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ABSTRACT 
In this paper we present an approach to performance estimation 
for hard real-time systems. We consider rurhitechups consisting of 
multiple processors. The scheduling policy is based on a preemptive 
strategy with static priorities. Our model of the system captures 
both data and control dependencies, and the analysis is able to 
d u c e  the pessimism of the estimation by using the knowledge 
about these dependencies. Extensive experiments as well as a real 
life example demonsbate the efEciency of our approach. 
1. INTRODUCTION 
In this paper we present an approach to performance estimation for 
hard real-time systems that have both data and control dependen- 
cies. We consider applications that are implemented on distributed 
architectures and, in our approach, the system is modeled by a so 
called conditionul process gmph (CPG) [3]. Such a graph captures 
both the flow of data and that of control. Processes are scheduled 
using a priority based preemptive policy. 

Process scheduling for performance estimation and synthesis of 
real-time systems has been intensively researched in the last years. 
Static non-preemptive scheduling of a set of processes on a multi- 
processor system has bee: discussed in [3, 6, 91. In [7] an earlier 
deadlinefirst strategy is used for non-preemptive scheduling of pro- 
cesses with possible data dependencies. Preemptive scheduling of 
independent processes with static priorities running on single pro- 
cessor architectures has its roots in [8]. The approach has been later 
extended to accommodate more general system models and has 
been also applied to distributed systems [ 121. An algorithm for opti- 
mal priority assignment to processes is proposed in [I]. In [l 11 and 
[13] time offset relationships and phases, respectively, are used in 
order to model data dependencies in the context of priority based 
preemptive scheduling. 

When control dependencies exist, depending on conditions, only a 
subset of the set of processes is executed during an invocation of the 
system. Modes have been used to model a certain class of control 
dependencies [4]. Such a model basically assumes that at the starting 
of an execution cycle, a particular functionality is known in advance 
and is fixed for one or several cycles until another mode change is 
performed. However, modes cannot handle fine grained control 
dependencies or certain combinations of data and control dependen- 
cies. Careful modeling using the periods of processes (lower bound 
between subsequent re-arrivals of a process) is a possible solution for 
some cases of control dependencies [5]. If, for example, we know 
that a certain set of processes will only execute every second cycle 
of the system, we can set their periods to the double of the period of 
the rest of the processes in the system. However, using the worst 
case assumption on periods leads very often to unnecessarily pessi- 
mistic solutions. A more refined process model can produce much 
better results, as will be shown later. 
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We propose in the next section a system model based on a con- 
ditional process graph that is able to capture both data and control 
dependencies. Then, we introduce a less pessimistic analysis tech- 
nique in order to bound the response time of a hard real-time sys- 
tem modeled in such a way. In this paper we insist on various 
aspects concerning dependencies between processes in the context 
of priority based preemptive scheduling. Static cyclic scheduling of 
processes with both data and control dependencies has been 
addressed by us in [2, 31. We have also discussed the particular 
aspects concerning scheduling and communication synthesis for 
distributed systems in [9, IO]. 

This paper is divided into 7 sections. The next section presents 
our graph-based system representation. Section 3 formulates the 
problem and sections 4 and 5 present the proposed performance 
estimation approaches. The techniques are evaluated in section 6,  
and section 7 presents our conclusions. 
2. CONDITIONAL PROCESS GRAPH 
As an abstract model for system representation' we use a directed, 
acyclic, polar graph r(K Es, Ec)  [3]. Each node PI€ V represents 
one process. Such a process can be an ordinary process specified by 
the designer or a so called communication process which captures 
the message passing activity. Es and EC are the sets of simple and 
conditional edges respectively. Es n Ec = 0 and Es U Ec = E, 
where E is the set of all edges. An edge eilf E from Pi to Pi indicates 
that the output of Pi  is the input of Pi. The graph is polar, which 
means that there are two nodes, called source and sink, that conven- 
tionally represent the first and last process. These nodes are intro- 
duced as dummy processes so that all other nodes in the graph are 
successors of the source and predecessors of the sink respectively. 

We consider a distributed architecture consisting of several pro- 
cessors connected through buses. These buses can be shared by sev- 
eral communication channels connecting processes assigned to 
different processors. 

We assume that each process is assigned to a processor and 
each communication channel which connects processes assigned to 
different processors is assigned to a bus. 

