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Abstract 
We present an approach to static priority preemptive 

process scheduling for the synthesis of hard real-time 
distributed embedded systems where communication plays 
an important role. The communication model is based on a 
time-triggered protocol. We have developed an analysis for  
the communication delays proposing four different message 
scheduling policies over a time-triggered communication 
channel. Optimization strategies for the synthesis of 
communication are developed, and the four approaches to 
message scheduling are compared using extensive 
experiments. 

1. Introduction 
Depending on the particular application, an embedded 

system has certain requirements on performance, cost, de- 
pendability, size, etc. For hard real-time applications the 
timing requirements are extremely important. Thus, in order 
to function correctly, an embedded system implementing such 
an application has to meet its deadlines. One of the typical ap- 
plication areas for such systems is that of safety-critical auto- 
motive applications (e.g. drive-by-wire, brake-by-wire) [ 171. 

In this paper we concentrate on certain aspects concern- 
ing the synthesis of embedded hard real-time systems which 
are implemented on distributed architectures consisting of 
multiple programmable processors and ASICs. Process 
scheduling is based on a static priority preemptive approach 
while the bus communication is statically scheduled. 

Process scheduling for performance estimation and syn- 
thesis of embedded systems has been intensively researched 
in the last years. The existing approaches differ in the sched- 
uling strategy adopted, system architectures considered, han- 
dling of the communication, and process interaction aspects. 

Static non-preemptive scheduling of a set of processes on 
a multiprocessor system has been discussed in [2,4,5,  101. 
Preemptive scheduling of independent processes with static 
priorities running on single processor architectures has its 
roots in [7]. The approach has been later extended to accom- 
modate more general computational models and has been 
also applied to distributed systems [15]. The reader is re- 
ferred to [ 11 for a survey on this topic. 

Although different scheduling strategies have been 
adapted to accommodate distributed architectures, research- 
ers have often ignored or very much simplified aspects con- 
cerning the communication infrastructure. One typical 
approach is to consider communication processes as pro- 
cesses with a given execution time (depending on the 
amount of information exchanged) and to schedule them as 

any other process, without considering issues like commu- 
nication protocol, bus arbitration, packaging of messages, 
clock synchronization, etc. 

Currently, more and more real-time systems are used in 
physically distributed environments and have to be implement- 
ed on distributed architectures in order to meet reliability, 
functional, and performance constraints. Thus, in order to 
guarantee that real-time characteristics are fulfilled analysis has 
been done for different communication protocols. The CAN 
bus is analyzed in [ 131, a 802.5-style token ring and a simple 
TDMA protocol are analyzed in [14], in [ 161 P-NET networks 
are investigated, while in [3] the ATM protocol is considered. 

In this paper we consider the time-triggered protocol 
(TTP) [6] as the communication infrastructure for a distrib- 
uted real-time system. Processes are scheduled according to 
a static priority preemptive policy. We first perform the 
schedulability analysis considering four different ap- 
proaches to message scheduling. After this, we go one step 
further by showing how the parameters of the communica- 
tion protocol can be optimized in order to fit the communi- 
cation particularities of a certain application. 
TTP has been classically associated with non-preemptive 

static scheduling of processes, mainly because of fault tol- 
erance reasons [ 5 ] .  In [lo] we have addressed the issue of 
non-preemptive static process scheduling and communica- 
tion synthesis using TTP. 

However, considering preemptive priority based sched- 
uling at the process level, with time triggered static sched- 
uling at the communication level can be the right solution 
under certain circumstances [8]. A communication protocol 
like TTP provides a global time base, improves fault-toler- 
ance and predictability. At the same time, certain particular- 
ities of the application or of the underlying real-time 
operating system can impose a priority based scheduling 
policy at the process level. 

The paper is divided into 7 sections. The next section 
presents the architectures considered for system implemen- 
tation. The computational model assumed and formulation of 
the problem are presented in section 3, and section 4 presents 
the schedulability analysis for each of the four approaches 
considered for message scheduling. The optimization strate- 
gy is presented in section 5, and the four approaches are eval- 
uated in section 6. The last section presents our conclusions. 

