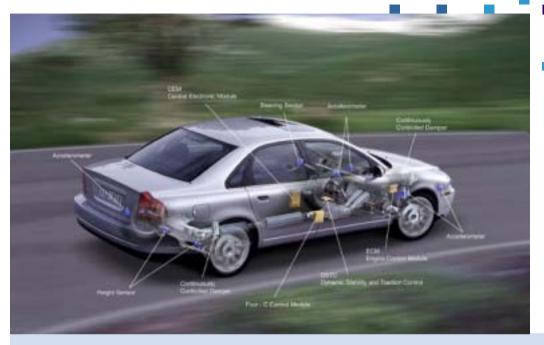
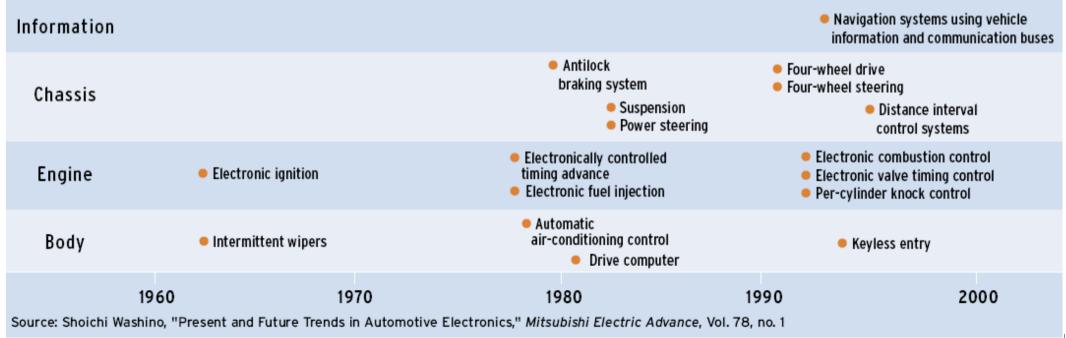
Embedded Systems Design: Optimization Challenges

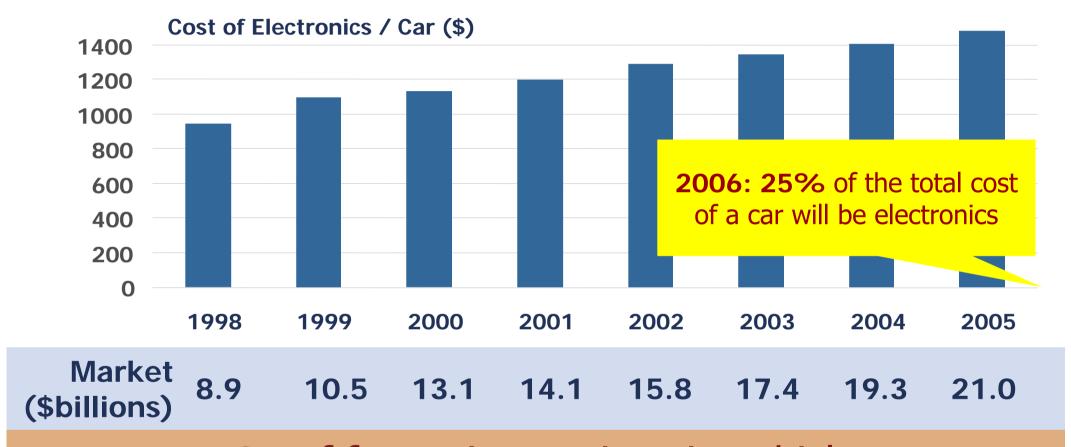
Paul Pop

Embedded Systems Lab (ESLAB) Linköping University, Sweden

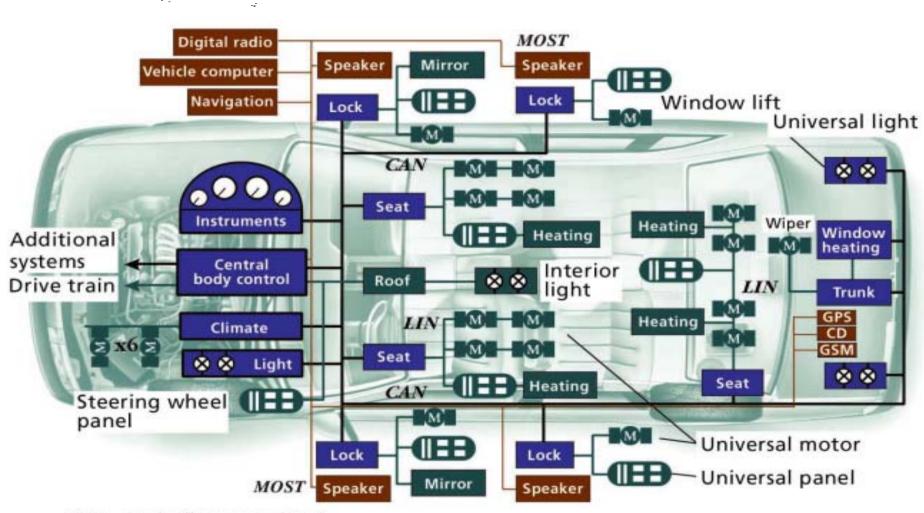


- → Embedded systems
 - Example area: automotive electronics
- Embedded systems design
- Optimization problems
 - Fault-tolerant mapping and scheduling
 - Voltage scaling
 - Communication delay analysis
- Assessment and message