Each process Pi (ordinary or communication process), assigned 
to a processor or bus, is characterized by a worst case execution 

Process manning 
Processorpel: PI. P,, P4. p6. P9. PIO. Pi3 
Processorpe2: P3. Pg, P7, P11, p14, P15. PI7 
Processorpe3: Pg. P12. Pi, 
Communications are mapped to a unique bus 

Figure 1. Conditional Process Graph 
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time CP In the process graph depicted in Figure 1,  Po and Pj2 are 
the source and sink nodes respectively. Nodes denoted PI, P2, .., 
P 17, are ordinary processes specified by the designer. Figure 1 also 
shows the mapping of processes to three different processors. The 
communication processes are represented in Figure 1 as solid cir- 
cles and are introduced for each connection which links processes 
mapped to different processors. In this paper we do not consider 
the communication aspects which we have analyzed in [9, 101. 

An edge eoe Ec is a conditional edge (thick lines in Figure 1) 
and it has an associated condition. Transmission on such an edge 
takes place only if the associated condition is satisfied. We call a 
node with conditional edges at its output a disjunction process. 
Alternative paths starting from a disjunction process, which corre- 
spond to complementary values of a certain condition, are disjoint 
and they meet in a so called conjunction process. Conditions are 
dynamically computed by disjunction processes and their value is 
unpredictable at the start of an execution cycle of the conditional 
process graph. In Figure 1 circles representing conjunction and 
disjunction processes are depicted with thick borders. We assume 
that conditions are independent. 

A process, which is not a conjunction process, can be activated 
only after all its inputs have arrived. A conjunction process can be 
activated after messages coming on one of the altemative paths 
have arrived. All processes issue their outputs when they terminate. 
If we consider the activation time of the source process as a refer- 
ence, the finishing time of the sink process is the delay of the sys- 
tem at a certain execution. 
3. PROBLEM FORMULATION 
An application is modeled as a set yf of n conditional process 
graphs ri, i = 2 . a .  Every process Pi in such a graph is mapped to a 
certain processor, has a known worst-case execution time Ci, a 
deadline Di, and a uniquely assigned priority. All processes 
belonging to the same CPG ri have the same period Tri which is 
the period of the respective conditional process graph. Typically, 
global deadlines 8ri on the delay of each CPG are imposed rather 
than individual deadlines on processes. 

We consider a priority based preemptive execution environ- 
ment. We are interested to derive worst case delays for each CPG 
in a given system w. The approach can be easily extended if delays 
on individual processes are of interest. 

To show the relevance of our problem, let us consider the 
example depicted in Figure 2, where we have a system modeled as 
two conditional process graphs I?, and r2 with a total of 9 pro- 
cesses (the four dummy processes are not counted), and one condi- 
tion. The processes are mapped on different processors as 
indicated by the shading, and the worst case execution time, in mil- 
liseconds, for each process on its respective processor is depicted 
to the left of each node. rl has a period of 200 ms, r2 has a period 
of 150 ms. The deadlines are 100 ms on r, and 90 ms on r,. 

rl r2 
Figure 2. System with Control and Data Dependencies 

When the analysis is applied to the set of processes, ignoring 
control dependencies, we get an estimated worst case delay of 120 
ms for rf and 82 ms for T2. This analysis assumes as a worst case 
scenario the possible activation of all nine processes for each exe- 
cution of the system. This is the solution which will be obtained 
using a dataflow graph representation of the system. However, con- 
sidering the CPG r, in Figure 2, it is easy to observe that process 
P3 on the one hand and processes P2 and P4 on the other hand will 
not be activated during the same period of rl. Making use of this 
information for the analysis we obtain a worst case delay of 100 
ms for r,, which indicates that the system is schedulable. 

4. DELAY ESTIMATION FOR TASK GRAPHS 
WITH DATA DEPENDENCIES 
Methods for schedulability analysis of data dependent processes with 
static priority preemptive scheduling have been proposed in [ 1 11 and 
[13]. They use the concept of o$set orphase, respectively, in order to 
handle data dependencies. [13] provides a framework that iteratively 
finds the phases for all processes, and then feeds them back into the 
response time analysis which in turn is used again to derive better 
phases. Thus, the pessimism of the analysis is iteratively reduced. 

We have used the framework provided by [ 131 as a starting 
point for our analysis. The response time of a process Pi is: 

ri = c i +  , cj[.-T;.-,1 r . - O . .  (1) 
V j  E hp(P.) 

where hp(Pi) is the set of processes that have higher priority than 
Pi ,  and 0~ is the phase of f ,  relative to Pi. 