2. System Architecture 
2.1 Hardware Architecture 

We consider architectures consisting of nodes connected 
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2.2 Software Architecture 
We have designed a software architecture which runs on 

the CPU in each node, and which has a real-time kernel as 
its main component. We consider a time-triggered system, 
which means that there are no other interrupts except for the 
timer interrupt. Each kernel has a so called tick scheduler 
that is activated periodically by the timer interrupts and de- 
cides on activation of processes, based on their priorities, 
Several activities, like polling of the I/O or diagnostics, take 
also place in the timer interrupt routine. 

In order to run a predictable hard real-time application 
the overhead of the kernel and the worst case administrative 
overhead (WCAO) of every system call has to be deter- 
mined. Our schedulability analysis takes into account these 
overheads, and also the overheads due to the message passing. 

The message passing mechanism is illustrated in Figure 3, 
where we have three processes, P, to P,. P, and P2 are 
mapped to node No that transmits in slot So, and P3 is mapped 
to node N, that transmits in slot S, .  Message m, is transmit- 
ted between P, and P2 that are on the same node, while mes- 
sage m2 is transmitted from P1 to P3 between the two nodes. 

Messages between processes located on the same proces- 
sor are passed through shared protected objects. The over- 
head for their communication is accounted for by the 
blocking factor, computed according to the priority ceiling 
protocol [9]. 

Message m2 has to be sent from node No to node N,. 
Thus, after m2 is produced by P1, it will be placed into an 
outgoing message queue, called Out. The access to the 
queue is guarded by a priority-ceiling semaphore. A so 
called transfer process (denoted with T in Figure 3) moves 
the message from the Out queue into the MBI. 

How the message queue is organized and how the mes- 
sage transfer process selects the particular messages and as- 
sembles them into a frame, depends on the particular 
approach chosen for message scheduling (see Section 4). 
The message transfer process is activated at certain a priori 
known moments, by the tick scheduler in order to perform 
the message transfer. These activation times are stored in a 
message handling time table (MHTT) available to the real- 
time kernel in each node. Both the MEDL and the MHTT 
are generated off-line as result of the schedulability analysis 
and optimization which will be discussed later. The MEDL 

- Figure 1. System Architecture 
by a broadcast communication channel (Figure 1). Every 
node consists of a TI" controller, a CPU, a RAM, a ROM 
and an I/O interface to sensors and actuators. A node can also 
have an ASIC in order to accelerate parts of its functionality. 

Communication between nodes is based on the 'ITP [6]. 
'ITP was designed for distributed real-time applications that 
require predictability and reliability (e.g, drive-by-wire). It in- 
tegrates services necessary for fault-tolerant real-time systems. 

The communication channel is a broadcast channel, so a 
message sent by a node is received by all the other nodes. The 
bus access scheme is time-division multiple-access (TDMA) 
(Figure 2) .  Each node Ni can transmit only during a predeter- 
mined time interval, the so called TDMA slot Si. In such a slot, 
a node can send several messages packaged in a frame. A se- 
quence of slots corresponding to all the nodes in the architec- 
ture is called a TDMA round. A node can have only one slot 
in a TDMA round. Several TDMA rounds can be combined 
together in a cycle that is repeated periodically. The sequence 
and length of the slots are the same for all the TDMA rounds. 
However, the length and contents of the frames may differ. 

Every node has a "P controller that implements the 
protocol services, and runs independently of the node's 
CPU. Communication with the CPU is performed through a 
so called message base interface (MBI) which is usually im- 
plemented as a dual ported RAM (see Figure 3). 

The TDMA access scheme is imposed by a so called mes- 
sage descriptor list (MEDL) that is located in every 'ITP con- 
troller. The MEDL basically contains: the time when a frame 
has to be sent or received, the address of the frame in the 
MBI and the length of the frame. MEDL serves as a schedule 
table for the TTP controller which has to know when to send 
or receive a frame to or from the communication channel. 

The 'ITP controller provides each CPU with a timer in- 
terrupt based on a local clock, synchronized with the local 
clocks of the other nodes. The clock synchronization is done 
by comparing the a priori known time of arrival of a frame 
with the observed arrival time. By applying a clock synchro- 
nization algorithm, 'ITP provides a global time-base of known 
precision, without any overhead on the communication. 

w Cycle of two rounds ,! TDMARound ). 

