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Abstract

In this paper we present an approach to schedulability
analysis for hard real-time systems with control and data
dependencies. We consider distributed architectures
consisting of multiple programmable processors, and the
scheduling policy is based on a static priority preemptive
strategy. Our model of the system captures both data and
control dependencies, and the schedulability approach is
able to reduce the pessimism of the analysis by using the
knowledge about control and data dependencies. Extensive
experiments as well as a real life example demonstrate the
efficiency of our approach.

1. Introduction
Depending on the particular application, a real-time system
has certain requirements on performance, cost,
dependability, size, etc. For hard real-time applications the
timing requirements are extremely important. Thus, in order
to function correctly, a real-time system implementing such an
application has to meet its deadlines.

In this paper we present an approach to schedulability
analysis for hard real-time systems that have both data and
control dependencies. We consider systems that are imple-
mented on distributed architectures consisting of multiple
programmable processors and, in our approach, the system
is modeled through a so called conditional process graph
(CPG) [5]. Such a graph captures both the flow of data and
that of control. Process scheduling is based on a static prior-
ity preemptive approach.

Process scheduling for performance estimation and syn-
thesis of real-time systems has been intensively researched
in the last years. The existing approaches differ in the sched-
uling strategy adopted, system architectures considered, han-
dling of the communication, and process interaction aspects.

Static non-preemptive scheduling of a set of processes on
a multiprocessor system has been discussed in [5, 7, 9, 16].
Preemptive scheduling of independent processes with static
priorities running on single processor architectures has its
roots in [11]. The approach has been later extended to ac-
commodate more general system models and has been also
applied to distributed systems [19]. The reader is referred to
[1] for a survey on this topic.

In many of the previous scheduling approaches research-
ers have assumed that processes are scheduled independent-
ly. However, this is not the case in reality, where process sets
can exhibit both data and control dependencies. Moreover,

knowledge about these dependencies can be used in order to
improve the accuracy of schedulability analyses and the
quality of produced schedules.

Static cyclic scheduling of processes with both data and
control dependencies has been addressed by us in [4, 5]. We
have discussed the particular aspects concerning communi-
cation in such distributed systems in [15, 16].

One way of dealing with data dependencies between pro-
cesses with static priority based scheduling has been indi-
rectly addressed by the extensions proposed for the
schedulability analysis of distributed systems through the
use of the release jitter [19]. Release jitter is the worst case
delay between the arrival of a process and its release (when it is
placed in the run-queue for the processor) and can include the
communication delay due to the transmission of a message
on the communication channel.

[18] and [20] use time offset relationships and phases, re-
spectively, in order to model data dependencies. Offset and
phase are similar concepts that express the existence of a
fixed interval in time between the arrivals of sets of process-
es. The authors show that by introducing such concepts into
the computational model, the pessimism of the analysis is
significantly reduced when bounding the time behaviour of
the system. [13] has later introduced the concept of dynamic
offsets and used them to model data dependencies [14].

When control dependencies exist then, depending on con-
ditions, only a subset of the set of processes is executed dur-
ing an invocation of the system. Modes have been used to
model a certain class of control dependencies [6]. Such a
model basically assumes that at the starting of an execution
cycle, a particular functionality is known in advance and is
fixed for one or several cycles until another mode change is
performed. However, modes cannot handle fine grained con-
trol dependencies, or certain combinations of data and con-
trol dependencies. Careful modeling using the periods of
processes (lower bound between subsequent re-arrivals of a
process) can also be a solution for some cases of control de-
pendencies [8]. If, for example, we know that a certain set of
processes will only execute every second cycle of the system,
we can set their periods to the double of the period of the rest
of the processes in the system. However, using the worst case
assumption on periods leads very often to unnecessarily pes-
simistic schedulability evaluations. More refined process
models can produce much better schedulability results, as
will be shown later. Recent works [2, 3] aim at extending the
existing models to handle control dependencies. [3] intro-
duces the recurring real-time task model that is able to cap-



ture lower level control dependencies, and presents an
exponential-time analysis for uniprocessor systems.

We propose in the next section a system model based on a
conditional process graph that is able to capture both data and
control dependencies. Then, we introduce a less pessimistic
schedulability analysis technique in order to bound the re-
sponse time of a distributed hard real-time system modeled in
such a way. Several algorithms, ranging from exponential-
time to polynomial-time, are proposed. In this paper we insist
on various aspects concerning dependencies between pro-
cesses. Other issues like communication protocol, bus arbi-
tration, packaging of messages, clock synchronization, as
discussed by us in [15], can easily be included in the analysis.