Embedded Systems


Example Area: Automotive Electronics

- What is "automotive electronics"?
 - Vehicle functions implemented with electronics
 - Body electronics
 - System electronics: chassis, engine
 - Information/entertainment



Automotive Electronics Market Size

90% of future innovations in vehicles: based on electronic embedded systems

Automotive Electronics Platform Example

CAN Controller area network
GPS Global Positioning System

GSM Global System for Mobile Communications

LIN Local interconnect network

MOST Media-oriented systems transport

- Embedded systems
 - Example area: automotive electronics
- → Embedded systems design
- Optimization problems
 - Fault-tolerant mapping and scheduling
 - Voltage scaling
 - Communication delay analysis
- Assessment and message

Embedded Systems Design

- Growing complexity
- •Constraints
 - Time, energy, size
 - Cost, time-to-market
 - Safety, reliability

System platform

Estimation: exec. time

- Heterogeneous
 - Hardware components
 - Comm. protocols

System model

System-level design tasks

- Mapping and scheduling
- Voltage scaling

Model of system implementation

Software Hardware synthesis

Analysis

Communication delay analysis

Embedded System Design, Cont.

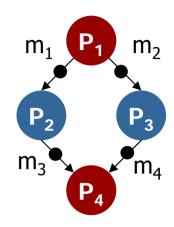
- Goal: automated design optimization techniques
 - Successfully manage the complexity of embedded systems
 - Meet the constraints imposed by the application domain
 - Shorten the time-to-market
 - Reduce development and manufacturing costs

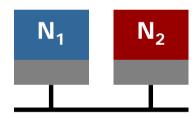
Optimization: the key to successful design

- Embedded systems
 - Example area: automotive electronics
- Embedded systems design
- → Optimization problems
 - Fault-tolerant mapping and scheduling
 - Voltage scaling
 - Communication delay analysis
- Assessment and message

Optimization Problems

- Mapping and scheduling
 - 1.1 Mapping to minimize communication
 - 1.2 Mapping and scheduling
 - 1.3 Fault-tolerant mapping and scheduling
- 2. Voltage scaling
 - 2.1 Continuous voltage scaling
 - 2.2 Discrete voltage scaling
- 3. Communication delay analysis

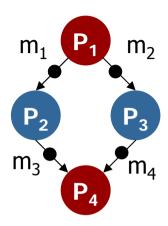

Problem #1.1: Mapping


→ Given

- Application: set of interacting processes
- Platform: set of nodes

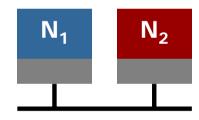
← Determine

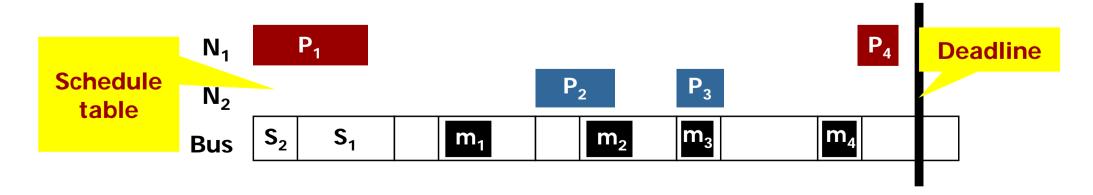
- Mapping of processes to nodes
 - Such that the communication is minimized


* Assessment

Optimal solutions even for large problem sizes

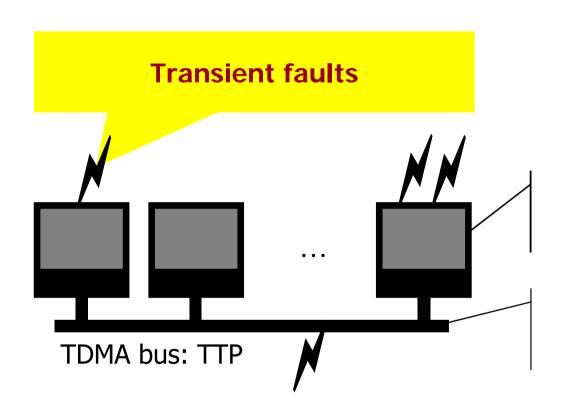
Problem #1.2: Mapping and Scheduling


→ Given


- Application: set of interacting processes
- Platform: set of nodes
- Timing constraints: deadlines

← Determine

- Mapping of processes and messages
- Schedule tables for processes and messages
 - Such that the timing constraints are satisfied