Figure 2. Buss Access Scheme 
Round2  ' 

.I c 

Figure 3. Message Passing Mechanism 
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imposes the times when the TTP controller of a certain node 
has to move frames from the MBI to the communication 
channel. The MHTT contains the times when messages have 
to be transferred by the message transfer process from the Out 
queue into the MBI, in order to further be broadcasted by the 
TIT controller. As result of this synchronization, the activa- 
tion times in the MHTT are directly related to those in the 
MEDL and the first table results directly form the second one. 

It is easy to observe that we have the most favorable situ- 
ation when, at a certain activation, the message transfer pro- 
cess finds in the Out queue all the “expected” messages which 
then can be packed into the just following frame to be sent by 
the TTP controller. However, application processes are not 
statically scheduled and availability of messages in the Out 
queue can not be guaranteed at fixed times. Worst case situa- 
tions have to be considered as will be shown in Section 4. 

Let us come back to Figure 3. There we assumed a con- 
text in which the broadcasting of the frame containing mes- 
sage m2 is done in the slot So of Round 2.  The TTP 
controller of node N ,  knows from its MEDL that it has to 
read a frame from slot So of Round 2 and to transfer it into 
its MBI. In order to synchronize with the TTP controller and 
to read the frame from the MBI, the tick scheduler on node 
N,  will activate, based its local MHTT, a so called delivery 
process, denoted with D in Figure 3. The delivery process 
takes the frame from the MBI, and extracts the messages from 
it. For the case when a message is split into several packets, 
sent over several TDMA rounds, we consider that a message 
has arrived at the destination node after all its corresponding 
packets have arrived. When m2 has arrived, the delivery pro- 
cess copies it  to process P3 which will be activated. Activation 
times for the delivery process are fixed in the MHTT just as 
explained earlier for the message transfer process. 

The number of activations of the message transfer and de- 
livery processes depend on the number of frames transferred, 
and they are taken into account in our analysis, as well as the 
delay implied by the propagation on the communication bus. 

3. Problem Formulation 
We model an application as a set of processes. Each process 
pi is allocated to a certain processor, has a known worst-case 
execution time Ci, a period Ti, a deadline Di and a uniquely 
assigned priority. For aperiodic processes, Ti represents the 
minimum time between successive arrivals. We consider a 
preemptive execution environment, which means that high- 
er priority processes can interrupt the execution of lower 
priority processes. A lower priority process can block a 
higher priority process (e.g., it is in its critical section), and 
the blocking time is computed according to the priority ceil- 
ing protocol. Processes exchange messages, and for each 
message mi we know its size Smi. A message is sent once in 
every n, invocations of the sending process, and has a 
unique destination process. Each process is allocated to a 

I 

node of our distributed architecture, and the messages are 
transmitted according to the TTP. 

We are interested to synthesize the MEDL of the TTP 
controllers (and as a direct consequence, also the MHTTs) 
so that the process set is schedulable on an as cheap (slow) 
as possible processor set. 

4. Schedulability Analysis 
Under the assumptions presented in the previous section 

Tindell et al. [ 151 integrate processor and communication 
schedulability and provide a “holistic” schedulability anal- 
ysis in the context of distributed real-time systems with 
communication based on a simple TDMA protocol. The ba- 
sic idea is that the release jitter of a destination process depends 
on the communication delay between sending and receiving a 
message. The release jitter of a process is the worst case delay 
between the arrival of the process and its release (when it is 
placed in the run-queue for the processor). The communica- 
tion delay is the worst case time spent between sending a mes- 
sage and the message arriving at the destination process. 

Thus, for a process d(m) that receives a message m from 
a sender process s(m), the release jitter is: 
Jd(,,,) = ,rs(,) + a ,  + rdeliver + T r i c k ,  where rs(m) is the re- 
sponse time of the process sending the message, a,,, (worst 
case arrival time) is the worst case time needed for message 
m to arrive at the communication controller of the destina- 
tion node, rdeliver is the response time of the delivery process 
(see section 2.2), and Ttick is the jitter due to the operation 
of the tick scheduler. The communication delay for a mes- 
sage m is C ,  = a ,  + rdel iver .  a,,, itself is the sum of the ac- 
cess delay and the propagation delay. The access delay is the 
time a message queued at the sending processor spends 
waiting for the use of the communication channel. In a, we 
also account for the execution time of the message transfer 
process (see section 2.2). The propagation delay is the time 
taken for the message to reach the destination processor 
once physically sent by the corresponding ‘ITP controller. 