This paper is divided into 7 sections. The next section pre-
sents our graph-based abstract system representation. Section
3 formulates the problem and sections 4 and 5 present the
schedulability analyses proposed. The techniques are evalu-
ated in section 6, and section 7 presents our conclusions.

2. Conditional Process Graph
As an abstract model for system representation we use a di-

rected, acyclic, polar graph Γ(V, ES, EC). Each node Pi∈V
represents one process. Such a process can be an “ordinary”
process specified by the designer or a so called communica-
tion process which captures the message passing activity. ES
and EC are the sets of simple and conditional edges respective-
ly. ES ∩ EC = and ES ∪ EC = E, where E is the set of all
edges. An edge eij∈E from Pi to Pj indicates that the output of
Pi is the input of Pj. The graph is polar, which means that there
are two nodes, called source and sink, that conventionally rep-
resent the first and last process. These nodes are introduced as
dummy processes so that all other nodes in the graph are suc-
cessors of the source and predecessors of the sink respectively.

We consider a distributed architecture consisting of sev-
eral processors connected through busses. These busses can
be shared by several communication channels connecting
processes assigned to different processors.

We assume that each process is assigned to a processor
and each communication channel which connects processes
assigned to different processors is assigned to a bus.

The mapping of processes to processors and busses is given
by a function M: V→PE, where PE={pe1, pe2, .., peNpe} is
the set of processing elements (processors and busses). For any
process Pi, M(Pi) is the processing element to which Pi is
assigned for execution.

Each process Pi, assigned to processor or bus M(Pi), is char-
acterized by a worst case execution time Ci. In the process
graph depicted in Figure 1, P0 and P32 are the source and
sink nodes respectively. Nodes denoted P1, P2, .., P17, are
“ordinary” processes specified by the designer. Figure 1 also
shows the mapping of processes to three different proces-
sors. The communication processes are represented in Figure
1 as solid circles and are introduced for each connection
which links processes mapped to different processors. In this
paper we do not consider the message passing aspects which
we have analyzed in [15, 16].

An edge eij∈EC is a conditional edge (thick lines in Figure
1) and it has an associated condition. Transmission on such
an edge takes place only if the associated condition is satis-
fied. We call a node with conditional edges at its output a
disjunction node (and the corresponding process a disjunc-
tion process). Alternative paths starting from a disjunction
node, which correspond to a certain condition, are disjoint
and they meet in a so called conjunction node (with the cor-
responding process called conjunction process). Conditions
are dynamically computed by disjunction processes and
their value is unpredictable at the start of an execution cycle
of the conditional process graph. In Figure 1 circles repre-
senting conjunction and disjunction nodes are depicted with
thick borders. We assume that conditions are independent.

According to our model, we assume that a process, which
is not a conjunction process, can be activated only after all
its inputs have arrived. A conjunction process can be activat-
ed after messages coming on one of the alternative paths
have arrived. All processes issue their outputs when they ter-
minate. If we consider the activation time of the source pro-
cess as a reference, the finishing time of the sink process is
the delay of the system at a certain execution.

3. Problem Formulation
An application is modeled as a set ψ of n conditional pro-

cess graphs Γi, i = 1..n. Every process Pi in such a graph is
mapped to a certain processor, has a known worst-case exe-
cution time Ci, a deadline Di, and a uniquely assigned prior-
ity. All processes belonging to the same CPG Γi have the
same period TΓi which is the period of the respective condi-
tional process graph. Each CPG in the application has its
own independent period. Typically, global deadlines δΓi on
the delay of each CPG are imposed and not individual dead-
lines on processes.

We consider a priority based preemptive execution envi-
ronment, which means that higher priority processes will in-
terrupt the execution of lower priority processes. A lower
priority process can block a higher priority process (e.g., it isFigure 1. Conditional Process Graph
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in its critical section), and the blocking time is computed ac-
cording to the priority ceiling protocol [17].

We are interested to develop a schedulability analysis for
a system modeled as a set of conditional process graphs. For
the rest of the paper we will consider that global deadlines
are imposed on each CPG. The approach can be easily ex-
tended if individual deadlines are imposed on processes.

