
1. Introduction
In this paper we concentrate on scheduling for time-triggered
systems consisting of multiple programmable processors and
ASICs interconnected by a communication channel.

Scheduling for performance estimation and synthesis of
embedded systems has been intensively researched in the last years
[1]. In our approach, an embedded system is viewed as a set of
interacting processes mapped on an architecture consisting of
several programmable processors and ASICs interconnected by a
communication channel. Process interaction is not only in terms of
dataflow but also captures the flow of control, since some processes
can be activated depending on conditions computed by previously
executed processes. We consider a non-preemptive execution
environment in which the activation of processes and
communications is triggered at certain points in time, and we
generate a schedule table and derive a worst case delay which is
guaranteed under any condition. Such a scheduling policy is well
suited to a large class of safety-critical applications [4].

The scheduling strategy is based on a realistic communication
model and execution environment. We take into consideration the
overheads due to communications and to the execution environment
and consider, during the scheduling process, the requirements of the
communication protocol. Moreover, our scheduling algorithm per-
forms an optimization of parameters defining the communication
protocol which is essential for the reduction of the execution delay.

Our system architecture is built on a communication model
which is based on the time-triggered protocol (TTP) [5]. TTP is
well suited for safety critical distributed real-time control systems
and represents one of the emerging standards for several application
areas like, for example, automotive electronics [4, 6].

2. Conditional Process Graph
As an abstract model for system representation we use a directed,
acyclic polar graph with conditional edges (Figure 1) [3].

Each node in this graph represents a process which is assigned
to a processing element. An edge from process Pi to Pj indicates
that the output of Pi is the input of Pj. Unlike a simple edge, a
conditional edge (depicted with thicker lines in Figure 1) has an
associated condition. Transmission of a message on a conditional
edge will take place only if the associated condition is satisfied and
not, like on simple edges, for each activation of the input process Pi.
A process can be activated only after all its inputs have arrived, and
issues its outputs when it terminates. Once activated, the process
can not be preempted by other processes.

After the termination of a process that produces a condition, the
value of the condition is broadcasted from the corresponding
processor to all other processors. This broadcast is scheduled as
soon as possible on the communication channel, and is considered
together with the scheduling of the messages.

3. System Architecture
Hardware architecture
We consider architectures consisting of nodes connected by a
broadcast communication channel. Every node consists of a TTP
controller, a CPU, a RAM, a ROM and an I/O interface to sensors
and actuators. A node can also have an ASIC in order to accelerate
parts of its functionality.

Communication between nodes is based on the TTP [5]. TTP
was designed for distributed real-time applications that require pre-
dictability and reliability (e.g, drive-by-wire). It integrates all the
services necessary for fault-tolerant real-time systems. The commu-
nication channel is a broadcast channel, so a message sent by a node
is received by all the other nodes. The bus access scheme is time-
division multiple-access (TDMA). Each node Ni can transmit only
during a predetermined time interval, the so called TDMA slot Si.
In such a slot, a node can send several messages packaged in a
frame. A sequence of slots corresponding to all the nodes in the

architecture is called a TDMA round. A node can have only one slot
in a TDMA round. Several TDMA rounds can be combined
together in a cycle that is repeated periodically. The sequence and
length of the slots are the same for all the TDMA rounds. However,
the length and contents of the frames may differ.

Every node has a TTP controller that implements the protocol
services, and runs independently of the node’s CPU. The TDMA
access scheme is imposed by a so called message descriptor list
(MEDL) that is located in every TTP controller.
Software Architecture
We have designed a software architecture which runs on the CPU in
each node, and which has a real-time kernel as its main component.
Each kernel has a schedule table that contains all the information
needed to take decisions on activation of processes and
transmission of messages, based on the values of conditions.

In order to run a predictable hard real-time application the
overhead of the kernel and the worst case administrative overhead
(WCAO) of every system call has to be determined. We consider a
time-triggered system, so all the activity is derived from the
progression of time which means that there are no other interrupts
except for the timer interrupt.

Several activities, like polling of the I/O or diagnostics, take
place directly in the timer interrupt routine. The overhead due to
this routine is expressed as the utilization factor Ut. Ut represents a
fraction of the CPU power utilized by the timer interrupt routine,
and has an influence on the execution times of the processes.

We also have to take into account the overheads for process
activation and message passing. For process activation we consider
an overheadδPA, the overhead for sending a message between
processes located on the same node isδS, the overead for sending a
message to a process on a different node isδKS, and the overhead of
receiving a message from a process on a different node isδKR.