The worst case time, message m takes to arrive at the com- 
munication controller of the destination node is determined in 
[I51 using the arbitrary deadline analysis, and is given by: 

max a ,  = = 0,1 ,2 ,  .,.(w,(Y)+X,(Y)-YT,),wherethe 
term w,(q)-qT,is the access delay, X , ( q )  is the 
propagation delay, and T, is the period of the message. 

In [ 151 an analysis is given for the end-to-end delay of a 
message m in the case of a simple TDMA protocol. For 

T T D M A ,  where 1 this case, w,(q) = [ ( Y  + l ) P m s + p w ( d )  

P, is the number of packets of message m, Sp is the size of 
the slot (in number of packets) corresponding to m, and I, 
is the interference caused by packets belonging to messages 
of a higher priority than m. Although there are many 
similarities with the general TDMA protocol, the analysis in 
the case of TTP is different in several aspects and also 
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differs to a large degree depending on the policy chosen for 
message scheduling. 

Before going into details for each of the message sched- 
uling approaches, we analyze the propagation delay and the 
message transfer and delivery processes, as they do not de- 
pend on the particular message scheduling policy chosen. 
The propagation delay X, of a message m sent as part of a 
slot S, with the TT'P protocol, is equal to the time needed for 
the slot S to be transferred on the buss. This time depends 
on the slot size and on the features of the underlying buss. 

The overhead produced by the communication activities 
must be accounted for not only as part of the access delay for 
a message, but also through its influence on the response time 
of processes running on the same processor. We consider this 
influence during the schedulability analysis of processes on 
each processor. We assume that the worst case computation 
time of the transfer process (Tin Figure 3) is known, and that 
it is different for each of the four message scheduling ap- 
proaches. Based on the respective MH'IT, the transfer pro- 
cess is activated for each frame sent. Its worst case period is 
derived form the minimum time between successive frames. 

The response time of the delivery process (D in Figure 
3), rdelivep is part of the communication delay. The influence 
due to the delivery process must be also included when an- 
alyzing the response time of the processes running on the re- 
spective processor. We consider the delivery process during 
the schedulability analysis in the same way as the message 
transfer process. 

The response times of the communication and delivery 
processes are calculated, as for all other processes, using the 
arbitrary deadline analysis from [15]. 

The four approaches we have considered for scheduling of 
messages using TTF differ in the way the messages are allo- 
cated to the communication channel (either statically or dy- 
namically) and whether they are split or not into packets for 
transmission. The next subsections present an analysis for 
these approaches as well as the degrees of liberty a designer 
has, in each of the cases, when synthesizing the MEDL. 

4.1 Static Single Message Allocation (SM) 
The first approach to scheduling of messages using TTP is 
to statically (off-line) schedule each of the messages into a 
slot of the TDMA cycle, corresponding to the node sending 
the message. We also consider that the slots can hold each 
at maximum one single message. This approach is well 
suited for application areas (like automotive electronics) 
where the messages are typically short and the ability to 
easily diagnose the system is critical. 

As each slot carries only one fixed, predetermined 

Tm,, bk # m  
: so : SI : so : SI : so : SI : 

Figure 4. Worst case arrival time for SM 
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Figure 5. Optimizing the MEDL for SM and MM 

message, there is no interference among messages. If a 
message m misses its slot it has to wait for the following slot 
assigned to m. The access delay for a message m in this 
approach is the maximum time between consecutive slots of 
the same node carrying the message m. We denote this time 
by Tmmax, illustrated in Figure 4. 

In this case, the worst case arrival time a, of a message 
m becomes Tm,,,+ X,. Therefore, the main aspect influ- 
encing the schedulability analysis for the messages is the 
way the messages are statically allocated to slots, resulting 
different values for Tm,,,. Tmmax. as well as X,, depend 
on the slot sizes which in the case of SM are determined by 
the size of the largest message sent from the corresponding 
node, plus the bits for control and CRC, as imposed by the 
protocol. 

During the synthesis of the MEDL, the designer has to al- 
locate the messages to slots in such a way that the process set 
is schedulable. Since the schedulability of the process set can 
be influenced by the synthesis of the MEDL only through the 
Tmmax parameters, these parameters have to be optimized. 