To show the relevance of our problem, let us consider the ex-
ample depicted in Figure 2, where we have a system modeled
as two conditional process graphs Γ1 and Γ2 with a total of 9
processes (processes P0, P8, P9 and P12 are dummy processes
and are not counted), and one condition. The processes are
mapped on three different processors as indicated by the shad-
ing in Figure 2, and the worst case execution time in millisec-
onds for each process on its respective processor is depicted to
the left of each node. Γ1 has a period of 200 ms, Γ2 has a period
of 150 ms. The deadlines are 100 ms on Γ1 and 90 ms on Γ2.

Table 1 presents the estimated worst case delay on the two
graphs. In the column labeled “no conditions” we have the re-
sults for the case when the analysis is applied to the set of pro-
cesses, ignoring control dependencies. This results in a worst
case delay of 120 ms for Γ1 and 82 ms for Γ2. Thus, the sys-
tem is considered to be not schedulable.

However, this analysis assumes as a worst case scenario the
possible activation of all nine processes for each execution of
the system. This is the solution which will be obtained using
a dataflow graph representation of the system. However, con-
sidering the CPG Γ1 in Figure 2, it is easy to observe that pro-
cess P3 on the one side and processes P2 and P4 on the other
side will not be activated during the same period of Γ1.

Making use of this information for the analysis we obtain
a worst case delay of 100 ms, for Γ1, as shown in Table 1 in
the column headed “conditions”, which indicates that the
system is schedulable.

4. Schedulability Analysis for Task Graphs
with Data Dependencies

Methods for schedulability analysis of data dependent
processes with static priority preemptive scheduling have
been proposed in [18] and [20].

They use the concept of offset or phase, respectively, in
order to handle data dependencies. [18] shows that the pes-

simism of the analysis is reduced through the introduction of
offsets. The offsets have to be determined by the designer.

[20] provides a framework that iteratively finds the phas-
es (offsets) for all processes, and then feeds them back into
the schedulability analysis which in turn is used again to de-
rive better phases. Thus, the pessimism of the analysis is it-
eratively reduced.

We have used the framework provided by [20] as a starting
point for our analysis. The response time of a process Pi is:

 (1)

where hp(Pi) is the set of processes that have higher priority
than Pi, and Oij is the phase of Pj relative to Pi.

As a first step we have extended this analysis to real-time
systems that use the time-triggered protocol as the underly-
ing communication infrastructure [15]. However, for the
sake of simplicity, we do not consider the communication of
messages in this paper.

In [20] a system is modeled as a set S of n task graphs Gi,
i = 1..n. The system model assumed and the definition of a
task graph are similar to our CPG , but without considering
any conditions. The aim of the schedulability analysis in
[20] is to derive an as tight as possible worst case delay on
the execution time of each of the task graphs in the system.
This delay estimation is done using the algorithm DelayEsti-
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Figure 2. System with Control and Data Dependencies

CPG
Worst Case Delays

no conditions conditions

Γ1 120 100

Γ2 82 82

Table 1: Worst Case Delays for the System in Fig. 2

ri Ci C j
ri Oij–

T j
-----------------

j∀ hp Pi( )∈
∑+=

Figure 3. Delay Estimation and Schedulability
Analysis for Task Graphs

DelayEstimate(task graph G, system S)
-- derives the worst case delay of a task graph G considering
-- the influence from all other task graphs in the system S

for each pair (Pi, Pj) in G
maxsep[Pi, Pj] = ∞

end for
step = 0
repeat

LatestTimes(G)
EarliestTimes(G)
for each Pi ∈ G

MaxSeparations(Pi)
end for

until maxsep is not changed or step < limit
return the worst case delay δG of the graph G

end DelayEstimate

SchedulabilityTest(system S)
-- derives the worst case delay for each task graph in the system
-- and verifies if the deadlines are met

for each task graph Gi ∈ S
DelayEstimate(Gi, S)

end for
if all task graphs meet their deadline system S is schedulable

end SchedulabilityTest



mate described in Figure 3.
At the core of this algorithm is a worst case response time

calculation based on offsets, similar to the analysis in [18].
Thus, in the LatestTimes function worst case response times
and upper bounds for the offsets are calculated, while the Ear-
liestTimes function calculates the lower bounds of the offsets.

