A Real-Time Systems, 26, 297-325, 2004
‘F © 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

Schedulability-Driven Communication Synthesis for
Time Triggered Embedded Systems

PAUL POP

PETRU ELES

ZEBO PENG

Department of Computer and Information Science, Linkoping University, Sweden

Abstract. We present an approach to static priority preemptive process scheduling for the synthesis of hard real-
time distributed embedded systems where communication plays an important role. The communication model is
based on a time-triggered protocol. We have developed an analysis for the communication delays with four
different message scheduling policies over a time-triggered communication channel. Optimization strategies for
the synthesis of communication are developed, and the four approaches to message scheduling are compared
using extensive experiments.

Keywords: hard real-time systems, distributed embedded systems, time-triggered protocol, schedulability
analysis, bus access optimization

1. Introduction

Depending on the particular application, an embedded system has certain requirements on
performance, cost, dependability, size, etc. For hard real-time applications the timing
requirements are extremely important: failing to meet a deadline can potentially lead to a
catastrophic event. Thus, in order to function correctly, an embedded system
implementing such an application has to meet its deadlines. One of the typical
application areas for such systems is that of safety-critical automotive applications, for
example, drive-by-wire, brake-by-wire (X-by-Wire Consortium, 1998).

Due to the complexity of embedded systems, hardware/software co-synthesis
environments are developed to assist the designer in finding the most cost effective
solution that, at the same time, meets the design requirements (Yen and Wolf, 1998).

In this paper we concentrate on the schedulability analysis and communication
synthesis of embedded hard real-time systems which are implemented on distributed
architectures. Process scheduling is based on a static priority preemptive approach while
the bus communication is statically scheduled.

Preemptive scheduling of independent processes with static priorities running on
single-processor architectures has its roots in the work of Liu and Layland (1973). The
approach has been later extended to accommodate more general computational models

298 POP ET AL.

and has also been applied to distributed systems (Tindell and Clark, 1994). The reader is
referred to Audsley et al. (1995), Balarin et al. (1998) and Stankovic and Ramamritham
(1993) for surveys on this topic. In Lee et al. (1999) an earlier deadline first strategy is
used for non-preemptive scheduling of processes with possible data dependencies.
Preemptive and non-preemptive static scheduling are combined in the cosynthesis
environment described in Dave and Jha (1998) and Dave et al. (1999). In many of the
previous scheduling approaches researchers have assumed that processes are scheduled
independently. However, this is not the case in reality, where process sets can exhibit
both data and control dependencies. Moreover, knowledge about these dependencies can
be used in order to improve the accuracy of schedulability analyses and the quality of
produced schedules. One way of dealing with data dependencies between processes with
static priority based scheduling has been indirectly addressed by the extensions proposed
for the schedulability analysis of distributed systems through the use of the release jitter
(Tindell and Clark, 1994). Release jitter is the worst case delay between the arrival of a
process and its release (when it is placed in the run-queue for the processor) and can
include the communication delay due to the transmission of a message on the
communication channel.

In Tindell (1994) and Yen and Wolf (1998) time offset relationships and phases,
respectively, are used in order to model data dependencies. Offset and phase are similar
concepts that express the existence of a fixed interval in time between the arrivals of sets
of processes. The authors show that by introducing such concepts into the computational
model, the pessimism of the analysis is significantly reduced when bounding the time
behavior of the system. The concept of dynamic offsets has been later introduced in
(Palencia and Gonzalez Harbour, 1998) and used to model data dependencies (Palencia
and Gonzalez Harbour, 1999).

Currently, more and more real-time systems are used in physically distributed
environments and have to be implemented on distributed architectures in order to meet
reliability, functional, and performance constraints. However, researchers have often
ignored or very much simplified aspects concerning the communication infrastructure.
One typical approach is to consider communication processes as processes with a given
execution time (depending on the amount of information exchanged) and to schedule
them as any other process, without considering issues like communication protocol, bus
arbitration, packaging of messages, clock synchronization, etc. These aspects are,
however, essential in the context of safety-critical distributed real-time applications and
one of our objectives is to develop a strategy which takes them into consideration for
process scheduling. Many efforts dedicated to communication synthesis have
concentrated on the synthesis support for the communication infrastructure but without
considering hard real-time constraints and system level scheduling aspects (Chou and
Borriello, 1995; Daveau et al.,, 1995; Narayan and Gajski, 1994). Lower level
communication synthesis aspects under timing constraints have been addressed in
(Ortega and Borriello, 1998; Knudsen and Madsen, 1999). We have to mention here
some results obtained in extending real-time schedulability analysis so that network
communication aspects can be handled. In Tindell et al. (1995), for example, the CAN
protocol is investigated while the work reported in Ermedahl et al. (1997) considers
systems based on the ATM protocol. Analysis for a simple time-division multiple access

SCHEDULABILITY-DRIVEN COMMUNICATION SYNTHESIS 299

(TDMA) protocol is provided in Tindell and Clark (1994) that integrates processor and
communication schedulability and provides a ‘‘holistic’” schedulability analysis in the
context of distributed real-time systems. The problem of how to allocate priorities to a
set of distributed tasks is discussed in Garcia and Harbour (1995). Their priority
assignment heuristic is based on the schedulability analysis from Tindell and Clark
(1994).

In this paper we consider the time-triggered protocol (TTP) (Kopetz and Griinsteidl,
1994) as the communication infrastructure for a distributed real-time system. However,
the research presented is also valid for any other TDMA-based bus protocol that
schedules the messages statically based on a schedule table like, for example, the
SAFEbus (Hoyme and Driscoll, 1992) protocol used in the avionics industry. (Rushby,
2001) provides a comparison of bus architectures for safety-critical embedded systems,
concluding that TTP ‘‘is unique in being used for both automobile applications, where
volume manufacture leads to very low prices, and aircraft, where a mature tradition of
design and -certification for flight-critical electronics provides strong scrutiny of
arguments for safety.”’

In this paper, we consider that processes are scheduled according to a static priority
preemptive policy. TTP has been classically associated with non-preemptive static
scheduling of processes, mainly because of fault tolerance reasons (Kopetz, 1997). In
Eles et al. (2000) and Pop et al. (1999), we have addressed the issue of non-preemptive
static process scheduling and communication synthesis using TTP. However, considering
preemptive priority based scheduling at the process level, with time triggered static
scheduling at the communication level, can be the right solution under certain
circumstances (Lonn and Axelsson, 1999). A communication protocol like TTP provides
a global time base, improves fault-tolerance and predictability. At the same time, certain
particularities of the application or of the underlying realtime operating system can
impose a priority based scheduling policy at the process level.

The contribution of this paper is threefold. First we develop a schedulability analysis
for distributed processes with preemptive priority based scheduling considering a TTP-
based communication infrastructure. As our second contribution, we have proposed four
different approaches to message scheduling using static and dynamic message allocation.
Finally, the third contribution is showing how the parameters of the communication
protocol can be optimized in order to fit the communication particularities of a certain
application. Thus, based on our approach, it is not only possible to determine if a certain
task set implemented on a TTP-based distributed architecture is schedulable, but it is also
possible to select a particular message passing strategy and also to optimize certain
parameters of the communication protocol. By adapting the communication infrastructure
to certain particularities of the task set we increase the likelihood of producing an
implementation which satisfies all time constraints.

The paper is divided into seven sections. Section 2 presents the architectures
considered for system implementation. The computational model assumed and
formulation of the problem are presented in Section 3, and Section 4 presents the
schedulability analysis for each of the four approaches considered for message
scheduling. The optimization strategy is presented in Section 5, and the four approaches
are evaluated in Section 6. The final section presents our conclusions.

300 POP ET AL.

2. System Architecture
2.1. Hardware Architecture

We consider architectures consisting of nodes connected by a broadcast communication
channel. Every node consists of a TTP controller, a CPU, a RAM, a ROM and an I/O
interface to sensors and actuators (Figure 1). A node can also have an application specific
integrated circuit (ASIC) in order to accelerate parts of its functionality.

Communication between nodes is based on the TTP (Kopetz and Griinsteidl, 1994).
TTP was designed for distributed real-time applications that require predictability and
reliability (e.g., drive-by-wire). It integrates all the services necessary for fault-tolerant
real-time systems.