Let us consider the simple example depicted in Figure 5, 
where we have three processes, pl. p2, and p3 running each 
on different processors. When process pi  finishes executing 
it  sends message m l  to process p3 and message m2 to pro- 
cess p2. In the TDMA configuration presented in Figure 5 a), 
only the slot for the CPU running p1 is important for our dis- 
cussion and the other slots are represented with light gray. 
With this configuration, where the message ml is allocated 
to the rounds 1 and 4 and the message m2 is allocated to 
rounds 2 and 3, process p2 misses its deadline because of the 
release jitter due to the message m2 in round 2.  However, if 
we have the TDMA configuration depicted in Figure 5 b), 
where ml is allocated to the rounds 2 and 4 and m2 is allocat- 
ed to the rounds 1 and 3, then all the processes meet their 
deadlines. 

4.2 Static Multiple Message Allocation (MM) 
This second approach is an extension of the first one. In this 
approach we allow more than one message to be statically 
assigned to a slot, and all the messages transmitted in the 
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same slot are packaged together in a frame. In this case there 
is also no interference, so the access delay for a message m 
is the same as for the first approach, namely, the maximum 
time between consecutive slots of the same node carrying 
the message m, Tm,,,. 

However, this approach offers more freedom during the 
synthesis of the MEDL. We have now to decide also on how 
many and which messages should be put in a slot. This al- 
lows more flexibility in optimizing the Tm,,, parameter. To 
illustrate this, let us consider the same example depicted in 
Figure 5. With the MM approach, the TDMA configuration 
can be arranged as depicted in Figure 5 c), where the mes- 
sages ml  and m2 are put together in the same slot in the 
rounds 1 and 2. Thus, the deadline is met, and the release jit- 
ter is further reduced compared to the case presented in Fi- 
gure 5 b) where the deadlines were also met but the process 
p3 was experiencing large release jitter. 

4.3 Dynamic Message Allocation (DM) 
The previous two approaches have statically allocated one 
or more messages to their corresponding slots. This third 
approach considers that the messages are dynamically 
allocated to frames, as they are produced. 

Thus, when a message is produced by a sender process it 
is placed in the Out queue ordered according to the priorities 
of the messages. At its activation, the message transfer pro- 
cess takes a certain number of messages from the head of 
the Out queue and constructs the frame. The number of 
messages accepted is decided so that their total size does not 
exceed the length of the data field of the frame. This length is 
limited by the size of the slot corresponding to the respec- 
tive processor. Since the messages are sent dynamically, we 
have to identify them in a certain way so that they are rec- 
ognized when the frame arrives at the delivery process. We 
consider that each message has several identifier bits ap- 
pended at the beginning of the message. 

Since we dynamically package the messages into frames 
in the order they are sorted in the queue, the access delay to 
the communication channel for a message m depends on the 
number of messages queued ahead of it. 

The analysis in [ 151 bounds the number of queued ahead 
packets of messages of higher priority than message m, as 
in their case it is considered that a message can be split into 
packets before it is transmitted on the communication chan- 
nel. We use the same analysis, but we have to apply it for the 
number of messages instead that of packets. We have to con- 
sider that messages can be of different sizes as opposed to 
packets which always are of the same size. 

Therefore, the total size of higher priority messages 
queued ahead of a message m in a window w is: 

w + r  . 
s(l) S j  where Sj is the size of the 

' m ( w )  = v j ; ( r n ) [ T ]  
message mj, is the response time of the process send- 

ing message m,, and T, is the period of the message m,. 

Further, we calculate the worst case time that a message m 
spends in the Out queue. The number of TDMA rounds 
needed, in the worst case, for a message m placed in the 
queue to be removed from the queue for transmission is 
3 where S, is the size of the message m and S, is 

the size of the slot transmitting m (we assume, in the case of 
DM, that for any message x, S, 5 S, ). This means that the 
worst case time a message m spends in the Our queue 
is given by '& T,,, , where TTDMA is the time 

taken for a TDMA round. 
To determine the term w,(q) - qT,  that gives the access 

delay (see Section 4), w , ( q )  is determined, using the arbi- 
trary deadline analysis, as being: 