The LatestTimes function is a modified critical-path algo-
rithm that calculates for each node of the graph the longest
path to the sink node. Thus, during the topological traversal
of the graph G within LatestTimes, for each process Pi, the
worst case response time ri is calculated according to the
equation (1). This value is based on the values of the offsets
known so far. Once an ri is calculated, it can be used to de-
termine and update offsets for other successor processes.
Accordingly, the EarliestTimes function determines the low-
er bounds on the offsets. The influence on graph G from oth-
er graphs in the system is considered in both of the functions
mentioned earlier.

These calculations can be improved by realizing that for
a process Pi, there might exist a process Pj mapped on the
same processor, with priority(Pi) < priority(Pj), such that
their execution windows never overlap. In this case, the term
in the equation (1) that expresses the influence of Pj on the
execution of Pi can be dropped, resulting in a tighter worst
case response time calculation. This situation is expressed
through the so called maxsep table, computed by the Max-
Separations function, whose value maxsep[Pi, Pj] is less
than or equal to 0 if the two processes never overlap during
their execution. maxsep stands for maximum separation, an
analysis modified from [12] that builds the maxsep table
based on the worst case execution times and offsets deter-
mined in EarliestTimes and LatestTimes.

Having a better view on the maximum separation between
each pair of processes, tighter worst case execution times and
offsets can be derived, which in turn contribute to the update
of the maxsep table. This iterative tightening process is repeat-
ed until there is no modification to the maxsep table, or a cer-
tain imposed limit on the number of iterations is reached.

Finally, the DelayEstimate function returns the worst-case
delay δG estimated for a task graph G, as the latest time when

the sink node of G can finish its execution. Based on the delays
produced by DelayEstimate, the function SchedulabilityTest in
Figure 3 concludes on the schedulability of the system.

5. Schedulability Analysis for CPGs
Before introducing our approach to schedulability analysis

of conditional process graphs, two concepts have to be intro-
duced: the unconditional subgraphs and the process guards.

Depending on the values calculated for the conditions,
different alternative paths through a conditional process
graph are activated for a given activation of the system. To
model this, a boolean expression XPi, called guard, can be
associated to each node Pi in the graph. It represents the nec-
essary condition for the respective process to be activated. In
Figure 4, for example, XP4=C∧D, XP5=C, XP9=true,
XP11=true, and XP12=K.

We call an alternative path through a conditional process
graph, resulting from a combination of conditions, an
unconditional subgraph, denoted by g. For example, the
CPG Γ1 in Figure 4 has three unconditional subgraphs,
corresponding to the following three combinations of
conditions: C∧D, C∧D, and C. The unconditional subgraph
corresponding to the combination C∧D in the CPG Γ1
consists of processes P1, P2, P4, P6, P7, P9 and P10.

The guards of each process, as well as the unconditional
subgraphs resulting from a conditional process graph Γ can
be determined through a simple recursive topological
traversal of Γ.

5.1 Ignoring Conditions (IC)
A straightforward approach to the schedulability analysis of
systems represented as CPGs is to ignore control dependencies
and to apply the schedulability analysis as described in section
4 (the algorithm SchedulabilityTest in Figure 3).

This means that conditional edges in the CPGs are con-
sidered like simple edges and the conditions in the model are
dropped. What results is a system S consisting of simple task
graphs Gi, each one resulted from a CPG Γi of the given sys-
tem ψ. The system S can then be analyzed using the algo-
rithm in Figure 5. It is obvious that if the system S is
schedulable, the system ψ is also schedulable.

This approach, which we call IC, is, of course, very pes-
simistic. However, this is the current practice when worst
case arrival periods are considered and classical data flow
graphs are used for modeling and scheduling.

5.2 Brute Force Solution (BF)
The pessimism of the previous approach can be reduced by

Figure 4.  Example of two CPGs
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Figure 5. Schedulability Analysis Ignoring Conditions

SA/IC(system ψ)
-- verifies the schedulability of a system consisting of a set of
-- conditional process graphs

transform each Γi ∈ ψ into the corresponding Gi ∈ S
SchedulabilityTest(S)
if S is schedulable, system ψ is schedulable

end SA/IC



using a conditional process graph model. A simple, brute
force solution is to apply the schedulability analysis
presented in section 4, after the CPGs have been
decomposed into their constituent unconditional subgraphs.

Consider a system ψ which consists of n CPGs Γi, i =
1..n. Each CPG Γi can be decomposed into ni unconditional
subgraphs gj

i , j = 1..ni. In Figure 4, for example, we have 3
unconditional subgraphs g1

1, g2
1, g3

1 derived from Γ1 and
two, g1

2, g2
2 derived from Γ2.

