

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Oct 28, 2015

A Probabilistic Approach for the System-Level Design of Multi-ASIP Platforms

Micconi, Laura; Madsen, Jan; Pop, Paul

Publication date:
2015

Document Version
Publisher final version (usually the publisher pdf)

Link to publication

Citation (APA):
Micconi, L., Madsen, J., & Pop, P. (2015). A Probabilistic Approach for the System-Level Design of Multi-ASIP
Platforms. Kgs. Lyngby: Technical University of Denmark (DTU). (DTU Compute PHD-2014; No. 347).

http://orbit.dtu.dk/en/publications/a-probabilistic-approach-for-the-systemlevel-design-of-multiasip-platforms(60b4a2db-15f6-42d6-9e06-88af5edc0d5f).html

A Probabilistic Approach for the
System-Level Design of Multi-ASIP

Platforms

Laura Micconi

Kongens Lyngby 2014
PhD-2014-347

Technical University of Denmark
Department of Applied Mathematics and Computer Science
Building 324, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253031
compute@compute.dtu.dk
www.compute.dtu.dk PhD-2014-347

Summary (English)

Application Specific Instruction-set Processors (ASIPs) offer a good trade off between
performance and flexibility when compared to general purpose processors or ASICs.
Additionally, multiple ASIPs can be included in a single platform and they allow the
generation of customized heterogeneous MPSoC with a relatively short time-to-market.
While there are several commercial tools for the design of a single ASIP, there is still a
lack of automation in the design of multi-ASIP platforms.

In this thesis we consider multi-ASIP platforms for real-time applications. Each ASIP
is designed to run a specific group of tasks that we identifies as a task cluster. With real-
time applications, to decide how the tasks should be clustered, we perform a schedu-
lability analysis of the system to verify if the deadlines of the applications can be met.
However, to run a schedulability analysis, we need to know the WCET of each task
that is available only after an ASIP is designed. Therefore, there is a circular depen-
dency between the definition of the task clusters and the impossibility of defining them
without knowing the WCET of the tasks as the ASIPs have not been defined yet.

Many approaches available in the literature break this circular dependency considering
pre-defined task clusters or considering a small set of micro-architecture configurations
for each ASIP. We propose an alternative approach that uses a probabilistic model to
consider the design space of all possible micro-architecture configurations. We intro-
duce a system-level Design Space Exploration (DSE) for the very early phases of the
design that automatizes part of the multi-ASIP design flow. Our DSE is responsible
for assigning the tasks to the different ASIPs exploring different platform alternatives.
We perform a schedulability analysis for each solution to determine which one has the
highest chances of meeting the deadlines of the applications and that should be consid-
ered in the next stages of the multi-ASIP design flow.

ii

Summary (Danish)

Applikations specifikke instruktionssæt processorer (ASIPs) tilbyder en god afvejning
mellem ydeevne og fleksibilitet i forhold til generelle processorer og dedikerede hardwa-
re acceleratorer (ASICs). Flere ASIPs kan inkluderes i en enkelt platform, hvilket til-
lader realisering af applikations tilpassede heterogen multiprocessor systemer med en
relativ kort time-to-market. Mens der er flere kommercielle værktøjer til design og kon-
figurering af en enkelt ASIP, er der stadig mangel påautomatiseret design af multi-ASIP
platforme. Denne afhandling fokuserer påmulti-ASIP platforme til realtids applikatio-
ner. Hver ASIP er designet til at køre en specifik gruppe af opgaver. For at afgøre hvor-
dan de enkelte opgaver i realtids applikationen skal fordeles påde forskellige ASIPs,
udføres en schedulerbarheds analyse af systemet for at kontrollere, at tidsfristerne kan
imødekommes. Men for at kunne køre en schedulerbarheds analyse, er det nødvendigt
til at kende den øvre grænse for de enkelte opgavers eksekveringstid (WCET), efter at
ASIP’en er konstrueret. Derfor er der en cirkulær afhængighed mellem identifikationen
af grupper af opgaver for den enkelte ASIP, som kun kan foretages når WCET kendes,
dvs. når ASIP’en er fuldt konfigureret, og det faktum at den korrekte konfigurering
først kan bestemmes når der vides hvilke opgaver der skal afvikles påASIP’en.

Eksisterende metoder bryde denne cirkulær afhængighed ved at bruge foruddefinerede
grupper af opgaver eller ved kun at betragte et lille sæt af de mulige ASIP konfigurerin-
ger. Denne afhandling foreslår en alternativ tilgang, der bruger en probabilistisk model
til at repræsentere alle mulige ASIP konfigurationer. Det gør det muligt at automati-
sere metoden til udforskning af løsningsrummet for en multi-ASIP løsning i de meget
tidlige faser af designprocessen. Metoden udforsker forskellige alternative multi-ASIP
platforme, ved gennem en statistisk analyse at finde den tildeling af opgaver til de en-
kelte ASIPs, der giver den højeste sandsynlighed for at opnåen løsning der lever op til
kravene, efter en fuld implementering er gennemført.

iv

Preface

This thesis was prepared at the Department of Applied Mathematics and Computer
Science at the Technical University of Denmark in fulfillment of the requirements of
the Ph.D. program. The Ph.D. program was partially funded by ASAM, a project in the
framework of the European ARTEMIS Research Program and ARTEMIS Joint Under-
taking.

This work was supervised by Professor Jan Madsen and Associate Professor Paul Pop
and conducted occasionally in collaboration with Dr. Deepak Gangadharan.

The thesis describes a system-level design space exploration for the design of multi-
ASIP platforms, i.e. MPSoC that contains multiple Application-Specific Instruction set
Processors. The approach described is based on a probabilistic performance model that
finds its application in the very early phases of the multi-ASIP design flow. The thesis
consists of nine chapters (including Introduction and Conclusion) and two appendices.

The thesis does not contain any material that has been accepted for the award of any
other degree or diploma in my name, in any university or other institution and, to the
best of my knowledge does not contain any material previously published by another
person, except where due reference is made in the text of the thesis.

Part of the experimental evaluation presented in this thesis has been done using Silicon
Hive (now Intel Benelux B.V.) technology and tools. The results obtained using Intel’s
tools should not be used in any way as a reference to evaluate Intel technology or

vi

to compare Intel’s tools with other commercial or research tools, as only a subset of
the functionalities and optimization offered by the tools has been used and/or made
available under our University license agreement.

Lyngby, July 2014

Laura Micconi

Publications and technical
reports

Peer reviewed publications

1. Jozwiak, L.; Lindwer, M.; Corvino, R.; Meloni, P.; Micconi, L.; Madsen, J.;
Diken, E.; Gangadharan, D.; Jordans, R.; Pomata, S.; Pop, P.; Tuveri, G.; Raffo,
L. and Notarangelo, G.: "ASAM: Automatic architecture synthesis and applica-
tion mapping". In Microprocessors and Microsystems, Volume 37, Issue 8, Part
C, November 2013, Pages 1002-1019.

2. Gangadharan, D.; Micconi, L.; Pop, P. and Madsen, J.: "Multi-ASIP Platform
Synthesis for Event-Triggered Applications with Cost/Performance Trade-offs".
In IEEE International Conference on Embedded and Real-Time Computing Sys-
tems and Applications, Taipei, Taiwan, 2013.

3. Micconi, L.; Gangadharan, D.; Pop, P. and Madsen, J.: "Multi-ASIP Platform
Synthesis for Real-Time Applications". In Proceedings of SIES 2013 - 8th IEEE
International Symposium on Industrial Embedded Systems, Porto, Portugal, June
2013.

4. Micconi, L.; Corvino, R.; Gangadharan, D.; Madsen, J.; Pop, P. and Jóźwiak,
L.: "Hierarchical DSE for multi-ASIP platforms". In ECyPS 2013 - EUROMI-
CRO/IEEE Workshop on Embedded and Cyber-Physical Systems, pages 50-53,
Budva, Montenegro, 2013 [Received best student paper award].

5. Jóźwiak, L.; Lindwer, M.; Corvino, R.; Meloni, P.; Micconi, L.; Madsen, J.;
Diken, E.; Gangadharan, D.; Jordans, R.; Pomata, S.; Pop, P.; Tuveri, G. and

viii

Raffo, L.: "ASAM: Automatic Architecture Synthesis and Application Map-
ping". In Proceedings of DSD 2012 - 15th Euromicro Conference on Digital
System Design, pages 216-225, Cesme, Izmir, Turkey, 2012.

Miscellaneous

Micconi, L.: "Multi-ASIP Platform Synthesis for Real-Time Applications". Student
research abstract (SRC) competition at SAC 2013 – 28th Symposium on Applied Com-
puting. Coimbra, Portugal, March 2013 [1st price winner].

Technical reports

1. Micconi, L.; Gangadharan, D.; Madsen, J. and Pop, P.: "Demonstrator of DSE
tool". Deliverable 2.7, ASAM Project, November 2013. [Set of videos, Public]

2. Micconi, L.; Gangadharan, D.; Madsen, J. and Pop, P.: "Prototype tools for
design space exploration". Deliverable 2.6, ASAM Project, January 2013. [Re-
stricted]

3. Micconi, L.; Boesen, M. R.; Gangadharan, D.; Madsen, J. and Pop, P.: "Pro-
totype tools for system analysis". Deliverable 2.5, ASAM Project, April 2012.
[Restricted]

4. Micconi, L.; Madsen, J. and Boesen, M. R.: "Method of and report on system
analysis". Deliverable 2.3, ASAM Project, November, 2011. [Public]

5. Micconi, L.; Madsen, J.; Pop, P.; Kienhuis, B.; Corvino, R. and Jóźwiak, L.:
"Report on initial version of the hierarchical application model". Deliverable
2.2, ASAM Project, May, 2011. [Public]

6. Micconi, L.; Iordache, G.; Madsen, J.; Pop, P.; Meloni, P.; Lindwer, M.; Cocco,
M.; Notarangelo, G. and Guidetti, E.: "Initial version of generic platform model".
Deliverable 2.1, ASAM Project, January, 2011. [Public]

Under review

Micconi, L.; Madsen, J. and Pop, P.: "An Uncertainty Model for System-Level design
of Multi-ASIP Platforms". Under review at Integration, the VLSI Journal, Special Issue
On Application and Domain-Specific Computing.

Acknowledgements

I would like to express my special appreciation to my advisors Professor Jan Madsen
and Associate Professor Paul Pop. A special thank to Jan for his precious suggestions,
guidance and support when needed; he is always thinking ahead and every discussion
with him has been very enlightening and stimulating. I would like to thank Paul that
has helped me with a methodic and disciplined critical thinking. He has contributed in
improving the formulation of the ideas and his scrutiny of my technical writing has been
invaluable. Without Jan’s and Paul’s supervision and constant help this dissertation
would have not been possible.

Moreover, my gratitude goes to Dr. Deepak Gangadharan that with helpful comments
and guidance has taught me how to approach and investigate a research problem.

I would also like to thank my committee members, Professor Jens Sparsø, Professor
Ingo Sander and Professor Andrew David Pimentel for reviewing the thesis and pro-
viding invaluable comments and suggestions during the defense.

My appreciation goes to all the partners of the ASAM project; it has been extremely
stimulating and motivating to work with them. I learned a lot from all of them, espe-
cially from Dr. Rosilde Corvino. I will always remember our Skype meeting for dis-
cussing the project; Rosilde has always been available with suggestions and comments
and has been there when a good laugh was needed in the critical phases of the project.
I would like to thanks also Dr. Menno Lindwer that supervised and guided me during
the external stay period at Intel Benelux, I will never forget those months in which I
had an insight of the industrial world in a stimulating and innovative environment such
as Intel.

x

A giant thank to my colleagues from embedded system engineering (ESE) group at
DTU, especially Alessio, Alex, Aske, Davide, Domi, Eduardo, Fontas, George, Mas-
simo (with Valette), Sahar, Valia and Wolfgang. I will always have good memories of
the lunches and of the breaks with the coffee-crew and the best coffee of whole DTU.
My time at DTU has been great especially thanks to them. I need to thank Alessio,
Alex, Domi and Sahar also for reviewing part of the thesis and for their precious feed-
back. I will miss the great fun I had while biking with Alessio and during the tango
classes with Valia. A big thank to Karin, she has always been very kind, willing to help
and answer all my questions. Thanks to her I always felt very welcomed in the ESE
group. Thanks also to Giovanni, Gosia and Paolo; I have great memories with them: I
love their company and the dinners at their place.

My immense appreciation and thanks go to German, Letizia and Eduard. German has
always been there for me, he has been my reference point before, during and after the
PhD studies; he has given me precious suggestions and guidance and he has also of-
fered me affection and a sincere friendship; I have always felt loved, I really learned a
lot from him. Bella Leti has been the person that cheered me up when needed. I feel
so lucky that I met her at the beginning of my PhD studies; she is the most generous,
understanding and fun friend that someone can hope for. I love each one of our conver-
sations and Skype-vinate. Eduard has been my main reference point during the external
stay period, I loved cooking and chatting with him, he has been my happy thought in
Eindhoven.

Finally, but not least, I want to thank my pillars of strength during these years: my
parents. They have always given me constant support through the ups and downs of
my academic career and they have always been there for me when needed, I have never
felt alone. I cannot imagine being the person I am today without such a great mum and
dad. And a giant thank to my grandma that has supported me even if this means living
far away from home.

Thanks to everyone that helped me get to this day.

xi

xii Contents

Contents

Summary (English) i

Summary (Danish) iii

Preface v

Publications and technical reports vii

Acknowledgements ix

Abbreviations xxv

1 Introduction 1
1.1 Why ASIPs? . 2

1.1.1 Application-specific instruction set processors 2
1.1.2 ASIP design . 3

1.2 Why a multi-ASIP platform? . 5
1.3 Challenges in multi-ASIP design . 6
1.4 Related work . 9
1.5 Objective . 12
1.6 Contributions . 13
1.7 Thesis outline . 14
1.8 Notes for the reader . 15

2 System models 17
2.1 Application Model . 18
2.2 Platform Model . 19
2.3 Modeling WCET uncertainties . 21

2.3.1 Validation of the normal distribution for UM 24

xiv CONTENTS

2.4 Summary . 34

3 Macro-architecture level DSE 35
3.1 Motivational Example . 35
3.2 Problem Formulation . 36
3.3 Platform Definition using an Evolutionary Approach 38

3.3.1 Schedulability Analysis . 38
3.3.2 Comparison of task clustering solutions 43
3.3.3 Evolutionary Algorithm . 43
3.3.4 Example of schedulability analysis with UM 44

3.4 Summary . 47

4 Experimental evaluation with Task Graph model 49
4.1 Comparison of DSE with UM and SFM 49
4.2 Experimental evaluation of DSE with UM using SH tools 52

4.2.1 Additional considerations 59
4.3 Accuracy of Clj and Cuj . 59
4.4 Summary . 62

5 Uncertainty model with SDFG 65
5.1 Application model . 66
5.2 Schedulability Analysis . 67

5.2.1 Example of Task-level Analysis 68
5.2.2 Example of Pipeline Analysis 71
5.2.3 Algorithms for schedulability analysis 71

5.3 Comparison of clustering solutions and DSE 73
5.4 Summary . 75

6 Experimental evaluation with the SDFG model 77
6.1 Case study: MJPEG encoder . 78
6.2 Case studies: ECG and SC . 84
6.3 Comparison of SDFG and task graph application models 85
6.4 Accuracy of Clj and Cuj . 89
6.5 Additional discussion of the results 90
6.6 Experimental evaluation with a NoC 91

6.6.1 Network model . 93
6.6.2 Schedulability analysis . 94
6.6.3 Results . 95

6.7 Summary . 97

7 ASAM project 99
7.1 ASAM design flow . 100
7.2 Tools in ASAM design flow . 101

7.2.1 Compaan Compiler . 101

CONTENTS xv

7.2.2 Code Analysis tool - Phase 1 of micro-architecture DSE . . . 103
7.2.3 Micro-architecture DSE tool - Phase 2 of micro-architecture DSE103
7.2.4 Silicon Hive technology . 104
7.2.5 Macro-architecture DSE . 106

7.3 Experimental evaluation . 109
7.4 Summary . 112

8 Uncertainty model and task similarities 115
8.1 System model . 116
8.2 Problem formulation . 117

8.2.1 Area Estimation Model . 117
8.2.2 Effect of Clustering on the Uncertainty Model 120
8.2.3 Schedulability Analysis of a task clustering solution 120

8.3 DSE for Cost and performance optimization 122
8.4 Experimental evaluation . 123
8.5 Summary . 126

9 Conclusion 129
9.1 Contributions . 129
9.2 Open issues . 131

A Additional results 133
A.1 Additional results from Experiment 2 133
A.2 Additional case studies using SDFG application model 133

A.2.1 ECG case study . 136
A.2.2 SC case study . 141

B XML interfaces in ASAM design flow 151
B.1 Input constraints . 151
B.2 Initial Platform . 152
B.3 Application model . 152
B.4 Task clustering solution . 156

B.4.1 Output of probabilistic DSE 156
B.4.2 Output of micro-architecture DSE (Phase 2) 159
B.4.3 Output of deterministic DSE 163

Bibliography 167

xvi CONTENTS

List of Figures

1.1 Flexibility-power trade-off of different architectural options [12] . . . 3
1.2 Example of ASIP micro-architecture synthesis flow [40] 5
1.3 Example of micro-architecture configurations for an ASIP [69] 7
1.4 Effect of a task clustering on the WCET 8
1.5 Y-chart model for MPSoC design (a) and Y-chart model with Uncer-

tainty Model (UM) for multi-ASIP design (b) 10

2.1 Example of an application model [69] 19
2.2 Examples of platform (a,c) and its corresponding CP models (b,d) . . 21
2.3 Example of UM for a task τj [69] 23
2.4 Example of Cmg for a task mg [69] 23
2.5 Default VEX micro-architecture configuration [25] 25
2.6 (a) Histogram of the probability density function of the Ci obtained

with VEX and (b) comparison of our proposed CDF (P (Ci < x)) with
the simulation results for mp3 decoder task 27

2.7 (a) Histogram of the probability density function of the Ci obtained
with VEX and (b) comparison of our proposed CDF (P (Ci < x)) with
the simulation results for jpeg decoder task 28

2.8 (a) Probability density function and (b) Cumulative distribution func-
tion (CDF) . 30

2.9 Histogram of the percentage (%) differences in the scheduling length
for Case Study 1 . 33

2.10 Histogram of the percentage (%) differences in the scheduling length
for Case Study 4 . 33

3.1 Example of schedulability analysis: (a) input application, (b) PC model
of the input platform and (c) UM of the tasks [69] 36

xviii LIST OF FIGURES

3.2 (a) Task clustering solutions and (b) corresponding cumulative distri-
bution functions (CDFs) produced by the schedulability analysis of the
example in Figure 3.1 [69] . 37

3.3 Multi-ASIP platform design flow [69] 37
3.4 Steps for performing design space exploration with MCS (a) Reordered

steps for performing design space exploration with MCS (b) 40
3.5 Extraction of n samples to build the arrays Cj and Cmg 41
3.6 Example of application Ai (a), of task clustering solution for Ai (b)

and of δAi calculation (c) [69] . 42
3.7 Comparison between task clustering solutions 43
3.8 Comparison between WCET Uncertainty Model (UM) and straightfor-

ward method (SFM) approaches . 46

4.1 Semi-automatic design flow for multi-ASIP design using the UM . . . 52
4.2 (a) KPN and (b) TG models for MJPEG encoder 53
4.3 Cumulative distribution functions for the tasks of the MJPEG encoder

application (with f = 166MHz) . 55
4.4 Results from the macro-architecture DSE for MJPEG encoder 56
4.5 (a) CP model of the initial platform and (b) designed platform for

MJPEG encoder case study . 57
4.6 Comparison of the CDF of different clustering solutions for MJPEG

encoder . 58

5.1 Examples of TG (a) and SDFG models (b) of the same application . . 66
5.2 SDFG model of MJPEG encoder . 67
5.3 Example of application and clustering for δAi calculation 69
5.4 Examples of TLA, (a) and (b), PA, (c) and (d), for a SDFG 70
5.5 Reading and writing policy: τ1 reads from local memory and writes to

remote memory . 72
5.6 (a) Input SDFG, (b) idealRate for each message of the SDFG, (c) re-

sults of the first eight iteration of Algorithm 5 76

6.1 Example of C code for a task part of a task graph (a) or of a SDFG (b) 79
6.2 SDFG model for the MJPEG encoder 79
6.3 Cumulative distribution functions for the tasks of the MJPEG encoder

application (with f = 166MHz) . 80
6.4 Results from the macro-architecture DSE for the MJPEG encoder . . 81
6.5 Comparison of the CDF of different clustering solutions for the MJPEG

encoder . 82
6.6 Block schematic of the platform generated for Sol1 for MJPEG encoder 84
6.7 Example of CP model for a 2x2 MESH NoC (a) Switch (SW) model (b) 94
6.8 Clustering of a message, m1, on the NoC 96
6.9 Output CDFs for MJPEG application clustered on a MESH NoC . . . 97

LIST OF FIGURES xix

7.1 ASAM design flow and interfaces with macro-architecture DSE . . . 102
7.2 Example of micro-architecture of a SH ASIP [62] 105
7.3 GUI of the probabilistic DSE tool, input (a) and output (b) 106
7.4 GUI of the deterministic DSE tool, input (a) and output (b) 107
7.5 KPN model generated by Compaan for the ECG (a) and corresponding

SDFG model (b) . 110
7.6 Task clustering solution (a) and its CDF (b) produced by the probabilis-

tic DSE . 110
7.7 Output of the micro-architecture DSE for clusters PE1 (a) and PE2 (b) 112
7.8 Output of the deterministic DSE . 113

8.1 A Graph Merging (or Task Clustering) Example, (a) DFG for τ1 and τ2
(b) Merged DFG for τ1 and τ2 [28] 119

8.2 Results obtained for the real-life benchmarks [28] 127
8.3 Results obtained for the synthetic benchmarks [28] 128

A.1 Histogram of the percentage (%) differences in the scheduling length
for Case Study 2 . 134

A.2 Histogram of the percentage (%) differences in the scheduling length
for Case Study 3 . 134

A.3 Histogram of the percentage (%) differences in the scheduling length
for Case Study 5 . 135

A.4 Histogram of the percentage (%) differences in the scheduling length
for Case Study 6 . 135

A.5 KPN model generated by Compaan for the ECG (a) and corresponding
SDFG model (b) . 137

A.6 Cumulative distribution functions for the tasks of the ECG application
(with f = 1MHz) . 138

A.7 Results from the macro-architecture DSE for ECG 138
A.8 Comparison of the CDF of different clustering solutions for ECG . . . 140
A.9 KPN model generated by Compaan for Spatial Coding case study . . 142
A.10 SDFG model for Spatial Coding case study 143
A.11 (a) and (b) Cumulative distribution functions of the tasks of the SC

application (with f = 1, 600MHz) 145
A.12 Block schematic of the platform generated for Sol1 for SC 146
A.13 Results from the macro-architecture DSE for SC 147
A.14 Comparison of the CDF of different clustering solutions for SC 147

xx LIST OF FIGURES

List of Tables

2.1 Micro-architecture features explored 26
2.2 Micro-architectures associated with the WCET upper and lower bounds 29
2.3 Case studies for the comparison of CDF types 32
2.4 Results of the comparison of CDF types (% average relative error) . . 32

3.1 C values for the motivation example (in µs) 46

4.1 Comparison of UM and SFM [69] 50
4.2 Clustering results for real-life and synthetic case studies 51
4.3 C values for MJPEG encoder (average number of cycles for a single

iteration of the task) . 55
4.4 Message sizes (in bits) for MJPEG encoder 55
4.5 Comparison of clustering solutions for MJPEG encoder 60
4.6 Comparison between the number of cycles estimated by the profiling

tool [43] and the ones obtained from simulation for MJPEG 62

6.1 Input constraints for MJPEG encoder 78
6.2 C values for MJPEG encoder (average number of cycles for a single

iteration of the task) . 80
6.3 Message sizes (in bits) for MJPEG encoder 80
6.4 Comparison of clustering solutions for MJPEG encoder 83
6.5 Comparison of clustering solutions for ECG 85
6.6 Comparison of clustering solutions for SC 86
6.7 Comparison of clustering solutions for MJPEG encoder using SDFG

and task graph (TG) application models 88
6.8 Comparison between the number of cycles estimated by the profiling

tool [43] and the ones obtained from simulation for MJPEG 90

xxii LIST OF TABLES

6.9 Comparison of clustering solutions for MJPEG encoder using updated
upper and lower bound values . 92

6.10 Clustering solutions for MJPEG encoder with MESH NoC 97

7.1 Input constraints for ECG . 109
7.2 C values for ECG (average number of cycles for a single iteration of

the task) . 109

8.1 Results for the realistic case studies [28] 124
8.2 Results for the synthetic case studies [28] 124

A.1 Input constraints for ECG and SC applications 137
A.2 C values for ECG (average number of cycles for a single iteration of

the task) . 137
A.3 Message sizes (in bits) for ECG . 137
A.4 Comparison of clustering solutions for ECG 139
A.5 Comparison between the number of cycles estimated by the profiling

tool [43] and the ones obtained from simulation for ECG 140
A.6 C values for SC (average number of cycles for a single iteration of the

task) . 144
A.7 Message sizes (in bits) for SC . 144
A.8 Comparison of clustering solutions for SC 148
A.9 Comparison between the number of cycles estimated by the profiling

tool [43] and the ones obtained from simulation for SC 149

Listings

B.1 Input constraints of ECG application 151
B.2 Input platform for ECG application 152
B.3 Application model for ECG application annotated with the upper and

lower bounds by Phase 1 of micro-architecture DSE (input of the prob-
abilistic DSE) . 153

B.4 Task clustering solution found by the probabilistic DSE (input of Phase
2 of micro-architecture DSE) . 156

B.5 Task clustering solution annotated with area and performance for mul-
tiple micro-architecture for each ASIP (input of the deterministic DSE) 159

B.6 Task clustering with selected micro-architecture for each ASIP and to-
tal system area and performance . 163

xxiv LISTINGS

Abbreviations

API application programming interface.