I s, 1 

i s s  1 

1 w m ( q )  = [(v+ 1 ) S m ; ' , ( W ( ~ ) )  T,,, . Since the size of 

the messages is given with the application, the parameter 
that will be optimized dunng the synthesis of the MEDL is 
the slot size. To illustrate how the slot size influences the 
schedulability, let us consider the example in Figure 6 a), 
where we have the same setting as for the example in Figure 
5 a). The difference is that we consider message ml having a 
higher pnonty than message m2, and we schedule dynami- 
cally the messages as they are produced. With the TDMA 
configuration in Figure 6 a) message ml  will be dynamically 
scheduled first in the slot of the first round, while message 
m2 will wait in the Out queue until the next round comes, 
thus causing the process p2 to miss its deadline. However, if 
we enlarge the slot so that it can accommodate both messag- 
es, message m2 does not have to wait in the queue and it is 
transmitted in the same slot as ml. Therefore p2 will meet its 
deadline, as presented in Figure 6 b). However, in general, 
increasing the length of slots does not necessanly improve 
the schedulability, as it delays the communication of messag- 
es generated by other nodes. 

0 Release Jitter 0 Running process =Message 4 Process activation I Deadline 

Figure 6. Optimizing the MEDL for DM and DP 
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4.4 Dynamic Packets Allocation (DP) 
This approach is an extension of the previous one, as we 
allow the messages to be split into packets before they are 
transmitted on the communication channel. We consider 
that each slot has a size that accommodates a frame with the 
data field being a multiple of the packet size. This approach 
is well suited for the application areas that typically have 
large message sizes, and by splitting them into packets we 
can obtain a higher utilization of the buss and reduce the 
release jitter. However, since each packet has to be identi- 
fied as belonging to a message, and messages have to be 
split at the sender and reconstructed at the destination, the 
overhead becomes higher than in the previous approaches. 

For the analysis we use the formula from [15] which is 
based on similar assumptions as those for this approach: 

numb& of packetsrof message m, S, is the size of the slot 
(in number of packets) corresponding to m, and 

So P j  , where Pj is the number 
t l j  ~ ( r n ) [  w + r  T j  ‘ 1  I , ( w )  = 

of packets of a message mj. 
In the previous approach (DM) the optimization param- 

eter for the synthesis of the MEDL was the size of the slots. 
Within this approach we can also decide on the packet size, 
which becomes another optimization parameter. Consider 
the example in Figure 6 c) where messages ml and m2 have 
a size of 6 bytes each. The packet size is considered to be 4 
bytes and the slot corresponding to the messages has a size 
of 12 bytes (3 packets) in the TDMA configuration. Since 
message ml has a higher priority than m2, it will be dynam- 
ically scheduled first in the slot of the first round, and it will 
need 2 packets. In the remaining packet, the first 4 bytes of 
m2 are scheduled. Thus, the rest of 2 bytes from message m2 
have to wait for the next round, causing the process p2 to 
miss its deadline. However, if we change the packet size to 
3 bytes, and keep the same size of 12 bytes for the slot, we 
now have 4 packets in the slot corresponding to the CPU 
running p1 (Figure 6 d). Message ml will be dynamically 
scheduled first, and will take 2 packets from the slot of the 
first round. This will allow us to send m2 in the same round, 
therefore meeting the deadline for p2. 

In this particular example, with one single sender proces- 
sor and the particular message and slot sizes as given, the 
problem seems to be simple. This is, however, not the case 
in general. For example, the packet size which fits a partic- 
ular node can be unsuitable in the context of the messages 
and slot size corresponding to another node. At the same 
time, reducing the packets size increases the overheads due 
to the transfer and delivery processes. 

5. Optimization Strategy 
Our problem is to analyze the schedulability of a given 

process set and to synthesize the MEDL of the TTP control- 
lers in a close to optimal way. The MEDL is synthesized ac- 
cording to the optimization parameters available for each of 
the four approaches to message scheduling discussed be- 
fore. In order to guide the optimization process, we need a 
cost function that captures the “degree of schedulability” for 
a certain MEDL implementation. Our cost function is a 
modified version of that in [ 121: 

max(0 ,  R i - D i ) ,  if fl > O  

R; - D ~ ,  if f l  = 0 f2 = 
i =  1 , . ~ .  