The communication channel is a broadcast channel, so a message sent by a node is
received by all the other nodes. The bus access scheme is time-division multiple-access
(TDMA) (Figure 2). Each node N; can transmit only during a predetermined time
interval, the so-called TDMA slot S;. In such a slot a node can send several messages
packaged in a frame. A sequence of slots corresponding to all the nodes in the
architecture is called a TDMA round. A node can have only one slot in a TDMA round.
Several TDMA rounds can be combined together in a cycle that is repeated periodically.

SC nsors/actuators
I/O interface

RAM
CPU ROM
ASIC
TTP controller

Node \
I I 5.

A

Figure 1. System architecture.

TDMA round : . © Frames
- Cycle of two rounds

Ak
Y

Figure 2. Bus access scheme.

SCHEDULABILITY-DRIVEN COMMUNICATION SYNTHESIS 301

My v

TTP controller

1) Si

S
[T 11

Round 2

Figure 3. Message passing mechanism.

The sequence and length of the slots are the same for all TDMA rounds. However, the
length and contents of the frames may differ.

Every node has a TTP controller that implements the protocol services and runs
independently of the node’s CPU (Figure 3). Communication with the CPU is performed
through a so-called message base interface (MBI) which is usually implemented as a dual
ported RAM.

The TDMA access scheme is imposed by a so-called message descriptor list (MEDL)
that is located in every TTP controller. The MEDL basically contains: the time when a
frame has to be sent or received, the address of the frame in the MBI and the length of the
frame. MEDL serves as a schedule table for the TTP controller which has to know when
to send or receive a frame to or from the communication channel.

The TTP controller provides each CPU with a timer interrupt based on a local clock
synchronized with the local clocks of the other nodes. Clock synchronization is done by
comparing the a priori known time of arrival of a frame with the observed arrival time.
Thus, TTP provides a global time-base of known precision, without any overhead on the
communication.

2.2. Software Architecture

We have designed a software architecture which runs on the CPU in each node and which
has a real-time kernel as its main component. Each kernel has a so-called tick scheduler
that is activated periodically by the timer interrupts and decides on activation of
processes, based on their priorities. Several activities, like polling of the I/O or
diagnostics, also take place in the timer interrupt routine.

In order to run a predictable hard real-time application, the overhead of the kernel and
the worst case administrative overhead (WCAO) of every system call have to be

302 POP ET AL.

determined. Our schedulability analysis takes into account these overheads and also the
overheads due to message passing.

The message passing mechanism is illustrated in Figure 3, where we have three
processes, P, to P;. P, and P, are mapped on node N, that transmits in slot Sy, and P; is
mapped on node N, that transmits in slot S;. Message m, is transmitted between P, and
P, that are on the same node, while message m, is transmitted from P, to P; between the
two nodes.

Messages between processes located on the same processor are passed through shared
protected objects. The overhead for their communication is accounted for by the blocking
factor, using the analysis from Sha et al. (1990) for the priority ceiling protocol.

Message m, has to be sent from node N, to node N,. Thus, after m, is produced by P it
will be placed into an outgoing message queue, called Out. The access to the queue is
guarded by a priority-ceiling semaphore. A so-called transfer process (denoted by T in
Figure 3) moves the message from the Out queue into the MBI

How the message queue is organized and how the message transfer process selects the
particular messages and assembles them into a frame, depend on the particular approach
chosen for message scheduling (see Section 4). The message transfer process is activated,
at certain a priori known moments, by the tick scheduler in order to perform the message
transfer. These activation times are stored in a message handling time table (MHTT)
available to the real-time kernel in each node. Both the MEDL and the MHTT are
generated off-line as result of the schedulability analysis and optimization which will be
discussed later. The MEDL imposes the times when the TTP controller of a certain node
has to move frames from the MBI to the communication channel. The MHTT contains
the times when messages have to be transferred by the message transfer process from the
Out queue into the MBI, in order to be broadcasted by the TTP controller. As result of
this synchronization, the activation times in the MHTT are directly related to those in the
MEDL and the first table results directly form the second one.

It is easy to observe that we have the most favorable situation when, at a certain
activation, the message transfer process finds in the Out queue all the ‘‘expected’’
messages which then can be packed into the immediate following frame to be sent by the
TTP controller. However, application processes are not statically scheduled and
availability of messages in the Out queue cannot be guaranteed at fixed times. Worst-
case situations have to be considered, as will be shown in Section 4.

Let us consider Figure 3 again. There we assumed a context in which the broadcasting
of the frame containing message m, is done in the slot S, of Round 2. The TTP controller
of node N knows from its MEDL that it has to read a frame from slot S, of Round 2 and
to transfer it into its MBI. In order to synchronize with the TTP controller and to read the
frame from the MBI, the tick scheduler on node N, will activate, based on its local
MHTT, a so-called delivery process, denoted with D in Figure 3. The delivery process
takes the frame from the MBI and extracts the messages from it. For the case when a
message is split into several packets, sent over several TDMA rounds, we consider that a
message has arrived at the destination node after all its constituent packets have arrived.
When m, has arrived, the delivery process copies it to process P; which will be activated.
Activation times for the delivery process are fixed in the MHTT just as explained earlier
for the message transfer process.

SCHEDULABILITY-DRIVEN COMMUNICATION SYNTHESIS 303

The number of activations of the message transfer and delivery processes depends on
the number of frames transferred, and it is taken into account in our analysis as also is the
delay implied by the propagation on the communication bus.

3. Problem Formulation

We model an application as a set of processes. Each process P; is allocated to a certain
processor, and has a known worst case execution time C;, a period 7}, a deadline D, and a
uniquely assigned priority. We consider a preemptive execution environment, which
means that higher priority processes can interrupt the execution of lower priority
processes. A lower priority process can block a higher priority process (e.g., it is in its
critical section), and the blocking time is computed according to the priority ceiling
protocol. Processes exchange messages, and for each message m; we know its size S, . A
message is sent once in every n,, invocations of the sending process, with a period
T, = n,T; inherited from the sender process P;, and has a unique destination process.
Each process is allocated to a node of the distributed system and messages are transmitted
according to the TTP.

We are interested to synthesize the MEDL of the TTP controllers (and, as a direct
consequence, also the MHTTs) so that the process set is schedulable on an as cheap
(slow) as possible processor set.

The next section presents the schedulability analysis for each of the four approaches
considered for message scheduling, under the assumptions outlined above. In Section 5,
the response times calculated using this schedulability analysis are combined in a cost
function that measures the ‘‘degree of schedulability’’ of a given design alternative. This
‘“‘degree of schedulability’’ is then used to drive the optimization and synthesis the
MEDL and the MHTTs.

4. Schedulability Analysis

Under the assumptions presented in the previous section, Tindell and Clark (1994)
integrate processor and communication scheduling and provide a ‘‘holistic’’ schedul-
ability analysis in the context of distributed real-time systems with communication based
on a simple TDMA protocol. The validity of this analysis has been later confirmed in
Palencia et al. (1997). The analysis belongs to the class of response time analyses, where
the schedulability test is whether the worst case response time of each process is smaller
or equal than its deadline. In the case of a distributed system, this response time also
depends on the communication delay due to messages. In Tindell and Clark (1994) the
analysis for messages is done is a similar way as for processes: a message is seen as an
unpreemptable process that is ‘‘running’’ on a bus.

The basic idea in Tindell and Clark (1994) is that the release jitter of a destination
process depends on the communication delay between sending and receiving a message.
The release jitter of a process is the worst case delay between the arrival of the process
and its release (when it is placed in the run-queue for the processor). The communication

304 POP ET AL.

delay is the worst case time spent between sending a message and the message arriving at
the destination process.