At the same time, each CPG Γi can be transformed (as
shown in subsection 5.1) into a simple task graph Gi, by
transforming conditional edges into ordinary ones and drop-
ping the conditions. When deriving the worst case delay on
Γi we apply the analysis from section 4 (algorithm DelayEs-
timate in Figure 3) separately to each unconditional sub-
graph gj

i in combination with the graphs (G1, G2, ...Gi-1,
Gi+1, Gn). This means that we consider each alternative path
from Γi in the context of the system, instead of the whole
subgraph Gi as in the previous approach. This is described
by the algorithm DE/CPG in Figure 6 a). The schedulability
analysis is then based on the delay estimation for each CPG
as shown in the algorithm SA/BF in Figure 6 b).

Such an approach, we call it BF, while producing tight
bounds on the delays, can be expensive from the runtime
point of view, because it is applied for each unconditional
subgraph. In general, the number of unconditional sub-
graphs can grow exponentially. However, for many of the
practical systems this is not the case, and the brute force
method can be used. Alternatively, less expensive methods,
like those presented below, should be applied.

5.3 Condition Separation (CS)
In some situations, the explosion of unconditional subgraphs
makes the brute force method inapplicable. Thus, we need to
find an analysis that is situated somewhere between the two
alternatives discussed in 5.1 and 5.2, which means its should
be not too pessimistic and should run in acceptable time.

A first idea is to go back to the DelayEstimate algorithm
in Figure 3, and use the knowledge about conditions in order
to update the maxsep table. Thus, if two processes Pi and Pj
never overlap their execution because they execute under al-
ternative values of conditions, then we can update max-
sep[Pi, Pj] to 0, and thus improve the quality of the delay
estimation. Two processes Pi and Pj never overlap their exe-
cution if there exists at least one condition C, so that C ⊂ XPi
(XPi is the guard of process Pi) and C ⊂ XPj.

In this approach, called CS, we practically use the same
algorithm as for ordinary task graphs and try to exploit the
information captured by conditional dependencies in order
to exclude certain influences during the analysis. In Figure 7
we show the algorithm SA/CS which performs the schedula-
bility analysis based on this heuristic.

5.4 Relaxed Tightness Analysis (RT)
The two approaches discussed here are similar to the brute
force algorithm (Figure 6) presented in section 5.2.
However, they try to improve on the execution time of the
analyses by reducing the complexity of the DelayEstimate
algorithm (Figure 3) which is called from the DE/CPG

Figure 6. Brute Force Schedulability Analysis

DE/CPG(CPG Γ, system S)
-- derives the worst case delay of a CPG Γ considering
-- the influence from all other task graphs in the system S

extract all unconditional subgraphs gj from Γ
for each gj

DelayEstimate(gj, S)
end for
return the largest of the delays, which is

the worst case delay δΓ of CPG Γ
end DE/CPG

a) DE/CPG -- Delay Estimate for Conditional Process Graphs

SA/BF(system ψ)
-- verifies the schedulability of a system consisting of a set ψ of
-- conditional process graphs

transform each Γi ∈ψ into the corresponding Gi ∈S
for each Γi ∈ψ

DE/CPG(Γi, {G1, G2, ...Gi-1, Gi+1, Gn})
end for
if all CPGs meet their deadline the system ψ is schedulable

end SA/BF

b) SA/BF -- Schedulability Analysis: the Brute Force approach

Figure 7. Schedulability Analysis using Condition
Separation

SA/CS(system ψ)
-- verifies the schedulability of a system consisting of a set ψ of
-- conditional process graphs

transform each Γi ∈ ψ into the corresponding Gi ∈ S
and keep guard XPi for each Pi

for each Gi ∈ S
-- derives the worst case delay of a task graph Gi considering
-- the influence from all other task graphs in the system S
for each pair (Pi , Pj) in Gi

maxsep[Pi, Pj] = ∞
end for
step = 0
repeat

LatestTimes(Gi)
EarliestTimes(Gi)
for each Pi ∈ Gi

MaxSeparations(Pi)
end for
for each pair (Pi , Pj) in Gi

if ∃C, C ⊂ XPi ∧ C ⊂ XPj then
maxsep[Pi, Pj] = 0

end if
end for

until maxsep is not changed or step < limit
δΓi is the worst case delay for Γi

end for

if all CPGs meet their deadline, the system ψ is schedulable
end SA/CS



function (Figure 6 a). This will reduce the execution time of
the analysis, not by reducing the number of subgraphs which
have to be visited (like in section 5.3), but by reducing the
time needed to analyze each subgraph. As our experimental
results show (section 6) this approach can be very effective
in practice. Of course, by the simplifications applied to
DelayEstimate the quality of the analysis is reduced in
comparison to the brute force method.