where n is the number of processes in the application, Ri 
is the response time of a process pi, and Di is the deadline of 
a process pi. If the process set is not schedulable, there exists 
at least one Ri that is greater than the deadline Di, therefore 
the term fl of the function will be positive. In this case the 
cost function is equal to fl.  However, if the process set is 
schedulable, then all Ri are smaller than the corresponding 
deadlines Di. In this case fl = 0 and we use f2 as the cost 
function, as it is able to differentiate between two alterna- 
tives, both leading to a schedulable process set. For a given 
set of optimization parameters leading to a schedulable pro- 
cess set, a smaller f2 means that we have improved the re- 
sponse times of the processes, so the application can be 
potentially implemented on a cheaper hardware architecture 
(with slower processors and/or buss). The release time Ri is 
calculated according to the arbitrary deadline analysis [ 151 
based on the release jitter of the process (see section 4), its 
worst-case execution time, the blocking time, and the inter- 
ference time due to higher priority processes.For a given ap- 
plication, we are interested to synthesize a MEDL such that 
the cost function is minimized. We are also interested to 
evaluate in different contexts the four approaches to mes- 
sage scheduling, thus offering the designer a decision sup- 
port in choosing the right approach for his problem. 

The synthesis of the MEDL is performed off-line, before 
implementing the application. This means that it is worth to 
explore the design alternatives and to try to derive near-op- 
timal solutions. Further more, the comparison of the four 
approaches detailed in Section 4 is meaningful only if we 
take the near-optimal value for each of them. 

Thus, we have developed an optimization procedure 
based on a simulated annealing (SA) strategy. The main 
characteristic of an SA strategy is that it tries to find the glo- 
bal optimum by randomly selecting a new solution from the 
neighbors of the current solution. The new solution is ac- 
cepted if it is an improved one. However, a worse solution 
can also be accepted with a certain probability that depends 
on the deterioration of the cost function and on a control pa- 
rameter called temperature [ l  l]. 

In Figure 7 we give a short description of this algorithm. 
An essential component of the algorithm is the generation 
of a new solution x’ starting from the current one xnoW. The 
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simulated annealing 
construct an initial TDMA round flow 
temperature = initial temperature TI 
re at 

i = 1 to temperature length TL 
generate randomly a neighboring solution x’ of foW 
delta = cost function for x’ - cost function for flow 
if delta < 0 then xnow = x’ 
else 

end if 
end for 
temperature = a * temperature; 

generate q = random (0, 1) 
if < e-delta / temperature then xnow = xz end if 

until stop ing criterion is met 
return soLtion corresponding to the best schedule 

Figure 7. The Optimization Strategy 
neighbors of the current solution xnoW are obtained depend- 
ing on the chosen approach. For SM, x’ is obtained from 
xnow by inserting or removing a message in one of its corre- 
sponding slots. In the case of MM, we have to take addition- 
al care that the slots do not exceed the maximum allowed 
size (depends on the controller implementation), as we can 
allocate several messages to a slot. For these two static ap- 
proaches, we also decide on the number of rounds in a cycle 
(e.g., 2, 4, 8, 16; limited by the size of the memory imple- 
menting the MEDL). The neighboring solution is obtained 
in the case of DM by increasing or decreasing the slots size 
within the bounds allowed by the particular ‘ITP controller 
implementation, while in the DP approach we also increase 
or decrease the packet size. 

For the implementation of this algorithm, the parameters 
TI (initial temperature), TL (temperature length), ci (cooling 
ratio), and the stopping criterion have to be determined. They 
define the so called cooling schedule and have a strong im- 
pact on the quality of the solutions and the CPU time con- 
sumed. We were interested to obtain values for TI, TL and ci 
that will guarantee the finding of good quality solutions in a 
short time. In order to tune the parameters we have first per- 
formed very long and expensive runs on selected large exam- 
ples, and the best ever solution, for each example, has been 
considered as the near-optimum. Based on further experi- 
ments we have determined the parameters of the SA algo- 
rithm, for different sizes of examples, so that the optimization 
time is reduced as much as possible but the near-optimal re- 
sult is still produced. These parameters have then been used 
by the large scale experiments presented in the following sec- 
tion. For example, for the graphs with 320 nodes, TI is 300, 
TL is 500 and ci is 0.95. The algorithm stops if for three con- 
secutive temperatures no new solution has been accepted. 