Thus, for a process d(m) that receives a message m from a sender process s(m), the
release jitter is

Jd(m) = Ts(m) + @ + Tgeliver + Thick (1)

where 7, is the response time of the process sending the message, a,, (worst case arrival
time) is the worst case time needed for message m to arrive at the communication
controller of the destination node, 7., 1S the response time of the delivery process (see
Section 2.2), and T, is the jitter due to the operation of the tick scheduler. The
communication delay for a message m (also referred to as the ‘‘response time’’ of

message m) is

Ty = Gy + Tgeliver (2)

where a,, itself is the sum of the access delay Y,, and the propagation delay X,,. The
access delay is the time a message queued at the sending processor spends waiting for the
use of the communication channel. In a,, we also account for the execution time of the
message transfer process (see Section 2.2). The propagation delay is the time taken for
the message to reach the destination processor once physically sent by the corresponding
TTP controller. The analysis assumes that the period T,, of any message m is longer or
equal to the length of a TDMA round, T,, > Trpma (see Figures 2 and 4).

The pessimism of this analysis can be reduced by using the notion of offset in order to
model precedence relations between processes (Tindell, 1994). The basic idea is to
exclude certain scenarios which are impossible due to precedence constraints. By
considering dynamic offsets the tightness of the analysis can be further improved
(Palencia and Gonzalez Harbour, 1998, 1999). Similar results have been reported in Yen
and Wolf (1998). In Pop et al. (2000) we have shown how such an analysis can be
performed in the presence of not only precedence constraints but also control
dependencies between processes, where the activation of processes depends on
conditions computed by so-called ‘‘disjunction processes’’. In the present paper our
attention is concentrated on the analysis of network communication delays and on
optimization of message passing strategies. In order to keep the discussion focused we
present our analysis starting from the results in Tindell and Clark (1994). All the

”m Xm
. < > .
. ‘m, Lom'o vong,
4l | [. P | | N .
' So s So Pos S, LS
Trpma ;

»
Ls

3

T '

cycle

'y

P
»

Figure 4. Worst case arrival time for SM.

SCHEDULABILITY-DRIVEN COMMUNICATION SYNTHESIS 305

conclusions derived in this paper apply as well to the developments addressing
precedence relations proposed, for example, in Palencia and Gonzédlez Harbour (1998,
1999).

Although there are many similarities with the general TDMA protocol, the analysis in
the case of TTP is different in several aspects and also differs to a large degree depending
on the policy chosen for message scheduling.

Before going into details for each of the message scheduling approaches proposed by
us, we analyze the propagation delay and the message transfer and delivery processes, as
they do not depend on the particular message scheduling policy chosen. The propagation
delay X,, of a message m sent as part of a slot S, with the TTP protocol, is equal to the
time needed for the slot S to be transferred on the bus (this is the slot size expressed in
time units, see Figure 4). This time depends on the number of bits which can be packed
into the slot and on the features of the underlying bus.

The overhead produced by the communication activities must be accounted for not
only as part of the access delay for a message, but also through its influence on the
response time of processes running on the same processor. We consider this influence
during the schedulability analysis of processes on each processor. We assume that the
worst case computation time of the transfer process (7 in Figure 3) is known, and that it is
different for each of the four message scheduling approaches. Based on the respective
MHTT, the transfer process is activated for each frame sent. Its worst case period is
derived from the minimum time between successive frames.

The response time of the delivery process (D in Figure 3), ryepiver» 1S part of the
communication delay (Equation (2)). The influence due to the delivery process must be
also included when analyzing the response time of the processes running on the
respective processor. We consider the delivery process during the schedulability analysis
in the same way as the message transfer process.

The response times of the communication and delivery processes are calculated, as for
all other processes, using the arbitrary deadline analysis from Tindell and Clark (1994).

The four approaches we propose for scheduling of messages using TTP differ in the
way the messages are allocated to the communication channel (either statically or
dynamically) and whether they are split or not into packets for transmission. The next
subsections present the analysis for each approach as well as the degrees of liberty a
designer has, in each of the cases, for optimizing the MEDL. First, we discuss each
approach in the case when the arrival time a,, of a message m is smaller or equal with
its period T,,. Then, in Section 4.5, we present the generalization for the case
am > Tﬂl'

4.1. Static Single Message Allocation (SM)

The first approach to scheduling of messages using TTP is to statically (off-line) schedule
each of the messages into a slot of the TDMA cycle, corresponding to the node sending
the message. This means that for each message we decide off-line to allocate space in one
or more frames, space that can only be used by that particular message. In Figure 4 the
frames are denoted by rectangles. In this particular example, it has been decided to

306 POP ET AL.

allocate space for message m in slot S, of the first and third rounds. Since the messages
are dynamically produced by the processes, the exact moment a certain message is
generated cannot be predicted. Thus, it can happen that certain frames will be left empty
during execution. For example, if there is no message m in the Out queue (see Figure 3)
when the slot S; of the first round in Figure 4 starts, that frame will carry no information.
A message m produced immediately after slot S; has left, could then be carried by the
frame scheduled in the slot S of the third round.

In the SM approach, we consider that the slots can each hold a maximum of one single
message. This approach is well suited for application areas, like safety-critical
automotive electronics, where the messages are typically short and the ability to easily
diagnose the system (fewer messages in a frame are easier to observe) is critical. In the
automotive electronics area messages are typically a couple of bytes, encoding signals
like vehicle speed. However, for applications using larger messages, the SM approach
leads to overheads due to the inefficient utilization of slot space when transmitting
smaller size messages.

As each slot carries only one fixed, predetermined message, there is no interference
among messages. If a message m misses its allocated frame it has to wait for the
following slot assigned to m. The worst case access delay Y,, for a message m in this
approach is the maximum time between consecutive slots of the same node carrying the
message m. We denote this time by 6,,, illustrated in Figure 4, where we have a system
cycle of length Ty, consisting of three TDMA rounds.

In this case, the worst case arrival time g, of a message m becomes 0, + X,,.
Therefore, the main aspect influencing schedulability of the messages is the way they are
statically allocated to slots, which determines the values of 0,, - 0,,, as well as X,,, depend
on the slot sizes which in the case of SM are determined by the size of the largest
message sent from the corresponding node plus the bits for control and CRC, as imposed
by the protocol.

As mentioned before, the analysis in Tindell and Clark (1994), done for a simple
TDMA protocol, assumes that 7,, > Trpuva- In the case of static message allocation with
TTP (the SM and MM approaches), this translates to the condition T, > 6,,.

During the synthesis of the MEDL, the designer has to allocate the messages to slots in
such a way that the process set is schedulable. Since the schedulability of the process set
can be influenced by the synthesis of the MEDL only through the 0,, parameters, these
are the parameters which have to be optimized.

Let us consider the simple example depicted in Figure 5, where we have three
processes, P, P,, and P; running each on a different processor. When process P,
finishes executing it sends message m; to process P; and message m, to process P,. In
the TDMA configurations presented in Figure 5, only the slot corresponding to the CPU
running P, is important for our discussion and the other slots are represented with light
gray. With the configuration in Figure 5(a), where the message m, is allocated to the
rounds 1 and 4 and the message m, is allocated to rounds 2 and 3, process P, misses its
deadline because of the release jitter due to the message m, in round 2. However, if we
have the TDMA configuration depicted in Figure 5(b), where m, is allocated to the
rounds 2 and 4 and m, is allocated to the rounds 1 and 3, all the processes meet their
deadlines.

SCHEDULABILITY-DRIVEN COMMUNICATION SYNTHESIS 307

@ p, b ‘

lnz

[Release jitter
& Running process
| M Message

b } Process activation
— | Deadline

I 1 I]
ny

m s sy

) p, b b
e
Ps E—mm [E—mm I

| _ []

1y "y "
()
P, ‘

P,

"“.'i

n

=

A

= =
Py Em | = |

[CT | L I

my Ny iy miy

Figure 5. Optimizing the MEDL for SM and MM: (a) P, misses its deadline because of message m, scheduled
in the second and third rounds; (b) all processes meet their deadlines; m, is scheduled in the first and third
rounds and it is received by P, on time; (c) all processes meet their deadlines; the release jitter is reduced by
scheduling m; and m, in the same round.

4.2. Static Multiple Message Allocation (MM)

This second approach is an extension of the first one. In this approach we allow more than
one message to be statically assigned to a slot and all the messages transmitted in the
same slot are packaged together in a frame. As for the SM approach, there is no
interference among messages, so the worst case access delay for a message m is the
maximum time between consecutive slots of the same node carrying the message m, 0,,.
It is also assumed that 7,, > 0,,.