We have considered two alternatives of which the first one
is more drastic while the second one is trying a more refined
trade-off between execution time and quality of the analyses.

With both these approaches, the idea is not to run the
iterative tightening loop in DelayEstimate that repeats until
no changes are made to maxsep or until the limit is reached.
While this tightening loop iteratively reduces the pessimism
when calculating the worst case response times, the actual
calculation of the worst case response times is done in
LatestTimes, and the rest of the algorithm in Figure 3 just
tries to improve on these values. For the first approach,
called RT1 the function DelayEstimate has been transformed
like in Figure 8 a).

However, it might be worth using at least the
MaxSeparations in order to obtain tighter values for the
worst case response times. For the alternative RT2 in Figure
8 b), DelayEstimateRT2 first calls LatestTimes and
EarliestTimes, then MaxSeparations in order to build the
maxsep table, and again LatestTimes to tighten the worst
case response times.

6. Experimental Results
We have performed several experiments in order to evaluate
the different approaches proposed. The two main aspects we
were interested in are the quality of the schedulability analysis
and the scalability of the algorithms for large examples. A first
set of massive experiments were performed on conditional
process graphs generated for experimental purpose.

We considered architectures consisting of 2, 4, 6, 8 and 10
processors. 40 processes were assigned to each node, resulting

in graphs of 80, 160, 240, 320 and 400 processes, having 2, 4,
6, 8 and 10 conditions, respectively. The number of uncondi-
tional subgraphs varied for each graph dimension depending
on the number of conditions and the randomly generated struc-
ture of the CPGs. For example, for CPGs with 400 processes,
the maximum number of unconditional subgraphs is 64.

30 graphs were generated for each graph dimension, thus
a total of 150 graphs were used for experimental evaluation.
Worst case execution times were assigned randomly using
both uniform and exponential distribution. All experiments
were run on a Sun Ultra 10 workstation.

In order to compare the quality of the schedulability ap-
proaches, we need a cost function that captures, for a certain
system, the difference in quality between the schedulability
approaches proposed. Our cost function is the difference be-
tween the deadline and the estimated worst case delay of a
CPG, summed for all the CPGs in the system:

where n is the number of CPGs in the system, δΓi is the
estimated worst case delay of the CPG Γi, and DΓi is the
deadline on Γi. A higher value for this cost function, for a
given system, means that the corresponding approach
produces better results (schedulability analysis is less
pessimistic).

For each of the 150 generated example systems and each
of the five approaches to schedulability analysis we have
calculated the cost function mentioned previously, based on
results produced with the algorithms described in section 5.
These values, for a given system, differ from one analysis to
another, with the BF being the least pessimistic approach
and therefore having the largest value for the cost function.

We are interested to compare the five analyses, based on
the values obtained for the cost function. Thus, Figure 9 a)
presents the average percentage deviations of the cost
function obtained in each of the five approaches, compared
to the value of the cost function obtained with the BF
approach. A smaller value for the percentage deviation
means a larger cost function, thus a better result. The
percentage deviation is calculated according to the formula:

Figure 9 b) presents the average runtime of the
algorithms, in seconds.

The brute force approach, BF, performs best in terms of
quality and obtains the largest values for the cost function of
the systems at the expense of a large execution time. The
execution time can be up to 7 minutes for large graphs of 400
processes, 10 conditions, and 64 unconditional subgraphs.
At the other end, the straightforward approach IC that
ignores the conditions, performs worst and becomes more
and more pessimistic as the system size increases. As can be
seen from Figure 9 a), IC has even for smaller systems of 160
processes (3 conditions, maximum 8 unconditional
subgraphs) a 50% worse quality than the brute force