ASAM Automatic Architecture Synthesis and Application Mapping.

ASAP as soon as possible.

ASIC Application Specific Integrated Circuit.

ASIP Application Specific Instruction-set Processor.

CDF cumulative distribution function.

CE communication element.

DFG data flow graph.

DSE Design Space Exploration.

DSP Digital Signal Processor.

ET event-triggered.

FFT fast fourier transform.

fpps fixed priority preemptive scheduling.

fps frame-per-second.

FU functional unit.

GPP General-Purpose Processor.

xxvi Abbreviations

GUI graphical user interface.

HDL hardware description language.

ILP instruction level parallelism.

IP intellectual property.

ISA instruction-set architecture.

KPN Kahn process network.

MCS Monte Carlo simulation.

MEM memory.

MPSoC Multi-Processor System-on-Chip.

NI network interface.

NoC Network-on-Chip.

PA Pipeline Analysis.

PDF probability density function.

PE processing element.

RF register file.

RTA response time analysis.

SDFG synchronous dataflow graph.

SFM straightforward method.

SH Silicon Hive.

SoC System-on-Chip.

SSEA Steady-State Evolutionary Algorithm.

TDM time-division multiplexing.

TG task graph.

TLA Task-Level Analysis.

Abbreviations xxvii

UM WCET Uncertainty Model.

VEX VLIW Example.

VLIW Very Long Instruction Word.

WCET worst-case execution time.

xxviii Abbreviations

CHAPTER 1

Introduction

Today embedded systems include an increasing number of processors as an answer
to higher performance and energy efficiency requirements; they are currently used for
executing a wide variety of real time applications from the automotive, multimedia
and networking domains. Multi-Processor System-on-Chip (MPSoC), especially when
used in portable devices, have tight area, power and performance constraints that are
given by the applications they implement. This increases the complexity of the design
of the system which key design constraints are flexibility and performance. General-
Purpose Processors (GPPs) are flexible platforms and run applications from various
domains, but they fall behind on performance in comparison to ASICs. On the other
hand, ASICs are designed to run specific applications and therefore lack flexibility. Ap-
plication Specific Instruction-set Processors (ASIPs) combine the best of both worlds
by incorporating application specific custom instructions, thereby giving more flexibil-
ity than ASICs and better performance than GPPs. ASIPs are designed such that they
are optimized to run a specific set of functions.

Recently, an increasing number of ASIPs is used in embedded platforms, together with
heterogeneous processing elements (PEs), for the implementation of real-time systems
(especially image/video processing systems) [21, 83, 41]. Therefore, there is an in-
creased tendency in designing multi-ASIP platforms, i.e. heterogeneous platforms that
may contain multiple ASIPs.

Many companies are providing tools for the design of single ASIPs; among them Ca-

2 Introduction

dence with the Tensilica toolchain for the XTensa processor [95] and Synopsys with the
Processor Designer tool (using Lisa language) [92]. Additionally, ASIPs are now used
in commercial processors, e.g., the Intel Atom Clovertrail+, a SoC for smartphones,
that includes an ASIP for image signal processing [67].

In this thesis, we focus on the system-level (or macro-architectural level) design of
multi-ASIP platforms. This chapter is organized as follows. First, we present the char-
acteristics of an ASIP and the design flows that can be used for the implementation of
a single ASIP (Section 1.1). Second, we described the motivations behind the inclu-
sion of multiple ASIPs in a platform and the challenges in the design of a multi-ASIP
platform (Sections 1.2 and 1.3). Then we present the related work (Section 1.4), the
objective of this thesis (Section 1.5), our contributions (Section 1.6) and the structure
of the thesis (Section 1.7).

1.1 Why ASIPs?

1.1.1 Application-specific instruction set processors

An ASIP is a programmable processor that is optimized for a particular application.
ASIPs can be used as custom processors or programmable accelerators. They can be
used to satisfy the need of modern embedded systems of having multiple functionalities
integrated on a single System-on-Chip (SoC) [92]. The design of an ASIP requires the
definition of the processor architecture (i.e. micro-architecture and instruction set) and
the development of the corresponding simulator and software toolchain (compiler, as-
sembler and linker). The micro-architectural description of an ASIP is usually defined
starting from its instruction-set architecture, ISA (as described in Section 1.1.2). ASIPs
provide a good trade-off between performance and power efficiency. In Figure 1.1, an
intuitive comparison between ASIPs and other families of processors is shown.

ASICs are highly power efficient, but there are multiple factors that make ASICs design
and manufacturing expensive [68], such as the high non-recurring engineering cost and
the long time-to-market. The non-recurring engineering costs for ASICs increase to-
gether with the transistor density and the use of sub-micron technology. The mask-set
can exceed one million dollars and the development of new tools for ASIC design de-
mands a high cost as well [16]. Using ASIPs, more flexible designs can be generated
and the non-recurring design costs can be reduced: ASIPs can be configured to run
multiple applications and, vice versa, a design can be reused across multiple applica-
tions; this allows producing higher volumes of processors and amortizing design and
manufacturing costs [68]. At the same time, the time-to-market is reduced.

1.1 Why ASIPs? 3

Po
w

er
 e

ffi
ci

en
cy

Flexibility

ASIC

ASIP

GPP

Figure 1.1: Flexibility-power trade-off of different architectural options [12]

Compared to GPPs, ASIPs offer an energy efficient alternative still providing good
performance; for example, they can be used in all portable devices that are targeting
specific applications and where a GPP cannot be used due to its inefficient power man-
agement.

Additionally, an ASIP designer can count on tools for the automatic generation of the
software toolchain and evaluation of their designs (as presented in Section 1.1.2). As a
result, ASIPs can satisfy the requirements of those designers seeking high-performance
and low power with the advantages of an automated design methodology [16].

1.1.2 ASIP design

Figure 1.2 highlights the generic steps for the design of a single ASIP, as described
in [40]. An ASIP is designed according to the application it has to run and the input
constraints (e.g. performance, cost); hence, the first step is the analysis/profiling of
the application code. A common approach is to define the micro-architecture starting
from an ASIP template (selected from a library). The definition of a specific ASIP
micro-architecture includes then a micro-architecture DSE for the identification of the
appropriate number and type of functional units, memory, issue slot, etc., required by
the application. After an initial micro-architecture is defined, the instruction set is
generated, which can include custom instructions to speed up the execution.

There are multiple tools for the design of a single ASIP. Examples of ASIP designs are
described in [46, 73, 79, 76, 101, 33, 45, 43]. In particular, [46, 73, 79, 76] employ
the LISATek tool (now part of Synopsis [92]), [101] applies Target Compiler Tech-

4 Introduction

nologies’s tools (now also part of Synopsis [92]), [33] uses the Tensilica AutoTIE tool,
[45] describes NoGAP and [43] uses the Silicon Hive (SH) toolchain. Following, we
provide a brief description of the design flow proposed by these tools.

The LISA description language speeds up the design flow in Figure 1.2 by supporting
the automatic generation of the software toolchain (retargetable compiler, assembler
and linker), of the simulator and of a synthesizable HDL code, out of a processor de-
scription [76]. The processor description contains the instruction-set architecture (ISA)
and the behavioral and timing model of the processor. Additionally, LISA is inserted
into the LISATek tool suite that provides support for the design space exploration of
the architecture. The simulator and synthesized HDL description can be used to eval-
uate the performance and cost of a LISA processor description and adjust it to the
designer’s requirements. The authors in [76] use the LISATek tool for the creation of
two differently optimized ASIPs for an FFT algorithm. The development of the two
ASIPs required three man weeks.

Target Compiler Technologies provide a tool suite called IP Designer to support the
design of ASIPs. Each processor is described using nML description language which
captures the structural characteristics of the design (i.e., the datapath architecture) and
the instruction set architecture. IP Designer implements an entire retargetable toolchain
for the ASIP design, a simulator and an HDL generator. In [101], the authors use IP De-
signer for the design of a ultra-low-power ASIP for an Electrocardiogram (ECG) appli-
cation with software and hardware optimization to improve performance and minimize
the power consumption.

A Tensilica processor [95] is described using the TIE (Tensilica Instruction Extension)
language that specifies the ISA and its extensions. Additionally, TIE allows having
the ISA extension implemented in hardware and have them recognized by the Tensil-
ica software toolchain. Tensilica AutoTIE described in [33] is a tool for the automatic
extension of the base ASIP’s ISA with Very Long Instruction Word (VLIW) instruc-
tions, vector operations and custom operations. AutoTIE explores a large number of
ISA extensions (based on the profile of the loops of the input application) and then uses
performance and area estimations to evaluate the combinations of multiple extensions
and to generate an ASIP.

NoGAP [45] is a research tool that aims at the automatic generation of a software
toolchain for ASIPs. The tool provides assembler, simulator and a hardware generator.
NoGAP provides the designer with a very flexible architecture and does not use an ini-
tial ISA template. However, NoGAP does not provide an automatic DSE; the designer
is responsible for the definition of the initial architecture that he considers compatible
with the application or application domain. In [45], NoGAP is used to generate a sin-
gle issue RISC processor with DSP extensions. The development required three man
weeks, but considering that an expert designer is involved in the architecture definition.

1.2 Why a multi-ASIP platform? 5

Application and
Design Constraints

Application Analysis

Architectural Design
Space Exploration

Instruction set generation

Code
Synthesis

Hardware
Synthesis

Object
Code

Processor
Description

Simulator

Retargetable compiler,
Assembler,

Linker

Figure 1.2: Example of ASIP micro-architecture synthesis flow [40]

SH tools constitute a toolchain for the development of VLIW ASIPs [62]. SH offers
proprietary languages for the hardware description of the processors and of the multi-
processor platform. Additionally, it provides a retargetable compiler and a simulator for
the execution of the application C code on the user-defined platform. In this section,
we do not provide additional details about SH tools that are thoroughly described in
Section 7.2.4. We use SH tools for the experimental evaluation of the design approach
described in this thesis. Silicon Hive is now part of Intel Benelux B.V.

1.2 Why a multi-ASIP platform?

In the previous section, we mentioned the advantages derived from employing ASIPs.
In this section, we look into reasons for using multi-ASIP platforms, i.e. MPSoCs
containing multiple ASIPs.

Future embedded systems will demand higher computational efficiency and cheap im-
plementations. ASIPs represent an attractive solution especially in areas such as mul-
timedia, networking, and signal processing [68]. As an example, let us consider the
multiple applications for image processing running on today mobile phones. These ap-
plications require specialized hardware for efficient execution; however, as the number
of different applications is growing, also the number of specialized PEs for their execu-
tion has to increase. Integrating multiple ASIPs in a single SoC is a promising solution
with high flexibility; it allows having customized PEs to run applications (or part of

6 Introduction

them) and minimizing the energy consumption differentiating between the architecture
implemented by each ASIP. Having multiple heterogeneous ASIPs, we can partition
the applications into tasks, assign the tasks to the different PEs and exploit the task
level and pipeline parallelism, intrinsic to signal processing and multimedia domains.

1.3 Challenges in multi-ASIP design

In Section 1.1.2 we described possible design methodologies for the design of a single
ASIP. An ASIP is designed according to the application(s) that it has to execute.

However, when we consider multiple ASIPs and multiple input applications or a single
input application partitioned into multiple tasks, we add an extra degree of complex-
ity to the design problem. In fact, we need to establish how these tasks are assigned
to the different ASIPs that are then designed according to the tasks they have to run.
This task assignment is not straightforward, as it involves inter-dependent decisions on
macro-architecture (or system-level) and micro-architecture (i.e. ASIP) levels. These
decisions affect the number of ASIPs, their micro-architecture and interconnection to-
gether with the assignment of tasks to the different ASIPs; the optimization of the
multi-ASIP platform is, therefore, a NP-complete problem [29].

We call the assignment of tasks to the different ASIPs task clustering. Each group of
tasks is a task cluster and corresponds to a single ASIP. In order to determine the task
clustering for one or more applications, we need to perform a schedulability analysis
that requires information about the execution performance of the tasks and of the data
dependencies among them. It is possible to know the performance of each task when
an ASIP is implemented/designed.
However, the ASIP design approaches described in Section 1.1.2 imply that an ASIP is
implemented only after knowing which tasks it has to run.
Therefore, we have a tight connection between the task clustering and the design of
each ASIP as they depend on each other.

Depending on the number of tasks and ASIPs included in the platform, a very large
number of task clusters has to be evaluated during DSE. For each task cluster, the
micro-architecture design of a single ASIP involves a number of steps and the design
of a single ASIP can requires multiple days (Section 1.1.2). Further, the design space of
a ASIP micro-architecture is very large and depends on the number and data widths of
register files (RFs) and memory blocks (MEM), and number of functional units (FUs)
(Figure 1.3). Hence, platform design with multiple ASIPs is non-trivial as it needs to
take the design space of the ASIP micro-architecture into consideration when exploring
various platform solutions. In the rest of the thesis, we use the term micro-architectural
configuration to indicate the micro-architecture resulting from a specific ASIP design.

1.3 Challenges in multi-ASIP design 7

....
RF

FU

Mem RF

FU

Mem

ASIC ASIP1

bus

ASIP3

ASIP2

GPP Large number of possible micro-
architectural configurations

(a) (b)

Figure 1.3: Example of micro-architecture configurations for an ASIP [69]

Consider an example with three tasks τ1, τ2 and τ3 for which a multi-ASIP bus-based
platform has to be designed. We use the worst-case execution time (WCET) as the
performance value for the tasks. We define a task cluster tck, as the set of tasks used
at the input of the flow in Figure 1.2 to design an ASIP PEk. Let us now consider
two different ways of clustering the three tasks: case (a) and (b). In case (a), tasks are
assigned to three different ASIPs, PE1, PE2 and PE3, with the corresponding clusters
tc1 = {τ1}, tc2 = {τ2} and tc3 = {τ3}. The single ASIP design flow (Figure 1.2) can
be followed and each ASIP micro-architecture can be optimized to satisfy the particular
task. Now that we have each ASIP defined for case (a), we can determine the worst-
case execution time (WCET) of each task. Let us denote by CPEkj , the WCET of task
τj on ASIP PEk. Although an ASIP PEk has been designed and tuned for a certain
set of tasks tck, it could also run a task τj /∈ tck (if binaries are compatible). Let us
consider that we run τ2 on PE1, tuned for τ1. The micro-architecture of PE1 has not
been specifically tuned for the functionality of τ2, as a consequence we can expect that
CPE2

2 ≤ CPE1
2 (note that the increase in CPE1

2 also depends on the similarity between
τ1 and τ2) (this example is depicted in Figure 1.4).

In case (b), τ1 is clustered with τ2 such that tc′1 = {τ1, τ2} and tc′2 = {τ3}. Since
the task clustering has changed, we need to re-design all the ASIPs from case (a),
otherwise the WCET of τ2 may increase too much. This will again impact the WCETs
of the tasks. In our case, the WCET of τ2 will decrease and that of τ1 might increase,
depending on how much the ASIP design will satisfy the functionality required by one
task compared to the other.

This example shows that every time a task clustering changes, the WCETs will change.
For every WCET change, we need to evaluate again the schedulability of the appli-
cations. However, we cannot know the WCET of a task before we have designed the
corresponding ASIP. Therefore, after each re-clustering decision we would have to run
a complete ASIP design flow, as described in Section 1.1.2, for each affected ASIP.
As mentioned, an ASIP design takes days, so it cannot be done during the DSE at the
platform level. Hence, to perform DSE during platform design, we need the WCETs
to evaluate the schedulability, and WCETs can only be known after the platform has

8 Introduction

τ1 τ2

RF

FU

Mem RF

FU FU

Mem

implementation

simulation/
analysis to get

WCET

C1
PE1 C2

PE2

PE1 PE2

C2
PE1

RF

FU

Mem
PE1

τ2

C2
PE1 ≥C2

PE2
simulation/

analysis to get
WCET

Figure 1.4: Effect of a task clustering on the WCET

been fully designed. This circular dependency drastically limits the number of platform
alternatives that can be considered during DSE.

Possible options to break this circular dependency, include having one ASIP for each
task or a single ASIP for all tasks. Then, the designer will have to split or merge the
tasks to get to feasible implementations that meet the performance requirements and
do not exceed the platform cost (e.g. the total area of the platform). However, these ap-
proaches require the work of an experienced designer. Another possible alternative that
is adopted in many design methods described in literature (Section 1.4), is to consider
only a small set of predefined micro-architecture configurations for each ASIP so that
the design flow of a multi-ASIP platform falls back into a classic MPSoC design. In
this case the risk is to ignore potentially good solutions as the micro-architecture DSE
is limited beforehand.

The goal of this thesis is to offer an alternative approach to break this circular de-
pendency, considering the space of all possible micro-architecture configurations, and
to define a multi-ASIP platform given one or more applications and its constraints as
input.

1.4 Related work 9

1.4 Related work

There has been a significant effort in research for supporting the design and evaluation
of MPSoCs. There are design approaches that target the optimization of a platform im-
plementation including the number and type of processors, their interconnections and
the memory sizes. In other approaches the platform is already available and the focus is
on the performance evaluation of different mapping and scheduling. Application par-
titioning is also considered. Some work proposes general design approaches that can
be applied to a wide variety of application domains. For example, the Platform-based
design paradigm [82, 49] in which a design is defined by a meeting-in-the-middle pro-
cess: the specifications of the system to implement are gradually refined and matched
with possible platforms1 at different level of abstractions. The work in [47] proposes a
simulation frameworks for accurate performance estimation of applications executing
on multi-threaded multi-processor platform. The authors adopt separate models for the
application and the platform that are combined during the DSE of mappings. They also
consider a temporal (allocation of time budget) mapping to capture multi-threading.
However, the platform composition is well known and therefore an accurate model of
the performance/cost of each processing and communication architecture is available.
In a similar manner, in [98, 24], the authors assume that the platform is already avail-
able (predefined PEs and communication architecture) and they focus on the explo-
ration, using ant colony optimization, of different partitionings of the application con-
sidering the data dependencies of the tasks. In this thesis, we provide a technique for
the evaluation of different task clustering solutions that is also used to guide the plat-
form definition.

There is then a large body of work for the design of application and domain specific
MPSoCs, i.e design methods that produce multi-core platforms targeting specific ap-
plications. Many of these works do not use ASIPs [66, 9, 44, 52, 11, 78, 54, 23, 57].
[66, 9] adopt a high level description of the application and initial platform to define the
number and type of processors to use (taken from a library), the number of I/O ports of
each PE, the size of the memories (dedicated and shared memories) and the intercon-
nection according to an application mapping established by the designer. However, the
authors do not consider the effect of different task clusterings or the potential of using
ASIPs.
In [44, 52], the authors use UML to model the application, the platform and the design
constraints; they explore different macro-architecture possibilities but always consid-
ering PEs taken from a library with well known performance and cost.
The approaches in [11, 78, 54, 23, 57] target multimedia or signal processing applica-
tions. In [11], MP-ARM, a SystemC simulation engine for MPSoC has been developed.
The simulator supposes an AMBA-like bus as communication architecture and ARM
CPU as PEs. Although the authors explore different arbitration policies, cache sizes and

1a platform is a library of components that can be assembled to generate a design at that abstraction level

10 Introduction

the effect of different application partitioning, they consider a fixed macro-architecture
composition with predefined PEs and do not perform mapping or scheduling DSE.
Daedalus is described in [78]; it is an automated design environment for for system-
level architectural exploration, system-level synthesis, programming, and prototyp-
ing on FPGA. It adopts Sesame [23] for the system-level modeling and simulation.
Daedalus builds an MPSoC using the PEs from a library and interconnects them using
a crossbar switch or a shared bus [77] given a Kahn process network (KPN) model of
the input application. This design flow allows the generation of multi-processor sys-
tems targeting multimedia or signal processing applications; it optimizes the processing
and communication element, defining a customization at platform level, but does not
take into account the customization of the micro-architecture of each PE that is one of
the goals of this thesis.
Sesame [23] follows a Y-chart approach (Figure 1.5a) with separated models for the
applications, modeled as a KPN, and the platform. Application and platform are com-
bined and evaluated during mapping; its multi-objective DSE can be used in the early
phases of the design to guide the designer towards the most promising solutions. The
work presented in this thesis has some similarities with Sesame: we also propose a
method to be applied in the very early phases of the design and that is based on a
Y-chart model (Figure 1.5b). On the other hand, we are focusing on ASIPs not yet
synthesized without a precise performance and area model for each task/processor as
the one available in Sesame. Therefore, we have an additional level of complexity in
our design due to the unknown micro-architecture of the PEs.
Another design approach for the definition of an MPSoC platform for a specific ap-

Application(s) Platform

Mapping

Implementation

Analysis

Application(s) Platform

Clustering

Implementation

Analysis

Uncertainty
Model

(a) (b)

Figure 1.5: Y-chart model for MPSoC design (a) and Y-chart model with Uncertainty
Model (UM) for multi-ASIP design (b)

plication is presented in [57] where DSE is used to select the PEs, partitioning the
application, modeled as a task graph, and scheduling it. It also runs an optimization

1.4 Related work 11

for the communication architecture using a hierarchy of buses. The DSE is guided by
a greedy exploration algorithm defined by the authors. The optimization objectives
are the platform cost and the performance of the application. As for the other works
previously mentioned, the platform is built out of components from a library, whose
behavior and performance are well known.
In [54], the MAMPS approach for MPSoC synthesis is described. The authors present
a technique that considers multiple use-cases (or scenarios) of execution, in which there
are multiple input applications active at different instant of time, and design a custom
platform, in which multiple cores are interconnected through FIFOs. The applications
are modeled as synchronous dataflow graphs (SDFGs). The authors do not explore
multiple mapping solutions (there is an arbitrary assignment of the SDFG actors to the
PEs) or interconnections type; as in the previous cases, a set of already synthesized
core is available (e.g. Xilinx Microblaze).

Finally, there are approaches that are considering multiple ASIPs [74, 14, 27, 85, 41,
99, 6]. Most of these approaches [74, 14, 27] assume that the ASIPs have already been
synthesized, whereas in [85, 41] a small set of micro-architectural configurations is
considered. In [85], the authors focus on pipelined multi-ASIP systems and explore
different task graph partitionings, but they select the processors to include in the plat-
form from a library of pre-configured ASIPs. Moreover, they limit the interconnection
network to a set of FIFO queues. Hence, these approaches severely limit the design
space, disregarding possibly good solutions because they do not take into account the
ASIP micro-architecture design space during platform design.
There are design approaches in which both ASIPs and their interconnections are op-
timized [99]. However the ASIPs are synthesized starting from a template micro-
architecture and the application is arbitrarily partitioned by the designer among a pre-
defined number of ASIPs. In this approach, the authors do no evaluate the possible
advantages of the different task clusterings that can also lead to a different interconnec-
tion selection.
On the other hand, different task clustering solutions for the definition of a multi-ASIP
platform are considered in [6]. The authors propose a systematic methodology for
exploring different clustering considering applications that can work in different sce-
narios (e.g. different compression type for MPEG2 and MPEG4). A platform template
generated for a specific application domain is provided as input. The design parameters
that can be configured at platform level are the number of processors, external memory
size and the bus width; at processor level, the configurable parameters are the memory
size, the word size and the number and type of functional units. The task clustering is
systematically defined considering the profile information of each task (e.g. task com-
plexity and number of repetitions of each task). Once each cluster of tasks is defined,
the processor parameters are defined. The optimization parameters are the area and the
energy consumption. However in this approach there is no analysis of the performance
of the application executing on the system. There is an evaluation of the latency of each
task cluster based on the number of pipeline stages of each processor, but this cannot
guarantee that the selected task clustering is the best one for meeting the application

12 Introduction

deadline. Additionally, there are no assumptions on scheduling policies and on how to
consider the data dependencies among tasks associated with different processors.