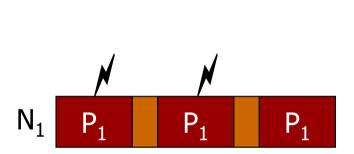


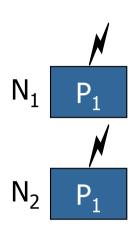
Problem #1.2: *Assessment

- Scheduling is NP-complete even in simpler context
 - D. Ullman, "NP-Complete Scheduling Problems", Journal of Computer Systems Science, volume 10, pages 384–393, 1975.
- ILP formulation
 - Can't obtain optimal solutions for large problem sizes
- Alternative: divide the problem
 - Scheduling
 - Heuristic: List scheduling
 - Mapping
 - Simulated annealing
 - Tabu-search
 - Problem-specific greedy algorithms

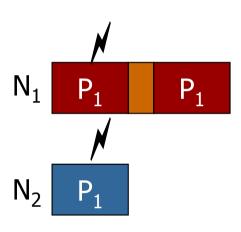
Fault-Tolerant Mapping and Scheduling

Processes:


Re-execution and replication


Messages:

Fault-tolerant protocol



Fault-Tolerance Techniques

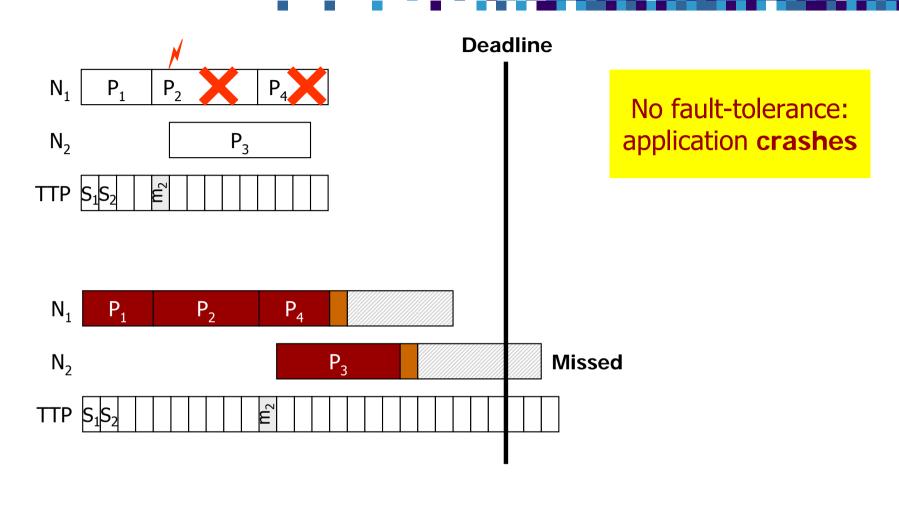
$$N_3$$
 P_1

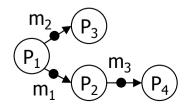
Re-execution

Replication

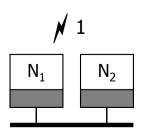
Re-executed replicas

Problem #1.3: Formulation

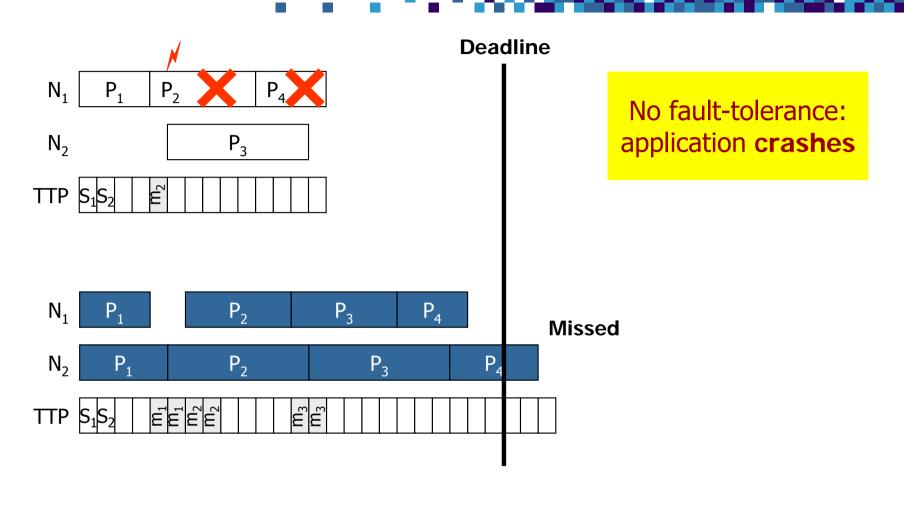

→ Given

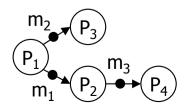

- Application: set of interacting processes
- Platform: set of nodes
- Timing constraints: deadlines
- Fault model: number of transient faults in the system period

← Determine

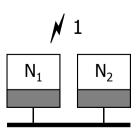

- Mapping of processes and messages
- Schedule tables for processes and messages
- Fault-tolerance policy assignment
 - Such that the timing constraints are satisfied