However, this approach offers more freedom during the synthesis of the MEDL. We
have now to decide also on how many and which messages should be put in a slot. This
allows more flexibility in optimizing the 0,, parameter. To illustrate this, let us consider
the same example depicted in Figure 5. With the MM approach, the TDMA configuration
can be arranged as depicted in Figure 5(c), where the messages m; and m, are put
together in the same slot in the rounds 1 and 2. Thus, the deadline is met and the release
jitter is further reduced compared to the case presented in Figure 5(b) where process P,
was experiencing a large release jitter.

308 POP ET AL.

4.3. Dynamic Message Allocation (DM)

The previous two approaches have statically allocated one or more messages to their
corresponding slots. This third approach considers that the messages are dynamically
allocated to frames, as they are produced.

Thus, when a message is produced by a sender process it is placed in the Out queue
(Figure 3). Messages are ordered according to their priority. At its activation, the message
transfer process takes a certain number of messages from the head of the Out queue and
constructs the frame. The number of messages accepted is decided so that their total size
does not exceed the length of the data field of the frame. This length is limited by the size
of the slot corresponding to the respective processor. Since the messages are sent
dynamically, we have to identify them in a certain way so that they are recognized when
the frame arrives at the delivery process. We consider that each message has several
identifier bits appended at the beginning of the message.

Since we dynamically package messages into frames in the order they are sorted in the
queue, the access delay to the communication channel for a message m depends on the
number of messages queued ahead of it.

The analysis in Tindell and Clark (1994) bounds the number of queued ahead packets
of messages of higher priority than message m, as in their case it is considered that a
message can be split into packets before it is transmitted on the communication channel.
We use the same analysis but we have to apply it for the number of messages instead of
packets. We have to consider that messages can be of different sizes as opposed to
packets which always are of the same size.

Therefore, the total size of higher priority messages queued ahead of a message m, in
the worst case, is:

I,= Y P;—})S/-‘ (3)

Vjehp(m) J

where S; is the size of the message m;, ry(;) is the response time of the process sending
message n;, and T; is the period of the message m;.

Further, we calculate the worst case time that a message m spends in the Out queue.
The number of TDMA rounds needed, in the worst case, for a message m placed in the
queue to be removed from the queue for transmission is

24

where S,, is the size of the message m and S, is the size of the slot transmitting m (we
assume, in the case of DM, that for any message x, S, < ;). This means that the worst
case time a message m spends in the Out queue is given by

B {Sm +1,

1, = [P]TTDMA (5)

m
s

where Trpyva 1s the time taken for a TDMA round.

SCHEDULABILITY-DRIVEN COMMUNICATION SYNTHESIS 309

Since the size of the messages is given with the application, the parameter that will be
optimized during the synthesis of the MEDL is the slot size. To illustrate how the slot size
influences schedulability, let us consider the example in Figure 6 where we have the same
setting as for the example in Figure 5. The difference is that we consider message m,;
having a higher priority than message m, and we schedule the messages dynamically as
they are produced. With the configuration in Figure 6(a) message m,; will be dynamically
scheduled first in the slot of the first round, while message m, will wait in the Out queue
until the next round comes, thus causing process P, to miss its deadline. However, if we
enlarge the slot so that it can accommodate both messages, message m, does not have to
wait in the queue and it is transmitted in the same slot as m;. Therefore, P, will meet its
deadline as presented in Figure 6(b). However, in general, increasing the length of slots

(@ p, b [[Release jitter

p ‘II | I Running process
2 I |] [|' M Message
b b } Process activation
| | | Deadline

| | | | |

ny ns nmy niy

=
P, | | |

.IH| Hf: .IH] HF:
© 7 |
1] t I
.
P [oem [=
I I
P, m | Em |
[- W[N N]
Wy Mopacker | Matnacket 2 My Mypacker 1 M2rpacken 2
@ p b= |

- L
Ps - | | l |

ny s ny ms

i

Figure 6. Optimizing the MEDL for DM and DP: (a) P, misses its deadline; there is no space in the slot of the
first round to schedule the lower priority message m,; (b) All processes meet their deadlines; the slot has been
enlarged to hold both messages; (c) P, misses its deadline; the slot is too small to hold both packets of message
my; (d) All processes meet their deadlines; the slot has been enlarged to hold four packets instead of three.

310 POP ET AL.

does not necessarily improve schedulability, as it delays the communication of messages
generated by other nodes.

4.4. Dynamic Packet Allocation (DP)

This approach is an extension of the previous one, as we allow the messages to be split
into packets before they are transmitted on the communication channel. We consider that
each slot has a size that accommodates a frame with the data field being a multiple of the
packet size. This approach is well suited for the application areas that typically have large
message sizes. By splitting messages into packets we can obtain a higher utilization of the
bus and reduce the release jitter. However, since each packet has to be identified as
belonging to a message, and messages have to be split at the sender and reconstructed at
the destination, the overhead becomes higher than in the previous approaches.

The worst case time a message m spends in the Out queue is given by the analysis in
Tindell and Clark (1994) which is based on similar assumptions as those for this
approach:

Pmt1,
Y m = ’V%-‘ TTDMA (6)
P

where p,, is the number of packets of message m, S, is the size of the slot (in number of
packets) corresponding to m, and

=3 P‘Tﬂp, ™)

Vjehp(m) J

where p; is the number of packets of a message m;.

In the previous approach (DM) the optimization parameter for the synthesis of the
MEDL was the size of the slots. With this approach we can also decide on the packet size
which becomes another optimization parameter. Consider the example in Figure 6(c)
where messages m; and m, have a size of 6 bytes each. The packet size is considered to
be 4 bytes and the slot corresponding to the messages has a size of 12 bytes (3 packets) in
the TDMA configuration. Since message m; has a higher priority than m,, it will be
dynamically scheduled first in the slot of the first round and it will need 2 packets. In the
third packet the first 4 bytes of m, are placed. Thus, the remaining 2 bytes of message m,
have to wait for the next round, causing process P, to miss its deadline. However, if we
change the packet size to 3 bytes and keep the same size of 12 bytes for the slot, we have
4 packets in the slot corresponding to the CPU running P, (Figure 6(d)). Message m, will
be dynamically scheduled first and will need 2 packets in the slot of the first round.
Hence, m, can be sent in the same round so that P, can meet its deadline.

In this particular example, with one single sender processor and the particular message
and slot sizes as given, the problem seems to be simple. This is, however, not the case in
general. For example, the packet size which fits a particular node can be unsuitable in the
context of the messages and slot size corresponding to another node. At the same time,

SCHEDULABILITY-DRIVEN COMMUNICATION SYNTHESIS 311

reducing the packets size increases the overheads due to the transfer and delivery
processes.

4.5. Arbitrary Arrival Times

The analysis presented in the previous sections is valid only in the case the arrival time
a,, of a message m is smaller or equal with its period T,,. However, in the case a,, > T,
the “‘arbitrary deadline’’ analysis from Lehoczky (1990) has to be used. Lehoczky uses
the notion of ‘‘level-i busy period’” which is the maximum time for which a processor
executes tasks of priority greater than or equal to the priority of process P;. In order to
find the worst case response time, a number of busy periods have to be examined.

The same analysis can be applied for messages. Thus, the worst case time message m
takes to arrive at the communication controller of the destination node is determined in
Tindell and Clark (1994) using the arbitrary deadline analysis (Lehoczky, 1990), and is
given by

ayn = q:%lﬁl?;m (Wm (q) +X,, (q) - qu) (8)
where Y,,(¢) = w,,(q) — ¢T,, is the access delay, X,,(g) is the propagation delay, and T,
is the period of the message. In the previous equation, ¢ is the number of busy periods
being examined, and w,,(g) is the width of the level m busy period starting at time ¢T,,.

The approach to message scheduling in Tindell and Clark (1994) is similar to the DP
approach and considers that the messages are dynamically allocated to frames as they are
produced, and that they can be split into packets before they are transmitted. Thus, the
access delay (the time a message queued at the sending processor spends waiting for the
use of the communication channel) is determined as being:

Y,la) = F" s Im(w(q)ﬂ Taowas — d, ©)
with
L= {%& (10)
vjehp(m) J

where the variables have the same meaning as in the analysis presented in the previous
section for the DP approach, and w is a function of m and ¢ and denotes the width of the
busy period.