In [13] a system is modeled as a set S of n task graphs C, i = l..n. 
The system model assumed and the definition of a task graph are 
similar to our CPG, but without considering any conditions. The 
aim of the analysis is to derive an as tight as possible worst case 
delay on the execution time of each of the task graphs in the system. 
This delay estimation is done using the algorithm DelayEstimate 
described in Figure 3. The function LatestTimes calculates worst 
case response times of processes and upper bounds for the offsets, 
while EarliestTimes derives the lower bounds of the offsets. 

During a topological traversal of the graph G within Latest- 
Times, for each process Pi the worst case response time ri is calcu- 
lated according to equation (1). This value is based on the values of 
the offsets known so far. Once an ri is calculated, it can be used to 
determine and update offsets for other successor processes. Accord- 
ingly, the EarliestTimes function determines the lower bounds on 
the offsets. The influence on graph G from other graphs in the sys- 
tem is considered in both of the functions mentioned earlier. 

These calculations can be improved by realizing that for a pro- 
cess Pi, there might exist a process Pi mapped on the same proces- 
sor, with priority(Pi) < priority(fj), such that their execution 
windows never overlap. In this case, the term in the equation (1) 
that expresses the influence of Pi on the execution of Pi can be 

Dela Estimate(task graph G s stem s) 
-- &rives the worst case deladoL task graph G considering -- the influence from all other task graphs in the system S 

for each pair (Pi, Pj) in G 
maxssp[Pb P' = - 

end for 
steo = 0 
re-gat 

LatestTimes( G 
EarliestTimes( h) 
for each Pie G 

re-gat 
LatestTimes( G 
EarliestTimes( h) 
for each Pie G 

MaxSeparations(P;) . .. 
end for 

until maxsep is not chan ed or step > limit 
return the worst case de& 60 of the graph G 

end DeiayEstimate 
Figure 3. Delay Estimation for Task Graphs 
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Figure 4. Example of two CPGs 
dropped, resulting in a tighter worst case response time calcula- 
tion. This situation is expressed through the so called m s e p  table, 
computed by the MaxSeparations function, whose value m- 
s e p [ P ,  Pj] is less than or equal to 0-if the two processes never 
overlap during their execution. The m s e p  table is built using the 
worst case execution times and offsets determined in EarliestTimes 
and LatestTimes. 

Having a better view on the maximum separation between 
each pair of processes, tighter worst case response times and off- 
sets can be derived, which in turn contribute to the update of the 
w s e p  table. This iterative tightening process is repeated until 
there is no modification to the maxsep table, or a certain imposed 
limit on the number of iterations is reached. 

Finally, the DelayEstimate function returns the worst-case delay 
8~ estimated for a task graph G, as the latest time when the sink 
node of G can finish its execution. 
5. DELAY ESTIMATION FOR CPGs 
Depending on the values calculated for the conditions, different 
alternative tracks through a conditional process graph are activated 
for a given activation of the system. To model this, a boolean 
expression Xpi, called guard, can be associated to each node Pi in 
the graph. It represents the necessary condition for the respective 
process to be activated. In Figure 4,  for example, Xp4=ChD, 
Xp5=c, X p t r u e ,  Xpll=true, and X ~ I F K .  

We call an alternative track through a conditional process 
graph, resulting from a combination of conditions, an uncondi- 
twnuf subgraph, denoted by g .  For example, the CPG rl in Figure 4 
has three unconditional subgraphs, corresponding to the following 
combinations of conditions: ChD, C a ,  and c. %e unconditional 
subgraph corresponding to the combination C m  in the CPG FI 
consists of processes P I ,  P2, P4, P6. P ,  P9 and P I P  
5.1 Ignoring Conditions (IC) 
A straightforward approach to delay estimation for systems 
represented as CPGs is to ignore control dependencies and to apply 
the analysis as described in section 4. 

This means that conditional edges in the CPGs are considered 
like simple edges and the conditions in the model are dropped. 
What results is a system S consisting of simple task graphs Gi, 
each one resulted from a CPG rj of the given system y. The system 
S can then be analyzed using the algorithm in Figure 5 .  