4. Problem Formulation
As an input we consider a safety-critical application that has several
operating modes, and each mode is modeled by a conditional
process graph.The architecture of the system is given as described
in section 3. The overhead Ut of each kernel and the WCAO of each
system call are known. Each process of the process graph is mapped
on a CPU or an ASIC of a node.

We are interested to derive a delay on the system execution time
for each operating mode, so that this delay is as small as possible, and
to synthesize the local schedule tables for each node, as well as the
MEDL for the TTP controllers, which guarantee this delay.

The worst case execution delay of a process is estimated taking
into account the overhead of the timer interrupt, the WCAO of the pro-
cessactivation, and the WCAO of the message passing mechanism.
Therefore, the worst case execution delay of a process Pi will be:

where tPi is the worst case execution time of the code of process Pi,
θC1 is the overhead for communication from Pi to processes on the
same node, andθC2 is the overhead for communication between

Figure 1. Conditional Process Graph

P7

P10

P8 P9

P2

P0

P1

P6P5P4

CC
C

D
D

P3

P11

source

sink

TPi
δPA tPi

θC1
θC2

+ + +() 1 Ut+()⋅=

Communication Scheduling for Time-Triggered Systems
Paul Pop, Petru Eles, Zebo Peng

Dept. of Computer and Information Science,
Linköping University, S-58183 Linköping, Sweden

{paupo, petel, zebpe}@ida.liu.se

processes on different nodes:

.

In the previous equations, is the number of messages to
be sent by the process Pi to other processes on the same node.

is the number of messages transferred to the TTP

controller, and is the number of messages transferred
from the TTP controller by the kernel, during the execution of
process Pi. It has to be noticed thatθC1 refers to the overhead

caused by sending the messages generated by process Pi
which are directed to other processes on thesame node. However,
θC2 considers the overhead due to theremote communications
which not necessarily originate from Pi, but are scheduled to be
performed by the kernel during the period Pi is active.

For each message its length bmi is given. Several messages can
be packaged together in the data field of a frame. The number of
messages that can be packaged depends on the slot length
corresponding to the node.

5. The Scheduling Strategy
The problem of conditional process graph scheduling has been
addressed by us in [2, 3] without considering a specific communica-
tion protocol and execution environment. We do not re-discuss here
those algorithms which are part of the functionschedule mentioned
below. That work has been largely extended by considering a realis-
tic communication and execution infrastructure, and by including
aspects of the communication protocol in the optimization process.
For this reasons, the worst case execution delays TPi of the pro-
cesses are computed according to the formula given in section 4.

A major extension concerns the scheduling of the messages on
the TTP bus, consideringa givenorder of slots in the TDMA round
and given slot lengths (Figure 2). Functionschedule_message is
called by the functionschedule , which generates the schedule and
corresponding tables based on the given slot order and slot lengths.

In order to get an optimized schedule we have to determine an
ordering of the slots and the slot lengths so that the execution delay
is as small as possible. We first present two variants of an algorithm
based on a greedy approach. A short description of the algorithm is
shown in Figure 3. The algorithm starts with the first slot of the
TDMA round and tries to find the node which by transmitting in
this slot will produce the smallest delay on the system execution
time. Once a node was selected to transmit in the first slot, the
algorithm continues in the same manner with the next slots.

The selection of a node for a certain slot is done by trying out
all the nodes not yet allocated to a slot (the first variant) or the slots
recommended by theschedule_message function (the second
variant). Thus, for a candidate node, the schedule length is
calculated considering the TDMA round given so far. Several
lengths are considered for a slot bound to a given candidate node.

A second algorithm we have developed is based on a simulated
annealing (SA) strategy. The greedy strategy constructs the solution
by progressively selecting the best candidate in terms of the

schedule length produced by the functionschedule . Unlike the
greedy strategy, SA tries to escape from a local optimum by
randomly selecting a new solution from the neighbors of the current
solution. The new solution is accepted if it is an improved solution.
However, a worse solution can also be accepted with a certain
probability that depends on the deterioration of the cost function
and on a control parameter called temperature.

6. Experimental Evaluation
For evaluation of our scheduling algorithms we first used
conditional process graphs generated for experimental purpose.
Table 1 presents the average and maximum thepercentage
deviations of the schedule lengths produced by Greedy 1 and
Greedy 2 from the lengths of the (near)optimal schedules obtained
with the SA algorithm, and the average execution time expressed in
seconds. The naive designer’s approach presented in Table 1 performs
scheduling without trying to optimize the access to the communication
channel, namely the TDMA round and the slot lengths.