Further, in order to determine the propagation delay X,,(¢) of a message m we have to
observe that in the case of DP the messages can be split into packets, and thus the
transmission of a message can span over several rounds. The analysis in Tindell and
Clark (1994) determines the propagation delay based on the number of packets that need
to be taken from the queue over the time w,,(¢) in order to guarantee the transmission of
the last packet of m. Thus, the propagation delay depends on the number of busy periods
q being examined.

312 POP ET AL.

However, in the other three approaches, namely DM, MM and SM, messages cannot be
split into packets and the transmission of a message is done in one single round.
Therefore, the propagation delay X,, is equal to the slot size in which message m is being
transmitted, and thus is not influenced by the number of busy periods being examined.

The access delay in the DM, MM and SM approaches is obtained through a
particularization of the analysis for DP presented above. Thus, in the case of DM, in
which messages are allocated dynamically but cannot be split into packets, we have

Y.(q) = {(q i I)Sm;— Im(W(CI))-‘ Ttpma — 4T (11)
with
L= {%} 5 (12)
Vjehp(m) J

where the number of packets p,, and the size of the slot (measured in packets) S, are
replaced with the message size S,, and slot size S, respectively.

The analysis becomes even simpler in the case of the two static approaches. Since the
allocation of messages to slots is statically performed in the SM and MM approaches
there is no interference from other (higher priority) messages but only from later
transmissions of the same message. Thus, the interference term /,, due to higher priority
messages is null, and the access delay for both SM and MM is

Ym(CI) = (C] + 1)9m - qu (13)

5. Optimization Strategy

Our problem is to analyze the schedulability of a given process set and to synthesize the
MEDL of the TTP controllers (and consequently the MHTTSs) so that the process set is
schedulable on an as cheap as possible architecture. The optimization is performed on the
parameters which have been identified for each of the four approaches to message
scheduling discussed before. In order to guide the optimization process, we need a cost
function that captures the ‘‘degree of schedulability’” for a certain MEDL
implementation. Our cost function is similar to that in Tindell et al. (1992) in the case
an application is not schedulable (f;). However, in order to distinguish between several
schedulable applications, we have introduced the second expression, f,, which measures,
for a feasible design alternative, the total difference between the response times and the
deadlines:

fi = max(0,R, —D,), iff; >0

:lM:

cost(optimization parameters) =

(14)
Hh= (Ri_Di)7 iffy =0

i=1

SCHEDULABILITY-DRIVEN COMMUNICATION SYNTHESIS 313

where n is the number of processes in the application, R; is the response time of a process
P;, and D; is the deadline of a process P;. If the process set is not schedulable, there exists
at least one R; that is greater than the deadline D;, therefore the term f| of the function
will be positive. In this case the cost function is equal to f;. However, if the process set is
schedulable, then all R; are smaller than the corresponding deadlines D;. In this case
f1 =0 and we use f, as the cost function, as it is able to differentiate between two
alternatives, both leading to a schedulable process set. For a given set of optimization
parameters leading to a schedulable process set, a smaller f, means that we have
improved the response times of the processes, so the application can be potentially
implemented on a cheaper hardware architecture (with slower processors and/or bus, but
without increasing the number of processors or buses).

The response time R; is calculated according to the arbitrary deadline analysis (Tindell
and Clark, 1994) based on the release jitter of the process (see Section 4), its worst case
execution time, the blocking time, and the interference time due to higher priority
processes. They form a set of mutually dependent equations which can be solved
iteratively. As shown in Tindell and Clark (1994), a solution can be found if the processor
utilization is less than 100%.

For a given application, we are interested to synthesize a MEDL such that the cost
function is minimized. We are also interested to evaluate in different contexts the four
approaches to message scheduling, thus offering the designer a decision support for
choosing the approach that best fits his application.

The MEDL synthesis problem belongs to the class of exponential complexity
problems, therefore we are interested to develop heuristics that are able to find accurate
results in a reasonable time. We have developed optimization algorithms corresponding
to each of the four approaches to message scheduling. A first set of algorithms presented
in Section 5.1 is based on simple and fast greedy heuristics. In Section 5.2 we introduce a
second class of heuristics which aims at finding near-optimal solutions using the
simulated annealing (SA) algorithm.

5.1. Greedy Heuristics

We have developed greedy heuristics for each of the four approaches to message
scheduling. The main idea of the heuristics is to minimize the cost function by
incrementally trying to reduce the communication delay of messages and, by this, the
release jitter of the processes.

The only way to reduce the release jitter in the SM and MM approaches is through the
optimization of the 0, parameters. This is achieved by a proper placement of messages
into slots (see Figure 5).

The OptimizeSM algorithm presented in Figure 7 starts by deciding on a size (size;)
for each of the slots. The slot sizes are set to the minimum size that can accommodate the
largest message sent by the corresponding node (lines 1-4 in Figure 7). In this approach a
slot can carry at most one message, thus slot sizes larger than this size would lead to
larger response times.

314

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
i |
18
19
20
21
22
23
24
25
26
27
28
29
30
31

OptimizeSM
-- set the slot sizes
for each node N, do
sizeg;= max(size of messages m;sent by node N))
end for
-- find the min. no. of rounds that can hold all the messages
for each node N, do
nm;= number of messages sent from N;
end for
MinRounds = max (nm;)
-- create a minimal complete MEDL
for each message m;
find roundin [1... MinRounds] that has an empty slot for m;
place m;into its slot in round
end for
for each RoundsNo in [MinRounds ... MaxRounds] do
-- insert messages in such a way that the cost is minimized
repeat
for each process P; that receives a message m; do
if D; - R, is the smallest so far then m = mp; end if
end for
for each roundin [1 ... RoundsNo] do
place minto its corresponding slot in round
calculate the CostFunction
if the CostFunction is smallest so far then
BestRound = round
end if
remove m from its slot in round
end for
place minto its slot in BestRound if one was identified
until the CostFunction is not improved
end for
end OptimizeSM

Figure 7. Greedy heuristic for SM.

POP ET AL.

Then, the algorithm has to decide on the number of rounds, thus determining the size of
the MEDL. Since the size of the MEDL is physically limited, there is a limit to the
number of rounds (e.g., 2, 4, 8, 16 depending on the particular TTP controller
implementation). However, there is a minimum number of rounds MinRounds that is
necessary for a certain application, which depends on the number of messages transmitted
(lines 5-9). For example, if the processes mapped on node N, send in total seven
messages then we have to decide on at least seven rounds in order to accommodate all of
them (in the SM approach there is at most one message per slot). Several numbers of

SCHEDULABILITY-DRIVEN COMMUNICATION SYNTHESIS 315

rounds, RoundsNo, are tried out by the algorithm starting from MinRounds up to
MaxRounds (lines 15-31).

For a given number of rounds (that determine the size of the MEDL) the initially empty
MEDL has to be populated with messages in such a way that the cost function is
minimized. In order to apply the schedulability analysis that is the basis for the cost
function, a complete MEDL has to be provided. A complete MEDL contains at least one
instance of every message that has to be transmitted between the processes on different
processors. A minimal complete MEDL is constructed from an empty MEDL by placing
one instance of every message m; into its corresponding empty slot of a round (lines 10—
14). In Figure 5(a), for example, we have a MEDL composed of four rounds. We get a
minimal complete MEDL, for example, by assigning m, and m, to the slots in rounds 3
and 4, and letting the slots in rounds 1 and 2 empty. However, such a MEDL might not
lead to a schedulable system. The ‘‘degree of schedulability’’ can be improved by
inserting instances of messages into the available places in the MEDL, thus minimizing
the 0,, parameters. For example, in Figure 5(a) by inserting another instance of the
message m; in the first round and m, in the second round leads to P, missing its deadline,
while in Figure 5(b) inserting m, into the second round and m1, into the first round leads to
a schedulable system.

