Scheduling with Optimized Communication for Time-Triggered Embedded Systems

Conditional Process Graph

- Directed, acyclic polar graph with conditional edges used for system representation.
- Each node represents a process assigned to a processing element.
- Conditional edges (in red) have an associated condition. Transmission will take place only if the associated condition is satisfied.
- A process is activated when all its inputs have arrived and issues its outputs when it terminates.
- A process can not be preempted.

Time-Triggered Protocol

- TTP was designed for distributed real-time applications that require predictability and reliability.
- The bus access scheme is timedivision multiple-access (TDMA).
- Each node can transmit only during a predetermined time interval, its TDMA slot. A sequence of slots for all nodes is a TDM round. Several rounds can form a cycle that is repeated periodically.
- Every node has a TTP controller.
 The TDMA access scheme is imposed by a message descriptor list (MEDL) located in every controller.
- MEDL serves as a schedule table for the TTP controller which knows when to send/receive a message.

Slot				
		1.		
S ₀ S ₁	$S_2 \mid S_3 \mid S_0$	S ₁ S	2 S ₃	
TDMA Ro	ound Cual	e of two ro	undo "	Frames

Summary

- Scheduling algorithms proposed can be used both for performance estimation and for system synthesis.
- System model capturing both the flow of data and that of control.
- Communication using time-triggered protocol (TTP) implementation.
- Improved schedule quality by considering the overheads of the real-time kernel and communication protocol.

Hardware Architecture

- Safety-critical distributed embedded systems.
- Nodes connected by a broadcast communication channel.
- Nodes consisting of a TTP controller, a CPU, a RAM, a ROM and an I/O interface to sensors and actuators.
- Communication is based on the TTP.

Software Architecture

- Real-time kernel on the CPU in each node.
- Local schedule table in each kernel.
- The worst case administrative overheads:
 - Ut timer interrupt routine
 - δ_{PA} process activation overhead
 - δ_{S} $\ \ \, sending a message on the same node$
- δ_{KS} sending a message between nodes
- δ_{KR} receiving a message from another node

Problem Formulation

- Input: Safety-critical application modelled by a conditional process graph.
- Mapping of processes to nodes is given.
- Worst case execution delay of a process P_i is: $T_P = (\delta_{PA} + t_P + \theta_C + \theta_C) \cdot (1 + U_t)$ where:

$$\boldsymbol{\theta}_{C_1} = \sum_{i=1}^{N_{out}^{local}(P_i)} \boldsymbol{\delta}_{S_i} = \sum_{i=1}^{N_{out}^{remote}(P_i)} \boldsymbol{\delta}_{KS_i} + \sum_{i=1}^{N_{in}^{remote}(P_i)} \boldsymbol{\delta}_{KK_i}$$

Output: Local schedule tables and MEDL, delay (smallest) on the system execution.

Scheduling Strategy

- Sequence and lengths of the slots in a TDMA round are determined to reduce the delay.
- Previous work extended to handle scheduling of messages within TTP for a given TDMA configuration.
- Two approaches: Greedy heuristic, Simulated Annealing.
- Two variants: Greedy 1 tries all slot lengths, while Greedy 2 uses feedback from the schedule_message.
- SA parameters are set to guarantee finding near-optimal solutions in a reasonable time.

No.of proc.		ive gner	Greedy 1		Greedy 2			
	aver.	max.	aver.	max.	time.	aver.	max.	time
80	3.16%	21%	0.02%	0.5%	0.25s	1.8%	19.7%	0.04s
160	14.4%	53.4%	2.5%	9.5%	2.07s	4.9%	26.3%	0.28s
240	37.6%	110%	7.4%	24.8%	0.46s	9.3%	31.4%	1.34s
320	51.5%	135%	8.5%	31.9%	34.69s	12.1%	37.1%	4.8s
400	48%	135%	10.5%	32.9%	56.04s	11.8%	31.6%	8.2s

Percentage deviations of the schedule lengths produced by Greedy 1 and Greedy 2 from the lengths of the near-optimal schedules obtained with the SA algorithm, and the average execution time expressed in seconds.

