
Incremental Mapping and Scheduling for
Distributed Heterogeneous Real-Time Systems

Paul Pop, Petru Eles, Zebo Peng
Dept. of Computer and Information Science, Linköping University, Sweden

{paupo, petel, zebpe}@ida.liu.se

Extended Abstract

A characteristic of research efforts concerning the code-
sign of real-time systems is that researchers concentrate
on the design, from scratch, of a new system optimized
for a particular application. For many application areas,
however, such a situation is extremely uncommon and
only rarely appears in design practice. It is much more
likely that one has to start from an already existing sys-
tem running a certain application and the design problem
is to implement new functionality (including also up-
grades to the existing one) on this system. In such a con-
text it is very important to make as few as possible
modifications to the already running applications. The
main reason for this is to avoid unnecessarily large design
and testing times. Performing modifications on the (po-
tentially large) existing applications increases design
time and, even more, testing time (instead of only testing
the newly implemented functionality, the old application,
or at least a part of it, has also to be retested). However,
this is not the only aspect to be considered. Such an incre-
mental design process, in which a design is periodically
upgraded with new features, is going through several it-
erations. Therefore, after new functionality has been im-
plemented, the resulting system has to be structured such
that additional functionality, later to be mapped, can eas-
ily be accommodated.

In this paper, we concentrate on scheduling and map-
ping of hard real-time systems which are implemented on
distributed architectures. Process scheduling is based on
a static priority preemptive approach while the bus com-
munication is statically scheduled. We consider mapping
and scheduling for hard real-time systems in the context
of a realistic communication model. Because our focus is
on hard real-time safety critical systems, communication
is based on a time division multiple access (TDMA) pro-
tocol, the time-triggered protocol (TTP), as recommend-
ed for applications in areas like, for example, automotive
electronics.

We have considered the design of distributed embedded
systems in the context of an incremental design process as
outlined above. This implies that we perform mapping and
scheduling of new functionality so that certain design con-
straints are satisfied, and: (a) the existing applications are
disturbed as little as possible, and (b) there is a good chance
that new functionality can, later, be easily mapped on the re-
sulted system.

To illustrate the role of mapping and scheduling in the
context of an incremental design process, let us consider
the example in the figure, where we have two processors
with the same speed connected by a TTP bus. With black
we represent the set of already running applications ψ
while the current application Γcurrent to be mapped and
scheduled is represented in grey and consists of two pro-

cesses and three messages. To simplify the discussion, for
this particular example we consider that the system is not
schedulable if the utilization factor of any node is greater
than one. We say that the processor can be “filled up” with
processes until it reaches an utilization factor of one (the
square depicting the processor is full). The utilization fac-
tor Ui of a process Pi is the ratio between the worst case ex-
ecution time CPi

 of that process and its period Ti: Ui=CPi /
Ti. The utilization factor of a node is the sum of the utiliza-
tion factors of all processes mapped on that node. The pro-
cesses and messages that are to be mapped on the
processors are depicted as blocks. The height of a process
block is equal with its utilization factor, while the length of
a message block gives the size of the message. White space
on a processor represents available utilization, while white
space on the bus represents available slack in the schedule
table.

Now, let us suppose that in the future another applica-
tion, Γfuture, has to be mapped on the system. Γfuture con-
sists of two processes and two messages represented as
hashed blocks.

We can observe that the new application can be sched-
uled only in the third case, case c. If Γcurrent has been im-
plemented as in the case b, we are not able to schedule
process P2 and message m2 of Γfuture. The way our cur-
rent application is mapped and scheduled will influence
the likelihood of successfully mapping additional func-
tionality on the system without being forced to modify
the implementation of already running applications.

Thus, we propose a heuristic, together with the corre-
sponding design criteria, which finds the set of old applica-
tions which have to be remapped at the same time with the
new one such that the disturbance on the running system (ex-
pressed as the total cost implied by the modifications) is min-
imized. Once this set of applications has been determined,
mapping and scheduling is performed according to the re-
quirements (a) and (b) stated before. Supporting such a de-
sign process is of critical importance for current and future
industrial practice, as the time interval between successive
generations of a product is continuously decreasing, while
the complexity due to increased sophistication of new func-
tionality is growing rapidly.

The approaches have been validated through several
experiments and a case study consisting of a vehicle
cruise controller.

Γfuture: m1 (2 bytes) m2 (6 bytes)P1 P2

a) b) c)

0.3
0.45
0.25

0.5
0.2
0.3

Slack, Available utilizationψ
Γcurrent: Process utilization message sizes