Our algorithm repeatedly adds a new instance of a message to the current MEDL in the
hope that the cost function will be improved (lines 16-30). In order to decide an instance
of which message should be added to the current MEDL, a simple heuristic is used. We
identify the process P; which has the most ‘‘critical’’ situation, meaning that the
difference between its deadline and response time, D; — R;, is minimal compared with all
other processes. The message to be added to the MEDL is the message m = mp_received
by the process P; (lines 18-20). Message m will be placed into that round (BestRound)
which corresponds to the smallest value of the cost function (lines 21-28). The algorithm
stops if the cost function cannot be further improved by adding more messages to the
MEDL.

The OptimizeMM algorithm is similar to OptimizeSM. The main difference is that in
the MM approach several messages can be placed into a slot (which also decides its size),
while in the SM approach there can be at most one message per slot. Also, in the case of
MM, we have to take additional care that the slots do not exceed the maximum allowed
size for a slot.

The situation is simpler for the dynamic approaches, namely DM and DP, since we
only have to decide on the slot sizes and, in the case of DP, on the packet size. For these
two approaches, the placement of messages is dynamic and has no influence on the cost
function. The OptimizeDM algorithm (see Figure 8) starts with the first slot S; = S, of the
TDMA round and tries to find that size (BestSizeg;) which corresponds to the smallest
CostFunction (lines 4-14 in Figure 8). This slot size has to be large enough (S; >
MinSizeg;) to hold the largest message to be transmitted in this slot, and within bounds
determined by the particular TTP controller implementation (e.g., from 2 bits up to
MaxSize =32 bytes). Once the size of the first slot has been determined, the algorithm
continues in the same manner with the next slots (lines 7—12).

The OptimizeDP algorithm has also to determine the proper packet size. This is done
by trying all the possible packet sizes given the particular TTP controller. For example, it

316 POP ET AL.

OptimizeDM
01 for each node N; do
02 MinSizeg;= max(size of messages m; sent by node N
03 end for
04 -- identifies the size that minimizes the cost function
05 foreach slot 5;
06 BestSizegi= MinSizeg;
o7 for each SlotSize in [MinSizeg; ... MaxSize] do
08 calculate the CostFunction
09 if the CostFunction is best so far then
10 BestSizeg;= SlotSizeg;
11 end if
12 end for
13 sizegj= BestSizeg;
14 end for
end OptimizeDM

Figure 8. Greedy heuristic for DM.

can start from 2 bits and increment with the ‘‘smallest data unit’’ (typically 2 bits) up to
32 bytes. In the case of the OptimizeDP algorithm the slot size has to be determined as a
multiple of the packet size and within certain bounds depending on the TTP controller.

5.2. Simulated Annealing Strategy

We have also developed an optimization procedure based on a simulated annealing (SA)
strategy. The main characteristic of such a strategy is that it tries to find the global
optimum by randomly selecting a new solution from the neighbors of the current solution.
The new solution is accepted if it is an improved one. However, a worse solution can also
be accepted with a certain probability that depends on the deterioration of the cost
function and on a control parameter called temperature (Reevs, 1993).

In Figure 9 we give a short description of this algorithm. An essential component of the
algorithm is the generation of a new solution x’ starting from the current one x*” (line 5
in Figure 9). The neighbors of the current solution x"" are obtained depending on the
chosen message scheduling approach. For SM, x’ is obtained from x"*" by inserting or
removing a message in one of its corresponding slots. In the case of MM, we have to take
additional care that the slots do not exceed the maximum allowed size (which depends on
the controller implementation), as we can allocate several messages to a slot. For these
two static approaches we also decide on the number of rounds in a cycle (e.g., 2, 4, 8, 16;
limited by the size of the memory implementing the MEDL). In the case of DM, the
neighboring solution is obtained by increasing or decreasing the slot size within the
bounds allowed by the particular TTP controller implementation, while in the DP
approach we also increase or decrease the packet size.

SCHEDULABILITY-DRIVEN COMMUNICATION SYNTHESIS 317

SimulatedAnnealing
01 construct an initial TDMA round x "%
02 temperature = initial temperature T/
03 repeat

04 for i =1 to temperature length TL

05 generate randomly a neighboring solution x’ of x"%%
06 delta = CostFunction(x') - CostFunction(x"°%)

07 if delta < 0 then x"°% = x'

08 else

09 generate q=random (0, 1)

10 if g < e—derra.ftemperarure then x™"= x' end if

11 end if

12 end for

13 temperature = o * temperature

14 until stopping criterion is met
15 return solution corresponding to the best CostFunction
end SimulatedAnnealing

Figure 9. The simulated annealing strategy.

For the implementation of this algorithm, the parameters TI (initial temperature), TL
(temperature length), o (cooling ratio), and the stopping criterion have to be determined.
They define the so called cooling schedule and have a strong impact on the quality of the
solutions and the CPU time consumed. We were interested to obtain values for TI, TL and
o that will guarantee the finding of good quality solutions in a short time. In order to tune
the parameters we have first performed very long and expensive runs on selected large
examples and the best ever solution, for each example, has been considered as the near-
optimum. Based on further experiments we have determined the parameters of the SA
algorithm, for different sizes of examples, so that the optimization time is reduced as
much as possible but the near-optimal result is still produced. These parameters have then
been used for the large scale experiments presented in the following section. For example,
for the graphs with 320 nodes, TI is 300, TL is 500 and o is 0.95. The algorithm stops if
for three consecutive temperatures no new solution has been accepted.

6. Experimental Results

For evaluation of our approaches we first used sets of processes generated for
experimental purpose. We considered architectures consisting of 2, 4, 6, 8 and 10 nodes.
Forty processes were assigned to each node, resulting in sets of 80, 160, 240, 320 and 400
processes. Thirty process sets were generated for each of the five dimensions. Thus, a
total of 150 sets of processes were used for experimental evaluation. Worst case
computation times, periods, deadlines, and message lengths were assigned randomly
within certain intervals. For the communication channel we considered a transmission
speed of 256 kbps. The maximum length of the data field in a slot was 32 bytes and the

318 POP ET AL.

frequency of the TTP controller was chosen to be 20 MHz. All experiments were run on a
Sun Ultra 10 workstation.

For each of the 150 generated examples and each of the four message scheduling
approaches we have obtained the near-optimal values for the cost function (Equation
(14)) as produced by our SA-based algorithm (see Section 5). For a given example these
values might differ from one message passing approach to another, as they depend on the
optimization parameters and the schedulability analysis which are particular for each
approach. Figure 10 presents a comparison based on the average percentage deviation of
the cost function obtained for each of the four approaches, from the minimal value among
them.

The percentage deviation is calculated according to the formula:

COStapproach — COSlpeg .
COStbest

deviation =

100 (15)

The DP approach is, generally, able to achieve the highest degree of schedulability, which
in Figure 10 translates in the smallest deviation. In the case the packet size is properly
selected, by scheduling messages dynamically we are able to efficiently use the available
space in the slots, and thus reduce the release jitter. However, by using the MM approach
we can obtain almost the same result if the messages are carefully allocated to slots as
does our optimization strategy.

Moreover, in the case of larger process sets, the static approaches suffer significantly
less overhead than the dynamic approaches. In the SM and MM approaches the messages
are uniquely identified by their position in the MEDL. However, for the dynamic
approaches we have to somehow identify the dynamically transmitted messages and
packets. Thus, for the DM approach we consider that each message has several identifier
bits appended at the beginning of the message, while for the DP approach the

16 SM —-— A
_ MM
= 14 DM -s—
g 12 o /
_3-; <1 Adhoc - .s/
210 5
: o
28 g
£ &
o
8 /
2 o
‘9‘;1.. 4 ~ 8
e = =} _—
g 2 ?/ PR -

ol % % *

50 100 150 200 250 300 350 400 450

Number of processes

Figure 10. Comparison of the four approaches to message scheduling.