6. Experimental Results 
For evaluation of our scheduling approaches we first 

used sets of processes generated for experimental purpose. 
We considered architectures consisting of 2, 4, 6, 8 and 10 
nodes. 40 processes were assigned to each node, resulting in 
sets of 80, 160, 240, 320 and 400 processes. 30 sets were 
generated for each dimension, thus a total of 150 sets of pro- 

cesses were used for experimental evaluation. Worst case 
computation times, periods, deadlines, and message lengths 
were assigned randomly within certain intervals. For the 
communication channel we considered a transmission 
speed of 256 kbps. The maximum length of the data field in 
a slot was 32 bytes, and the frequency of the TTP controller 
was chosen to be 20 MHz. All experiments were run on a 
Sun Ultra 10 workstation. 

For each of the 150 generated examples and each of the 
four scheduling approaches we have obtained, using our op- 
timization strategy, the near-optimal values for the cost 
function. These values, for a given example, might differ 
from one approach to another, as they depend on the optimi- 
zation parameters and the schedulability analysis deter- 
mined for each of the approaches. We were interested to 
compare the four approaches to message scheduling based 
on the values obtained for the cost function. 

Thus, Figure 8 a) presents the average percentage devia- 
tions of the cost function obtained by our optimization strat- 
egies in each of the four approaches, from the minimal value 
among them. The DP approach is generally the most perfor- 
mant, and the reason for this is that dynamic scheduling of 
messages is able to reduce release jitter because no space is 
waisted in the slots if the packet size is properly selected. 
However, by using the MM approach we can obtain almost 
the same result if the messages are carefully allocated to 
slots by our optimization strategy. Moreover, in the case of 
bigger sets of processes (e.g., 400) MM outperforms DP, as 
DP suffers form large overhead due to the handling of the 
packets. DM performs worse than DP because it does not 
split the messages into packets, and this results in a mis- 
match between the size of the messages dynamically 
queued and the slot size, leading to unused slot space that 
increases the jitter. SM performs the worst as its optimization 
strategy has not much room for improvement, leading to large 
amounts of unused slot space. Also, DP has produced a 
MEDL that resulted in schedulable process sets for 1.33 times 
more cases than the MM and DM. MM, in its turn, produced 
two times more schedulable results than the SM approach. 

Together with the four approaches to message schedul- 
ing, a so called ad-hoc approach is presented. The ad-hoc 
approach performs scheduling of messages without trying 
to optimize the access to the communication channel. The 
ad-hoc solutions are based on the MM approach and consid- 
er a design with the TDMA configuration consisting of a 
simple, straightforward, allocation of messages to slots. The 
lengths of the slots were selected to accommodate the larg- 
est message sent from the respective node. Figure 8 a) 
shows that the ad-hoc alternative is constantly outperformed 
by any of the optimized solutions. This shows that by opti- 
mizing the access to the communication channel, significant 
improvements can be produced. 

We were also interested to compare the four approaches 
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Figure 8: Comparison of the Four Approaches to Message Scheduling 
with respect to the number of messages exchanged between 
different nodes and the maximum message size allowed. 
For the results depicted in Figure 8 b) and c) we have as- 
sumed sets of 80 processes allocated to 4 nodes. Figure 8 b) 
shows that as the number of messages increases, the differ- 
ences between the approaches grow while the ranking 
among them remains the same. The same holds for the case 
when we increase the maximum allowed message size, with 
a notable exception. We can observe that for large message 
sizes MM becomes better than DP, since DP suffers from 
the overhead due to packet handling. 

We have also considered a real-life example implement- 
ing an aircraft control system adapted from [15] where the 
ad-hoc solution and the SM approach failed to find a sched- 
ulable solution. However, the other approaches found 
schedulable solutions, DP having the smallest cost function 
followed in this order by MM and DM. 

The above comparison between the four message sched- 
uling alternatives is mainly based on the issue of schedula- 
bility. However, when choosing among the different 
policies, several other parameters can be of importance. 
Thus, a static allocation of messages can be beneficial from 
the point of view of testing and debugging and has the ad- 
vantage of simplicity. Similar considerations can lead to the 
decision not to split messages. In any case, however, optimi- 
zation of the communication structure is desirable. 

7. Conclusions 
We have presented an approach to static priority preemp- 

tive process scheduling for synthesis of hard real-time dis- 
tributed embedded systems. The communication model was 
based on a time-triggered protocol. We have developed an 
analysis for the communication delays and optimization 
strategies for four different message scheduling policies. 
The four approaches to message scheduling were compared 
using extensive experiments. 
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