Table 1 shows that considering the optimization of the access to
the communication channel, the results improve dramatically com-
pared to the naive designer’s approach. The greedy heuristic per-
forms very well for all the graph dimensions, and the variant
Greedy 1 (that considers all the possible slot lengths) performs
slightly better than Greedy 2. However, the execution times are
smaller for Greedy 2, than for Greedy 1. The average execution
times for the SA algorithm to find the (near)optimal solutions are
between 5 minutes for graphs with 80 processes and 275 minutes
for 400 processes.

Finally, we considered a real-life example implementing a vehi-
cle cruise controller with one mode of operation having a deadline
of 110 ms. The naive designer’s approach resulted in a schedule
corresponding to a delay of 114 ms, that does not meet the deadline.
Both of the greedy approaches produced a delay of 103 ms on the
worst case execution time of the system, while the SA approach
produced a schedule of 97 ms.

7. Conclusions and Future Work
We have presented an approach to process scheduling for synthesis
of safety-critical distributed embedded systems. We have improved
the quality of the schedule by taking into consideration the over-
heads of the real-time kernel and the communication protocol. The
scheduling algorithms proposed can be used both for accurate per-
formance estimations and for system synthesis. The algorithms have
been evaluated based on experiments using a large number of graphs
generated for experimental purpose as well as a real-life example.

In the future we plan to further improve the schedule quality by
using a better heuristic for selecting the slots order and lengths, by
sharing of messages inside a slot based on the values of conditions
and by making use of the knowledge of the TTP parameters during
the scheduling process.

8. References
[1] Balarin, F., Lavagno, L., Murthy, P., Sangiovanni-Vincentelli, A.

Scheduling for Embedded Real-Time Systems. IEEE Design &
Test of Computers, January-March, 1998

[2] Doboli, A., Eles, P. Scheduling under Control Dependencies
for Heterogeneous Architectures. International Conference on
Computer Design, 1998

[3] Eles, P., Kuchcinski, K., Peng, Z., Doboli, A., Pop, P. Schedul-
ing of Conditional Process Graphs for the Synthesis of Embed-
ded Systems. Proc. Des. Aut. & Test in Europe, 1998.

[4] Kopetz, H. Real-Time Systems-Design Principles for Distrib-
uted Embedded Applications. Kluwer Academic Publ., 1997

[5] Kopetz, H., Grünsteidl, G. TTP-A Protocol for Fault-Tolerant
Real-Time Systems. IEEE Computer, Vol: 27/1, 14-23.

[6] X-by-Wire Consortium. URL:http://www.vmars.tuwien.ac.at/
projects/xbywire/xbywire.html

θC1
δSi

i 1=

Nout
loc Pi()

∑= θC2
δKSi

i 1=

Nout
rem Pi()

∑ δKRi

i 1=

Nin
rem Pi()

∑+=

Nout
loc Pi()

Nout
rem Pi()

Nin
rem Pi()

Nout
loc Pi()

schedule_message
slot = slot of the node sending the message
round = current_time / round_length
if current_time - round * round_length > start of slot in round then

round = next round
end if
while not message fits in the slot of round then

insert (needed slot length to fit, recommended slot lengths)
round = next round

end if
put in schedule table (message, round, slot)

end
Figure 2. The schedule_message function

greedy
for each slot

for each node not yet allocated to a slot
bind (node, slot, minimum possible length for this slot)
for (1)every slot length or (2)recommended slot lengths

schedule in the context of current TDMA round
remember the best schedule for this slot

end for
end for
bind (node, slot and length corresponding to the best schedule)

end for
return solution

end Figure 3. The Greedy Algorithm

No.of
proc.

NaiveDesigner Greedy 1 Greedy 2
aver. max. aver. max. time. aver. max. time

80 3.16% 21% 0.02% 0.5% 0.25s 1.8% 19.7% 0.04s
160 14.4% 53.4% 2.5% 9.5% 2.07s 4.9% 26.3% 0.28s
240 37.6% 110% 7.4% 24.8% 0.46s 9.3% 31.4% 1.34s
320 51.5% 135% 8.5% 31.9% 34.69s 12.1% 37.1% 4.8s
400 48% 135% 10.5% 32.9% 56.04s 11.8% 31.6% 8.2s

Table 1: Percentage Deviation and Execution Times