SCHEDULABILITY-DRIVEN COMMUNICATION SYNTHESIS 319

identification bits are appended to each packet. Not only the identifier bits add to the
overhead, but in the DP approach, the transfer and delivery processes (see Figure 3) have
to be activated at each sending and receiving of a packet, and thus interfere with the other
processes. Thus, for larger applications (e.g., process sets of 400 processes), MM
outperforms DP, as DP suffers from large overhead due to its dynamic nature. DM
performs worse than DP because it does not split the messages into packets, and this
results in a mismatch between the size of the messages dynamically queued and the slot
size, leading to unused slot space that increases the jitter. SM performs the worst as it
does not permit much room for improvement, leading to large amounts of unused slot
space. Also, DP has produced a MEDL that resulted in schedulable process sets for 1.33
times more cases than the MM and DM. MM, in its turn, produced two times more
schedulable results than the SM approach.

Together with the four approaches to message scheduling a so called ad-hoc approach
is presented. The ad hoc approach performs scheduling of messages without trying to
optimize the access to the communication channel. The ad hoc solutions are based on the
MM approach and consider a design with the TDMA configuration consisting of a
simple, straightforward allocation of messages to slots. The lengths of the slots were
selected to accommodate the largest message sent from the respective node. Figure 10
shows that the ad-hoc alternative is constantly outperformed by any of the optimized
solutions. This demonstrates that significant gains can be obtained by optimization of the
parameters defining the access to the communication channel.

Next, we have compared the four approaches with respect to the number of messages
exchanged between different nodes and the maximum message size allowed. For the
results depicted in Figures 11 and 12 we have assumed sets of 80 processes allocated to
four nodes. Figure 11 shows that, as the number of messages increases, the difference
between the approaches grows while the ranking among them remains the same. The

30
SM —o—
MM
= 25! DM -=— /
= DP x /
£ 20
=
[-+]
-
& 15
b
2
2 10 -
#, /./’
£ ’.-e/ i
2 5 _— .
<< e e
________-c-/ e = "
0lF—— . * & x
10 15 20 25 30 35 40 45 50

Number of messages

Figure 11. Four approaches to message scheduling: the influence of the message number.

320 POP ET AL.

| SM -o— /
MM —+

25t DM =—
DP =

20

15

10 1

Average percentage deviation (%)

0 5 10 15 20 25 30 35
Maximum number of bytes in a message

Figure 12. Four approaches to message scheduling: the influence of the message sizes.

same holds for the case when we increase the maximum allowed message size (Figure
12), with a notable exception: for large message sizes MM becomes better than DP, since
DP suffers from the overhead due to its dynamic nature.

We were also interested in the quality of our greedy heuristics. Thus, we have run all
the examples presented above, using the greedy heuristics and compared the results with
those produced by the SA based algorithm. Table 1 shows the average and maximum
percentage deviations of the cost function values produced by the greedy heuristics from
those generated with SA, for each of the graph dimensions. All the four greedy heuristics
perform very well, with less than 2% loss in quality compared to the results produced by
the SA algorithms. The execution times for the greedy heuristics were more than two
orders of magnitude smaller than those with SA. Although the greedy heuristics can
potentially find solutions not found by SA, for our experiments, the extensive runs
performed with SA have led to a design space exploration that has included all the
solutions produced by the greedy heuristics.

Table 1. Percentage deviations for the greedy heuristics compared to SA.

80 processes 160 processes 240 processes 320 processes 400 processes
(%) (%) (%) (%) (%)
SM Aver. 0.12 0.19 0.50 1.06 1.63
Max. 0.81 2.28 8.31 31.05 18.00
MM Aver. 0.05 0.04 0.08 0.23 0.36
Max. 0.23 0.55 1.03 8.15 6.63
DM Aver. 0.02 0.03 0.05 0.06 0.07
Max. 0.05 0.22 0.81 1.67 1.01
DpP Aver. 0.01 0.01 0.05 0.04 0.03

Max. 0.05 0.13 0.61 1.42 0.54

SCHEDULABILITY-DRIVEN COMMUNICATION SYNTHESIS 321

The above comparison between the four message scheduling alternatives is mainly
based on the issue of schedulability. However, when choosing among the different
policies, several other parameters can be of importance. Thus, a static allocation of
messages can be beneficial from the point of view of testing and debugging and has the
advantage of simplicity. Similar considerations can lead to the decision not to split
messages. In any case, however, optimization of the bus access scheme is highly
desirable.

6.1. Case Study

A typical safety critical application with hard real-time constraints, to be implemented on
a TTP based architecture, is a vehicle cruise controller (CC). We have considered a CC
system derived from a requirement specification provided by the industry. The CC
described in this specification delivers the following functionality: it maintains a constant
speed for speeds over 35km/h and under 200 km/h, offers an interface (buttons) to
increase or decrease the reference speed, and is able to resume its operation at the
previous reference speed. The CC operation is suspended when the driver presses the
brake pedal. The specification assumes that the CC will operate in an environment
consisting of several nodes interconnected by a TTP channel (Figure 13). There are five
nodes which functionally interact with the CC system: the anti-blocking system (ABS),
the transmission control module (TCM), the engine control module (ECM), the electronic
throttle module (ETM), and the central electronic module (CEM). It has been decided to
distribute the functionality (processes) of the CC over these five nodes. The transmission
speed of the communication channel is 256 kbps and the frequency of the TTP controller
was chosen to be 20 MHz. We have modeled the specification of the CC system using a
set of 32 processes and 17 messages. All the experiments were run on a Sun Ultra 10
workstation. For the given application the ad hoc approach was unable to produce a
schedulable solution. Then, we ran the simulated annealing strategy in order to determine
if the CC system is schedulable with each of the four approaches to message scheduling.
The SM approach failed to produce a schedulable solution after 304 seconds optimization
time. However, with the other three approaches schedulable solutions could be produced.
The smallest cost function resulted for the DP approach (taking 730 seconds of

ABS TCM ECM ETM

TP TP TTP TP TII'P
| TTP bus
TTP
CEM
CAN
| CAN bus

Figure 13. Hardware architecture for the CC.

322 POP ET AL.

Table 2. Results for the cruise controller example.

Percentage Execution
deviation from SA (%) time (seconds)
SM 0.4 23.08
MM 0.8 87.98
DM 0.5 21.37
DP 0.3 104.75

optimization time), followed in this order by MM (1193 seconds optimization time) and
DM (648 seconds optimization time).

Using the greedy strategies similar results have been obtained with significantly shorter
optimization times. As with the SA-based algorithm, SM failed to produce a schedulable
solution, while the other approaches succeeded. Table 2 presents the percentage
deviations of the cost function obtained with the greedy algorithms from the values
obtained with SA, and the execution times.

7. Conclusions

In this paper we have considered hard-real time systems implemented on distributed
architectures consisting of several nodes interconnected by a communication channel.
Processes are scheduled using a preemptive policy with fixed priorities. The bus access is
statically scheduled according to the time triggered protocol. We have presented an
approach to schedulability analysis with special emphasis on the impact of the
communication infrastructure and protocol on the overall system performance.

We have considered four different approaches to message scheduling over TTP, that
were compared based on the issue of schedulability. It has been also shown how the
parameters of the communication protocol can be optimized in order to fit the
communication particularities of a certain application. By optimizing the bus access
scheme significant improvements can be obtained with regard to the ‘‘degree of
schedulability’’ of the system. Experimental results show that our optimization heuristics
are able to efficiently produce good quality results.

Acknowledgments

This work has been supported by SSF (Swedish Foundation for Strategic Research)
through ARTES (a network for real-time research and graduate Education in Sweden).
We would like to thank Jakob Axelsson, from Volvo Technological Development, for
providing the case study. Finally, we are grateful to the anonymous reviewers for their
extremely valuable comments.

SCHEDULABILITY-DRIVEN COMMUNICATION SYNTHESIS 323

References

Audsley, N. C., Burns, A., Davis, R. 1., Tindell, K., and Wellings, A. J. 1995. Fixed priority preemptive
scheduling: An historical perspective. Real-Time Systems 8(2/3): 173-198.

Balarin, F,, Lavagno, L., Murthy, P., and Sangiovanni-Vincentelli, A. 1998. Scheduling for embedded real-time
systems. [EEE Design and Test of Computers January—March: 71-82.

Chou, P., and Borriello, G. 1995. Interval scheduling: Fine-grained code scheduling for embedded systems. In
Proceedings ACM/IEEE DAC, pp. 462-467.