None of the approaches previously described addresses the circular dependency be-
tween the ASIP micro-architecture and WCET (or performance) values (described in
Section 1.3). Usually this issue is bypassed by considering that the ASIPs or a limited
set of micro-architectural configurations of the ASIPs are given, but this potentially
disregards valid solutions. Therefore, to use these approaches, the designer needs to
have some experience and knowledge of the type of system that he expects as output.

1.5 Objective

In this thesis we are interested in the design of multi-ASIP platforms customized for
the execution of real-time applications. We are targeting platform containing multiple
ASIPs, but other types of PEs, as GPPs or ASICs might also be included. We assume
be given one or multiple applications with their design constraints as input.

The focus of this thesis is on the macro-architecture design of the platform, i.e. the
number of ASIPs, how they are interconnected and how tasks should be clustered on
the different PEs to meet the input constraints. We also want to consider the data depen-
dencies among tasks and the influence of the communication time. In particular, we are
interested in providing a platform definition that satisfies the performance constraints
of the application.

Our goal is to break the circular dependency described in Section 1.3 that is an obstacle
to the evaluation of different task clustering solutions: a task clustering is evaluated
through a schedulability analysis that requires the WCET of each task associated with
an ASIP. However, the WCET can be estimated only knowing the micro-architecture
configuration of the ASIP, which is not available until a task clustering is established (as
each ASIP micro-architecture is configured based on the associated task cluster). The
method described should be applied in the very early phases of the multi-ASIP design
flow when there is no information available about the platform implementation and
about the micro-architecture of each ASIP. Additionally we want a macro-architecture
DSE that can be integrated within a complete flow for the synthesis of multi-ASIP
platform, in particular the ASAM design flow [43] that we present in Chapter 7.

1.6 Contributions 13

1.6 Contributions

The main contribution of this thesis is a technique for the definition of a multi-ASIP
platform given one or multiple applications as input: we introduce a system-level (or
macro-architecture level) DSE that is in charge of assigning the tasks to the different
ASIPs exploring different macro-architecture alternatives. We perform a schedulability
analysis for each task clustering solution and we determine which one has the highest
chances of meeting the deadline of the input applications and that should be considered
in the next stages of the multi-ASIP design flow. A task clustering solution contains
not only the information about the task clusters, but also the assignment of the data
dependencies (that we identify as messages) to the communication architecture.

To address the circular dependency between the ASIP micro-architecture and WCET,
we propose a WCET Uncertainty Model (UM), which captures the WCET of the tasks
running on a range of possible ASIP micro-architecture configurations. We show how
the UM can be inserted into the schedulability analysis for the evaluation of different
task clustering.

We follow an approach similar to the Y-chart model described in Figure 1.5b: our
schedulability analysis combines the application(s) and an initial platform model (in
which the ASIPs have not been designed yet). The tasks within the application and
the platform are combined through task clustering. Each task clustering solution is
evaluated using the WCET estimations provided by the UM.

Our initial schedulability analysis is based on a task graph as application model. Ad-
ditionally, we present an extension of our work in which the application is modeled
as a SDFG. For each model, we apply a different static schedulability analysis and we
demonstrate both analyses using SH tools for ASIP design. We also demonstrate how
our DSE with UM, using both the task graph and SDFG models, can be integrated into
a semi-automatic design flow (ASAM [7]) for the synthesis of a multi-ASIP platform.

Finally, we use our UM with a fixed priority preemptive scheduling (fpps), to demon-
strate that it can be applied to different schedulability analyses, and we add a method
for minimizing the area associated with a task clustering solution.

A list of publications and technical reports produced during the PhD program and that
are included in this thesis is available on page vii.

14 Introduction

1.7 Thesis outline

The remainder of this thesis is organized as follows. Chapter 2 describes the task graph
application model, the platform model and the UM. We also present the experiments
performed to define the UM.

Chapters 3 and 4 focus on the details of our schedulability analysis that is used to guide
the macro-architecture DSE that defines the multi-ASIP platform. In Chapter 3, we
explain how the UM can be included in a static schedulability analysis and how it can
be used for comparing different task clustering solutions during DSE. We also describe
the evolutionary algorithm used for DSE. In Chapter 4, we evaluate our DSE with UM
for different case studies. In particular, we consider a Motion JPEG application. The
results obtained have been verified implementing a hardware model of the multi-ASIP
platform using SH tool. We also provide an analysis relative to the accuracy of the UM.

Chapters 5 and 6 present the extension of our schedulability analysis using a SDFG
as application model. The SDFG allows exploiting both task level and pipeline par-
allelism in a more effective way than the task graph model. Chapter 5 focuses on the
schedulability analysis that includes a Task-Level Analysis (TLA) and Pipeline Anal-
ysis (PA). In Chapter 6, we evaluate the schedulability analysis using multiple case
studies, Motion JPEG, ECG and Spatial coding algorithm (extracted from MPEG4).
Also for these case studies, the results obtained have been verified implementing a
hardware model of the multi-ASIP platform using SH tool.

Chapter 7 describes how our DSE with UM is integrated within the Automatic Archi-
tecture Synthesis and Application Mapping (ASAM) design flow [7]. Both schedula-
bility analyses, the one using a task graph and a SDFG are included into ASAM design
flow. We also introduce an additional tool for macro-architecture DSE that is used in a
later stage of the multi-ASIP design, when there is more accurate information about the
micro-architecture configurations of each ASIPs. We also present the results obtained
at each phase of ASAM flow for ECG case study.

In Chapter 8, we describe an additional extension of our DSE with UM. We apply a fpps
policy and we consider also the area cost as optimization parameter during DSE. We
show that the UM can be applied to different scheduling policy depending on the type
of system that we are targeting. We use multiple case studies from E3S [2] benchmark
to demonstrate the effectiveness of our approach.

Chapter 9 concludes this thesis and discusses issues that are open for future research.

1.8 Notes for the reader 15

1.8 Notes for the reader

In this thesis we use the following naming conventions. We call task clustering the as-
signment of the tasks to the different ASIPs (and of the messages to the communication
architecture). The output of a task clustering is referred to as a task clustering solution.
Each task clustering solution is composed of multiple groups of tasks. A task cluster-
ing solution also indicates how the messages, i.e., data dependencies, are associated
with the communication architecture. Each group of task is called a task cluster. Each
task cluster corresponds to an ASIP, which will be designed according to the tasks it
has to run.

We use both terms macro-architecture or system-level design to refer to the platform
design, i.e., the definition of the number and type of PE, their interconnections and the
task clustering solution.

When we talk about micro-architecture level, we refer to the design of a single ASIP
with its ISA and micro-architecture (i.e number of issue slots, RFs, MEM, etc.). We use
the term micro-architecture configuration to indicate the micro-architecture resulting
from a specific ASIP design.

The results obtained using SH (Intel) tools should not be used in any way as a reference
to evaluate Intel technology or to compare SH tools with the tools of other competitors,
as only a subset of the functionalities and optimization offered by the tools have been
used and/or made available under our University license agreement.

16 Introduction

CHAPTER 2

System models

This chapter introduces the different elements required to perform our macro-architecture
DSE for multi-ASIP synthesis. As presented in Chapter 1, we are using a variation of
a Y-Chart model (Figure 1.5b) for MPSoC design that requires two separate models
to represent the input application and the hardware platform. Additionally, our ap-
proach for multi-ASIP synthesis requires the introduction of a performance model. In
traditional MPSoC design the hardware components (processors and communication
architecture) are already synthesized; hence, the performance of the application run-
ning on a given processor is modeled through its WCET or an average execution time
(obtained through simulation or estimation). The problem that we are targeting has
no synthesized processors (ASIP) available, so we introduce a model that captures the
performance of the application running on a set of possible micro-architecture con-
figurations of the ASIP. We called this model WCET Uncertainty Model (UM). This
chapter is organized as follows: Sections 2.1 and 2.2 describe and justify the selection
of the application and platform models, while Section 2.3 is dedicated to the description
of the UM and the reasoning behind the model.

18 System models

2.1 Application Model

The selection of the application model has a strong impact on the evaluation of a task
clustering solution: distinct task clustering solutions can guide the ASIP and platform
syntheses in different ways. We are mainly targeting real-time streaming applications
(e.g., medical and multimedia applications as presented in Chapters 4 and 6). We
also need a model capturing the intrinsic coarse-grain parallelism of the application
to use it at macro-architecture level. We select a task graph that is widely used in
embedded system design [38, 97, 86] and allows the partitioning of the application
into multiple tasks. The tasks can run in parallel over multiple processors boosting the
performance while preserving the data dependencies among them. Before providing a
formal description of the task graph for application modeling, we introduce a general
definition of Graph Model for parallel computation [87]:

DEFINITION 2.1 (GRAPH MODEL AS PROGRAM MODEL) A Graph Model can be
used to represent the computation and the communication inside a program. The ver-
texes model the computation, while the edges model the communication. Each vertex
is called a node and the computation associated with it task. A task contains sequential
computation at different levels of granularity (atomic instruction/operation, a thread,
a basic block or a sequence of these). A node is at any time involved in one activity,
either communication or computation.

Starting from this general definition, we can define a task graph as follows [87].

DEFINITION 2.2 (TASK GRAPH) A task graph is a directed acyclic graph G(V,E)
that can be used as program model. V is a set of nodes that represent the tasks τj of the
program, while E is the set of edges that model the communications between the tasks.
An edge ehj ∈ E from task τh to τj (where τh, τj ∈ V), represents the communication
from task τh to node τj . A non-negative weight, representing the communication cost,
is associated with each edge.

We extend this definition of task graph to model our input application(s) (a similar
model is described in [81]):

DEFINITION 2.3 (APPLICATION(S) MODEL) We have multiple applicationsAi, each
of them modeled as a task graph Ai = G(Vi, Ei). Each application has a deadline di
and a period Ti. Each task τj in Ai represents a unit of work, in our case, each task
is a piece of sequential code that composes the application. We model the edges as
messages, mg ∈ E . The messages between tasks show the data dependencies and im-
pose an execution order: with static scheduling, a task can start only after all its input
messages have arrived. A value Mg is associated with each message and corresponds

2.2 Platform Model 19

to the amount of data it transmits expressed in bits (it represents the communication
cost).

Figure 2.1 shows an example of an application model.

τ1 m2 τ3 m6 τ5

m3 τ4 m7

m1 τ2 m5

m4

Figure 2.1: Example of an application model [69]

2.2 Platform Model

We define a generic platform model that can fit our requirements for DSE and evalu-
ation of different task clustering solutions: the platform model should allow the fast
estimation or simulation of performance of the entire system. We need a model in
which we can easily distinguish between processing and communication elements to
ease the association of tasks τj and messages mg of the application(s) to the platform
elements. Additionally, we need to capture the contention of the hardware resources.

In this thesis, we are considering heterogeneous bus-based multi-processor platforms
that may contain multiple PEs as GPPs, ASICs, DSPs or ASIPs. In particular, we focus
on platforms containing multiple ASIPs. The number and micro-architecture of the
ASIPs are unknown and will be defined by our DSE. A platform instance contains a
number of processors interconnected through a bus. However, we want to use a model
that can be easily extended to consider other interconnection types as a link and a
Network-on-Chip (NoC). In Section 6.6 we propose an example in which our DSE can
be extended to a NoC.

Therefore, we model the platform as a graph called the Communication-Processing
model (CP model).

DEFINITION 2.4 (CP MODEL) The communication-processing model (CP Model)
is defined as a graph CP = ((P,C), D), where P and C are finite set of vertexes,
P ∩ C = Φ and D is a finite set of edges. A vertex PEk ∈ P represents a processing

20 System models

element (PE), while a vertex CEq ∈ C represents a communication element (CE). A
directed edge dij ∈ D represents a connection from the communication element CEi
(or PEi) to the processing element PEj (or CEj).

All hardware components of the platform should be associated either with processing
or communication elements. In our model we associate the processors (e.g. ASIPs,
GPPs, etc.), HW accelerators, switches, and external memories with PEs, while we
associate links and buses with CEs. We associate all hardware components with pro-
cessing capabilities, or functionalities different from the communication, with the P
set. Switches are considered as PEs, as they can contain more complex functionalities
than a bus (e.g. they can take routing decisions and analyze the network congestion).
The CP model is a bipartite graph, i.e., processing elements are always interconnected
through communication elements. This allows a uniform model that can be easily ver-
ified. Additionally, it allows modeling a platform with different levels of granularity:
for example, the same platform can be represented splitting a processing element into
multiple processing and communication elements to capture all the relevant hardware
components for the designer. An example of a bus-based platform and its correspond-
ing CP model are shown in Figures 2.2a and 2.2b: we have three ASIPs and a sub-
system that are modeled as PEs, while the bus is modeled with a CE. In Figures 2.2c
and 2.2d, there is an example of sub-system, with an ASIP, a memory and a hardware
accelerator, and its corresponding CP model. The CEs in the subsystem are modeling
point-to-point links. In this thesis, for the figures representing CP models, we use the
following convention to simplify the graphic representation. An undirected edge cor-
responds to a full-duplex connection (two directed opposite edges).
A processing or communication element may have some characterization parameters

that allow the estimation of the performance of the entire system when implementing a
specific task clustering solution (also other parameters as area or power can be included
if required by the evaluation).
In this thesis, we are considering a bus-based platform with multiple ASIPs, where
the k-th processing element, PEk, has a frequency fPEk . As mentioned in Chapter 1,
we consider ASIPs that have not been implemented yet; therefore, we cannot know the
WCET CPEkj of a task τj running on a specific ASIP PEk. We model the performance
of each task with our UM presented in Section 2.3. For the other types of processors,
e.g., GPP, we suppose to know the WCET CPEkj .
A bus is characterized by a frequency and a bandwidth. We denote by bfbw a bus with a
bandwidth w and a frequency fb. Recalling that Mg is the size of the message in bits,
we calculate the transmission time for a message mg on the bus bfbw as Cmg =

Mg

w∗fb .
The processing elements and the bus can have different frequencies.

2.3 Modeling WCET uncertainties 21

ASIP1

ASIP3 ASIP4

Sub-system

ASIP1

ASIP3 ASIP4

ASIP2

MEM HW
acc.

CU1

PE4 PE3

PE2 PE1

bus

bus CU1

PE4 PE3

PE1 PE2,1

PE2,2 PE2,3

CU2,1

Sub-system

(a)

(c)

(b)

(d)

Figure 2.2: Examples of platform (a,c) and its corresponding CP models (b,d)

2.3 Modeling WCET uncertainties

In this section, we present our UM and how we use it to model the performance of
a task τj assigned to an ASIP, PEk. Tasks are grouped into clusters: a task cluster
corresponds to a processing element PEk. We recall that a task clustering solution in-
cludes multiple task clusters and the assignment of the messages to the communication
architecture. As mentioned in Chapter 1, the WCET value depends on the ASIP micro-
architecture, which is implemented depending on how tasks are clustered: the WCET
of each task can be known only when the ASIP design is available and, therefore, its
micro-architecture is defined. However, the ASIP micro-architecture can be established
only after we decide the tasks that are assigned to a specific ASIP. This creates a cir-
cular dependency between the need of knowing the implementation of the ASIPs for
estimating the global system performance and the impossibility of determining them
in the early design phases when the task clustering is still unknown. This circular de-
pendency is the reason for the introduction of an uncertainty model that captures the
WCET of the entire spectrum of possible ASIP micro-architecture, for a task τj : the
WCET of each τj is modeled as a stochastic variable Cj and the associated probability
distribution function. Such uncertainty models are used in practice in the early design
stages [8].

22 System models

Note that the variability of the worst-case execution time Cj of a task τj is due to the
variation among the possible ASIP implementations on which task τj will run, and does
not reflect the variation in execution time, which is due to variation in the input data
and modern architectural features, e.g., pipeline and branch prediction. The final imple-
mentation of the ASIP running τj will only be available after the time-consuming ASIP
micro-architecture design (as presented in Section 1.1.2). We use the probability dis-
tribution of Cj during DSE as it is unfeasible to design every ASIP micro-architecture
resulting from a change in the task clustering.

We assume that the designer captures the probability distribution function of the WCET
Cj of a task τj using two bounds: the smallest WCET value Clj (lower bound) and the
largest value Cuj (upper bound). The designer can arrive at these two values based on
his or her knowledge of the functionality of the task and the possible range of ASIP
micro-architectures. These values can also be estimated; the lower WCET bound can
correspond to the expected WCET when τj is executed on an ideal processor according
to an as soon as possible (ASAP) scheduling without architectural constraints. Instead,
the upper WCET bound can correspond to a sequential execution of τj on the slow-
est ASIP as possible. For the case studies in Chapters 4 and 6, we use an external
code analysis tool [43] to get the upper and lower bounds values; additionally, in the
same chapters, we discuss the sensitivity of our approach to the accuracy of the WCET
bounds. Within these two values, we use a normal distribution for Cj that models the
WCETs of the task executing on an undefined ASIP that has not been designed yet. The
reasons for using a normal distribution are provided in Section 2.3.1. A normal distri-
bution is defined by its probability density function (PDF) (Equation 2.1), where µj
and σ2

j are the parameters defining the distribution of Cj . µj is the mean or expectation
and σ2

j is the variance (σj is the standard deviation).

fj(x) =
1

σj
√

2π
e
−

(x−µj)
2

2σ2
j (2.1)

In our UM, we use the definition of cumulative distribution function (CDF), Fj(x), of
a normal distribution (Equation 2.2).

Fj(x) =
1

2

[
1 + erf

(
(x− µj)
σj
√

2

)]
(2.2)

The CDF, Fj(x) of Cj , can be specified as Fj(x) = P (Cj ≤ x) = p, where the prob-
ability p is an indicator of the number of ASIP configurations that lead to a Cj smaller
than a value x. Figure 2.3 shows an example of CDF for a task τj . The distribution
is built such that P (Cj ≤ Cuj) ≈ 1. This means that task τj will finish in Cuj time
units or less on all possible ASIP micro-architecture configurations. At the same time,
we also assume that P (Cj ≤ Clj) ≈ 01. This means that according to the designer’s

1The CDF of the normal distribution does not reach the one and zero values, therefore we use values that
approximate them.

2.3 Modeling WCET uncertainties 23

evaluation, none of the possible micro-architecture configurations will finish faster than
Clj time units. Using the Cuj and Clj values, we calculate µ and σ2 characterizing the
normal distribution ofCj . µ is calculated as the mean value betweenCuj andClj (Equa-
tion 2.3). σ2 is calculated using Equation 2.5. Equation 2.5 derives from the quantile
function F−1(p) defined by Equation 2.4. The quantile function is the inverse of the
CDF. Once we have µ and σ2, we can draw the corresponding CDF.

µ =
(Cuj + Clj)

2
(2.3)

F−1(p) = µ+ σ
√

2erf−1(2p− 1) (2.4)

σ =
F−1(p)− µ√

2erf−1(2p− 1)
(2.5)

P(
C

j<
x)

Time Units

Cj
l

0 10 20 30 40 50 60 70
0

0.5

1

Cj
u

Figure 2.3: Example of UM for a task τj [69]

P(
C

m
<x

)

Time Units

Cmg
=

Mg

w* fb

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

Figure 2.4: Example of Cmg for a task mg [69]

We also build a model for the messages to use during DSE. For each message mg

we know its size in bits. Additionally we know the frequency and data width of the
bus that we want to explore. Given these elements, we can calculate the worst-case
transmission time Cmg of each message mg as presented in Section 2.2. Cmg is a
single value and not a stochastic variable: for each type of bus that we want to explore,

24 System models

we have a different Cmg . It is possible to represent the Cmg of a message as a step
function 2.6 (example in Figure 2.4).

u(x− Cmg) =

{
0 if x < Cmg
1 if x > Cmg

(2.6)

If during DSE, we want to consider already synthesized ASIPs or intellectual property
(IP) cores (e.g. GPPs or DSPs), we need the WCET of the tasks running on these
components. As for the messages, we can model the WCETs of tasks executing on
these processors as step functions. If the WCET of a task τj on any of these PEs, PEk,
is CPEkj , then the CDF of τj can be expressed as F (x)j = P (Cj = CPEkj) = 1. In
Chapter 3 we explain how to combine the probability distribution of the tasks assigned
to ASIPs with the WCET of messages (or of task assigned to IP cores) to perform a
schedulability analysis and compare different clustering solutions.

2.3.1 Validation of the normal distribution for UM

In this section, we explain the motivation for selecting a normal distribution for the
modeling of the stochastic variable Cj associated with a task τj . To determine the
distribution type, we performed two different types of experiments:

• In experiment 1 we consider a single task τj and, using an ASIP VLIW sim-
ulator, we prove that the normal distribution is the best one for approximating
the WCETs of τj running on a considerable number (∼ 500) of ASIP micro-
architecture configurations.

• In experiment 2 we consider an application Ai, modeled as a task graph and
we assume different probability distributions (normal, Gumbel and uniform) for
modeling the WCET of the tasks of Ai; then we run our DSE for finding the best
task clustering solution. We determine that the normal distribution is the best
choice for guiding our DSE.

In the next subsections, we present the details of experiments 1 and 2.

2.3.1.1 Experiment 1

In this experiment we use a single task τj and we verify the distribution of the WCETs
obtained from running the task on multiple micro-architecture configurations of a VLIW

2.3 Modeling WCET uncertainties 25

ASIP. We want to determine how the WCET of the task varies depending on the micro-
architecture configurations, and prove that our WCET uncertainty model proposed in
Section 2.3 is able to capture this variation.

We performed this experiment on two tasks, τjpeg and τmp3 of different sizes and
complexities. τjpeg contains the sequential code of a JPEG decoder [94], while τmp3
contains the sequential code of a MP3 decoder, part of the MAD library [3]. We con-
sidered one task at a time and we ran it on a VLIW architecture that can be configured
similarly to the ASIP architectures considered in this thesis. We used the VLIW Ex-
ample (VEX) [26], which is a VLIW C compiler and simulator developed at Hewlett
Packard Research Laboratories. The micro-architecture of VEX is highly and eas-
ily configurable using a micro-architecture configuration file. In Figure 2.5 there is
the default micro-architecture configuration of VEX that provides an overview of the
micro-architectural components available in VEX. In Table 2.1 there are the micro-
architecture features that we explored and used to captures the variability in the WCET
of the micro-architecture designs. Thus, we varied the number of arithmetic and logic
units (ALU), the multipliers (MUL), the registers in the register file (RF) and the issue,
load and store slots. We set the design space to these parameters considering the fea-
tures of VLIW processors available on the market (e.g. [5]) and the characteristics of
the tasks τjpeg and τmp3. For each micro-architecture configuration, VEX performs the
compilation of the C code of the task, simulates its execution and returns the number
of execution cycles.

Reg.
File

64 GR
(32
bits)

Load/
Store
unit

D$
4-way
32KB

16x32
Mul

16x32
Mul

Branch unit
Reg. File

8BR (1bit)
Branch unit

ALU ALU ALU ALU

D
ecoder

I$
32KB

Figure 2.5: Default VEX micro-architecture configuration [25]

Using the parameters in Table 2.1 we evaluated a large number of micro-architecture
configurations; due to some limitations of VEX, some combinations of parameters are
not accepted. In total, we simulated 490 micro-architecture configurations for the MP3
decoder task and 560 for the JPEG decoder task.

26 System models

Table 2.1: Micro-architecture features explored

Task
Issue
width

num.
ALU

num.
MUL

RF
size

Load
slot

Store
slot

MP3
decoder

1,2,3,
4,5,6,
7,8

4,5,6,
7,8

2,3,4,
5,6,7,

8

32,
64

4 2

JPEG
decoder

2,3,
4,5,6,
7,8

4,5,6,
7,8

1,2,3,
4,5,6,
7,8

32,
64

4 2

For each micro-architecture configuration, we compiled and ran the task. We used
the m3explorer tool [102] for performing DSE in an automatic way; m3explorer is
a generic tool for DSE that can be interfaced to any simulation/evaluation tool using
XML files. We used the tool to perform an exhaustive DSE. Using scripting languages,
we created the interfaces between VEX and m3explorer: the scripts automatically gen-
erated the micro-architecture configuration file and collected the results (number of
cycles) produced by VEX. For each micro-architecture configuration explored, we as-
sumed a frequency of 100 MHz to calculate the execution time in ms (given the char-
acteristics of the micro-architectures explored, we can safely assume a frequency of
100 MHz by comparison with other commercial VLIW processors, e.g. [5]). For a
particular micro-architecture, after simulations with multiple input files, we considered
as WCET the largest value of the execution time. We know that such a value does not
represent the WCET, which is a theoretical upper bound determined through analysis,
but we believe this value is a good approximation for our experiments.