DEIIC(system w) -- denves worst case delays for each CPG in the system \y 
transform each r i c  w into the corresponding Gic S 
for each task graph Gi E S 

DelayEstimate(Gi, S )  
end for 

end DUlC 
Figure 5. Delay Estimation Ignoring Conditions 

DUCPG( CPG r system 
-- derives the w k t  case d?ay of a CPG l- considering 
-- the influence from all other task gra hs in the system S 

extract all unconditional subgrapKs gjfrom r 
for each g 

end for 
return the largest of the dela s which is 

Delay&timate(gi, S )  

the worst case delay 6, of &G r 
end DElCPG 
a) DUCPG - Delay Estimate for Conditional Process Graphs 
DUBF(system w) -- denves worst case delays for each CPG in the system w 

transform each Ti E w into the corresponding Gi E s 
for each ri E y~ 
end for 

end DUBF 
b) DUBF -- Delay Estimation: the Brute Force approach 

DE/CPG(Ti, [GI ,  Ga ...Gi.l, Gi+19 GJ) 

Figure 6, Brute Force Analysis 
This approach, which we call IC, is, of course, very pessimis- 

tic. However, this is the current practice when worst case arrival 
periods are considered and classical data flow graphs are used for 
modeling and scheduling. 

The pessimism of the previous approach can be reduced by using a 
conditional process graph model. A simple, brute force solution is 
to apply the analysis presented in section 4, after the CPGs have 
been decomposed into their constituent unconditional subgraphs. 

Consider a system y which consists of n C P G s  ri, i = I..n. Each 
CPG ri can be decomposed into ni unconditional subgraphs g/ , j = 
l..ni. In Figure 4, for example, we have 3 unconditional subgraphs 
g l l ,  g2I,  g i  derived from rl and two, g12, 822 derived from r p  

At the same time, each CPG ri can be transformed (as shown in 
subsection 5.1) into a simple task graph Gi, by transforming condi- 
tional edges into ordinary ones and dropping the conditions. When 
deriving the worst case delay on ri we apply the analysis from sec- 
tion 4 (algorithm DelayEstimate in Figure 3) separately to each 
unconditional subgraph g; in combination with the graphs ( G I ,  G2, 
... Gi-,. Gi+l, G,). This means that we consider each alternative track 
from ri in the context of the system, instead of the whole subgraph 
Gi as in the previous approach. This is described by the algorithm 
DE/CPG in Figure 6 a). Estimation for the whole system is per- 
formed as shown in the algorithm DWBF in Figure 6 b). 

Such an approach, we call it BF, while producing tight bounds 
on the delays, can be expensive from the runtime point of view, 
because it is applied for each unconditional subgraph. In general, 
the number of unconditional subgraphs can grow exponentially. 
However, for many of the practical systems this is not the case, and 
the brute force method can be used. Alternatively, less expensive 
methods, like those presented below, should be applied. 
5 3  Condition Separation (CS) 
In some situations, the explosion of unconditional subgraphs 
makes the brute force method inapplicable. Thus, we need to find 
an analysis that is situated somewhere between the two alternatives 
discussed in 5.1 and 5.2, which means it should not be too pessi- 
mistic and should run in acceptable time. 

A first idea is to go back to the DelayEstimate algorithm in 
Figure 3, and use the knowledge about conditions in order to update 
the w s e p  table. Thus, if two processes Pi and P, never overlap 
their execution because they execute under alternative values of 
conditions, then we can update mmsep[Pi ,  Pj]  to 0, and thus 
improve the quality of the delay estimation. Two processes Pi and 
Pi never overlap their execution if there exists at least one condi- 

5.2 Brute Force Solution (BF) 
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DVCS(system w) -- denves worst case delays for each CPG in the system w 
transform each Ti E w into the corresponding Gi€ S 

for each Gi E S 
and keep guard Xmfor each Pi 

-- derives the worst case delay of a task graph Gi considering 
-- the influence from all other task graphs in the system S 
for each pair (Pi ,  Pj) in Gi 

maxsep[Ph Pj = - 
end for 
step = 0 
remat . LatestTimes(Gi) 

EarliestTimes( Gi) 
for each Pie Gi 

MaxSeparations(Pi) 
end for 
for each pair ( P i ,  PAID Gi 

if 3C, C c X p i ~  CcXmthen 
maxsep[Pi, 51 = 0 

end if 
until maxsep is not changed or step > limit 

S, is the worst case delay for r; 
end for 

- .  end for 
end DE/- 

Figure 7. Delay Estimation using Condition Separation 
tion C, so that C c Xpi (Xpi is the guard of process Pi) and i? c Xpi. 