Dave, B. P, and Jha, N. K. 1998. COHRA: Hardware—software cosynthesis of hierarchical heterogeneous
distributed systems. /IEEE Transactions on CAD 17(10): 900-919.

Dave, B. P, Lakshminarayana, G., and Jha, N. J. 1999. COSYN: Hardware—software co-synthesis of
heterogeneous distributed embedded systems. IEEE Transactions on VLSI Systems 7(1): 92—104.

Daveau, J. M., Ben Ismail, T., and Jerraya, A. A. 1995. Synthesis of system-level communication by an
allocation-based approach. In Proceedings of the International Symposium on System Synthesis, pp. 150—
155.

Eles, P., Doboli, A., Pop, P., and Peng, Z. 2000. Scheduling with bus access optimization for distributed
embedded systems. /IEEE Transactions on VLSI Systems 8(5): 472-491.

Ermedahl, H., Hansson, H., and Sjodin, M. 1997. Response-time guarantees in ATM networks. In Proceedings of
the 18th IEEE Real-Time Systems Symposium, pp. 274-284.

Gutiérrez Garcia, J. J., and Gonzalez Harbour, M. 1995. Optimized priority assignment for tasks and messages in
distributed hard real-time systems. In Proceedings of the 3rd Workshop on Parallel and Distributed Real-Time
Systems, pp. 124-132.

Hoyme, K., and Driscoll, K. 1992. SAFEbus. IEEE Aerospace and Electronic Systems Magazine 8(3):
34-39.

Knudsen, P. V., and Madsen, J. 1999. Integrating communication protocol selection with hardware/software
codesign. IEEE Transactions on CAD 18(8): 1077-1095.

Kopetz, H. 1997. Real-Time Systems-Design Principles for Distributed Embedded Applications. Dordrecht:
Kluwer Academic Publishers.

Kopetz, H., and Griinsteidl, G. 1994. TTP—A protocol for fault-tolerant real-time systems. /[EEE Computer
27(1): 14-23.

Lee, C., Potkonjak, M., and Wolf, W. 1999. Synthesis of hard real-time application specific systems. Design
Automation for Embedded Systems 4(4): 215-241.

Lehoczky, J. P. 1990. Fixed priority scheduling of periodic task sets with arbitrary deadlines. In Proceedings of
11th IEEE Real-Time Symposium, pp. 201-2009.

Liu, C. L., and Layland, J. W. 1973. Scheduling algorithms for multiprogramming in a hard-real-time
environment. Journal of the ACM 20(1): 46-61.

Lonn, H., and Axelsson, J. 1999. A comparison of fixed-priority and static cyclic scheduling for distributed
automotive control applications. In Proceedings of the 11th Euromicro Conference on Real-Time Systems,
pp. 142-149.

Narayan, S., and Gajski, D. D. 1994. Synthesis of system-level bus interfaces. In Proceedings of the European
Design and Test Conference, pp. 395-399.

Ortega, R. B., and Borriello, G. 1998. Communication synthesis for distributed embedded systems. In
Proceedings of the International Conference on CAD, pp. 437-444.

Palencia, J. C., Gutiérrez Garcia, J. J., and Gonzalez Harbour, M. 1997. On the schedulability analysis for
distributed hard real-time systems. In Proceedings of the Euromicro Conference on Real Time Systems,
pp. 136-143.

Palencia, J. C., and Gonzalez Harbour, M. 1998. Schedulability analysis for tasks with static and dynamic
offsets. In Proceedings of the 19th IEEE Real-Time Systems Symposium, pp. 26-37.

Palencia, J. C., and Gonzalez Harbour, M. 1999. Exploiting precedence relations in the schedulability analysis of
distributed real-time systems. In Proceedings of the 20th IEEE Real-Time Systems Symposium, pp. 328—
339.

Pop, P, Eles, P, and Peng, Z. 1999. Scheduling with optimized communication for time-triggered embedded
systems. In Proceedings of the International Workshop on Hardware-Software Co-Design, 78—82.

324 POP ET AL.

Pop, P., Eles, P., and Peng, Z. 2000. Schedulability analysis for systems with data and control dependencies. In
Proceedings of the Euromicro Conference on real Time Systems, 201-208.

Reevs, C. R. 1993. Modern Heuristic Techniques for Combinatorial Problems. Oxford: Blackwell Scientific
Publications.

Rushby, J. 2001. Bus Architectures for Safety-Critical Embedded Systems, Lecture Notes in Computer Science,
Vol. 2211. Berlin: Springer Verlag, pp. 306-323.

Stankovic, J. A., and Ramamritham, K. 1993. Advances in Real-Time Systems. Los Alamitos, CA: IEEE
Computer Society Press.

Sha, L., Rajkumar, R., and Lehoczky, J. 1990. Priority inheritance protocols: an approach to real-time
synchronization. [EEE Transactions on Computers 39(9): 1175-1185.

Tindell, K. 1994. Adding time-offsets to schedulability analysis. Department of Computer Science, University of
York, Report Number YCS-94-221.

Tindell, K., Burns, A., and Wellings, A. J. 1992. Allocating real-time tasks (an NP-hard problem made easy).
Real-Time Systems 4(2): 145-165.

Tindell, K., Burns, A., and Wellings, A. J. 1995. Calculating controller area network (CAN) message response
times. Control Eng. Practice 3(8): 1163-1169.

Tindell, K., and Clark, J. 1994. Holistic schedulability analysis for distributed hard real-time systems.
Microprocessing and Microprogramming 40: 117-134.

X-by-Wire Consortium. 1998. X-By-Wire: Safety related fault tolerant systems in vehicles. URL: http://
www.vmars.tuwien.ac.at/projects/xbywire/

Yen, T., and Wolf, W. 1998. Performance estimation for real-time distributed embedded systems. /EEE
Transactions on Parallel and Distributed Systems 9(11): 1125-1136.

Paul Pop received the Ph.D. in computer science
from Linkoping University, Sweden, in 2003. He is a
post-doctoral research assistant in the Embedded
Systems Laboratory, at the Department of Computer
and Information Science, Linkoping University,
Sweden. His research interests include real-time
systems, electronic design automation and hard-
ware/software codesign.

Petru Eles received his Ph.D. degree in computer
science from the ‘‘Politehnica’’ University Bucuresti,
Romania, in 1993. He is currently a Professor with
the Department of Computer and Information
Science at Linkoping University, Sweden. His
research interests include design of embedded
systems, hardware/software co-design, real-time
systems, system specification and testing, CAD for
digital systems. He has published extensively in these
areas and has coauthored several books among which
System Synthesis with VHDL (Kluwer Academic,
1997).

SCHEDULABILITY-DRIVEN COMMUNICATION SYNTHESIS 325

He was a corecipient of best paper awards at the
1992 and 1994 European Design Automation
Conference (EURO-DAC). He has served on the
program committee of several technical conferences
and workshops, including DATE, ICCAD, ISSS, and
CODES. He has recently co-edited a special issue on
“‘Design Methodologies and Tools for Real-Time
Embedded Systems’’ in the Journal on Design
Automation for Embedded Systems. He is a member
of IEEE and a member of ACM.

Zebo Peng is Professor of the Chair in Computer
Systems, Director of the Embedded Systems
Laboratory, and Chairman of the Division for
Software and Systems at LinkSping University,
Sweden. He received his Ph.D. degree in Computer
Science from Linkoping University in 1987. His
current research interests include design and test of
embedded systems, electronic design automation,
design for testability, hardware/software co-design,
and real-time systems. He has published over 130
journal and conference papers in these areas and
coauthored the book System Synthesis with VHDL
(Kluwer Academic, 1997). He was corecipient of two
best paper awards at the European Design
Automation Conferences (EURO-DAC) in 1992 and
1994. He has served on the program committee of
several technical conferences and workshops,
including DATE, DDECS, DFT, ECS, ETW, ITSW,
and FDL, and was the General Chair of the 6th IEEE
European Test Workshop (ETW’01). He has recently
co-edited a special issue on ‘‘Design Methodologies
and Tools for Real-Time Embedded Systems’’ in the
Journal on Design Automation for Embedded
Systems. He is a senior member of IEEE and a
member of ACM.