Fault-Tolerance Policy Assignment

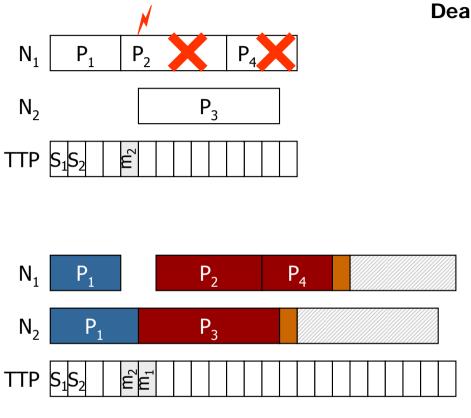




 $\begin{array}{ccc} & N_1 & N_2 \\ P_1 & 40 & 50 \\ P_2 & 60 & 80 \\ P_3 & 60 & 80 \\ P_4 & 40 & 50 \end{array}$

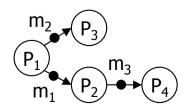


Fault-Tolerance Policy Assignment

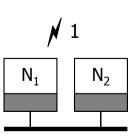


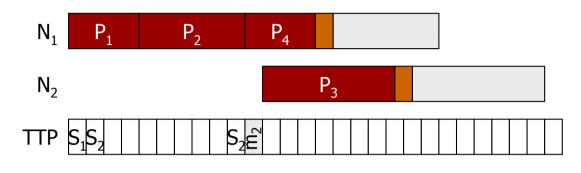
N₁ N₂ P₁ 40 50 P₂ 60 80 P₃ 60 80 P₄ 40 50

Fault-Tolerance Policy Assignment



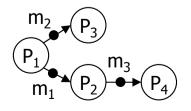
Deadline

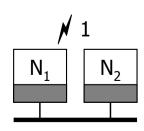

No fault-tolerance: application crashes

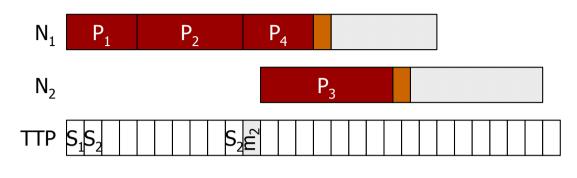

Met

Optimization of fault-tolerance policy assignment

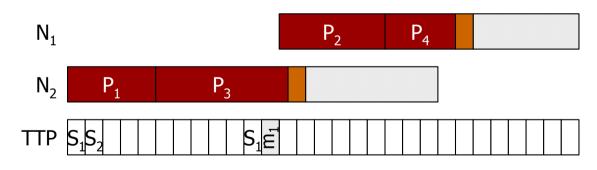
$$\begin{array}{ccc} & N_1 & N_2 \\ P_1 & 40 & 50 \\ P_2 & 60 & 80 \\ P_3 & 60 & 80 \\ P_4 & 40 & 50 \end{array}$$



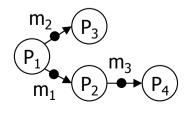

	P_1	P ₂	P_3	P ₄
Tabu	1	2	0	0
Wait	1	0	1	1

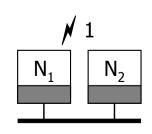

Current solution

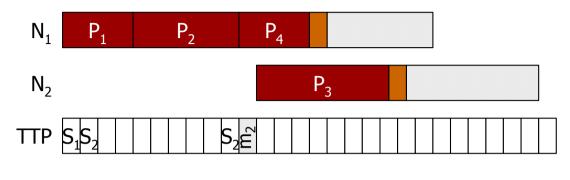
 $\begin{array}{c} N_1 & N_2 \\ P_1 & 40 50 \\ P_2^1 & 60 75 \\ P_3^2 & 60 75 \\ P_4^3 & 40 50 \end{array}$



	P_1	P ₂	P_3	P ₄
Tabu	1	2	0	0
Wait	1	0	1	1

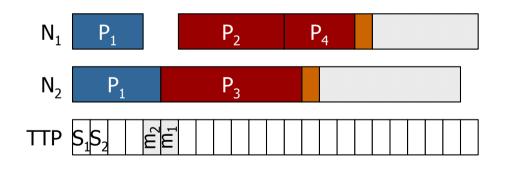

Current solution



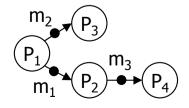

	P_1	P_2	P_3	P_4
Tabu	1	2	0	0
Wait	1	0	1	1

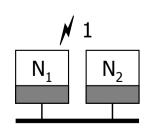
Tabu move & worse than best-so-far

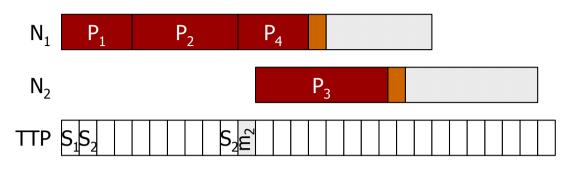
$$\begin{array}{c} N_1 & N_2 \\ P_1 & 40 50 \\ P_2^1 & 60 75 \\ P_3^2 & 60 75 \\ P_4^3 & 40 50 \end{array}$$