In this approach, called CS, we practically use the same algo- 
rithm as for ordinary task graphs and try to exploit the information 
captured by conditional dependencies in order to exclude certain 
influences during the analysis. In Figure 7 we show the algorithm 
DWCS which performs dglay estimation based on this heuristic. 
5.4 Relaxed Tightness Analysis (RT) 
The two approaches discussed here are similar to the brute force 
algorithm (Figure 6) presented in subsection 5.2. However, they by to 
improve on the execution time of the analysis by reducing the com- 
plexity of the DelayEstimate algorithm (Figure 3) which is called 
f" the DWCPG function (Figure 6 a). This will reduce the execu- 
tion time of the analysis, not by reducing the number of subgraphs 
which have to be visited (like in subsection 5.3). but by reducing the 
time needed to analyze each subgraph. As our experimental results 
show (section 6) this approach can be very effective in practice. Of 
course, by the simplifications applied to DelayEstimate the quality of 
the analysis is reduced in comparison to the brute force method. 

We have considered two alternatives of which the first one is 
more drastic while the second one is trying a more refined trade-off 
between execution time and quality of the analysis. 

With both these approaches, the idea is not to run the iterative 
tightening loop in DelayEstimate that repeats until no changes are 
made to m s e p  or until the limit is reached. While this tightening 
loop iteratively reduces the pessimism when calculating the worst 
case response times, the actual calculation of the worst case 
response times is done in LatestTimes, and the rest of the algorithm 
in Figure 3 just tries to improve on these values. For the first 

DaIayEstimateRTl(mk gmph G, system S )  
LatestTimes(G) 

end DelavEstimateRTl 
a) Delay Estimation for RTI 
DelayEstimateRT2 task raph G, system S )  

for each pair (Ai, ?fin Gi 
maxseofP;. Pjl = - . -  .. ," 

end for 
LatestTimes(G) 
EarliestTimes(G) 
foreach P;E G 

MaxSeparations( Pi) 
end for 
LatestTimes(G) 

end DelavEstimateRT2 
b) Delay &timation for RT2 

Figure 8. Delay Estimation for the RT Approaches 

approach, called RT1, the function DelayEstimate has been trans- 
formed like in Figure 8 a). 

However, it might be worth using at least the MaxSeparations in 
order to obtain tighter values for the worst case response times. For 
the alternative RT2 in Figure 8 b), DelayEstimateRT2 first calls Lab 
estTimes and EariiestTimes, then MaxSeparations in order to build 
the marsep table, and again LatestTimes to tighten the worst case 
response times. 
6. EXPERIMENTAL RESULTS 
We have performed several experiments in order to evaluate the 
different approaches proposed. The two main aspects we were 
interested in are the quality of the delay estimation and the scal- 
ability of the algorithms for large examples. A first set of massive 
experiments were performed on conditional process graphs gener- 
ated for experimental purpose. 

We considered architectures consisting of 2,4,6,8 and 10 pro- 
cessors. 40 processes were assigned to each node, resulting in 
graphs of SO, 160,240,320 and 400 processes, having 2,4,6,8 and 
10 conditions, respectively. The number of unconditional sub- 
graphs varied for each graph dimension depending on the number 
of conditions and the randomly generated structure of the CPGs. 
For example, for CPGs with 400 processes, the maximum number 
of unconditional subgraphs is 64. 30 graphs were generated for 
each graph dimension, thus a total of 150 graphs were used for 
experimental evaluation. Worst case execution times were assigned 
randomly using both uniform and exponential distribution. All 
experiments were run on a Sun Ultra 10 workstation. 

In order to evaluate the quality of the results, we need a cost 
function that captures, for a certain system, the tightness of the 
delays produced by the proposed approaches. Our cost function is 
the difference between the deadline and the estimated worst case 
delay of a CPG, summed for al! the CPGs in the system: 

where n is the number of CPGs in the system, 6ri is the estimated worst 
case delay of the CPG r, and hi is the deadline on ri. A higher value 
for this cost function, for a given system, means that the corresponding 
approach produces better results (the estimation is less pessimistic). 

