7/3/0 6/3/1 3/5/2Unonstrained
k = 1 9/1/0 9/1/0 4/5/1 6/3/1 0/5/5
k = 2 9/1/0 10/0/0 4/6/0 4/5/1 0/6/4Constrained
k = 1 9/1/0 9/0/1 4/3/3 6/3/1 0/7/3
k = 2 10/0/0 10/0/0 5/4/1 7/1/2 0/6/4(e) Finishing status of searhesFigure 5.12: Plot of energy and relibality, sheduled with and without on-strained reliability.



68 Experimental ResultsTransparent Unonstrained Constrained
k = 1 Rg = 8 nines and 8Energy 46123.2084 24529.21914375 29020.2215625Reliability 9 nines and 5 8 nines and 6 8 nines and 9
k = 2 Rg = 13 nines and 6Energy 46123.2084 15234.39757 18931.3788375Reliability 14 nines and 6 12 nines and 8 13 nines and 6Figure 5.13: Energy and reliability for MP3-deoder.This is beause theMP3-deoder is dominated by a few very heavy proesses, asdisussed earlier. This makes the appliation have little �exibility to do voltagesaling. The syntheti appliations have proesses of more even sizes, and heneare more �exible.This demonstrates that reliability should be onsidered as a part of the system-level optimisation proess. Doing so, may yield valuable insight on how toe�iently voltage sale a system. It is possible to ahieve muh better reliability,at the ost of only a very little inrease in onsumed energy.



Chapter 6 Conlusions
In this thesis, I present design optimisation approahes for the design of timeonstrained fault-tolerant embedded multiproessor systems-on-a-hip. The pre-sented tehniques onsider the reliability simultaneously with the sheduling,mapping and voltage saling. The presented approahes are able to produeshedules with good reliability at a very small energy ost, ompared to shed-ules that where sheduled without onsidering reliability. This shows that it isritial to onsider the reliability of systems as part of the system-level designphase.To evaluate the reliability of fault tolerant systems, I have derived equations forthe reliability of several di�erent fault-tolerane tehniques. This extends thework of [30℄ to allow for not only re-exeution, but also repliation and passiverepliation. Further the expressions are generalised for arbitrary numbers ofhandled faults k, and not as previous work only for k = 1.Three di�erent fault tolerant sheduling methods have been implemented: fullytransparent, slak sharing and onditional. To do onditional sheduling, ageneral algorithm has been developed whih builds FT-CPGs from normal taskgraphs. This extends the work of [9℄ and [10℄.The approahes have been implemented using a onstraint logi programmingsystem, and towards this, end the logi onstraints to model fault-tolerant em-



70 Conlusionsbedded systems are presented. The advantage of using an CLPapproah is its�exibility. It is easy to add and remove onstraints, and several design tasks anbe integrated in the same ode. The searh strategy an easily be ontrolled,and, given enough time, the searh is able to �nd optimal solutions.The experiments onduted have shown that the presented algorithms are ableto produe implementations whih are fault-tolerant, shedulable, and minimiseenergy.6.1 Further WorkThe model presented disregards ommuniation delay. Considering this howeverwill give rise to some interesting problems. For the more advaned shedulerimplementation, fault information has to be shared between proessors. Thisinformation will naturally have to be transmitted on the bus. This may lead toongestion on the bus, and hene impat exeution speed. Further, the extrapower needed to drive the bus, may a�et the optimal shedules, suh that lessparallelism is favoured.The optimisation tool presented in this thesis does omplete optimal searh.This is shown to yield very good results, but is also rather slow. Comparisonwith a list sheduling heuristi shows that the implemented tool behaves gener-ally between 10-20 % better for slak sharing sheduling. It would be interestingto extend the presented model with a fast onstraint logi programming searhheuristi, whih would quikly produe solutions of good quality.



Appendix ADerivation of FT-CPG
In [9℄ an algorithm to derive FT-CPGs from normal proess graphs is presented.It is however very abstrat, and as suh does not form a good base for doing anatual implementation. As a onsequene we have proposed a diretly imple-mentable algorithm to derive FT-CPGs.The algorithm takes as input a normal direted proess graph, and from itprodues a onditional graph with fault tolerane for k faults. An example of aproess graph and its derived FT-CPG for k = 1 is shown in �gure 2.6.The GenerateFTCPG funtion is shown in pseudo-ode representation in algo-rithm 1. The subscripts array set up in line 3 is used to assign unique sub-sript numbers to re-exeutions of a proess. This is neessary to distinguishre-exeutions from eah other. Lines 1 to 22 initialise the data strutures. Thealgorithm starts with the soure node, whih has no predeessors. The algo-rithm maintains a set of onditions for eah proess whih aptures the faultsenario in whih the proess will be ative. For eah proess with predeessors,it is neessary to determine whih instanes of this/these predeessors are valid.E.g. it is ritial that a proess with two predeessors, is only inserted into thegraph, with ombinations of these two predeessors, that do not belong to mu-tually exlusive paths in the FT-CPG. A ombination of predeessor proessesthat is part of the same path in the FT-CPG, is alled a valid ombination.These valid ombinations are determined using the set of onditions for eah