The results for the MP3 decoder are presented in Figures 2.6a and 2.6b and those for
JPEG in Figures 2.7a and 2.7b. Figures 2.6a and 2.7a present with a bar graph the
distribution of the WCET of τjpeg and τmp3 obtained with our experiments. We used
a fitting function of MATLAB to determine the probability distribution type that better
approximates these WCET values; we wanted a distribution that is a good approxima-
tion of the WCET of both tasks τjpeg and τmp3.

We observed that a normal distribution is a reasonable approximation (represented with
a continuous red line in Figure 2.6a and 2.7a). The corresponding CDF are plotted in
Figure 2.6b and 2.7b. Each figure shows two CDF curves: the CDF resulted after
experiments (depicted with a continuous blue line) and the CDF obtained by using
our model (the green dotted line). Our WCET model (the green dotted CDF) was
obtained as explained in Section 2.3, considering a normal distribution between a lower
bound Cl and an upper bound Cu of the WCET (we took the fastest and lowest micro-
architecture configurations).

2.3 Modeling WCET uncertainties 27

1400 1600 1800 2000 2200 2400 2600 2800
0

0.5

1

1.5

2

2.5

3

3.5
x 10−3

C (ms)

N
or

m
al

iz
ed

 n
um

. m
ic

ro
−a

rc
hi

te
ct

ur
e

co
nf

ig
.

Experimental PDF
Approximated PDF

1400 1600 1800 2000 2200 2400 2600 2800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P(
C i<x

)

C (ms)

Experimental CDF
Our CDF model P(Ci<x)

Lower bound Cl

Upper bound Cu

(a)

(b)

Figure 2.6: (a) Histogram of the probability density function of the Ci obtained with
VEX and (b) comparison of our proposed CDF (P (Ci < x)) with the
simulation results for mp3 decoder task

The micro-architectures, corresponding to the upper and lower bounds of the WCET for
the two tasks, are summarized in Table 2.2. The slowest and fastest micro-architecture
configurations do not correspond to the smallest (sequential) and biggest (most paral-
lel) one. We presume that this is due to the scheduling done by VEX compiler. For
example let us consider two identical micro-architectures that differ only in the issue
width number. The issue width determines the total number of operations in a VLIW
instruction and therefore, the operation-level parallelism. We would expect better per-
formance from the micro-architecture with a bigger issue width as potentially can run
more operations in parallel; or at least we would expect similar performances from the
two configurations, in case the code of the task does not allow operation level paral-
lelism. Instead, in our experiments, we verified that a more parallel micro-architecture
configuration can lead to worst performance than a smaller one and this is probably due
to a wider number of scheduling options for the compiler as there are more resources

28 System models

5.8 6 6.2 6.4 6.6 6.8 7 7.2 7.4
0

0.5

1

1.5

2

2.5

3

C (ms)

N
or

m
al

iz
ed

 n
um

. m
ic

ro
−a

rc
hi

te
ct

ur
e

co
nf

ig
.

5.8 6 6.2 6.4 6.6 6.8 7 7.2 7.4
0

0.2

0.4

0.6

0.8

1

P(
C i<x

)

C (ms)

Experimental CDF
Our CDF model P(Ci<x)

Lower bound Cl

Upper bound Cu

(a)

(b)

Figure 2.7: (a) Histogram of the probability density function of the Ci obtained with
VEX and (b) comparison of our proposed CDF (P (Ci < x)) with the
simulation results for jpeg decoder task

that can be used. For example, the lower bounds of τmp3 and τjpeg have been found
using a smaller issue width (5 and 7, respectively) than the maximum allowed by our
design space (8).

This experiment showed that the WCET has a normal distribution and that our proposed
uncertainty model is a valid and safe approximation. Note that the CDF of our model
leads to more pessimistic (larger) WCETs compared to experimental measurements.
This is acceptable as we want to consider the worst case of the execution time and the
WCETs produced by our experiments might be optimistic (smaller), since they are not
a theoretical upper bound obtained through analysis. It is important to mention that the
proposed WCET uncertainty model is used only for design space exploration, and not

2.3 Modeling WCET uncertainties 29

for providing timing guarantees.

Table 2.2: Micro-architectures associated with the WCET upper and lower bounds

Task WCET
Issue
width

num.
ALU

num.
MUL

RF
size

Load
slot

Store
slot

MP3
decoder

Cl 5 8 5 64 4 2

Cu 1 4 2 64 4 2

JPEG
decoder

Cl 7 5 3 64 4 2

Cu 2 8 6 64 4 2

2.3.1.2 Experiment 2

The purpose of the second experiment is to validate the results from Experiment 1. In
Experiment 1, we consider isolated tasks running on a single ASIP and we calculate the
WCET distribution of the same task running on multiple micro-architecture configura-
tions; on the other hand, in this experiment, we consider an entire application modeled
as a task graph and we run our DSE with UM to determine the best task clustering solu-
tion. The WCET of each task in the application is modeled using a different probability
distribution: normal (N), Gumbel (G) and uniform (U) distributions. We want to ver-
ify if a performance model based on the normal distribution is able to properly guide
the DSE and to find the best clustering solution when compared to other probability
distributions. We select the Gumbel distribution as it is commonly used to model the
WCET [22, 36] and the uniform distribution for its simplicity. The details of the DSE
and of the schedulability analysis performed are presented in Chapter 3; for the sake of
this experiment, it is enough to know that during DSE, we can compare different task
clustering solutions performing a schedulability analysis. The schedulability analysis
combines the WCET probability distributions of the tasks; its output can be used to
discriminate among the different task clusterings and identify the best one.

We performed the same DSE using the normal, Gumbel and uniform distributions.
For each task τj of the input application Ai, we have the upper and lower bound,
Clj and Cuj , and we calculated the CDFs of each task according to the three types of
distribution. In Figure 2.8 there is an example of the probability density function and
of the corresponding CDF for normal, Gumbel and uniform distributions.

Additionally, we ran the same DSE and schedulability analysis, but with a determin-
istic WCET for each task (i.e. we know the WCET value and there is no probability
distribution associated with it). Using deterministic WCET, we can calculate the exact
scheduling length.

30 System models

180 190 200 210 220 230 240 250 260 270 280 290

0

0.01

0.02

0.03

0.04

0.05

P(
C i<x

)

C (Time units)

normal
uniform
Gumbel
Upper bound Cu

Lower bound Cl

180 190 200 210 220 230 240 250 260 270 280 290
0

0.2

0.4

0.6

0.8

1

P(
C i<x

)

C (Time units)

normal
uniform
Gumbel

Upper bound Cu

Lower bound Cl

Figure 2.8: (a) Probability density function and (b) Cumulative distribution function
(CDF)

We then compared the task clustering solutions obtained using the three types of dis-
tributions to the one obtained using deterministic WCETs. In this section we use the
following terminology: DSEtypeUM indicates our DSE with UM and type is the distri-
bution used, type = {N,G,U}, while DSEdet indicates the DSE using deterministic
WCETs. As we want to compare the results obtained with DSEtypeUM and DSEdet,
we need to guarantee that the two DSE are comparable. Therefore, we need to use
the same optimization function during DSE. In the deterministic DSE the optimization
function is the minimization of the scheduling length. Instead, in our default imple-
mentation of the uncertainty model (described in Chapter 3) the optimization function
is the maximization of the probability of meeting the application deadline. We modified
our DSEtypeUM , so that the exploration is guided by the minimization of the scheduling
length at different probabilities. We used the inverse of the CDF, i.e. the quantile func-
tion Ci = F−1(p), to obtain the Ci of a clustering solution at specific probabilities pi,
where pi ∈ Pi = {0.02, 0.50, 0.98}. We selected three different probabilities to take
the shape of the different CDFs into account and not to favor any distribution types.

For each probability and for each distribution type we ran the DSEtypeUM obtaining dif-
ferent optimized clustering solutions. In total, we ran the DSEtypeUM nine times, one for
each combination of pi and distribution type; we also obtained nine different clustering

2.3 Modeling WCET uncertainties 31

solutions. These solutions are the results of an evaluation that takes into account the
entire range of possible micro-architecture configurations of the ASIPs.

Then we ran the DSEdet multiple times: for each execution of the DSEdet and for
each task τj in our input application Ai, we assigned a deterministic WCET ran-
domly extracted from the range [Clj , C

u
j]. We assume that this WCET corresponds

to a specific ASIP micro-architecture configuration. Using these deterministic WCET
values, we performed the DSEdet to find the best clustering solution that minimize the
scheduling length when specific ASIP micro-architecture are used. We ran theDSEdet
5,000 times, each time randomly extracting, for each task τj , a WCET from the range
[Clj , C

u
j]. Therefore we obtained 5,000 sets containing a WCET value for each task in

the application.

Once we collected all the results from the nine executions of the DSEtypeUM and of the
5,000 executions of the DSEdet, we compared them. The schedule length obtained
with DSEdet represents the optimal scheduling that we can obtain when knowing the
exact values of the WCET for each task. We took the nine clustering solutions produced
by the DSEtypeUM and we calculated the real scheduling length of each of them using,
for each task, instead of the WCET probability distribution, the deterministic WCET
values also used for theDSEdet. This means that we calculate 5,000 scheduling length
for each of the nine task clustering solutions.

Then we compared the scheduling length of the 5,000 clustering solutions found through
DSEdet with the scheduling length of the clustering solutions found with DSEtypeUM ,
which are evaluated with the same WCET values used for the deterministic method.
Our objective is to identify which probability distribution type allows finding a task
clustering solutions with the closest scheduling length to the one found with DSEdet
in which we have precise WCET for the tasks.

We ran this evaluation on six synthetic case studies, which characteristics are specified
in Table 2.3. In Table 2.4, for each case study, and for each distribution type (at pi ∈
Pi = {0.02, 0.50, 0.98}) we have the average relative error in the scheduling length
obtained with the UM when compared to the DSEdet. The average relative error
is calculated as follows. Let us consider the task clustering obtained using a normal
distribution (DSENUM) and the quantile function at pi = 0.50. We evaluated this task
clustering solution with the 5,000 sets of WCET (the same used during DSEdet). We
compared one by one the scheduling length for each of the 5,000 sets and we got a
relative error for each one of them. Then we calculated the average of the errors and
we got the average relative error that we used to fill in Table 2.4.

We observed that the uniform distribution is the one with the worst approximation.
Even if normal and Gumbel distributions return comparable errors for some case stud-
ies, the first one is a better fit for most of the case studies.

32 System models

Table 2.3: Case studies for the comparison of CDF types

Case Study ID 1 2 3 4 5 6

No. of Apps. 4 5 18 10 39 48

No. of Tasks 14 15 24 26 44 60

No of ASIPs 11 14 14 11 10 13

Table 2.4: Results of the comparison of CDF types (% average relative error)

normal Gumbel uniform

Case Study ID 0.02 0.50 0.98 0.02 0.50 0.98 0.02 0.50 0.98

1 0.02 0.02 0.02 0.02 0.02 0.02 0.04 0.05 0.04

2 0.06 0.13 0.06 0.11 0.04 0.07 0.11 0.11 0.11

3 0.16 0.05 0.05 0.18 0.05 0.05 0.08 0.16 0.98

4 0.05 0.06 0.06 0.08 0.22 0.05 0.07 0.06 0.15

5 0.07 0.09 0.11 0.10 0.09 0.13 0.12 0.13 0.12

6 0.06 0.05 0.06 0.05 0.06 0.05 0.06 0.06 0.08

Figure 2.9 and 2.10 represent the distributions of the relative error, i.e. percentage
difference in the scheduling length for case study 1 and 4 (Table 2.3). The distribution
of the relative error for the other case studies are available in Appendix A.1. For each
case study, the normal, Gumbel and uniform distributions are represented. For each
distribution, we grouped together the results obtained for pi ∈ Pi = {0.02, 0.50, 0.98},
for a total of 15,000 evaluated schedulings. The normal distribution is the one that
returns schedulings with length closer to the DSEdet. In fact for all case studies is the
one with the highest number of scheduling length difference equal zero. For example,
let us observe Figure 2.9. Each histogram contains the results for 15,000 schedulings
(5,000 schedulings for each pi). The histogram containing the results obtained with
a normal distribution, has most of the schedulings (∼ 8, 000) with 0% error when
compared to the schedulings obtained with DSEdet. This value decreases to ∼ 3000
for Gumbel and ∼ 1800 for the uniform distributions. Depending on the case studies,
the distribution of the errors can vary: we observed that for the case studies with a
higher number of tasks, the errors are centered around zero, but are distributed on a
wider range. However, in all cases, we verified that the normal distribution produces
scheduling length closer to the one obtained using a deterministic DSE, in which we
know the precise value of the WCETs of each task.

2.3 Modeling WCET uncertainties 33

Figure 2.9: Histogram of the percentage (%) differences in the scheduling length for
Case Study 1

Figure 2.10: Histogram of the percentage (%) differences in the scheduling length for
Case Study 4

34 System models

2.4 Summary

In this section we introduced the task graph model that we use to represents our input
application Ai and the CP model that we use for the platform representation.

Additionally, we presented our UM, i.e. the performance model that we use for mod-
eling the WCET of each task τj .

The WCET of each task depends on the ASIP micro-architecture, which is designed
depending on how the tasks are clustered. We use a probabilistic performance model to
break the circular dependency between the need of knowing the implementation of the
ASIPs for estimating the global system performance and the impossibility of knowing
the ASIP micro-architectures in the early design phases when the task clustering is still
unknown. Our UM captures the entire spectrum of possible ASIP micro-architectures,
for each task τj : the WCET of each τj is modeled as a stochastic variable Cj and the
associated probability distribution function.

Moreover, we described the experiments that we performed to justify the selection of a
normal probability distribution to model the stochastic WCET.

In the next session we are going to explain how to use the application, platform and
UM models to perform our schedulability analysis and identify the best task clustering
solutions.

CHAPTER 3

Macro-architecture level DSE

In this chapter we describe our macro-architecture DSE and the schedulability analysis
that we perform to evaluate different task clustering solutions. Our schedulability anal-
ysis is implemented using the application and platform models and the UM described
in Chapter 2. In Section 3.1, we use a motivational example to give an overview of our
schedulability analysis to the reader and to present how it can be used to discriminate
between different task clustering solutions. Then, in Section 3.2, we present the prob-
lem formulation, and finally, in Section 3.3, we describe our schedulability analysis for
the evaluation of a single task clustering solution and the DSE algorithm for explor-
ing the solution design space. Part of the material described in this chapter has been
published in [69].

3.1 Motivational Example

The schedulability analysis of a task clustering for a given application Ai is done ac-
cording to the application deadline di. We have an initial platform, specified as a CP
model. We consider a multi-ASIP bus-based platform, in which the ASIPs have not
been designed yet: the CP model indicates the maximum number of PEs that should be
included into the final system (our platform cost, PCmax) and how they are intercon-
nected. Additionally, we have the UM of each task, τj in Ai, and the WCET, Cmg , for
each message (according to the bus type).

36 Macro-architecture level DSE

Let us consider the application task graph in Figure 3.1a and the UM of each task in
Figure 3.1c. The initial platform model is in Figure 3.1b. We evaluate two different task
clustering solutions Sol1 and Sol2 (Figure 3.2a); our schedulability analysis produces
the CDFs for the task clustering solutions (Figure 3.2b). We obtain them combining
the CDF of each task and the WCET of the messages. Each solution is evaluated
according to the application deadline (d) and we obtain a probability psol. Sol1 has
a probability p1 = 0.82 while Sol2 has p2 = 0.03. This indicates that the first task
clustering solution is better than the second one: a higher probability indicates that a
task clustering is more likely to meet the application deadline when the platform is
designed.

C2
u

C2
lC3

lC1
l

C3
uC1

u
(c)

P(
C

i<
x)

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

Time UnitsTa
sk

s
an

d
M

es
sa

ge
 T

as
ks

 C
D

F
W

C
ET

data1

data2

data3

τ1
τ2
τ3

τ1

m1 m2

τ3

τ2
(a)

CU1	

PE2	
 PE1	
 (b)

Figure 3.1: Example of schedulability analysis: (a) input application, (b) PC model of
the input platform and (c) UM of the tasks [69]

3.2 Problem Formulation

Given one or multiple applications Ai (see Section 2.1) with deadline di, and a plat-
form cost constraint PCmax, the problem is to define a system-level multi-ASIP plat-
form, such that the probability of having a schedulable implementation is maximized
under the specified cost constraint PCmax.

Defining a system-level platform means performing a DSE to decide the task cluster-
ing and the interconnection. Our UM takes as input the task graphs of the applications,
their deadlines and the cost constraint PCmax that is defined as the maximum number1

1We will consider the ASIP area cost in Chapter 8.

3.2 Problem Formulation 37

20 40 60 80 100 120

0

0.2

0.4

0.6

0.8

1

Time Unit

C
D

F
Ex

ec
ut

io
n

Ti
m

e
Pi

pe
lin

e

data1

data2

data3

(b)

0.03

0.82

Sol1

Sol2

d

P(
C

i<
x)

CU1	

PE2	
 PE1	

τ1 τ2 τ3

m1 m2

(a)

Sol1 CU1	

PE2	
 PE1	

τ1 τ3 τ2

m2

Sol2

Figure 3.2: (a) Task clustering solutions and (b) corresponding CDFs produced by the
schedulability analysis of the example in Figure 3.1 [69]

f3(){
…
}

f2(){
…
}

f1(){
…
} τ1

m1 m2

τ3

τ2

ASIP synthesis

 Uncertainty Model

Task(s)'and'Design'
Constraints'

Task(s)'Analysis'

Architectural'Design'Space'
Explora<on'

Instruc<on'set'genera<on'

Code'Synthesis' Hardware'Synthesis'

Object'Code'
Processor'
Descrip<on'

τ2

τ1 τ3

Cluster 2

Cluster 1

Input Output

Interconnection
selection

Interconnection
library

ASIP Synthesis and
Platform description

ASIP1 ASIP2

f2(){
…
}

f1(){
…
}

0 5 10 15 20 25 30 35 40 45 50

0

0.2

0.4

0.6

0.8

1

1.2

Time Units

data1

data2

data3

20 40 60 80 100 120

0

0.2

0.4

0.6

0.8

1

1.2

Time Unit

data1

data2

data3

2%

τ1
τ2
τ3

93% Sol1
Sol2

d

C2
u

C2
lC3

lC1
l

C3
uC1

u(a)

P(
C

i<
x)

P(

C
i<

x)

Time Units

(b)

Design Space
Exploration

(Evolutionary Algorithm
and Monte Carlo

simulation)
Bus 1

Bus 2

w1

w2

Bus 1

w1

Message
transmission

time

Derivation Cl
and Cu of the

tasks

Applications deadline
and CP model

Clustering
solution

Figure 3.3: Multi-ASIP platform design flow [69]

38 Macro-architecture level DSE

of ASIPs that can be included in the platform. Moreover, we consider a library of buses
with different speeds and bandwidths, from where the DSE selects the appropriate bus.
There can be a set of legacy components that have to be used in the architecture and
some tasks may be assigned to some specific PEs by the designer. Our optimization
takes these constraints into account. The designer, based on his knowledge or through
an analysis of the task code, can provide the upper and lower bounds for the WCET or
can use a profiling tool as done for our experimental evaluation (Section 4.2). Given
the size in bits of each message and the library of buses, it is possible to estimate the
communication time for each message. The DSE evaluates different task clustering
solutions as presented in Section 3.3.1 and selects the ones which maximize the proba-
bility of having a schedulable implementation. After DSE, we use an ASIP design flow
(Figure 1.2) to implement an ASIP for each task cluster. The output of our multi-ASIP
platform design approach is a platform architecture, consisting of several ASIPs and
possibly also legacy components, and their interconnection (a selected bus with a cer-
tain speed and bandwidth). The design is performed under the platform cost constraint
PCmax. Without any loss of generality, our approach can be used also if the initial
CP model of the platform includes a set of legacy components (e.g. ASICs, DSPs).
Figure 3.3 shows our flow for the design of a multi-ASIP platform.

3.3 Platform Definition using an Evolutionary Approach

In this section, we present the details of the schedulability analysis with UM and the
DSE that we use to explore the design space of task clustering solutions. The design
space can be huge and cannot be exhaustively explored, so an Evolutionary Algorithm
(EA) has been implemented. The objective function guiding the exploration is the
maximization of the probability pi (returned by our schedulability analysis) for a cer-
tain clustering solution to meet the deadline, under a platform cost constraint PCmax.
Section 3.3.1 illustrates how a single task clustering solution is evaluated, Section 3.3.2
explains the policy to compare two task clustering solutions, Section 3.3.3 presents the
EA used for the DSE and finally Section 3.3.4 describes the application of our UM
through a small example.

3.3.1 Schedulability Analysis

Our approach is meant to be used at design time, when there is no platform available.
For the final implementation of our platform we use single-threaded VLIW processors
(provided by SH). Therefore, for our schedulability analysis, we use a static scheduling
policy. We also assume a non-preemptive scheduling.

3.3 Platform Definition using an Evolutionary Approach 39

In a classic scheduling problem, when the WCET of each task is known, it is possible
to determine the schedule table and thus to perform a schedulability check. This cannot
be done in our case, as the WCET is expressed by a stochastic variable. Instead, we
perform a schedulability analysis of each task clustering solution and use this as the ba-
sis for calculating the objective function during DSE. Note that the analysis presented
in this section is only used to guide the search, not to provide schedulability guaran-
tees. We assume that a detailed schedule table will be built during the later design
and development stages, when more accurate information about WCETs and the ASIP
micro-architecture is available.

With static cyclic scheduling, δAi is the length of the schedule for Ai. As previously
mentioned, we cannot calculate the schedule length of a task clustering solution, but we
can perform a schedulability analysis to determine the probability of having a schedule
table that meets the deadline, as δAi is a stochastic variable as well. Thus, the probabil-
ity of Ai to meet the deadline di is defined as P (δAi ≤ di). In [61], the authors present
how to determine δAi in case of stochastic execution times (WCETs in our case), using
an analytical approach that relies on the assumption of independence between the start-
ing and finishing time of each task/message. This assumption in our case does not hold,
so we substitute the analytical method with Monte Carlo simulation (MCS), which, in
addition, is able to take into account the task dependencies and provide more precise
results.

With MCS, we repeat the schedulability analysis of a task clustering solution multiple
times. At each iteration of MCS, we extract a WCET value for each task according to
its probability distribution. The output of a single iteration of the MCS is the schedule
table when considering the extracted WCETs. We collect the output of all iterations
of MCS and we obtain the probability distribution of δAi . Finally, we calculate the
probability pi = P (δAi ≤ di) of an application Ai to be schedulable. The steps for
performing MCS are summarized in Figure 3.4a.

As a MCS is known for being time consuming, a reduced number of samples, n has
been used to speed up the execution. The results obtained with n = 5, 000 samples have
then been compared to results obtained with n = 50, 000 samples, and the difference
in the value of pi between them was less than 3%.

We use an approach similar to As Soon As Possible (ASAP) [96] scheduling to calcu-
late δAi . Let us illustrate how δAi is obtained using the application from Figure 3.6a
and the platform implementation solution from Figure 3.6b. The clustering solution in
Figure 3.6b uses two ASIPs, PE1 and PE2. Messages are assigned to the bus (CE).
We start by identifying a layer subdivision [61] of the task graph, see Figure 3.6c. If
communicating tasks are assigned to the same PE, the communication cost is ignored.
Each task and message has a priority assigned (defined by the task id, to a lower id
corresponds an higher priority). A layer identifies the tasks and messages of the appli-
cations Ai that can be executed in parallel, i.e. that have no data dependency and are

40 Macro-architecture level DSE

For each task τj ,
Extract a WCET value

according to the probability
distribution Fj(x);

Calculate the schedule
table using the extracted
samples for iteration it;

it++;

it< n?

For each task τj ,
extract n sample WCET

according to the
probability distribution

Fj(x)

Calculate in parallel n
schedule tables using
the n samples of each

task

Combine the schedule
tables from n iteration and

obtain P(δi<di)
Obtain P(δi<di)

(a) (b)

Set iteration count, it=0;

Next task clustering
solution

Next task clustering
solution

DSE
(SSEA)

DSE
(SSEA)

Extract samples
and evaluate a
task clustering

with MCS

Extract
samples for

MCS

Evaluate a
task clustering

with MCS
samples

Figure 3.4: Steps for performing design space exploration with MCS (a) Reordered
steps for performing design space exploration with MCS (b)

assigned to different hardware resources (PEs and CEs). When tasks and messages
are assigned to the same hardware resource and there is a contention of the same layer,
their execution order is set according to their priority.