	P_1	P ₂	P_3	P ₄
Tabu	1	2	0	0
Wait	1	0	1	1

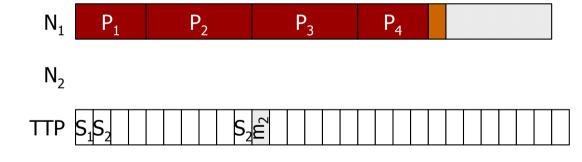

Current solution



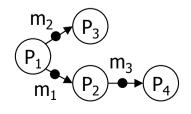

	P_1	P_2	P_3	P ₄
Tabu	2	1	0	0
Wait	0	0	2	1

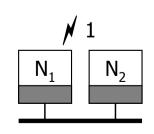
Tabu move & **better** than best-so-far

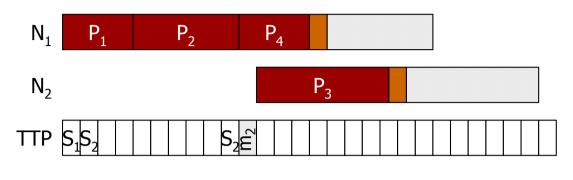
N₁ N₂ P₁ 40 50 P₂ 60 75 P₃ 60 75 P₄ 40 50



	P_1	P ₂	P_3	P ₄
Tabu	1	2	0	0
Wait	1	0	1	1

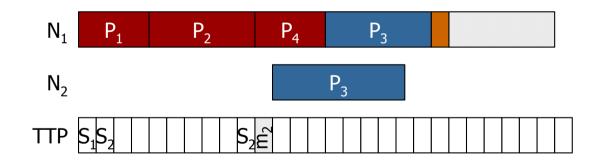

Current solution



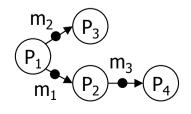

	P_1	P_2	P_3	P_4
Tabu	1	2	0	0
Wait	1	0	1	1

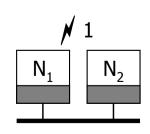
Non-tabu & worse than best-so-far

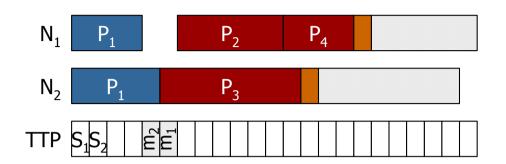
$$\begin{array}{ccc} & N_1 & N_2 \\ P_1 & 40 \, 50 \\ P_2^1 & 60 \, 75 \\ P_3^3 & 60 \, 75 \\ P_4^3 & 40 \, 50 \end{array}$$



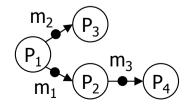
	P_1	P ₂	P_3	P ₄
Tabu	1	2	0	0
Wait	1	0	1	1

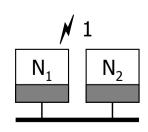

Current solution




	P_1	P_2	P_3	P_4
Tabu	1	2	0	0
Wait	1	0	1	1

Non-tabu & worse than best-so-far


$$\begin{array}{ccc} & N_1 & N_2 \\ P_1 & 40\,50 \\ P_2^1 & 60\,75 \\ P_2^3 & 60\,75 \\ P_4^3 & 40\,50 \end{array}$$

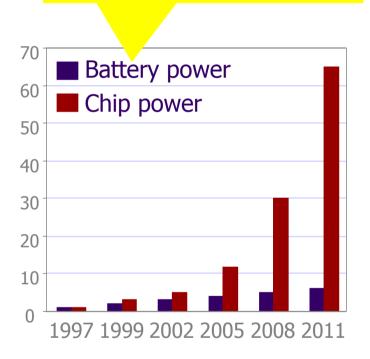


Tabu		1	0	0	Current solution
Wait	Ü	U	2	1	

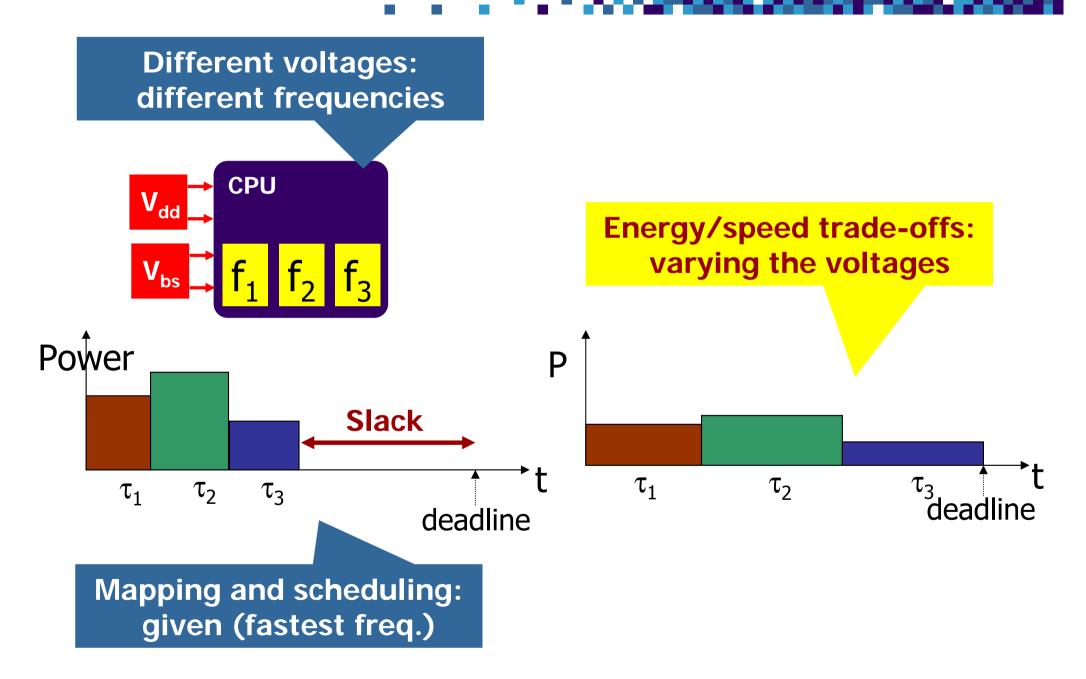
 $\begin{array}{ccc} & N_1 & N_2 \\ P_1 & 40 \, 50 \\ P_2^1 & 60 \, 75 \\ P_3^3 & 60 \, 75 \\ P_4^3 & 40 \, 50 \end{array}$