Figure 8. Delay Estimation for the RT Approaches

DelayEstimateRT1(task graph G, system S)
LatestTimes(G)

end DelayEstimateRT1

a) Delay Estimation for RT1

DelayEstimateRT2(task graph G, system S)
for each pair (Pi , Pj) in Gi

maxsep[Pi, Pj] = ∞
end for
LatestTimes(G)
EarliestTimes(G)
for each Pi ∈ G

MaxSeparations(Pi)
end for
LatestTimes(G)

end DelayEstimateRT2

a) Delay Estimation for RT2

cost function DΓi
δΓi
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---------------------------------------------------- 100⋅=



approach, with almost 80% loss in quality, in average, for
large systems of 400 processes. It is interesting to mention
that the low quality IC approach has also an average
execution time which is equal or comparable to the much
better quality heuristics (except the BF, of course). This is
because it tries to improve on the worst case delays through
the iterative loop presented in DelayEstimate, Figure 3.

Let us turn our attention to the three approaches CS, RT1,
and RT2 that, like the BF, consider conditions during the
analysis but also try to perform a trade-off between quality
and execution time. Figure 9 shows that the pessimism of the
analysis is dramatically reduced by considering the condi-
tions during the analysis. The RT1 and RT2 approaches, that
visit each unconditional subgraph, perform in average better
than the CS approach that considers condition separation for
the whole graph. However, CS is comparable in quality with
RT1, and even performs better for graphs of size smaller
than 240 processes (4 conditions, maximum 16 subgraphs).

The RT2 analysis that tries to improve the worst case re-
sponse times using the MaxSeparations, as opposed to RT1,
performs best among the non-brute-force approaches. As
can be seen from Figure 9, RT2 has less than 20% average
deviation from the solutions obtained with the brute force
approach. However, if faster runtimes are needed, RT1 can
be used instead, as it is twice faster in execution time than
RT2.

We were also interested to compare the five approaches
with respect to the number of unconditional subgraphs and
the number of conditional process graphs that form a system.
For the results depicted in Figure 10 we have assumed CPGs
consisting of 2, 4, 8, 16, and 32 unconditional subgraphs of
maximum 50 processes each, allocated to 8 processors. Fi-
gure 10 shows that as the number of subgraphs increases, the
differences between the approaches grow while the ranking
among them remains the same, as resulted from Figure 9.
The CS approach performs better than RT1 with a smaller
number of subgraphs, but RT1 becomes better as the number
of subgraphs in the CPGs increases. Figure 11 presents on a

logarithmic scale the average percentage deviations for sys-
tems consisting of 1, 2, 3, 4 and 5 conditional process graphs
of 160 nodes each. As the number of conditional process
graphs increases, the IC and CS approaches become more
pessimistic. However, RT1 and RT2 perform very well, with
RT2 being the least pessimistic approach (except the BF ap-
proach, not depicted in Figure 11).

Finally, we considered a real-life example implementing
a vehicle cruise controller modeled using a conditional pro-
cess graph. The graph has 32 processes, two conditions (4
subgraphs), and it was mapped on an architecture consisting
of 4 nodes (processors), namely: Anti Blocking System,
Transmission Control Module, Engine Control Module and
Electronic Throttle Module. The period of the CPG was 200
ms, and the deadline was set to 110 ms. Without considering
the conditions, IC obtained a worst case delay of 138 ms,
thus the system resulted as being unschedulable. The same
result was obtained with the CS approach, and this is
because the alternative paths were mapped on different pro-
cessors, thus not influencing each other. However, the brute
force approach BF produced a worst case delay of 104 ms
which proves that the system implementing the vehicle
cruise controller is, in fact, schedulable. Both RT1 and RT2
produced the same worst case delay of 104 ms as the BF.
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Figure 9. a) Average Percentage Deviation (left) and b) Average Execution Time (right) for each of the five analyses



7. Conclusions
In this paper we proposed solutions to the schedulability
analysis of hard real-time systems with control and data
dependencies.

The systems are modeled through a set of conditional pro-
cess graphs that are able to capture both the flow of data and that
of control. We consider distributed architectures, and the sched-
uling policy is based on a static priority preemptive strategy.

Five approaches to the schedulability analysis of such sys-
tems are proposed. Extensive experiments and a real-life exam-
ple show that by considering the conditions during the analysis,
the pessimism of the analysis can be drastically reduced.

While the brute force approach BF performed best at the
expense of execution time, the RT2 approach is able to ob-
tain results with less than 20% average loss in quality, in a
very short time.
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Figure 11. Avg. Deviations Based on the No. of CPGs
Number of Conditional Process Graphs
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