For each of the 150 generated example systems and each of the 
five approaches to delay estimation we have calculated the cost 
function. Figure 9 presents the average percentage deviations of 
the cost function obtained in each of the five approaches, compared 
to the value of the cost function obtained with the BF approach. 
The BF is the least pessimistic approach and therefore has the larg- 
est value for the cost function. A smaller value for the percentage 
deviation means a larger cost function, thus a better result. The per- 
centage deviation is calculated according to the formula: 

CoStBF - Costapproach . deviation = CostBF 

O!O - 100 156 200 %O 300 - 3iO 4@3 
Number of Processes 

Figure 9. Quality of Estimation with Number of Processes 
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Figure 10. Average Execution Time 

Figure 10 presents the average runtime of the algorithms, in sec- 
onds. The brute force approach, BF, performs best in terms of quality 
at the expense of a large execution time. At the other end, the 
straightforward approach IC, that ignores the conditions, performs 
worst and becomes more and more pessimistic as the system size 
increases. It is interesting to mention that the low quality IC 
approach has also an average execution time which is equal or 
comparable to the much better quality heuristics (except the BF, of 
course). This is because it tries to improve on the worst case delays 
through the iterative loop presented in DelayEstimate, Figure 3. 

Let us tum our attention to the three approaches CS, RT1, and 
RT2 that, like the BF, consider conditions during the analysis but 
also try to perform a trade-off between quality and execution time. 
Figure 9 shows that the pessimism of the analysis is dramatically 
reduced by considering the conditions during the analysis. The RTl 
and RT2 approaches, that visit each unconditional subgraph, per- 
form in average better than the CS approach that considers condition 
separation for the whole graph. However, CS is comparable in qual- 
ity with RT1, and even performs better for graphs of size smaller 
than 240 processes (4 conditions, maximum 16 subgraphs). The RT2 
analysis, that tries to improve the worst case response times using 
the MaxSeparations, as opposed to RT1, performs best among the 
non-brute-force approaches. As can be seen from Figure 9, RT2 has 
less than 20% average deviation from the solutions obtained with the 
brute force approach. However, if faster runtimes are needed, RTl 
can be used instead, as it is twice faster in execution time than RT2. 

We were also interested to compare the five approaches with 
respect to the number of unconditional subgraphs in a system. For 
the results depicted in Figure 11 we have assumed CPGs consisting 
of 2,4,8, 16, and 32 unconditional subgraphs of maximum 50 pro- 
cesses each, allocated to 8 processors. Figure 11 shows that as the 
number of subgraphs increases, the differences between the 
approaches grow while the ranking among them remains the same, 
as resulted from Figure 9. The CS approach performs better than 
RT1 with a smaller number of subgraphs, but RTl becomes better 
as the number of subgraphs in the CPGs increases. 

Finally, we considered a real-life example implementing a vehi- 
cle cruise controller modeled using a conditional process graph. The 
graph has 32 processes, two conditions (4 subgraphs), and it was 
mapped on an architecture consisting of 4 nodes (processors), namely: 
Anti Blocking System, Transmission Control Module, Engine Con- 
trol Module and Electronic Throttle Module. The period of the CPG 
was 200 ms, and the deadline was set to 110 ms. Without considering 
the conditions, IC obtained a worst case delay of 138 ms. The same 
result was obtained with the CS approach, and this is because the 
alternative tracks were mapped on different processors, thus not influ- 
encing each other. However, the brute force approach BF produced a 
worst case delay of 104 ms which proves that the system implement- 
ing the vehicle cruise controller is, in fact, schedulable. Both RT1 and 
RT2 produced the same worst case delay of 104 ms as the BF. 

-*--,..-/------ 
BF- RTI+‘ 

” 4 

RT2& IC- 
a+ 

Number of Unconditional Sugraphs 

- 
10 15 20 25 30 

Figure 11. Quality of Estimation with Number of Subgraphs 
7. CONCLUSIONS 
In this paper we proposed solutions to performance estimation for 
hard real-time systems with control and data dependencies. 

The systems are modeled through a set of conditional process 
graphs that are able to capture both the flow of data and that of 
control. We consider distributed architectures and a scheduling 
policy based an a static priority preemptive strategy. 

Five approaches to delay estimation of such systems are pro- 
posed. Extensive experiments and a real-life example show that by 
considering the conditions during the analysis, the pessimism of 
the analysis can be drastically reduced. 

While the brute force approach BF performed best, at the 
expense of execution time, the RT2 approach is able to obtain results 
with less than 20% average loss in quality, in a very short time. 
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