72 Derivation of FT-CPGpredeessor. The valid ombinations are determined in line 25. To �nd thesevalid ombinations is non-trivial, and the algorithm for doing this is given inalgorithm 2.The for loop from line 26 to 33 inserts a new proess for eah valid ombination,and the loop from line 34 to 45 inserts re-exeutions of eah of the newly insertedproesses.A.1 FindValidCombinationsThis is the funtion to �nd valid ombinations of predeessors for a proess.The funtion takes as input the so far generated FT-CPG and the proess forwhih we wish �nd predeessor ombinations. The proess will have a set ofpredeessors in its original graph, in �gure 2.5 P4 has the predeessors P2 and
P3. The loop in lines 3-5 searhes through the FT-CPG generated so far, andinserts eah instane of the predeessors proesses in the parents array. In line 6the funtion CompareConds is alled. This will determine whih ombinations,of the found predeessors in the parents array, are part of the same path, andhene are valid andidates for having Pi inserted as a hild. Lines 7 to 11 ensuresthat none of the valid ombinations are paths with more than k faults.A.2 CompareCondsThis funtion takes a set of lists, holding all the instanes of the predeessorproesses for a proess. The predeessors are sorted, suh that instanes of thesame proess are all in a separate list. Lines 2-3 handles the speial ase whenthere is only one parent, in whih ase all instanes are valid andidates. Line4 extrats the �rst set of predeessors, alls CompareConds reursively withthe remaining predeessors. This reursion merges the proess sets, suh thatproesses that are part of the same path through the graph are joined, and theironditions joined as well. The funtion returns a single set of ombinations ofpredeessor proesses that are parts of the same paths. Using the example from�gure 2.6 and onsidering proess P4, the funtion would be alled with thepredeessor lists {P2,1, P2,2, P2,3} and {P3,1, P3,2, P3,3}, and would return thelist {{P2,1, P3,1}, {P2,1, P3,3}, {P2,3, P3,1}, {P2,2, P3,2}}.The funtion CompareConds evaluates the onditions for all sets of parents andsee if they are part of mutually exlusive paths in the graph. The algorithm forthis funtion is shown in algorithm 3.



A.2 CompareConds 73Algorithm 1 GenerateFTCPG(G, T ,k)1: G← ∅2: ReadyList← ∅3: subscript [number of proesses℄4: set all susbcript to 15: Pi ← SourceNode(G)6: subscript← subscripts[i] + +7: Insert(Pi,1, G)8: tmp← Pi,subscript9: Pi,1.possibleFaults← k10: Pi,1.conditions← ∅11: tmp← Pi,112: for j ← Pi,1.possibleFauls downto 0 do13: subscript← subscripts[i] + +14: Insert(Pi,subscript, G)15: Pi,subscript.possibleFaults← j16: Pi,subscript.conditions← tmp.conditions + tmp.fail17: Connet(tmp, Pi,subscript)18: tmp← Pi,subscript19: end for20: Pi,1.condition+ = Pi,1.success21: newProcessess← ∅22: Insert(Pi.children, readyList)23: while ReadyList is not empty do24: Pi ← ExtratFirst(ReadyList)25: V C ← FindValidCombinations(Pi, G, k)26: for all vc ∈ V C do27: subscript← subscripts[i] + +28: Insert(Pi,subscript, G)29: Insert(Pi,subscript, newProcesses)30: Pi,subscript.possibleFaults← k − vc.faults31: Pi,subscript.conditions← vc.conditions32: Connet(vc.processes, Pi,subscript)33: end for34: for all Pi,k ∈ newProcesses do35: tmp← Pi,k36: for j ← tmp.possibleFauls downto 0 do37: subscript← subscripts[i] + +38: Insert(Pi,subscript, G)39: Pi,subscript.possibleFaults← tmp.possibleFaults40: Pi,subscript.conditions← tmp.conditions + tmp.fail41: Connet(tmp, Pi,subscript)42: tmp← Pi,subscript43: end for44: Pi,k.condition+ = Pi,k.success45: end for46: Insert(Pi.children, readyList)47: end while



74 Derivation of FT-CPGAlgorithm 2 FindValidCombinations(Pi, G, k)1: parents← ∅2: index← 13: for all Pj ∈ Pi.parents do4: parents[index + +]← all instanes of Pj ∈ G5: end for6: candidates← CompareConds(parents)7: for all candidate ∈ candidates do8: if candidate.errors > k then9: Remove(candidate, candidates) {Ensure that only proess with lessthan k faults are added}10: end if11: end for12: return candidatesAlgorithm 3 CompareConds(parents)1: V C ← ∅2: if parents.size = 1 then3: V C.process+ = parents {There is only one set of proesses in the set}4: else5: head← ExtratFirst(parents) {Extrat �rst set}6: rest← CompareConds(parents) {And reurse}7: for all h ∈ head do8: for all r ∈ rest do9: valid← true10: for all a ∈ h.conditions do11: for all b ∈ r.conditions do12: if a.process = b.process and a.value! = b.value then13: valid← false {The proesses are dependent on di�erent on-ditions, and do hene not form a valid ombination}14: end if15: end for16: end for17: if valid = true then18: Insert(h + r, V C) {Merge the onditions and proess of h and rinto V C}19: end if20: end for21: end for22: end if23: return VC



A.3 Repliation 75A.3 RepliationAlso repliation an be aptured by a FT-CPG. This is illustrated in �gure2.6() where P1 is repliated. Eah vertex in the internal graph representationhas a number whih desribes the amount of replias it has. As all replias mustneessarily have the same in and outbound edges, only a single vertex is used tomodel repliation internally. When outputting the graph, this vertex is simplyoutput the same amount of times as it has replias (with unique subsripts).In this way repliation an be handled simply and elegantly using the samealgorithm as for re-exeution.
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