According to MCS, for each task, we extract n random samples according to the nor-
mal distribution modeling the WCET of the task. For the messages we have arrays that
contain n equal values, i.e. the transmission time associated to the message (Cmg). In
Figure 3.5, there is an example. Please note that even if we use the same naming con-
vention for the stochastic variable Cj and for the array of n-elements that are modeling
the probability distribution of the variable, we use the boldface formatting to indicate
the n-element array (the same convention applies to the WCET of a message and its
corresponding n-element array).

To speed up the MCS, we move the random generation of n WCET values outside of
the DSE. Additionally, instead of iterating the calculation of the schedule table n times,
we execute the schedulability analysis a single time on arrays of n samples containing
the extracted WCET so that the layer subdivision is calculated only once. Figure 3.4b
depicts the steps of the MCS for speeding up its execution.

During the schedulability analysis, we combine these arrays of n-elements using +
(sum) and max (maximum element selection) operations. Each operation is performed

3.3 Platform Definition using an Evolutionary Approach 41

P(
C

j<
x)

Time Units

Cj
l

0 10 20 30 40 50 60 70
0

0.5

1

Cj
u

Extract n=5,000
samples according to
normal distribution

Cj = {33,30, 24,...,35, 42}

P(
C

m
<x

)

Time Units

Created array of n=5,000
samples with value

Cmg = {5,5, 5,..., 5, 5}

Cmg
=

Mg

w* fb

Cmg

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

Figure 3.5: Extraction of n samples to build the arrays Cj and Cmg

element by element on the arrays. Using these arrays and the layer subdivision (indi-
cated by the dotted lines in Figure 3.6c), we calculate the starting time tsj (tsmg

) and

finishing time tfj (tfmg
) of each task τj (and message mg). They are obtained com-

bining the Cj of the tasks and Cmg of the messages. Therefore, each starting and
finishing time is also a stochastic variable which probability distribution is modeled
by an n-element array. The starting and finishing time of each task and message are
calculated for each layer, starting from the first layer down to the last one.

The starting time tsj of a task τj is given by the maximum of the finishing times of
all the tasks which τj depends on (max operation). If τj has no data dependencies or
hardware resource contention, its starting time is zero. The finishing time tfj of τj is
given by the sum (+ operation) of the starting time and of the WCET of the task, i.e.,
tsj + Cj . Once we have the starting and finishing time of each task, we consider all
the sink tasks, i.e. tasks without successors. The array with the maximum finishing
time among the sink tasks in an application Ai is used to extract the CDF modeling the
performance of the entire application and corresponds to δAi : given the final array of n
elements, we build its histogram, we normalize it (obtaining the PDF) and we integrate
it to obtain the CDF δAi . Finally δAi is evaluated according to the application deadline
di and returns the probability pi of having a schedulable solution. Figure 3.6c depicts
the computations performed at each layer.

We assume that the WCET CDFs of the tasks are independent. Therefore, clustering
tasks together has no effect on their CDFs. We are using this approach in the very early
phases of the design, when the ASIPs have not been synthesized. As a consequence,

42 Macro-architecture level DSE

τ5

τ1

τ3

m5

m3

m1

τ2

t1
s = {0,0,..., 0, 0, 0} t1

f =C1

tm1
s = t1

f

t3
s = t1

f

tm1
f = tm1

s +Cm1

t3
f = t3

s +C3

t2
s = tm1

f

tm3
s = max(t1

f , tm1
f) = tm1

f

t2
f = t2

s +C2

tm3
f = tm3

s +Cm3

tm5
s = max(t3

f , tm3
f)

t4
s = max(t2

f , tm3
f)

t5
s = max(t2

f , t4
f , tm5

f) = max(t4
f , tm5

f) t5
f = t5

s +C5

τ4

tm5
f = tm5

s +Cm5

t4
f = t4

s +C4

(b)

CE1

m5 m3

PE2 PE1

τ3 τ1 τ2 τ4

m1

τ5

τ1

τ5

m1

τ2

m4

m2

τ3

m5

m3

τ4

m6

(a)

(c)

Figure 3.6: Example of application Ai (a), of task clustering solution for Ai (b) and of
δAi calculation (c) [69]

we can assume that each ASIP micro-architecture will contain the necessary hardware
components to provide the expected WCET for each task. In Chapter 8, we propose an
extension of the DSE that also considers the area of each ASIP and in that case we also
analyze the impact of the task clustering on the WCET of the tasks.

3.3 Platform Definition using an Evolutionary Approach 43

3.3.2 Comparison of task clustering solutions

Given the δAi of multiple task clustering solutions, we can compare them calculating
their probability of meeting the deadline di. Let us consider the δAi of two task clus-
tering solutions: Sol1 and Sol2 (Figure 3.7a). Sol1 has a probability pi of 0.82 while
Sol2 of 0.03. This indicates that the first task clustering solution is much more likely
to meet the application deadline di = 65 when the platform is designed. Additionally,
during DSE, we may need to compare clustering solutions with the same probability
(e.g. Figure 3.7b where both solutions have pi ∼ 1 for a deadline di = 80). To dis-
criminate between these solutions we consider the number of PEs used, and select the
solution with the smaller number of processors. If also this value is the same, then we
use the inverse of the CDF, the quantile function δ0.5

i = P−1(p0.5) (defined in Equa-
tion 2.4): we select the solution Solid that has the smallest WCET δ0.5

i at a probability
p0.5 = 0.5. In the example in Figure 3.7b, the value of quantile function at p0.5 is 62
time units for Sol1 and 68 time units for Sol2. Therefore during our exploration we
will select Sol1.

20 40 60 80 100 120

0

0.2

0.4

0.6

0.8

1

Time Unit

C
D

F
Ex

ec
ut

io
n

Ti
m

e
Pi

pe
lin

e

data1

data2

data3

a)

Time Units

0.03

0.82

Sol1

Sol2

d

P(
C

i<
x)

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

Time Unit

C
D

F
Ex

ec
ut

io
n

Ti
m

e
Pi

pe
lin

e

data1

data2

data3

(b)
~1

Sol1

Sol2

d

P(
C

i<
x)

62

68

Figure 3.7: Comparison between task clustering solutions

3.3.3 Evolutionary Algorithm

We use a Steady State Evolutionary Algorithm (SSEA) [15] to decide the clustering
of tasks. SSEA takes as input the applications (including the uncertainty model) and
the CP model of the initial platform (with the maximum number of ASIPs, PCmax).

44 Macro-architecture level DSE

The algorithm returns a task clustering solution, which maximizes the schedulability
probability p for all applications, i.e., p = (

∑
pi)/NA where NA is the number of

applications, under the given cost constraint PCmax. When multiple solutions have the
same probability we select the one with the smallest quantile function P−1(p0.5) (we
use the quantile function of the CDF modeling the total performance of all applications)
as presented in 3.3.2.

SSEA is inspired from the process of natural evolution, where a set of solutions is
called a population and each solution is encoded using a string called a chromosome.
The population is evolved by performing recombination and mutation, and part of the
population is replaced by the offspring population, which has better fitness according
to the cost function. SSEA has been chosen as it is suitable for optimization problems
in which the computation of the cost function is time-consuming (a small portion of
the population is replaced at each new generation). The algorithm works by adding the
offspring of the individuals selected from each generation to the pre-existing one, so
individuals are retained between generations. The implemented SSEA is described in
Algorithm 1.

A chromosome represents a task clustering solution. It is defined as an array of tasks
and messages; the value of each element (gene) represents the identifier of the PE or
CE to which the tasks and messages are respectively assigned. We used a two-point
crossover operator [15]. The mutation operator is used to randomly vary the PEs
and CEs to which the tasks and messages are assigned. The parameters used for the
execution of the SSEA are: crossover probability Pc, mutation probability Pm and the
population size Pop. SSEA finishes when a given time-limit has been reached. The
tuning of these parameters has been done running multiple executions of the algorithm
with different synthetic applications.

3.3.4 Example of schedulability analysis with UM

In this section, we use a small real case study (Figure 3.8a) to demonstrate the effec-
tiveness of our schedulability analysis and DSE. Without the use of our UM, a designer
willing to identify the proper task clustering for its input applications, can use a tem-
plate ASIP micro-architecture. The designer can characterize the WCET of each task
τj executing the task on the template processor. We denote this WCET as reference
WCET, Crefj and this design approach as straightforward method. We use the SFM as
a reference to compare the results obtained with our UM approach.

The task graph in Figure 3.8a has a source task τso, which is a dummy task with WCET
equal to zero and which is used only for starting the remaining tasks. Also the output
messages mso of τso are dummy messages with zero bit of data associated. Table 3.1
contains the upper and lower bounds for the UM and Crefj for the SFM for the re-

3.3 Platform Definition using an Evolutionary Approach 45

Algorithm 1 - Steady State EA

1: P := Generate Initial Population
2: repeat
3: Sol1, Sol2, Sol3, Sol4 := Random Select 4 different clustering solution from P
4: p := Generate Random Probability
5: best1 := Select best clustering solution between Sol1 and Sol2
6: best2 := Select best clustering solution between Sol3 and Sol4
7: if p > Pc then
8: o1, o2 := Apply two-point crossover to best1 and best2
9: else

10: o1 := best1
11: o2 := best2
12: end if
13: o′1 := Apply mutation to o1 with probability Pm
14: o′2 := Apply mutation to o2 with probability Pm
15: r1, r2, r3, r4 := Random Select 4 different clustering solution from P
16: worst1 := Select worst clustering solution between r1 and r2

17: worst2 := Select worst clustering solution between r3 and r4

18: Replace worst1 with o′1 in P
19: Replace worst2 with o′2 in P
20: until finished()

maining tasks in Figure 3.8a. These values are derived as follows. For each task, we
considered a simple functionality, consisting of a loop and operations such as mul-
tiplication and addition. We used the SH ASIP toolchain [55] to design the ASIPs.
We implemented a three-issue slot VLIW ASIP, and we ran the tasks to obtain their
WCETs. These WCET2 values were used as the reference Crefj . Furthermore, we
varied the micro-architecture of this ASIP to obtain two extreme ASIP configurations.
The WCETs on the slowest ASIP thus obtained were considered the upper bound Cuj ,
whereas the WCETs on the fastest ASIP designed were considered the lower bound
Clj . The obtained values are presented in Table 3.1. We considered that the platform
had at most two ASIPs (PCmax = 2).

Each platform solution (derived from a certain task clustering) was evaluated using the
schedulability analysis from Section 3.3, which gave the probability p of a solution to
be schedulable after implementation. We performed an exhaustive DSE as the design
space for this example is limited and we want to consider all possible task clustering
solutions. The best clustering solution obtained with UM is shown in Figure 3.8b,

2We are aware that the value obtained from the execution of the tasks on the ASIP is not a real WCET,
which is a theoretical upper bound determined through analysis, but we believe this value is a good approxi-
mation for our experiments: the loop bounds are known at compile time and the input data are hard-coded in
the tasks’ code.

46 Macro-architecture level DSE

Table 3.1: C values for the motivation example (in µs)

C τ1 τ2 τ3 τ4 τ5 τ6 τ7

Cu
j 702 3437 8801 702 702 702 3437

Cl
j 450 180 300 450 450 450 180

Cref
j 602 3237 400 602 602 602 3237

ASIP1 ASIP2

τ1, τ2,
τ4, τ6

τ3, τ5,
τ7

τ1
τ4 m2 τ2 m4

m3 τ3 m5

m1

τ6

τ5

τ7

m6
ASIP1 ASIP2

τ2, τ4,
τ6, τ7

τ1, τ3,
τ5

m1,
m2,,m5

m3, m5

(b) (c) (a)

τso
mso

mso

UM (59%) SFM (24%)

Figure 3.8: Comparison between UM and SFM approaches

having a p = 59%. Then, we performed an exhaustive DSE of all possible clustering
solutions with SFM, aiming at minimizing the schedule length, considering the given
Crefj . The task clustering obtained with SFM is shown in Figure 3.8c. In order to
compare the solutions obtained with the UM and SFM, we calculated the probability
p of the task clustering solution, found by the SFM, when evaluated using the UM
approach. Thus, p for the solution with SFM is 24%.

To validate the conclusions of the comparison between UM and SFM, we implemented
the platform solutions in Figure 3.8b and 3.8c, produced by UM and SFM, respectively.
Next, we determined the WCETs Cj of each task τj on their respective ASIPs using
SH cycle-accurate simulator. Then, we obtained the optimal schedule lengths for the
two cases. The schedule length in the case of the UM platform solution is 1, 955 µs,
whereas for SFM is 2, 275 µs. For a deadline of 2, 000 µs, UM solution is schedulable,
while SFM solution is not.

This example suggests that if a UM solution has higher chances to be schedulable
compared to a SFM solution according to our evaluation (Section 3.3.1), this is also
true in the final implementation using SH tools. The comparison of the two approaches
shows that with our UM approach, we are able to identify a solution that has a higher
probability to be schedulable, once it is implemented.

3.4 Summary 47

3.4 Summary

In this chapter we presented the problem formulation, i.e., the definition of a multi-
ASIP platform through the schedulability analysis of different task clustering solutions.
Our schedulability analysis is based on the UM. The probability distribution of the
tasks and the WCET of the messages are combined to calculate the probability of a
task clustering solution to meet the application deadline. Moreover, we explained how
our schedulability analysis could be used to compare different task clustering solutions
and we described the DSE algorithm used to explore the design space of the solutions.
Furthermore, we presented an example that shows the application of our DSE with
UM; the result obtained is verified implementing the multi-ASIP platforms, found by
our DSE, using the SH ASIPs.

48 Macro-architecture level DSE

CHAPTER 4

Experimental evaluation with
Task Graph model

This chapter is dedicated to the evaluation of our DSE with UM (part of the mate-
rial described in this chapter has been published in [69]). It is organized as follows.
In Section 4.1 we demonstrate the effectiveness of our UM applying it to synthetic
and real-life benchmarks and comparing it with the SFM (described in Section 3.3.4).
Additionally, in Section 4.2, we consider a Motion JPEG (MJPEG) encoder and af-
ter running our evaluation, we design the multi-ASIP platform implementing the task
clustering suggested by our DSE (using SH technology). For comparison, we also im-
plement different task clustering solutions. Moreover, we perform a sensitivity analysis
on the upper and lower bounds used to build the UM of each task.

The tools for the experimental evaluation have been developed in MATLAB for pro-
totyping and then in Java for the final implementation. We run the DSE tools on a
machine with Intel Core i7 CPU (2 GHz) and 8GB of RAM.

4.1 Comparison of DSE with UM and SFM

For the experimental evaluation of our DSE with UM, we consider both real-life and
synthetic benchmarks. For the real-life benchmarks, we use two subsets of applications

50 Experimental evaluation with Task Graph model

from the Embedded System Synthesis Benchmark Suite (E3S), version 0.9 [2], taken
from the telecommunication (telecom-cords, TLC) and automotive/industrial (auto-
indust-cords, IND) domain and two synthetic case studies (Synth), which represent a
smaller and a wider example. The case study Synth 1 is the same presented in 3.3.4. The
details of the case studies, in terms of number of applications and tasks are presented
in Table 4.1. For each case study, we have a deadline d (column 4) and a platform
constraint, PCmax (column 5). We consider that all applications in a case study, have
the same deadline.

Table 4.1: Comparison of UM and SFM [69]

Case No. of No. of d PCmax UM SFM

Study Apps. Tasks (ms) p ASIPs p ASIPs

TLC 4 10 5.35 3 71% 3 55% 3

IND 4 13 5.25 4 70% 4 59% 4

Synth 1 2 7 5 2 59% 2 24% 2

Synth 2 10 22 5.6 5 59% 5 49% 5

For each real-life benchmark, we consider the WCET value in the E3S benchmark as
the reference WCET Crefj , and we scale this value to obtain the lower (Clj) and upper
(Cuj) bounds. For Synth 1 we used the values in Table 3.1 and arbitrary values for
Synth 2.

We ran the Steady-State Evolutionary Algorithm (SSEA) with the UM from Section 2.3
on each of the four benchmarks and we obtained a task clustering solution (we ran an
exhaustive DSE for Synth 1). The probability p of each benchmark to be schedulable
with the obtained task clustering solution is presented in Table 4.1, column 6, which
also presents the number of ASIPs used (column 7). The overall schedulability prob-
ability p is calculated as an average of the probability pi of each application Ai in the
benchmark.

Together with the UM results, Table 4.1 also presents the SFM (see Section 3.1), which
uses a reference value for the WCET Crefj of each task τj . This value is used inside
the SSEA optimization instead of the stochastic WCETs. We use this value for the
calculation of the end-to-end response time (δAi). This is what a designer would do
following a more traditional design approach and if a WCET uncertainty model would
not be available.

The parameters used for the execution of the SSEA are: Pc = 30%, Pm = 10% and
Pop = 100. The execution time has been set to 1 hour.

4.1 Comparison of DSE with UM and SFM 51

The results in Table 4.1 show that the UM is able to obtain better results, i.e. a higher
the probability of finding schedulable implementations, compared to SFM. In fact,
using our proposed UM, we can take into account a bigger number of ASIP micro-
architecture configurations during the system-level DSE for multi-ASIP platforms. In
Table 4.2 there are the task clustering solutions found by the DSE with the UM and
with the SFM for each case study (in the table, a task is indicated as τi,j , where i indi-
cates the application Ai and j is the task id). We recall that for the case study Synth 1,
it was possible to implement the ASIPs and verify that the difference in the p returned
by UM and SFM is reflected in the final schedule table after the platform implementa-
tion. This shows that our DSE with UM is able to lead to good final implementations:
a scheduling length of 1.955 ms for the clustering solution found with the UM versus
the 2.275 ms of the one found with the SFM.

Table 4.2: Clustering results for real-life and synthetic case studies

ID Type PE1 PE2 PE3 PE4 PE5 B
PE
nr.

p

TLC SFM
τ2,3, τ3,1,
τ4,1

τ1,1, τ1,4,
τ2,2, τ2,4

τ1,2, τ1,3,
τ2,1

- - b1032 3 0.55

UM
τ1,1, τ2,2,
τ2,4, τ3,1

τ1,2, τ2,1
τ1,3, τ1,4,
τ2,3, τ4,1

- - b1032 3 0.71

IND SFM
τ1,1, τ1,3,
τ1,4, τ1,5,
τ1,6, τ1,7

τ2,2
τ2,3, τ2,4,
τ4,1

τ1,2, τ5,1 τ2,1, τ3,1 - b1016 4 0.59

UM
τ1,1, τ1,3,
τ2,3, τ1,5,
τ1,7

τ1,6, τ2,1
τ1,4, τ2,4,
τ1,2

τ4,1, τ5,1, τ2,2, τ3,1 - b1016 4 0.70

Synth 1 SFM
τ1, τ2,
τ4, τ6

τ3, τ5,
τ7

- - - b1016 2 0.24

UM
τ2, τ4,
τ6, τ7

τ1, τ3,
τ5

- - - b1016 5 0.59

Synth 2 SFM
τ1,1, τ1,4,
τ5,1, τ5,2,
τ5,3

τ2,1,
τ3,1,
τ5,4,
τ8,1

τ1,3, τ4,1,
τ6,2, τ6,3,
τ7,1

τ2,3, τ6,2,
τ9,1,
τ10,1

τ1,2,
τ2,2,
τ2,4,
τ6,1

b1016 5 0.49

UM
τ1,1, τ2,2,
τ4,1,
τ2,4

τ6,1,
τ6,2

τ1,2, τ3,1,
τ6,3, τ6,4,
τ7,1, τ9,1

τ1,4, τ5,1,
τ5,2, τ5,3,
τ5,4, τ10,1

τ1,3,
τ2,1,
τ2,3,
τ8,1

b1016 5 0.59

52 Experimental evaluation with Task Graph model

4.2 Experimental evaluation of DSE with UM using SH
tools

In this section, we use a real case study from the multimedia domain to demonstrate the
correctness of the UM and of our macro-architecture DSE: a motion JPEG (MJPEG)
encoder [60]. We implemented the task clustering solution suggested by our explo-
ration using SH technology to validate our results. We applied the design flow shown
in Figure 4.1 that is a subset of ASAM design flow [7]. ASAM is an European re-
search project part of ARTEMIS Joint Undertaking. Its purpose is to implement a semi-
automatic design flow and a toolchain for the design of multi-ASIP platforms, provid-
ing tools for macro-architecture, communication architecture and micro-architecture
DSEs. More details about ASAM design flow and the integration of our macro-architec-
ture DSE to the flow are available in Chapter 7.

Output

Macro-
architecture

DSE

Micro-
architecture

DSE

Code analysis
tool

ASIP1 ASIP2 ASIP3

τ1 τ2 τ4 τ3 τ5 τ6

τ7

Input

Component
library

Compaan
Compiler

main(){

…

}

Application C
code

CP model

Design
constraints

Figure 4.1: Semi-automatic design flow for multi-ASIP design using the UM

Starting from the sequential C code of the MJPEG encoder, we implemented a multi-
ASIP system using our DSE with UM to determine the best task clustering solution. As
support to our experiment, we used external tools for the application partitioning (Com-
paan compiler [1]) and for the code analysis of the tasks (Phase 1 of ASAM micro-
architecture DSE1 [43]). For the definition of the micro-architecture of a single ASIP
we used Phase 2 of ASAM micro-architecture DSE1 [43], and for the implementation
of the entire platform, we used SH tools for ASIP design. SH provides proprietary
languages for the hardware description of the platform together with a cycle-accurate
simulator that returns the performance of the application running on the multi-ASIP
platform. Additional details about the external tools are provided in Chapter 7. The
design flow in Figure 4.1 requires as inputs:

• the sequential C code of the application AMJPEG

1Tool developed by TU/e - Technical University of Eindhoven

4.2 Experimental evaluation of DSE with UM using SH tools 53

• the deadline dMJPEG of the application

• the desired working frequency f for the ASIPs

• an initial platform description (CP model) with the corresponding platform cost
(PCmax) and bus types that we want to explore (Figure 4.5a)

For this case study, we limited our communication architecture exploration to a single
bus bf32 (i.e. a 32 bit width bus with the same frequency f of the multi-ASIP system).
In this way, we could validate our solution against the actual implementations of the
ASIPs and platform that we had available (this was not a limitation of SH but of the
micro-architecture DSE tools that we used1). We considered the elaboration of 15
frames and a desired throughput of 25 frames per second (fps) that gave a deadline
dMJPEG = 0.6s for the elaboration of the 15 frames. We set PCmax = 3.

We used Compaan tool [1] for the partitioning of the application into tasks. Compaan
is a commercial tool that elaborates sequential C code (opportunely modified for the
tool requirements) and builds the corresponding Kahn Process Network (KPN) [50].
The output of Compaan compiler for the MJPEG encoder is depicted in Figure 4.2a.
Each actor in the KPN model has a function associated (e.g., ND_3 executes the kernel
function mainDCT).

(a)

(b) τ2 m2 τ3 m3 τ4 m4 τ5 m5

τ6 m1 τ1

mainVideoIn/
SOURCE

mainDCT mainQ mainVLE

m6 τ7
initVideoIn
/SOURCE

mainVideoOut dummyOutput/
SINK

Figure 4.2: (a) KPN and (b) TG models for MJPEG encoder

We extracted the task graph of the MJPEG encoder (Figure 4.2b) from Compaan KPN
model. We transformed each KPN actor into a task and each edge into a message; each
message has associated the number of bits of data to transfer.

When there are multiple edges between the same couple of actors (e.g., in Figure 6.2a
there are two edges between actors ND_1 and ND_6), they are substituted by a single
message. The presence of multiple edges can fall under one of the following cases:

54 Experimental evaluation with Task Graph model

either these edges represent mutually exclusive data transfers, i.e. at each completion
of the actor producer, only one of these edges is executed (case A), or all edges are
executed at the completion of the actor producer (case B). In case A, we set the size of
the message to the size of the edge with the biggest amount of data to transfer, so as
to consider the worst case scenario. In case B, we set the size of the message to the
sum of the data to transfer on all edges. The two edges between source actor ND_1 and
target actor ND_6 fall under case A, so we selected the biggest one.

The application model obtained from the KPN of Compaan corresponds to the elab-
oration of one frame of data. In our schedulability analysis, for the elaboration of 15
frames, we considered 15 repetitions of the task graph in Figure 4.2.

