Flow-Based Biochips: Fault-Tolerant Design and Error Recovery

Paul Pop Technical University of Denmark

Physical design: VLSI vs mVLSI

Problem formulation

Given

- A biochemical application (and a fault model)
- Characterized component model library (including fault-tolerant components)

Synthesize

- A biochip architecture
- Deciding on:
 - Component allocation
 - Schematic design and (and a fault-tolerant) *netlist* generation
 - Physical synthesis
 - Placement of components
 - Routing of microfluidic channels
- Such that
 - the application completion time is minimized
 - Satisfying the fault-tolerance, dependency and resource constraints

Fault-tolerant components

Allocation and schematic design

How many components, and how to interconnect them?

Mixer	3
Heater	2
Filter	1

- Input/ output ports
- Storage units
- Fluidic constraints

Design for fault-tolerance: motivation example

Architecture without fault-tolerance

Application

Fault model

The designer gives the fault-model as an input: a set of possible faults; any combination may happen

Name	Vertex $(N \in \mathcal{N})$	Valve affected (w)	Type (t)
VF_1	$Mixer_1$	v_5	Open
VF_2	S_6	v_3	Open
VF_3	S_5	v_2	Open
VF_4	S_3	v_3	Open

Table: The set of valve faults \mathcal{VF}

Table: The set of channel faults \mathcal{CF}

Name	Component $(M \in \mathcal{N}, \notin \mathcal{S})$ / Connection $D_{i,j} \in \mathcal{D}$	Type (t)
CF_1	$Heater_1$	Block
CF_2	$Filter_1$	Block
CF_3	$S_2 \rightarrow \text{Storage-8}$	Block
CF_4	$S_1 \to Mixer_1$	Block

Straightforward vs. optimized redundancy

 Straightforward solution: redundancy not optimized; architecture cost: 129

 Optimized solution the introduction of redundancy is optimized; architecture cost: 96

Strategy and evaluation

Metaheuristic optimization:

Greedily Randomized Adaptive Search Procedure (GRASP)

- Searches the solutions space to minimize the objective function
- Fault scenario generation:
 - subset of all the possible scenarios, because their number is huge
 - Each iteration visits a possible solution
 - Applies a fault scenario: injects the faults in the scenario
 - Determines connectivity: can I still move fluids around?
 - Finish time of the application: will the application finish correctly?

Evaluation: can we obtain a good yield?

$\mathcal{A}_{initial}$		TC	\mathcal{A}_{result}						FT0 7	
$ \mathcal{N} $	$ \mathcal{D} $	\mathbf{Cost}		$ \mathcal{N} $	FT - $ \mathcal{N} $	$ \mathcal{D} $	Cost			F I 70
15	17	5760084	25	16	2	20	98	105	16	86.78
15	17	10540084	50	15	3	19	99	117	4	96.69
15	17	18580084	85	16	2	21	101	121	0	100
15	17	27610084	121	15	3	19	99	121	0	100