Problem #2: Voltage Scaling

•GSM Phone:

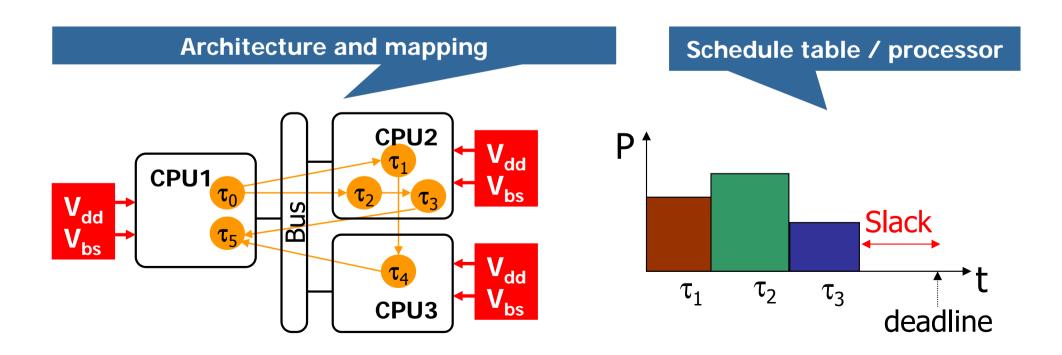

- Search
- Radio link control
- Talking
- MP3 Player

•Digital Camera:


- Take photo
- Restore photo

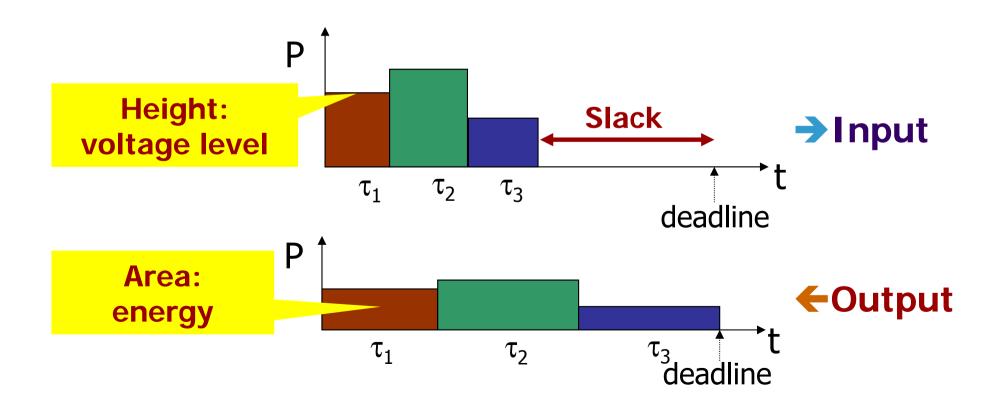
Timing constraints

Power constraints


Problem #2: Voltage Scaling

Problem #2.1: Continuous Voltage Scaling

→ Given


- Application: set of interacting processes
- Platform: set of nodes, each having
 supply voltage (V_{dd}) and body bias voltage (V_{bs}) inputs
- Mapping and schedule table (including timing constraints)

Problem #2.1: Continuous Voltage Scaling

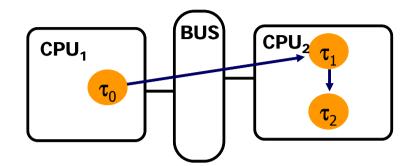
← Determine

- Voltage levels V_{dd} and V_{bs} for each process
 - Such that system energy is minimized and
 - Deadlines are satisfied

Problem #2.1: Continuous Voltage Scaling

← Determine

- Voltage levels V_{dd} and V_{bs} for each process
 - Such that system energy is minimized and
 - Deadlines are satisfied


* Assessment

- Convex nonlinear problem
 - Polynomial time solvable with an arbitrary good precision
 - A. Andrei, "Overhead-Conscious Voltage Selection for Dynamic and Leakage Energy Reduction of Time-Constrained Systems", technical report, Linköping University, 2004