Then we used the code analysis tool described in the ASIP DSE (Phase 1) of [43] to
determine the upper and lower bounds (Cl andCu) for each task in the application. The
code analysis tool profiles the application code (using LLVM compiler [64]) and, for
each task, it estimates the number of cycles required by a sequential execution (Cu) and
by a parallelized execution (Cl) of the code. The code analysis tool bases its estimation
on the intermediate representation generated by LLVM, however the number of cycles
of each instruction are the same cycles used by SH cycle-accurate simulator. The tool
returns the number of cycles of each task for the entire execution of the application.

For the case study, we divided the values returned by the code analysis tool by 15, as,
for building the schedule, we needed the number of cycles of a single execution of the
tasks. Therefore, we obtained the average numbers of cycles for each task firing that
are summarized in Table 4.3. The source and sink tasks of the MJPEG encoder (i.e.
tasks that have no input edges and tasks without output edges, respectively) are used
for data initialization (i.e. for writing the input data into a local or external memory of
the multi-ASIP platform that we want to design), and for providing feedback to the user
about the completion and exit status of the application. For this reason, we considered
their execution time equal to zero and did not assign them to any ASIPs.

Then we built the CDF of each task using the estimated Cl and Cu and the input
frequency f = 166MHz (Figure 4.3). The CDF is obtained using Equations 2.3, 2.5
and 2.2 that allows calculating the mean, variance and finally the CDF. The amount
of data expressed in bits of each message is shown in Table 4.4. We calculated the
transmission time of the messages on the bus considering the bus bf32.

Then we can executed our macro-architecture DSE that performs the schedulability
analysis of different task clustering solutions. We ran the SSEA for 200 s. The output
of our DSE is shown in Figure 4.4: we found a solution that has pMJPEG ∼ 1 to
meet the deadline and that uses two ASIPs. The first row of Table 4.5 (columns 2-4)
summarizes the outcome of our exploration: the task clustering solution, the probability
of the application to meet the deadline and the quantile function value at a probability of
0.5. To verify our result, we used the Phase 2 of the micro-architecture design tool [43]

4.2 Experimental evaluation of DSE with UM using SH tools 55

Table 4.3: C values for MJPEG encoder (average number of cycles for a single itera-
tion of the task)

C mainDCT mainQ mainV LE mainV ideoOut

Cu
j 4774994 591698 1719197 130584

Cl
j 1713106 426834 1089013 105205

Table 4.4: Message sizes (in bits) for MJPEG encoder

m1 m2 m3 m4 m5 m6

128 1048576 1048576 1048576 524288 32

0 0.5 1 1.5 2 2.5 3
x 104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C (µs)

P(
C i<x

)

mainDCT
mainQ
mainVLE
VideoOut

Figure 4.3: Cumulative distribution functions for the tasks of the MJPEG encoder ap-
plication (with f = 166MHz)

and we obtained a description of the micro-architecture of the two-ASIPs.

The micro-architecture DSE defines a single ASIP given a task cluster and a library of
predefined issue slots, ISs, built using SH tools. The ISs available in the library rep-
resent slices of an ASIP: they contain a RF , multiple functional units and an optional
data memory. Moreover, there is a default IS that is always included and contains the
program counter, the instruction memory, a default data memory and a fixed number
of FIFO ports. The micro-architecture DSE requires the polyhedral model [10] of each
cluster of tasks: the code inside a task needs to be specified as affine nested loops [20].

56 Experimental evaluation with Task Graph model

0 1 2 3 4 5 6
x 105

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C (µs)

P(
C i<x

)

sol1
P(C1<d)

Figure 4.4: Results from the macro-architecture DSE for MJPEG encoder

Then the micro-architecture DSE optimizes this model using loop-based transforma-
tions and it obtains the instruction level parallelism inside the loop body of each task
(the loop body contains the kernel function). The instruction level parallelism is used to
determine the number and type of ISs in the ASIP micro-architecture. Moreover, the
micro-architecture DSE uses the input and output data that are consumed and produced
by each task, respectively, to size the data memories of the ISs.

For the two task clusters found by our macro-architecture DSE, the micro-architecture
DSE defined two ASIPs, each of them with 3 ISs (including the default one). After
obtaining the micro-architecture description of the ASIPs, using SH tools, we imple-
mented the two-ASIP platform and we mapped the application code to the ASIPs as
suggested by our DSE. The sink and source tasks are mapped to a host processor. A
SH platform, for simulation purposes, requires the insertion of a host processor that is
used for uploading the C code of the tasks onto the ASIPs, for initializing the memories
and for starting the code execution (in Section 7.2.4 we provide additional details). The
resulting platform has two ASIPs, each of them with 3 ISs; they are connected through
a system bus for the exchange of data. Additionally, we added two FIFOs between the
two ASIPs that need to exchange data. The FIFOs are used only for synchronization
purposes. For the synchronization of the ASIPs with the host processor, we needed to
provide the host with the access to the FIFO ports of the ASIPs. The host does not have
any FIFO ports and the access to the FIFO ports of the ASIPs is guarantee through a
hardware block called FIFO adapter. We insert a FIFO adapter for each each ASIP
(additional details are available in Section 7.2.4). Figure 4.5b contains a schematic of
the designed platform.

4.2 Experimental evaluation of DSE with UM using SH tools 57

PE2 PE1

host
Fifo adapter

Fifo

Bus
CE1

PE2 PE1

PE3

(a) (b)

Figure 4.5: (a) CP model of the initial platform and (b) designed platform for MJPEG
encoder case study

For consistency with our schedulability analysis, we also tuned the application code
so that the processors were communicating through a message-passing paradigm. For
example, in our case study, task mainDCT is assigned to PE1 and is producing data
for task mainQ that is assigned to PE2: mainDCT reads the input data from the local
memory of PE1 and, after elaboration, it writes them to the local memory of processor
PE2 where mainQ can read them. Moreover, in our schedulability analysis, we added
some cycles of offset for modeling the time required for starting the execution of the
tasks on the ASIPs, for modeling the synchronization time (access to the FIFOs), and
also for considering additional bus parameters as the hand-shake time to gain access to
the bus and the setup time for transfer the data.

In columns 5-6 of Table 4.5 there are the number of execution cycles obtained with SH
simulator (sim) and the corresponding time in µs (at a frequency f = 166MHz). After
the design of the multi-ASIP platform, we could also verify that our implementation
was schedulable (column 7).

It is important to note that our DSE works by comparison: we can evaluate different
task clustering solutions and determine which one has highest chances to produce a
schedulable implementation once the final platform is available, but we are not guar-
anteeing the schedulability of the application. We use our approach in the very early
phases of the design when there is no implementation available for the platform and
it can help the designer in determining the platform composition and the partitioning
of the application. For this reason, we also considered other clustering solutions: we
evaluated them with our DSE and we implemented and simulated them with SH tools.
The results that we obtained from our schedulability analysis are shown in Figure 4.6
and in Table 4.5.

58 Experimental evaluation with Task Graph model

2.5 3 3.5 4 4.5 5 5.5 6
x 105

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C (µs)

P(
C i<x

)

sol1
sol2
sol3
sol4
sol5
P(C1<d)

P(C2<d)

P(C3<d)

P(C4<d)

P(C5<d)

Figure 4.6: Comparison of the CDF of different clustering solutions for MJPEG en-
coder

We tested those task clustering solutions with two ASIPs (Sol2 and Sol3) that are a fair
alternative to the clustering solution found by our DSE. Additionally, we verified the
performance of a solution with a single processor (Sol5) and the performance that can
be achieved using three ASIPs. We selected these task clustering solutions considering
that mainDCT is the task with the highest number of cycles, and, therefore, there
should be a dedicated ASIP for its execution. Additionally, it is better to cluster suc-
cessive tasks on the same ASIP: for example, clustering mainDCT and mainV LE
together (and mainQ and mainV ideoOut together) is inconvenient as it forces mul-
tiple exchanges of data between the two ASIPs (this implies also that the processors
will stall waiting for the data). Moreover, we verified that using an additional pro-
cessor (Sol4), there are no improvements in the performance. We wanted to verify if
having a dedicated processor for mainDCT and splitting mainV LE, mainQ and
mainV ideoOut into two processors we could speed up the execution. We verified that
mainDCT is still the task defining the speed of the entire system and we obtained a
higher number of cycles due to the additional communication and synchronization time
due to the extra processor. This result are confirmed by our schedulability analysis and
the simulation with SH tools.

The clustering solutions Sol2, Sol3 and Sol5 are worst than Sol1 that is the one pro-
duced by our exploration. Sol4 has a CDF very similar to the one of Sol1 (in Figure 4.6
they are overlapping); however, Sol4 uses three processors, so Sol1 is preferred by our
DSE; it also has a higher quantile value. This is reflected in the simulation result af-

4.3 Accuracy of Clj and Cuj 59

ter implementation that, for Sol4, shows a higher number of cycles than Sol1. Also
for Sol2, Sol3 and Sol5 there is a qualitative match between the results obtained with
our estimation with UM and the results obtained after implementation with the cycle
accurate simulator from SH. Most of these solutions have similar probability (∼ 1).
Therefore, the quantile value (column 4 of Table 4.5) is evaluated. The clustering solu-
tions that are better with our estimation, are also better after implementation. We can
sort the solutions in Table 4.5 based on their likelihood to be schedulable (according
to our DSE) and we can find that the ordering is maintained after implementing and
simulating them using SH tools.

4.2.1 Additional considerations

The code analysis tool [43] used for the estimation of the upper and lower bounds does
not return a theoretical estimation of the WCET. It returns an estimated number of
cycles of a profiled execution of the MJPEG encoder. Therefore, we ran the tool with
multiple input data (frames with same size, but different content) and we took the ones
producing the highest estimated execution time. We used this input to set the upper and
lower bounds.

We consider that these values are good enough to verify our UM as the variability in
the estimated execution time given by the different input data is 2%. Additionally, we
used the two-ASIP platform associated to the best task clustering (Sol1) to execute
the MJPEG encoder with the same set of input data. The cycle-accurate simulator of
SH is returning very similar results with the different input stimuli. The execution
cycles vary from 90,514,748 to 90,915,481 cycles, i.e. less than 1%. In general the
performance of a VLIW architecture can be predicted more easily than a superscalar
processor [100]. In a VLIW architecture, the compiler is in charge of scheduling the
instruction statically and there is no run time optimization. Additionally, the ASIPs
that we are considering in our case study have no cache memory and this also makes
the performance more predictable. Taking into account these elements, we consider
the execution time and the estimation of the upper and lower bounds quite reliable
and sufficient to demonstrate our approach even if they not correspond to a theoretical
WCET.

4.3 Accuracy of C l
j and Cu

j

In this section we analyze the impact of the upper and lower bounds on the results of the
DSE. Our UM assumes that the designer or a code profiling tool provide the upper and
lower bounds of the WCET of each task; therefore, we verify how much this estimation

60 Experimental evaluation with Task Graph model

Table
4.5:

C
om

parison
ofclustering

solutions
forM

JPE
G

encoder

S
o
lI

D
C

lusters
P
(δ

A
M
J
P
E
G
<
d
)

δ
0
.5

A
M
J
P
E
G

=

P
−
1
(p

0
.5
)
(µ
s)

sim
(cycles)

sim
(µ
s)

sched

P
E

1
P
E

2
P
E

3

1
m

ainD
C

T
m

ainQ
,

m
ainV

L
E

,
m

ainV
ideoO

ut
-

∼
1

311200
90915481

547683.62
yes

2
m

ainD
C

T,m
ainQ

m
ainV

L
E

,
m

ainV
ideoO

ut
-

∼
1

354700
103584916

624005.51
no

3
m

ainD
C

T,
m

ainQ
,m

ainV
L

E
m

ainV
ideoO

ut
-

0.99
464200

142745646
859913.53

no

4
m

ainD
C

T
m

ainQ
,m

ainV
L

E
m

ainV
ideoO

ut
∼

1
311800

91146918
549077.82

yes

5

m
ainD

C
T,

m
ainQ

,
m

ainV
L

E
,

m
ainV

ideoO
ut

-
-

0.99
471500

143166046
862446.06

no

4.3 Accuracy of Clj and Cuj 61

should be accurate. We performed a sensitivity analysis on the Clj and Cuj values of the
tasks.

First, we used the case study Synth 1, which task graph is described in Figure 3.8.
For each task, we considered variations from ±1% to ±10% of Clj and Cuj values.
In particular, we considered a total of 60 cases in which all tasks or a subset of them
are suffering variations. These changes in the bounds are reflected in slightly different
input CDFs for our DSE. We ran our DSE for each of these cases, and we obtained
the same clustering solution, which suggests that our DSE is not sensitive to small
variations in the WCET estimation provided by the designer or profiling tool.

Second, we performed this check also on the MJPEG encoder case study (Section 4.2).
We verified how accurate the Clj and Cuj found by the code analysis tool [43] are. We
compared the upper and lower bound values estimated by the code analysis tool (Clj
and Cuj) with the number of cycles obtained for the execution of the entire application
on a single ASIP using SH simulator. We used an oversized ASIP with a large number
of ISs to theoretically exploit all instruction level parallelism of the application (the
parallelism during execution can be lower depending on the compiler optimization). In
particular, we compared the estimated (Clj and Cuj) and simulated (sim) values of all
iterations of the tasks.

The values obtained for MJPEG encoder are summarized in columns 2 to 4 of Ta-
ble 4.6. The Clj , C

u
j and sim for each task τj are quite different and the sim values

are not included in the range [Clj , C
u
j] as expected (when we compare the Clj with the

results obtained with simulation, we have relative errors up to 67%). These differences
can be justified considering some inaccuracy in the estimation done by the code anal-
ysis tool. The analysis of the accuracy of the code analysis tool is provided in [42].
For the case studies described in [42], there is less than 10% underestimation for the
evaluated number of cycles compared to the simulated one. In our case, the bigger
differences between estimation and simulation results derive from the more complex
application code to which LLVM and SH compilers apply different optimization. An-
other element that differentiates the estimated and simulated cycles is the number of
stalls (e.g., hardware stalls) that is considered only by SH simulator. Furthermore, in
SH simulation, there are some cycles of overhead for starting the tasks execution and
for synchronization with the host processor; these cycles are ignored by the code anal-
ysis tool (as previously mentioned, we are considering these extra cycles during our
scheduling analysis to compensate the code analysis tool evaluation).

After these considerations we wanted to identify which elements were influencing our
design space exploration and our UM to understand why with such considerable errors
in the upper and lower bound estimations, it is still possible to get good results for our
case study. We noticed that what is relevant is not the absolute value of the Clj and Cuj
of each task, but its relative value when compared to the other tasks in the application

62 Experimental evaluation with Task Graph model

(this is true until a certain extent as there is also the influence of the messages and the
communication architecture). Therefore, we evaluated the contribution of each task to
the total number of cycles of the application: we performed this check for Clj and sim
values. We used the lower bound value because it corresponds to the most parallelized
version of the application and we ran the entire application on an ASIP with a large
number of ISs, also to get the most parallelized execution2. The results obtained
are available in columns 5 and 6 of Table 4.6. Once we had the relative contribution
(%TotClj and %Totsim) of each task to the total number of cycles (for the estimatedCl

and simulated sim), we calculated the absolute error between them. The absolute error
is available in column 7 of Table 4.6. According to this evaluation, the estimated upper
bound shows which tasks are more time consuming than others and this is reflected
also in the simulation results on a real ASIP. We got errors up to ∼ 5% for MJPEG
encoder.

To verify how big could be the difference between the estimated and simulated per-
formance values before impacting the DSE results, we increased the upper and lower
bounds of each task of 10%, 20%, 35% and 45%. Then we ran our DSE and in all cases
we found the same task clustering solution obtained with the original values (with dif-
ferent probability and different quantile values at 50%). This suggests that our DSE is
not sensitive to even significant variations in the upper and lower bound estimations.

Table 4.6: Comparison between the number of cycles estimated by the profiling tool
[43] and the ones obtained from simulation for MJPEG

Task Name Clj Cuj sim %TotClj %Totsim
Err

|%TotClj −%Totsim|

mainDCT 25,696,592 71,624,910 79,407,360 51.38 55.47 4.09

mainQ 6,402,512 8,875,470 11,895,705 12.80 8.31 4.49

mainVLE 16,335,196 25,787,955 41,572,680 32.66 29.04 3.62

main-

VideoOut
1,578,078 1,958,760 3,149,475 3.26 2.20 0.96

Total (cycles) 50,012,378 108,247,095 143,166,046

4.4 Summary

In this section, we presented the case studies that we used for demonstrating the ef-
fectiveness of our DSE with UM. We used both synthetic and real case studies. For
two case studies (Synth 1 and MJPEG encoder), we also implemented the multi-ASIP

2The total number of simulated cycles is bigger than the sum of the cycles of the single tasks; these extra
cycles are due to the execution of a wrapper function that invokes all the tasks in the task cluster.

4.4 Summary 63

platforms corresponding to the task clustering solutions found by our approach. We
demonstrated that our DSE is able to find good task clustering solutions, which perfor-
mances are reflected in simulation after the implementation of the multi-ASIP systems.
Furthermore, we analyzed the influence of the upper and lower bound values on the
results of the DSE. This analysis suggests that our approach can work properly even
in the presence of considerable errors in the upper and lower bound estimations of the
UM when compared to the simulated results.

64 Experimental evaluation with Task Graph model

CHAPTER 5

Uncertainty model with
SDFG

After the evaluation of the UM using a task graph model, we investigate the impact of
the selection of a different application model on our DSE with UM. The task graph is a
course grain dataflow model. We decided to use a SDFG that maintains compatibility
with the task graph, but offers a lower level of granularity. In fact, a task in a task
graph corresponds to its associated task in the SDFG repeated a certain number of
times [39]. This allows the SDFG model to exploit more parallelism during scheduling.
In Figure 5.1 we provide an intuitive comparison between the scheduling of a task graph
(Figure 5.1a) and of a SDFG (Figure 5.1b) for the same application. We assume that τ1
and τ2 are mapped to two different PE. With the SDFG model, we can exploit a higher
pipeline parallelism between the different PE.

In this chapter we propose a schedulability analysis that uses our UM applied to an
application modeled as a SDFG. We use the CP model for representing the platform.
The main difference is the introduction of a new algorithm for the schedulability anal-
ysis of a task clustering solution. In fact, the SDFG allows exploiting both task level
and pipeline parallelism and this is reflected in better performance after the multi-ASIP
platform implementation. In particular in Section 5.1 we describe the SDFG that we
use for modeling our application. Then, in Section 5.2 we define the schedulability
analysis for a single task clustering solution using the SDFG model.

The DSE is implemented with the same SSEA described in Section 3.3.3.

66 Uncertainty model with SDFG

(a) τ1 m τ2
kernel1 kernel2

3 m 3 1 1

τ1 τ2

(b)
1 1

kernel2 kernel1

PE1 τ1
CE m
PE2 τ2

PE1 τ1 τ1 τ1
CE m m m
PE2 τ2 τ2 τ2

 SDFG TG

Figure 5.1: Examples of TG (a) and SDFG models (b) of the same application

Part of the material presented in this chapter is also described in [70] that is currently
under revision.

5.1 Application model

We assume to be given an applicationAi, modeled as a SDFG [58]. A SDFG is defined
as a tupleAi = (Γi,Ωi, Ii, Oi, Zi) where each element in Γi is an actor (i.e. a task) and
each element in Ωi is an edge (i.e. a message) that models the communication between
actors. Each actor executes by reading tokens (i.e. data) from its input messages, and
by writing the results of the computation as tokens to the output messages. The number
of tokens are called consumption and production rates and they are contained in the sets
Ii and Oi, respectively. In a SDFG, every time an actor executes, it consumes the same
amount of tokens from its input messages and produces the same amount of tokens on
its output messages. An actor can execute only if the required tokens are available at its
input messages. We use the term firing to indicate an actor execution. Zi is the set of
the initial tokens, i.e. the tokens already available on the messages before the execution
of the actors.

Moreover, we consider SDFGs without auto-concurrency: we do not allow multiple
and simultaneous firings of the same actor. This property can be forced adding a self-

5.2 Schedulability Analysis 67

loop to each actor with an initial token [18]. We also consider consistent SDFGs [31]:
a graph is consistent if we can fire each task a fixed number of times and this will bring
the SDFG to its original state, i.e. with the same distribution of tokens over all edges
(messages). Each message has associated a value Mg that corresponds to the amount
of data transmitted, i.e. the size of a token in bits. An example of SDFG graph for the
MJPEG encoder is shown in Figure 5.2, in which the number inside each task indicates
the number of firing of that task. In Figure 5.2, to simplify the graphical representation,
we represent the self-loop to limit the auto-concurrency, without inserting a message
(there is no transfer of data associated). Additionally, we identify source, sink and
transformer actors. Source actors have no input messages, while sink actor have no
output messages. They do not contain any computation, but they are an interface with
the environment. For the MJPEG application for example, we have two source actors
that set some environment variables and that simulate the arrival of frames for the elab-
oration and a sink actor that registers if the application terminated correctly. The tasks
that are neither sink nor source are transformer (computation) actors. Moreover, we
use as additional information to model the application, the value iteri that indicates
the number of times that we want to execute the SDFG of the application Ai. For
example the SDFG in Figure 5.2 models the elaboration of one frame of data. There-
fore, a value iterMJPEG = 15 expresses the elaboration of 15 frames of data. Each
application has a deadline diteri that is set according to iteri.

128 mso 128 m1 128 m2 128 m3

128 mso 1 128

1

1

1 1 1 1 1 1 1
mainVideoIn/

SOURCE
mainDCT/

TRANSFORMER
mainQ/

TRANSFORMER

mainVLE/
TRANSFORMER

msi 128 1 1

initVideoIn/
SOURCE

mainVideoOut/
TRANSFORMER

dummyOutput/
SINK

1 1 1 1

11

Production
rate

Consumption
rate

Firing
number

1

1111

1
1 1

Figure 5.2: SDFG model of MJPEG encoder

5.2 Schedulability Analysis

As presented in the previous chapters, we perform a schedulability analysis to deter-
mine the likelihood of a clustering solution to be schedulable once the corresponding
multi-ASIP platform is implemented, i.e. we want to determine the probability of hav-
ing a schedule length δAi that meets the deadline diteri , pi = P (δAi ≤ diteri). In our
scheduling, we assume that a task is assigned always to the same processor for all its
firings. Moreover, if communicating tasks are assigned to the same PE, the message

68 Uncertainty model with SDFG

between them is ignored as the communication time is negligible. As described in Sec-
tion 3.3.1, we use Monte Carlo simulation (MCS). For each task, we extract n random
Monte Carlo samples according to the normal distribution modeling the WCET of the
task. For each message we have an array that contains n equal values, i.e. the transmis-
sion time associated to the message (Cmg). We use the boldface formatting to indicate
that a symbol corresponds to a Monte Carlo array of n elements. For the task graph
based schedulability analysis (see Section 3.3.1), we use + (sum) and max operations.
For this analysis, we add − (subtract) and ∗ (multiply) operations. Each operation is
performed element by element on arrays of n samples.

In our analysis we consider both task level and pipeline parallelism. This analysis is
executed during DSE and, hence, we want to reduce the computation time for the eval-
uation of a single task clustering solution (as Monte Carlo simulation is already time
consuming). Instead of estimating the schedulability probability for a SDFG Ai that
is repeated iteri times (as explained in Section 5.1), we perform two separated anal-
ysis. First, we run the schedulability analysis of Ai for a single iteration (iteri = 1);
we indicate the output of this analysis as δ′Ai . Second, we use δ′Ai and the pipeline
properties to estimate the scheduling probability for the total number of iterations (e.g.,
iteri = 5) that corresponds to δAi . We call these two analysis Task-Level Analysis
(TLA) and Pipeline Analysis (PA). We use the application in Figure 5.3a as an illus-
trative example of our schedulability analysis with stochastic variables. For simplicity
we assume that each task produces and consumes a single token and that it is fired a
single time (in the graphic representation, we omit the self-loops that limit the auto-
concurrency). Additionally, we set iter = 3. We cluster the application in Figure 5.3a
on a two-ASIP platform according to the task clustering solution in Figure 5.3b where
tasks are assigned to PE1 and PE2 and the messages are assigned to the bus (CE).

5.2.1 Example of Task-level Analysis

TLA corresponds to the schedulability analysis performed in Section 3.3.1 using a task
graph. The two schedulability analyses have some similarities. Figure 5.4b shows the
TLA for the example in Figure 5.3. We perform a schedulability analysis of a single
iteration of the entire SDFG. For each firing of a task or execution of a message we
calculate its starting and finishing time. For a task τj , we indicate the starting time as
tsj and the finishing time as tfj . For a message mg , we use the symbols tsmg

and tfmg
.

Each starting and finishing time is a stochastic variable and is represented by an array of
n samples. The maximum finishing time of all sink tasks is the output δ′Ai of the TLA.
As for the analysis done using a task graph, we consider both the data dependencies
and the hardware resources (PEs and CE) contention. We use single threaded VLIW
processor for the platform implementation, so when we cluster multiple tasks on the
same PE, we need to force their sequential execution. Our bus model allows the
transmission of one message a time. For this analysis we use the operators max and +

5.2 Schedulability Analysis 69

τ1

τ4

m1

τ2

m4

m2

τ3

m5

m3

(a) (b)

so

mso

τsi

msi

1

1

1 1

1

1

1 1

1 1

1 1

1

1

1

1

1 1

1

1
CE1

m5 m3

PE2 PE1

τ3 τ1 τ2 τ4

m1

Figure 5.3: Example of application and clustering for δAi calculation

(same used in Section 3.3.1).

When it starts, the TLA identifies the tasks that can be fired (i.e. source tasks and
transformer tasks that have enough tokens at their input edges). For the example in
Figure 5.4b, we assume that the WCET of source and sink tasks is equal to zero and we
also assume zero bits of data for the mso and msi. Note that the designer can include
the source and sink tasks in the schedulability analysis specifying an input option to
the DSE tool.

We schedule the source task (τso) and the output message (mso) and we set their start-
ing and finish times to zeros. Then we schedule τ1: its starting time ts1 is given by
the maximum of the finishing times (we apply the max operator) of all the tasks and
messages that τ1 depends on, in this case only mso. The finishing time tf1 of τ1 is
given by the sum of the estimated starting time and the n samples extracted by the
WCET probability distribution of task τ1, i.e., ts1 + C1 (+ operation). We can then
schedule the remaining tasks following the same rules. All the steps are described in
Figure 5.4b. The finishing time of task τsi is a set of n samples that corresponds to the
stochastic variable δ′Ai . The algorithms used for TLA are described in Section 5.2.3
(Algorithms 3, 4 and 5).

When multiple tasks and messages are assigned to the same resource and are ready for
execution, their scheduling order is determined by our scheduling policy described in
Algorithm 5.

70 Uncertainty model with SDFG

τ4

τ1

τ3

m5

m3

m1

τ2

τso

mso

τsi

msi

tso
s = {0,0,..., 0, 0, 0}

t1
f =C1

tm1
s = t1

f

t3
s = t1

f

tm1
f = tm1

s +Cm1

t3
f = t3

s +C3

t2
s = tm1

f

tm3
s = max(t1

f , tm1
f) = tm1

f

t2
f = t2

s +C2

tm3
f = tm3

s +Cm3

t4
s = max(t2

f , tm3
f , tm5

f) = max(t2
f , tm5

f) t4
f = t4

s +C4

tso
f = {0,0,..., 0, 0, 0}

tmso
s = {0,0,..., 0, 0, 0} tmso

f = {0,0,..., 0, 0, 0}

t1
s = {0,0,..., 0, 0, 0}

tm5
s = max(t3

f , tm3
f) tm5

f = tm5
s +Cm5

tmsi
s = tmsi

f = t4
f

tsi
s = tsi

f = t4
f

(b)

PE1

PE2

CE1

SPE2

τ1 τ3 τ1 τ3 τ1 τ3

m1 m3 m5 m1 m3 m5 m1 m3 m5

SPE2 SPE2

iteri=1 iteri=2 iteri=3

τ1
PE1

PE2

CE1 m1 m3

τ3

τ2 τ4

m5

(a)

PE1

PE2

CE1

SPE1

SCE1

SPE2

(c)

Smax = SPE2

δ 'Ai

δ 'Ai

iteri=1 iteri=2 iteri=3

iteri=1 iteri=2 iteri=3

Smax *2

(d)

Figure 5.4: Examples of TLA, (a) and (b), PA, (c) and (d), for the SDFG in Figure 5.3

During the TLA, we also collect additional information that is needed by the PA. To
estimate the pipeline parallelism at macro-architecture level, we require the size of the
pipeline stages. In our case, each pipeline stage S corresponds to an hardware resource,
i.e. PEs and CE. We use SPEk (or SCE) to indicate the size of a pipeline stage:
these are also stochastic variables and their probability distribution is modeled by a
set of n samples (obtained through MCS). We estimate the size of the pipeline stage
SPEk as described in Equation 5.1, where Ss

PEk
and Sf

PEk
represent the probability

distribution (n-element array) of the first and last time the resource PEk has been used
during the TLA of the application Ai.

SPEk = Sf
PEk

− Ss
PEk

(5.1)

We use the − operator between the MCS n-element arrays. More precisely, Ss
PEk

is
equal to the starting time of the first task scheduled on PEk (first firing of the task);
Sf
PEk

is equal to the finishing time of the last task scheduled on PEk (last firing of
the task). For example, for PE2 in Figures 5.4a and 5.4c we have Ss

PE2
= ts2 and

5.2 Schedulability Analysis 71

Sf
PE2

= tf4 . The same approach is used for the messages to evaluate SCE .

5.2.2 Example of Pipeline Analysis

In general, the pipelined execution of N elements can be estimated as the sum of the
time required by the first element to go through the entire pipeline plus the time required
by the remaining (N−1) elements to complete their execution when all pipeline stages
are fulfilled. When the stages of the pipeline have different sizes, the time needed for
the elaboration of one of the (N − 1) elements corresponds to the stage of the pipeline
with the maximum size. We use this definition of pipelined execution to define our
PA. The time required by the first element to go through the entire pipeline is the δ′Ai
produced by the TLA. From TLA we also have the probability distributions modeling
the WCET of each pipeline stage (SPEk or SCE). Then we can apply Equation 5.2 to
obtain the set of n samples modeling the biggest pipeline stage Smax and Equation 5.3
to get δAi . In Figure 5.4c and Figure 5.4d, there is an example of the different pipeline
stages and of the computation of the δAi .

Smax = max(SPE1 , ...,SPEPCmax
,SCE) (5.2)

δAi = δ′Ai
+ Smax ∗ (iteri − 1) (5.3)

The PA can be applied to speed up the schedulability analysis only if there are no data
dependencies between successive iterations of the SDFG. In case of dependencies,
it is possible to use TLA to compute the schedulability analysis for all the iterations of
the SDFG; the main disadvantage is a higher computation time to perform the schedu-
lability analysis.

5.2.3 Algorithms for schedulability analysis

In this section we describe the pseudo-code for TLA and PA given an application Ai,
a clustering solution Solc and a platform constraint PCmax. Algorithm 2 lists the
steps for performing TLA (from line 1 to 10) and PA (from line 11 to 13) analyses as
presented in Sections 5.2.1 and 5.2.2. The variable activeTaskList contains the list
of tasks that can be scheduled as their data dependencies are satisfied (source tasks or
tasks with enough tokens on their input messages). At each iteration of the algorithm
(while loop at line 1), we update activeTaskList; the head element of the list is the
next task to be scheduled. Algorithm 3 describes the steps for scheduling a single task
τj . We need to determine the starting time for τj (lines 1 to 4). A task can start:

72 Uncertainty model with SDFG

• as soon as the tasks (and messages) from which it depends on are completed

• as soon as the hardware resource to which the task is assigned is available

Then we can calculate the finishing time of τj , update the number of token consumed
(lines 10 to 12) and produced (lines 13 and 14) and schedule the messages in output
of τj (lines 15 and 16). Every time we schedule a task τj , we also schedule its out-
put messages if they are connecting τj with a task in a different cluster; we assume
that each task reads data from local memory and writes them to remote memory. For
example, let us assume two communicating tasks τ1 and τ2 assigned to two different
processors PE1 and PE2. In our schedulability analysis, τ1 reads the input data from
the local memory of PE1 and writes the output data to the memory of PE2 (Figure 5.5
shows an example). Once the scheduling of a task is completed, we need to update the
activeTaskList as specified in Algorithm 4. Algorithm 3 is also used to calculate the
starting (lines 6-8) and finishing time (lines 17-20) of each pipeline stage (PEs and
CE).

3 m 3 1 1

τ1 τ2
1 1

Mem1

τ1

Mem2

τ2

PE1 PE2

write

read read

1 1

Figure 5.5: Reading and writing policy: τ1 reads from local memory and writes to
remote memory

Finally, Algorithm 5 is used to determine which is the next task in activeTaskList
that can be scheduled. The purpose of Algorithm 5 is to produce a scheduling where
we fire all tasks maintaining the smallest relative distance between the actual number
of firings of each task (while building the scheduling) and the number of firings in the
original SDFG. We interleave the execution of the tasks and avoid consecutive firings
of the same task. For each message we calculate the rate between the number of firings
of the target task (task consumer) and the number of firings of the source task (task
producer) and we call this idealRate. At each iteration of the algorithm, we calculate,
for each message, the realRate that is the rate between the actual number of times the
task consumer and producer have been fired. When the algorithm starts, we initialize
the realRate variable to∞. Then we estimate the relative error (distanceRate) be-
tween the realRate and the idealRate of each message and we sort the messages in
descending order according to their relative errors. The sorted order of the messages

5.3 Comparison of clustering solutions and DSE 73

determines the firing order for the tasks. If the realRate for a message mg is bigger
than the idealRate, then we should fire the task producer associated to mg , otherwise
the task consumer (the tasks must be available in the activeTaskList).

In Figure 5.6c there is an example of eight iterations of Algorithm 5 for the application
in Figure 5.6a. We reported the steps for the scheduling of one iteration of the SDFG
(Figure 5.6a). Figure 5.6b contains the values of the idealRate variable for each mes-
sage. At each iteration, we fire τnext and we update the values of the realRate and
distanceRate. Then we consider one message at a time, starting with the one with the
highest distanceRate (when multiple messages mg have the same distanceRate, we
prioritize them according to their identifier g). For the selected message, we verify if
we should fire its source or target task; for clarity, in Figure 5.6c (columns 15-18), we
reported the task that we should fire according to the realRate and idealRate of each
message. The selected source/target task must be available in the activeTaskList,
otherwise we select the message with the next highest distanceRate until it is possi-
ble to assign the variable τnext. If no task can be assigned according to this policy, we
assign to τnext, the last task that has been added to activeTaskList. As an example,
let us consider the row corresponding to Time = 4 in Figure 5.6c: we calculate the
realRate and differenceRate for each message. Then, we sort the messages ac-
cording to their differenceRate in descending order, obtaining the following sorted
list: m1,m4,m2 and m3. We consider the first message in this sorted list: m1. Af-
terwards, we determine if we should fire the source or target task of m1 (columns 15
in Figure 5.6c). As the realRate of m1 is smaller than its idealRate (0 and 0.5, re-
spectively), we select the target task (i.e. τ2). As the last step, we verify if τ2 is in the
activeTaskList (columns 14); if this is the case, we can set τnext = τ2, otherwise,
we proceed with the next message in the sorted list (i.e., m4), until we find a task that
can be fired. Using Algorithm 5, we guarantee that during the schedulability analysis
we fire the tasks in a order that can be easily reproduced on the SH ASIPs.

5.3 Comparison of clustering solutions and DSE

For the comparison of task clustering solutions, we use the same approach applied for
the task graph application model in Section 3.3.2. In a similar manner, for DSE, we
use the SSEA implemented for the task graph application model (Section 3.3.3).

74 Uncertainty model with SDFG

Algorithm 2 - Schedulability analysis, P (δAi ≤ diteri) for Solc
1: activeTaskList := source tasks in Ai

2: while (activeTaskList NOT EMPTY) do
3: τj := activeTaskList.head
4: {tfj , S

s
PEk

, Sf
PEk

, Ss
CE , S

f
CE} := Schedule τj (Algorithm 3)

5: Update activeTaskList (Algorithm 4)
6: Select from activeTaskList the next task τnext to be scheduled (Algorithm 5)
7: Set τnext as activeTaskList.head
8: end while
9: δ′Ai

:= Find the maximum tfj of the sink tasks
10: {SPE1 , ..., SPEPCmax

} := Calculate the size of the pipeline stages using Ss
PEk

, Sf
PEk

,

Ss
CE and Sf

CE

11: Smax := Find the maximum in {SPE1 , ..., SPEPCmax
, SCE}

12: δAi := Calculate Smax ∗ (iteri − 1) + δ′Ai

13: Calculate pi = P (δAi ≤ diteri)

Algorithm 3 - Schedule τj
1: dataDependencyList := Find data dependencies of τj
2: Sf

PEk
:= Find last time the resource PEk has been used (τj assigned to PEk)

3: tfdep := Find the maximum of tfj1 for each τj1 in dataDependencyList
4: tsj := Find the maximum between tsdep and Sf

PEk

5: tfj := Calculate the finishing time (tsj + Cj)
6: if first time PEk used then
7: Ss

PEk
:= tsj

8: end if
9: Sf

PEk
:= tfj

10: for EACH of the input messages mg of τj do
11: Update the number of token available on mg (token consumed)
12: end for
13: for EACH of the output messages mg of τj do
14: Update the number of token available on mg (token produced)
15: if mg connect τj to a task in a different cluster then
16: Schedule mg on the bus CE
17: if first time CE used then
18: Ss

CE := tsmg

19: end if
20: Sf

CE := tfmg

21: end if
22: end for

5.4 Summary 75

Algorithm 4 - Update activeTaskList
1: for EACH of the input messages mg of τj do
2: if NOT enough token in input then
3: Remove τj from activeTaskList
4: end if
5: end for
6: for EACH of the output messages mg of τj do
7: Identify target task τj1 (connected to mg)
8: for ALL input messages mg1 of τj1 do
9: if enough token in input then

10: Add τj1 to activeTaskList
11: end if
12: end for
13: end for

Algorithm 5 - Select from activeTaskList, the next task τnext to be scheduled
1: if First invocation of Algorithm 5 then
2: for EACH of the messages mg of Ai do
3: idealRate[mg] := (Total number of firing of target task of mg)/(Total number of firing

of source task of mg)
4: end for
5: end if
6: for EACH of the messages mg of Ai do
7: realRate[mg] := (Actual number of firing of target task of mg)/(Actual number of firing

of source task of mg)
8: distanceRate[mg] := Calculate relative error between realRate[mg] and idealRate[mg]
9: end for

10: sortedMessagesList := Sort messages in descending order based on the distanceRate
11: for EACH of the messages mg in sortedMessagesList do
12: if realRate[mg] > idealRate[mg] then
13: τtemp := source task of mg

14: else
15: τtemp := target task of mg

16: end if
17: if τtemp is in activeTaskList then
18: τnext = τtemp

19: return
20: end if
21: end for
22: τnext := last task that added to activeTaskList

5.4 Summary

In this chapter we introduced the SDFG as new application model for our DSE with
UM. A SDFG allows exploiting both task level and pipeline parallelism, as each task

76 Uncertainty model with SDFG

Time
#firing realRate distanceRate

(1-(Real rate/Ideal rate)) activeTask
List

(realRate >
idealRate)?

source:target
Next
task
τnext τ1 τ2 τ3 τ4 m1 m2 m3 m4 m1 m2 m3 m4 m1 m2 m3 m4

1 0 0 0 0 ∞ ∞ ∞ ∞ -∞ -∞ -∞ -∞ τ1 τ1 τ1 τ2 τ3 τ1

2 1 0 0 0 0.0 0.0 ∞ ∞ 1 1 -∞ -∞ τ1, τ3 τ2 τ3 τ2 τ3 τ3

3 1 0 1 0 0.0 1.0 ∞ 0.0 1 0 -∞ 1 τ1 τ2 τ1 τ2 τ4 τ1

4 2 0 1 0 0.0 0.5 ∞ 0.0 1 0.5 -∞ 1 τ2, τ3 τ2 τ3 τ2 τ4 τ2

5 2 1 1 0 0.5 0.5 0.0 0.0 0 0.5 1 1 τ3, τ4 τ2 τ3 τ4 τ4 τ4

6 2 1 1 1 0.5 0.5 1.0 1.0 0 0.5 0.5 0 τ3 τ2 τ3 τ2 τ3 τ3

7 2 1 2 1 0.5 1.0 1.0 0.5 0 0 0.5 0.5 τ4 τ2 τ1 τ2 τ4 τ4

8 2 1 2 2 0.5 1.0 2.0 1.0 0 0 0 0 -

τ1

2

m1
2

1 1 m3

2

4 2 1 1

m2

1
2 m4 1 1

1
1

τ3

τ2

τ4

idealRate

m1 m2 m3 m4

0.5 1 2 1

(a) (b)

(c)

1

1 1

1 1

Figure 5.6: (a) Input SDFG, (b) idealRate for each message of the SDFG, (c) results
of the first eight iteration of Algorithm 5

has a smaller level of granularity than the corresponding task in a task graph. We
used the same evolutionary algorithm (SSEA) with MCS as we did for the task graph
application model. The main difference is the introduction of a new schedulability
analysis that is divided into two parts, TLA and PA. TLA represents the core of our
schedulability analysis, while PA has been introduced mainly to speed up the analysis
when we consider multiple iteration of the same SDFG.

In the next chapter, we will use a real case study to compare the schedulability analysis
obtained with a task graph and a SDFG application models. Additionally, we will
present multiple real case studies modeled as a SDFG and with a large number of tasks
and iterations, to which we will apply our DSE with UM to prove the effectiveness of
our analysis.

CHAPTER 6

Experimental evaluation with
the SDFG model

This chapter contains a number of case studies that demonstrate the effectiveness of
our DSE with UM when the application model is a SDFG. Firts, we use the MJPEG
encoder (already used in Section 4.2) as a SDFG and we apply our DSE; as we did
for the application modeled as a task graph, we compare different task clusterings to
demonstrate the effectiveness our schedulability analysis using a SDFG and the UM
(described in Section 5.2). We use SH tools to implement the multi-ASIP platforms
and validate the results obtained. Moreover, we compare the results obtained using the
task graph with the ones obtained using the SDFG as application model.

We considered two additional streaming applications, taken from multimedia and med-
ical domains and that fit well with the SDFG model: the spatial coding (SC) algorithm
extracted from the MJPEG4 application (property code of STMicroelectronics [91])
and the Electrocardiogram (ECG) application [93]. We apply our DSE and we validate
the results using SH tools. We also analyze of the sensitivity of our approach to the
accuracy of the WCET bounds.

In addition, at the end of the section, we present a small example in which the bus is
substituted by a NoC. This example is used as a proof of concept to demonstrate that
our probabilistic schedulability analysis can be applied to communication architecture
more complex than a bus.

78 Experimental evaluation with the SDFG model

This chapter is organized as follows. Section 6.1 describes the DSE applied to the
MJPEG application, while Section 6.2 briefly describes the results obtained for the
ECG and SC case studies. Section 6.3 contains a comparison of the task graph and of
the SDFG models using the MJPEG encoder as an example. Section 6.4 analyzes the
influence of the upper and lower bounds of the UM on the DSE when using a SDFG
model; for the MJPEG encoder application, it also presents the outcome of the DSE
when we use more precise WCETs to build our UM. Finally Section 6.6 presents our
UM applied to the MJPEG case study with a NoC as initial platform.

Part of the results presented in this chapter are also available in [70] that is currently
under revision.

6.1 Case study: MJPEG encoder

In this section we describe the results obtained after running our DSE with UM for the
MJPEG encoder. We model the application as a SDFG and we use the schedulability
analysis (TLA and PA) described in Section 5.2.

We used the same design flow applied to the MJPEG encoder modeled as a task graph
that is described in Figure 4.1 with the support of the same external tools: Compaan [1]
for the application partitioning, Phase 1 and 2 of ASAM micro-architecture DSE [43]
for deriving the upper and lower bounds and for the definition of the ASIP micro-
architecture and SH tools [55] for the development and simulation of the multi-ASIP
platform.

In the first row of Table 6.1, there are the input constraints for the MJPEG encoder
application: we considered the elaboration of 15 frames and a desired throughput of
30 frame-per-second (fps) that give a deadline d15

MJPEG of 0.5s. We used a CP model
with PCmax = 3 and a frequency f = 166MHz. As input data, we used the ones
employed for the case study with the task graph model and with the highest number of
cycles estimated by the code analysis tool.

Table 6.1: Input constraints for MJPEG encoder

Case study d (µs) f (MHz) PCmax Bus type

MJPEG encoder 500,000 166 3 b16632

To obtain a SDFG of the application, we edited its C code; we modified the code of
each task in the task graph model to get a new task with a lower level of granularity.
In Figure 6.1, there is an example that shows the same task as part of a task graph and

6.1 Case study: MJPEG encoder 79

as part of a SDFG. Then we ran Compaan compiler and from the KPN generated, we
extracted the SDFG of the MJPEG encoder (Figure 6.2). We transformed each KPN
actor into a task with the notation of the number of firings and each edge into a message
annotated with the bits of data to transfer.

void τ1(data data_in){
 for(int i=1; i<=3; i++){
 kernel1(data_in[i]);
 }
}

 /* C code for running the TG task */
data_in = getData();
data_out=τ1 (data_in);
sendData(data_out);

TG task, τ1

data τ1(data data_in){
 data_out=kernel1(data_in);
 return data_out;
}

SDFG task, τ1

/ * C code for running the SDFG task*/
for(int i=1; i<=3; i++){
 data_in[i] = getData_i();
 data_out[i]=τ1(data_in[i]);
 sendData_i(data_out[i]);
}

(a) (b)

Figure 6.1: Example of C code for a task part of a task graph (a) or of a SDFG (b)

128 m2 128 m3 128 m4 128 m5

128 m1 1 128

1

1

1 1 1 1 1 1 1
mainVideoIn/

SOURCE
mainDCT mainQ mainVLE

m6 1 1 128
initVideoIn/
SOURCE

mainVideoOut dummyOutput/
SINK

11 11

1

Figure 6.2: SDFG model for the MJPEG encoder

Then we used the code analysis tool (Phase 1 of ASAM micro-architecture DSE [43])
to get the upper and lower bounds (Cl and Cu) for each task: the numbers of cycles
associated with each task firing are summarized in Table 6.2. As mentioned in Sec-
tion 5.1, the source and sink actors of each applications are used for data initialization
(i.e. for writing the input data into a local or external memory of the multi-ASIP plat-
form that we want to design), and for providing feedback to the user about the exit
status of the application. For this reason, we consider their WCETs equal to zero: they
are not assigned to any ASIPs, but their execution is demanded to the host processor.
Then we calculated the mean and variance using the estimated Cl and Cu of the tasks
and we draw the CDFs for an input frequency f = 166MHz (Figure 6.3). The amount
of data associated with each message is shown in Table 6.3. We calculated the transmis-
sion time of the messages Cmg using a bus defined as bf32 (i.e. a 32 bit width bus with
the same frequency f of the ASIPs), which is compatible with the final implementation
of the ASIPs and platform that we have available.

Then we executed our macro-architecture DSE with UM and the schedulability analysis

80 Experimental evaluation with the SDFG model

described in 5.2. We ran the SSEA for 300 s and we used n = 5, 000 for the Monte
Carlo simulation.

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C (µs)

P(
C i<x

)

mainDCT
mainQ
mainVLE
VideoOut

Figure 6.3: Cumulative distribution functions for the tasks of the MJPEG encoder ap-
plication (with f = 166MHz)

Table 6.2: C values for MJPEG encoder (average number of cycles for a single itera-
tion of the task)

C mainDCT mainQ mainV LE mainV ideoOut

Cu
j 37301 4619 12513 1008

Cl
j 13383 3334 8445 816

Table 6.3: Message sizes (in bits) for MJPEG encoder

m1 m2 m3 m4 m5 m6

128 8192 8192 8192 4096 32

Figure 6.4 depicts the P (δAMJPEG < d15
MJPEG) produced by our DSE. We found a

solution, Sol1, that has pMJPEG ∼ 1 to meet the deadline and that uses two ASIPs.
The first row of Table 6.4 summarizes the outcome of our exploration: the cluster-
ing solution (columns 2-4), the probability of the application to meet the deadline
(P (δAMJPEG < d15

MJPEG)) and the quantile function value at a probability of 0.5
(δ0.5
AMJPEG

= P−1(p0.5)).

Phase 2 of the micro-architecture DSE tool [43] is then used to get a description of
the micro-architecture of the two-ASIPs. For the two task clusters found by our DSE,

6.1 Case study: MJPEG encoder 81

0 1 2 3 4 5
x 105

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C (µs)

P(
C i<x

)

sol1
P(C1<d)

Figure 6.4: Results from the macro-architecture DSE for the MJPEG encoder

Phase 2 defined two ASIPs, each of them with 3 ISs. After obtaining the micro-
architecture description of the ASIPs, we used SH tools; we implemented the two-
ASIP platform (Figure 6.6) and we mapped the application code to the ASIPs. In
columns 5-6 of Table 6.4 there are the number of execution cycles obtained from SH
simulator (sim) and the corresponding time in µs (at a frequency f = 166MHz).
The task clustering solution found with our DSE meets the deadline d15

MJPEG = 0.5s
and is, therefore, schedulable (sched column in Table 6.4). Similarly to the analysis
done in Section 4.2, our DSE does not provide schedulability guarantees, but it works
by comparison: it allows evaluating a task clustering solution against the others and
identifies the solution with highest chances of producing a schedulable implementation
after the platform is available.