Problem #2.1: Formulation

Minimize energy

•
$$E[\tau_0] + E[\tau_1] + E[\tau_2] + E_OH[\tau_1 - \tau_2]$$

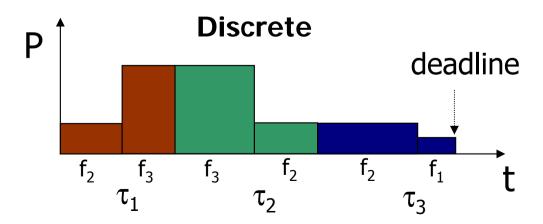
Energy due to Overhead due to processes voltage changes

Such that

$$T_{\text{start}}[\tau_0] + T_{\text{exe}}[\tau_0] \leq T_{\text{start}}[\tau_1]$$

$$T_{\text{start}}[\tau_1] + T_{\text{exe}}[\tau_1] + T_{\text{oh}}[\tau_1 - \tau_2] \leq T_{\text{start}}[\tau_2]$$

$$Precedence relationships$$


$$T_{\text{start}}[\tau_2] + T_{\text{exe}}[\tau_2] \leq DL[\tau_2]$$
Deadlines

Problem #2.2: Discrete Voltage Scaling

- Problem formulation
 - → Given discrete execution frequencies

 Processors can operate using a frequency from a fixed discrete set

 Changing the frequency incurs a delay and an energy penalty
 - ← Determine the **set of frequencies** for each task
 - Such that system energy is minimized and
 - Deadlines are satisfied

Problem #2.2: Example

→ Given

- 1 processor: f∈ {50, 100, 150} MHz
- 3 processes
 - τ_1 : P={10, 20, 30} mW, dl=1ms, NC=100 cycles
 - τ_2 . P={12, 22, 32} mW, dl=1.5ms, NC=100 cycles
 - τ_3 . P={15, 25, 35} mW, dl=2ms, NC=100 cycles
- Schedule: execution order is τ_1 , τ_2 , τ_3

← Determine

• For each process, number of clock cycles to be executed at each frequency

$$(c_1^1, c_1^2, c_1^3), (c_2^1, c_2^2, c_2^3), (c_3^1, c_3^2, c_3^3)$$

such that the energy is minimized

Problem #2.2: Example, Cont.

*Assessment:

- Strongly NP-hard problem
 - The frequencies are now a set of integers; identical to:
 - P. De, "Complexity of the Discrete Time-Cost Tradeoff Problem for Project Networks", Operations Research, 45(2):302–306, March 1997.
- MILP formulation for the optimal solution

$$c_{i}^{1} + c_{i}^{2} + c_{i}^{3} = NC_{i}$$

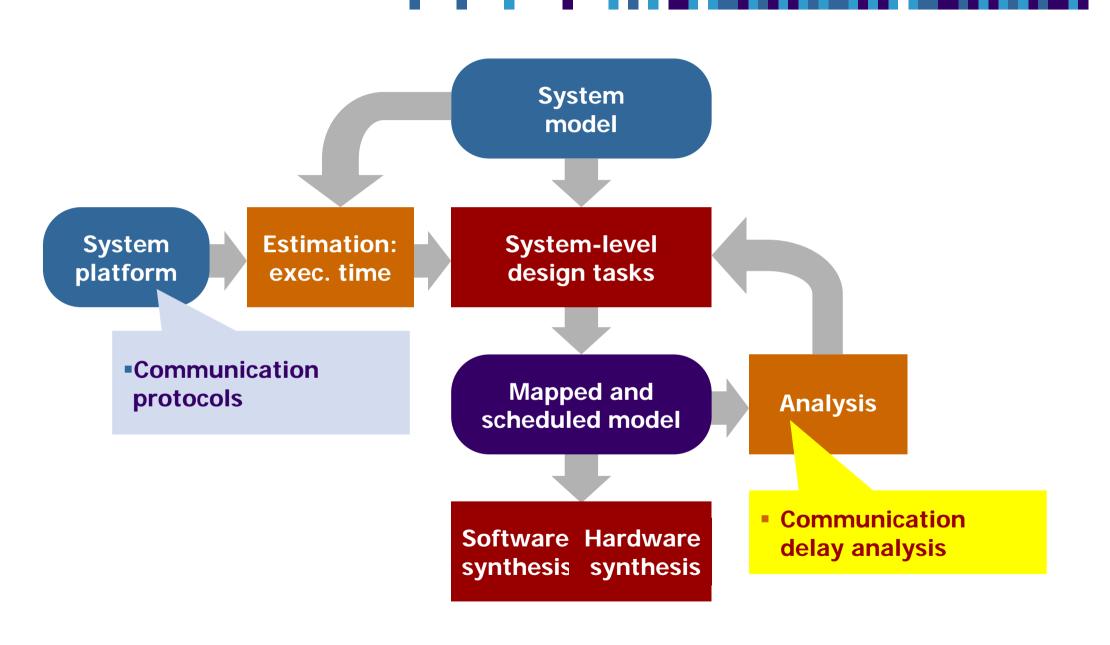
$$\frac{c_{i}^{1}}{f^{1}} + \frac{c_{i}^{2}}{f^{2}} + \frac{c_{i}^{3}}{f^{3}} = t_{i}$$

Task execution time

given number of cycles

Each task has to execute the

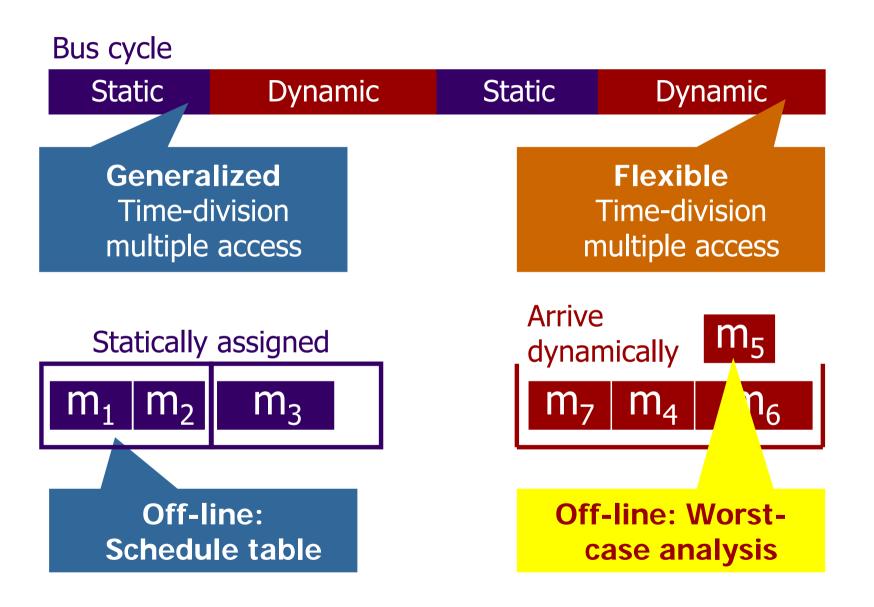
$$start_i - t_i : t_{i+1}$$


$$start_i + t_i : dl_i$$

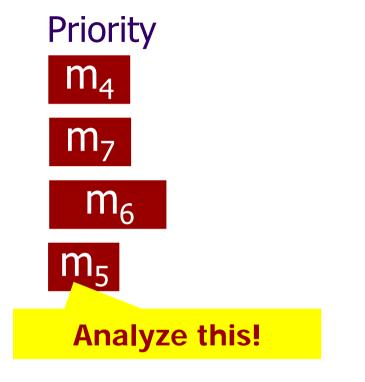
$$\sum_{i} \frac{c_i^1}{f^1} \cdot P_i^1 + \frac{c_i^2}{f^2} \cdot P_i^2 + \frac{c_i^3}{f^3} \cdot P_i^3 \quad \text{Minimize energy}$$

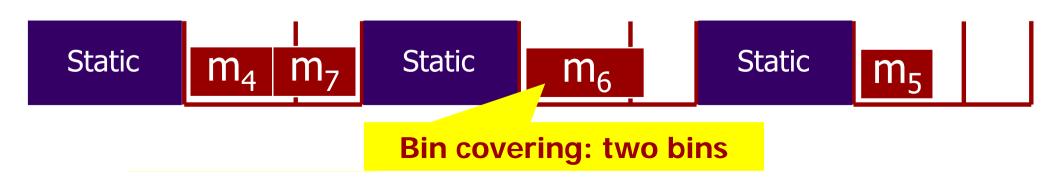
Precedence constraints

Deadline constraints


Embedded Systems Design

Problem #3: FlexRay Analysis


- FlexRay communication protocol
 - Becoming de-facto standard in automotive electronics
 - BMW, DaimlerChrysler, General Motors, Volkswagen, Bosch, Motorola, Philips
 - Deterministic data transmission, fault-tolerant, high data-rate
- Problem
 - → Given
 - Application: set of interacting processes
 - Platform: set of nodes connected by FlexRay
 - Implementation: Mapping and scheduling
 - **←** Determine
 - Worst-case communication delays for messages


Problem #3: FlexRay Analysis, Cont.

Problem #3: Formulation and Example

- → Given
 - FlexRay bus
 - Length of the static phase
 - Length of the dynamic phase
 - Dynamically arriving messages
 - Priorities
- Determine for each message
 - Worst-case communication delay

Problem #3: *Assessment

- "Classic" bin covering problem
 - → Given
 - Set of bins of fixed integer size
 - Set of items of integer size
 - **←** Determine
 - Maximum number of bins that can be filled with the items
 - * Assessment
 - Asymptotic fully polynomial time approximation
- FlexRay dynamic phase analysis ≠ "classic" bin covering
 - Bins have an upper limit: size of the dynamic phase
 - Assessment
 - Approximation algorithm does not exist
 - MILP formulation feasible up to 60 messages

Wanted: better solution

- Embedded systems
 - Example area: automotive electronics
- Embedded systems design
- Optimization problems
 - Fault-tolerant mapping and scheduling
 - Voltage scaling
 - Communication delay analysis
- → Assessment and message

Optimization

Key to successful embedded systems design

Challenges

- Classify the problems
- Divide the problem into sub-problems
- Formulate the problems
- Solve the problems optimally
- Fast and accurate heuristics for specific problems