To prove that our analysis is effective, we considered other task clustering solutions
than the one found by the DSE: we evaluated each solution with our schedulability
analysis and UM and with SH tools. The results obtained are in Figure 6.5 and in
Table 6.4. We tested the same task clustering solutions evaluated with the task graph
application model. We added an additional solution with three processors (Sol6), to
further exploit the pipeline parallelism that can derive from using an additional ASIP.
When multiple solutions have the same probability, we prefer the one with the smaller
number of clusters and the smaller quantile value P−1(p0.5). The results in Table 6.4
shows that our DSE using a SDFG as application model is able to determine which
solution is better than the other. Sorting the task clustering solutions (from the best
to the worst one) according to our schedulability analysis, we find that their order

82 Experimental evaluation with the SDFG model

matches the results obtained with the cycle-accurate simulator from SH. This shows
that our schedulability analysis with UM is able to properly evaluate the different task
clustering solutions and find the ones that are more promising for platform synthesis,
supporting the designer and speeding up the design process.

The last column in Table 6.4 shows that only Sol1 is schedulable (at a frequency f =
166MHz). mainDCT is the task with the highest number of cycles, and, therefore,
it is better to have a dedicated ASIP for its execution. Sol4 and Sol6 also have a
dedicated processor for mainDCT , but they have a slightly higher quantile value for
the additional communication time due to the exchange of data among three processors.
This is verified with both the UM and the SH simulation. Moreover, from the results
in Table 6.4, we can observe that there is a relation between the quantile value of each
solution and the simulated execution time for most of the task clustering solutions. For
example let us considered the slowest and the fastest task clustering solutions: Sol1 and
Sol5. The rate between the quantile values of the two solution is 292, 700/470, 080 =
0.622 and the rate between the simulated cycles (sim) 79, 088, 561/126, 635428 =
0.624. This suggests that the results found by our DSE with UM are consistent with
the one obtained after the implementation of the platform.

2 2.5 3 3.5 4 4.5 5 5.5
x 105

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C (µs)

P(
C i<x

)

sol1
sol2
sol3
sol4
sol5
sol6
P(C1<d)

P(C2<d)

P(C3<d)

P(C4<d)

P(C5<d)

P(C6<d)

Figure 6.5: Comparison of the CDF of different clustering solutions for the MJPEG
encoder

6.1 Case study: MJPEG encoder 83

Ta
bl

e
6.

4:
C

om
pa

ri
so

n
of

cl
us

te
ri

ng
so

lu
tio

ns
fo

rM
JP

E
G

en
co

de
r

S
o
l I

D
C

lu
st

er
s

P
(δ

A
M
J
P
E
G
<

d
1
5

M
J
P
E
G
)

δ
0
.5

A
M
J
P
E
G

=

P
−
1
(p

0
.5
)
(µ
s)

si
m

(c
yc

le
s)

si
m

(µ
s)

sc
he

d

P
E

1
P
E

2
P
E

3

1
m

ai
nD

C
T

m
ai

nQ
,

m
ai

nV
L

E
,

m
ai

nV
id

eo
O

ut
-

∼
1

29
27

00
79

08
85

61
47

64
37

.1
1

ye
s

2
m

ai
nD

C
T,

m
ai

nQ
m

ai
nV

L
E

,
m

ai
nV

id
eo

O
ut

-
∼

1
34

53
00

85
74

03
71

51
65

08
.2

6
no

3
m

ai
nD

C
T,

m
ai

nQ
,m

ai
nV

L
E

m
ai

nV
id

eo
O

ut
-

0.
85

46
01

00
12

41
94

97
1

74
81

62
.4

8
no

4
m

ai
nD

C
T

m
ai

nQ
,m

ai
nV

L
E

m
ai

nV
id

eo
O

ut
∼

1
29

47
00

83
61

75
56

50
37

20
.2

2
no

5

m
ai

nD
C

T,
m

ai
nQ

,
m

ai
nV

L
E

,
m

ai
nV

id
eo

O
ut

-
-

0.
77

47
08

00
12

66
35

42
8

76
28

64
.0

2
no

6
m

ai
nD

C
T

m
ai

nQ
m

ai
nV

L
E

,
m

ai
nV

id
eo

O
ut

∼
1

29
47

00
83

63
64

11
50

38
33

.8
0

no

84 Experimental evaluation with the SDFG model

PE2 PE1

host
Fifo adapter

Fifo

Bus

Figure 6.6: Block schematic of the platform generated for Sol1 for MJPEG encoder

6.2 Case studies: ECG and SC

For ECG and SC, we followed the same design steps described for the MJPEG encoder
in Section 6.1. The results obtained for these case studies confirmed the ones obtained
for the MJPEG encoder. Therefore, in this section, we briefly present them and their
details are available in Appendix A (Sections A.2.1 and A.2.2).

The ECG application contains a cascade of 6 filters (i.e., tasks). The SDFG iterates
10,000 times; therefore, it is a good candidate for our TLA and PA described in Sec-
tion 5.2. The SC application shows our approach applied to a much wider application
compared to the MJPEG encoder: its SDFG contains 27 transformer tasks and it iter-
ates 6,000 times. For ECG we have a deadline of 16s considering the elaboration of
10,000 samples and for SC, a deadline of 0.205s for the elaboration of five frames. We
set PCmax = 2 and PCmax = 4, respectively.

The results obtained for ECG and SC are summarized in Tables 6.5 and 6.6, respec-
tively. In both tables, Sol1 is the solution produced by our DSE with UM, while the
other solutions are used for comparison. We select those solutions that are reasonable
alternatives to the task clustering produced by the DSE. We also evaluate the solutions
with a single task cluster (Sol5 in Table 6.5 and Sol2 in Table 6.6). For both ECG
and SC there is a correspondence between the results obtained from our DSE and the
ones returned by the simulation with SH tools after the platform implementation. This
means that we can use our UM to compare different task clustering solutions. The
UM, taking into consideration a range of WCETs, is able to find a valid task clustering
solution and guide the designer during the implementation of a multi-ASIP platform.

6.3 Comparison of SDFG and task graph application models 85

Table 6.5: Comparison of clustering solutions for ECG

SolID Clusters
P (δAECG <

d10,000ECG)

δ0.5AECG
=

P−1(p0.5)
(µs)

sim
(cycles) sim (µs) sched

PE1 PE2

1

lowpass,
highpass,
derivative,

square

integral,
detect 0.56 15783000 13790796 13790796 yes

2
lowpass,
highpass,
derivative

square,
integral,
detect

0.54 15853000 14000776 14000776 yes

3 lowpass,
highpass

derivative,
square,
integral,
detect

0.52 15928000 14460733 14460733 yes

4

lowpass,
highpass,
derivative,

square,
integral

detect 0.23 16942800 15934010 15934010 yes

5

lowpass,
highpass,
derivative,

square,
integral,
detect

- 0.22 16991000 16692594 16692594 no

6.3 Comparison of SDFG and task graph application
models

The SDFG model allows exploiting an increased level of pipeline parallelism between
the multiple firing of the tasks when compared to the task graph model. This becomes
evident in the schedulability analysis done with our UM and it is reflected into the
performance obtained by the execution of the application on the multi-ASIP platform.
For comparing the two application models we need to evaluate the same task cluster-
ing solutions using the same input constraints: we used the MJPEG encoder and the
task clustering solutions, Sol1 to Sol5 specified in Table 6.7. We used a frequency
f = 166MHz and a deadline d = 0.5s (in Section 4.2, for the MJPEG encoder appli-
cation we used a deadline d = 0.6s). In Table 6.7, we can observe that for all solutions
the schedulability analysis with SDFG returned better performances, i.e. higher prob-
ability of meeting the deadline and/or smaller quantile values (columns 5-6 and 8-9).
This is reflected also in the performance obtained from simulation with SH technology

86 Experimental evaluation with the SDFG model

Table
6.6:

C
om

parison
ofclustering

solutions
forSC

S
o
l
I
D

C
lusters

P
(δ
A
S
C
<

d
6
0
0
0

S
C

)

δ
0
.5
A
S
C

=

P
−

1
(p

0
.5

)
(µ
s
)

sim
(cycles)

sim
(µ
s)

sched

P
E

1
P
E

2
P
E

3

1
M

B
G

etL
ine1,D

C
T

_{1,2},
M

B
Z

ero{0,1,2,3,4,5},
M

B
PackG

etL
ine{1,2},keep2x2

M
M

T
C

_fquantSR

iquantizeSR
,M

B
-

PackG
etL

ine{3,4},
slR

ow
3,

fxID
C

T
8_{1,2,3,4},

fefoID
C

T
8_{1,2},

srTrim
,srA

ddR
ow

3,
M

B
Pack6,M

B
Pack3

0.99
172000

274847324
171799.58

yes

2

M
B

G
etL

ine1,D
C

T
_{1,2},

M
B

Z
ero{0,1,2,3,4,5},

M
B

PackG
etL

ine{1,2},keep2x2,
M

M
T

C
_fquantSR

,iquantizeSR
,

M
B

PackG
etL

ine{3,4},slR
ow

3,
fxID

C
T

8_{1,2,3,4},
fefoID

C
T

8_{1,2},srTrim
,

srA
ddR

ow
3,M

B
Pack6,M

B
Pack3

-
-

0
242600

573715348
358572.09

no

3
M

B
G

etL
ine1,D

C
T

_{1,2},
M

B
Z

ero{0,1,2,3,5},
M

B
PackG

etL
ine{1,2},keep2x2

M
B

Z
ero4,

M
M

T
C

_fquantSR

iquantizeSR
,M

B
-

PackG
etL

ine{3,4},
slR

ow
3,

fxID
C

T
8_{1,2,3,4},

fefoID
C

T
8_{1,2},

srTrim
,srA

ddR
ow

3,
M

B
Pack6,M

B
Pack3

0.99
185400

275255614
172034.76

yes

4

M
B

G
etL

ine1,D
C

T
_{1,2},

M
B

Z
ero{0,1,2,3,4,5},

M
B

PackG
etL

ine{1,2},keep2x2,
iquantizeSR

M
M

T
C

_fquantSR

M
B

PackG
etL

ine{3,4},
slR

ow
3,

fxID
C

T
8_{1,2,3,4},

fefoID
C

T
8_1,2,

srTrim
,srA

ddR
ow

3,
M

B
Pack6,M

B
Pack3

0.99
185500

278939568
174337.23

yes

5
M

B
G

etL
ine1,D

C
T

_{1,2},
M

B
Z

ero{0,1,2,3,4,5},
M

B
PackG

etL
ine{1,2},keep2x2

M
M

T
C

_fquantSR
,

iquantizeSR
,

M
B

PackG
etL

ine3,
slR

ow
3,fxID

C
T

8_1

M
B

PackG
etL

ine4,
slR

ow
3,

fxID
C

T
8_{2,3,4},

fefoID
C

T
8_{1,2},

srTrim
,srA

ddR
ow

3,
M

B
Pack6,M

B
Pack3

0.95
194300

303402927
189626.83

yes

6.3 Comparison of SDFG and task graph application models 87

(columns 7 and 10).

An exception is Sol5 in which we evaluated a task clustering solutions with a single
ASIP. With ourUM and schedulability analysis, we predicted similar performances for
the task graph and SDFG models. This is reasonable as we cannot exploit any pipeline
parallelism at system level with a single processor. However, we have a higher number
of execution cycles, after implementation, for the task graph model. This is probably
due to a different level of optimization performed by SH compiler to the application
code. Additionally, the frames of data, to be processed, need to be transferred to the
ASIP local memory by the host processor. Depending on the application model, the
host sends one frame at a time (in the task graph model) or one block of data extracted
from a frame (in the SDFG model). In a frame there are 128 blocks of data. The
host cannot send a new frame/block until the previous one has been completely read,
otherwise the data would be overwritten and this would produce a wrong output. The
host waits until it receives a notification that the memory of the ASIP can be overwritten
(we use FIFOs for the synchronization). Therefore, the bigger size of the data in the
task graph model implies that the ASIP has to wait a longer time before the data is
available. It also needs to elaborate the entire frame before sending the request for new
data to the host processor.

It is possible to mitigate this delay using contiguous block of memory and save multiple
frames or blocks as in a buffer. Let us suppose the case of a double buffer: with the
task graph model, the host processor sends a frame of data and saves it to the memory
location with address 0x4; the ASIP reads it and at the same time sends the notification
to the host that sends the second frame of data to the memory location with address
0x4 + sizeof(frame). The third frame is stored again to the address 0x4. For the
experimental evaluation, in the implemented platforms, we used a double buffer.

Starting from this discussion, we can also consider the different memory sizes required
by the SDFG and task graph application models. Optimizing the local memories of the
ASIPs is out of the scope of this thesis, but it can be considered for future work. The
task graph model requires the exchange of bigger amount of data compared to SDFG
model. The message sizes for the task graph and SDFG are summarized in Tables 4.4
and 6.3, respectively. This means that the local memory of the ASIP, with the task
graph model, needs to contain the entire message (128 blocks of data that compose a
frame multiplied by the buffer size) and also the intermediate results of the elaboration
of the different tasks. For the SDFG model, a smaller amount of memory is required.

From the computation point of view, the SDFG schedulability is more complex (for
MJPEG encoder, we ran the DSE with SDFG for 300s, against the 200s of the DSE
with the task graph model). For the SDFG, we need to run the evolutionary algorithm
for longer time to evaluate a reasonable number of generations, as the evaluation of a
single task clustering solution is more time consuming (each task in the SDFG is fired
multiple times, e.g. mainDCT is fired 128 times).

88 Experimental evaluation with the SDFG model

Table
6.7:

C
om

parison
ofclustering

solutions
forM

JPE
G

encoderusing
SD

FG
and

task
graph

(T
G

)application
m

odels

S
o
lI

D
C

lusters
P
(δ

A
M
J
P
E
G
<
d
M

J
P
E
G
)

P
−
1
(p

0
.5
)
(µ
s)

sim
(µ
s)

P
E

1
P
E

2
P
E

3
T

G
SD

FG
T

G
SD

FG
T

G
SD

FG

1
m

ainD
C

T

m
ainQ

,
m

ainV
L

E
,

m
ain-

V
ideoO

ut

-
∼

1
∼

1
311200

292700
547683.62

476437.11

2
m

ainD
C

T,
m

ainQ

m
ainV

L
E

,
m

ain-
V

ideoO
ut

-
0.99

∼
1

354700
345300

624005.51
516508.26

3
m

ainD
C

T,
m

ainQ
,

m
ainV

L
E

m
ainV

ideoO
ut

-
0.82

0.85
464200

460100
859913.53

748162.48

4
m

ainD
C

T
m

ainQ
,

m
ainV

L
E

m
ainV

ideoO
ut

∼
1

∼
1

311800
294700

549077.82
503720.22

5

m
ainD

C
T,

m
ainQ

,
m

ainV
L

E
,

m
ain-

V
ideoO

ut

-
-

0.77
0.77

471500
470800

862446.06
762864.02

6.4 Accuracy of Clj and Cuj 89

6.4 Accuracy of C l
j and Cu

j

In this section we repeated, for the SDFG application model, the analysis done in Sec-
tion 4.3, to investigate the influence of the upper and lower bounds (Cuj andClj) of each
task τj .

For this analysis, we considered the MJPEG encoder. First, we evaluated the accuracy
of the Clj and Cuj found by the code analysis tool comparing them with the simulated
number of cycles obtained from the execution of the entire applications on a single
ASIP. The values obtained for MJPEG encoder are summarized in columns 2 to 4 of
Table 4.6. The values for the SC and ECG case studies are in Appendix A, in Tables A.9
and A.5, respectively. Similarly to the MJPEG encoder case study modeled as a task
graph, the sim values for most of the tasks are not included in the range [Clj , C

u
j] as

expected. When, for each task τj , we compare the Clj with the results obtained from
simulation, we have relative errors up to 63% for MJPEG, 97% for ECG and up to
99% for SC for the single tasks. This means that for some tasks we are using upper
and lower bound values that are inaccurate. In Section 4.3 we already discussed the
possible source of inaccuracy in the code analysis tool. As an additional consideration,
we need to mention that the code analysis tool provides better results when we are
comparing the execution cycles of the entire application and not the contributions of
the single tasks: in this case we have errors up to 16% for MJPEG, 32% for ECG and
18% for SC.

As we did in Section 4.3, we evaluated the relative contribution of each task to the total
number of cycles of the application. The results obtained for Clj and sim values are
available in columns 5 and 6 of Tables 4.6 (MJPEG encoder), A.5 (ECG) and A.9 (SC).
Once we had the relative contribution of each task to the total number of cycles (for
the estimated Cl and simulated sim), we calculated the absolute error between them,
which is available in column 7 of Tables 4.6 (MJPEG encoder), A.5 (ECG) and A.9
(SC). This evaluation shows which tasks are more time consuming than others. This is
reflected also in the simulation results using implemented ASIPs. For our case studies,
we got errors up to 3.61% for MJPEG encoder, 14.36% for ECG and 29.06% and for
SC. Even with such relevant errors, our DSE with UM is able to identify which tasks are
more time consuming than others and determines, also considering the communication
between tasks, which task clustering solution should be implemented.

For the MJPEG encoder case study we also verified what happens when we provide
as input to our DSE with UM more accurate values for the upper and lower bounds.
We took the sim values from Table 4.6 and we scaled them of ±30% to get the upper
and lower bounds. The sim values are used as the mean (µ) of the normal distributions
in our UM. Then we ran again our DSE: we found the same task clustering solution
(Sol1) found in Section 6.1. This result is an additional element that suggests that our

90 Experimental evaluation with the SDFG model

UM is not sensitive to relevant errors in the evaluated upper and lower bounds. From
our analysis we can infer that the relative size of the tasks is the one influencing the
outcome of the DSE. Moreover, this suggests that a designer responsible for defining
the upper and lower bounds, can use approximate values and the DSE can still find a
promising task clustering solution.

For comparison, we also evaluated the remaining task clustering solutions in Table 6.4
using the new upper and lower bounds. The results obtained are described in Table 6.9.
These results confirmed the ones obtained with the less accurate upper and lower bound
values. Additionally, we observed that the quantile values (δ0.5

AMJPEG
= P−1(p0.5),

column 6) are very close to the ones obtained through simulation with SH tools (column
8), the maximum relative error between them is 8% (for Sol1). The quantile values are
close to the simulated ones for the way we build the CDF using the sim values as the µ
of the normal distributions; however, this indicates that our scheduling analysis using
TLA and PA is quite accurate and returns results consistent to the ones obtained with
SH simulator.

Table 6.8: Comparison between the number of cycles estimated by the profiling
tool [43] and the ones obtained from simulation for MJPEG

Task Name Clj Cuj sim %TotClj %Totsim
Err

|%TotClj −%Totsim|

mainDCT 25,695,360 71,617,920 69,815,040 51.52 55.13 3.61

mainQ 6,401,280 8,868,480 12,150,620 12.83 9.59 3.24

mainVLE 16,212,735 24,024,690 40,942,298 32.51 32.33 0.18

mainVideoOut 1,565,550 1,934,250 3,168,482 3.14 2.50 0.64

Total (cycles) 49,874,925 106,445,340 126,635,428

6.5 Additional discussion of the results

During the implementation of our DSE with UM we took into account the SH technol-
ogy used for the experimental evaluation; in fact, having some knowledge about the
target technology can produce more accurate results.

For example, we adjusted our algorithm for the evaluation of a clustering solution to
be consistent with SH simulator. We added offsets in the schedulability analysis for
modeling the time required for starting the execution of the tasks on the ASIPs, for
modeling the synchronization time (access to the FIFOs), and also for considering ad-
ditional bus parameters as the hand-shake time to gain access to the bus and the setup
time for transfer the data. These values are stored as offset and can be easily changed
or removed according to the technology available.

6.6 Experimental evaluation with a NoC 91

Moreover, for the inter-processor communication, we considered a message-passing
paradigm, in which a processor is responsible for sending data to the next processor.
This implies that the processor is busy not only during the execution of the tasks, but
also during the transmission of the data. In fact, in our system, we have no DMA for
the read and write operations to and from memory1. Our tool for DSE accepts as input
a flag to specify if the processors are involved in the transfer of data or not.

6.6 Experimental evaluation with a NoC

In this section, we present an example of our DSE with UM that has been extended for
evaluating a communication architecture different from a bus.

In particular we consider a NoC architecture that represents the today paradigm for
connecting a high number of integrated cores. NoCs offer a structured and reusable
communication architecture that bypasses the issues of a bus-based shared architecture.
Additionally, their structured architecture allows reducing the design time and the time-
to-marked [59]. In the literature there are static schedulability analyses for real-time
NoC. There is a large group of approaches based on time-division multiplexing, e.g.,
the links are shared according to slots of time, to provide schedulability guarantees.
Examples of TDM NoCs are dAElite [89], aelite [37], ACROSS approach (for mixed
criticality systems) by TTTech [30] and the solutions implemented in [84, 65]. Other
approaches implement real-time packet-switching NoC using service disciplines, e.g.,
using non-blocking routers with rate control in the PEs [103].

We propose a simplified schedulability analysis as a proof of concept to demonstrate
the application of the UM to a communication architecture different from a bus and, as
future work, we will integrate TDM in our analysis.

Moreover, during our schedulability analysis, we make assumptions about the routing
and switching policies. These limitations can be released in a later design phase; once a
task clustering solution is established and the micro-architecture configuration for each
ASIP is available, it is possible to perform a second DSE to additionally optimize the
NoC topology. For example, in a completely customizable system, we can remove un-
used switches, NIs and PEs and we can further explore different switching and routing
policies. Additionally, the output of our optimization can be used as core communica-
tion graph, i.e., a graph that specifies the PEs and communication demands, indicating
the task clusters and the communication latency constraints between each couple of
tasks. The core communication graph can be used as input for those approaches avail-
able in the literature that suppose a pre-defined application mapping and PEs and that
focus on the NoC optimization and schedulability analysis [39, 72, 13].

1SH technology allows the insertion of a DMA, but it is not available under our University license.

92 Experimental evaluation with the SDFG model

Table
6.9:

C
om

parison
ofclustering

solutions
forM

JPE
G

encoderusing
updated

upperand
low

erbound
values

S
o
lI

D
C

lusters
P
(δ

A
M
J
P
E
G
<

d
1
5

M
J
P
E
G
)

δ
0
.5

A
M
J
P
E
G

=

P
−
1
(p

0
.5
)
(µ
s)

sim
(cycles)

sim
(µ
s)

sched

P
E

1
P
E

2
P
E

3

1
m

ainD
C

T
m

ainQ
,

m
ainV

L
E

,
m

ainV
ideoO

ut
-

0.98
437900

79088561
476437.11

yes

2
m

ainD
C

T,m
ainQ

m
ainV

L
E

,
m

ainV
ideoO

ut
-

0.43
505500

85740371
516508.26

no

3
m

ainD
C

T,
m

ainQ
,m

ainV
L

E
m

ainV
ideoO

ut
-

∼
0

744000
124194971

748162.48
no

4
m

ainD
C

T
m

ainQ
,m

ainV
L

E
m

ainV
ideoO

ut
0.46

502600
83617556

503720.22
no

5

m
ainD

C
T,

m
ainQ

,
m

ainV
L

E
,

m
ainV

ideoO
ut

-
-

∼
0

759700
126635428

762864.02
no

6
m

ainD
C

T
m

ainQ
m

ainV
L

E
,

m
ainV

ideoO
ut

0.36
511700

83636411
503833.80

no

6.6 Experimental evaluation with a NoC 93

6.6.1 Network model

We assume a NoC with a MESH topology [104] as communication architecture. We
select the MESH topology as, to date, is one of the most scalable designs to the increas-
ing number of PEs [105]. The CP model presented in Chapter 2 can be used to model a
NoC. An example of CP model for a 2x2 MESH NoC is depicted in Figure 6.7a. We as-
sume that each switch is connected to a PE through a network interface (Figure 6.7b).
A switch has four interconnections toward the other switches in the network (north,
south, east and west) and an interconnection with the NI (Figure 6.7b). For simplicity,
for this schedulability analysis, we assume that each switch allows a single flow of data
from an input to an output port2.

We consider wormhole switching [17] and a static XY routing policy [75]. In wormhole
switching, each packet is divided into smaller pieces, called flits (flow control digits).
The first flit, called header flit, is analyzed by the switch to set up a connection between
the incoming port on which the flit arrives and the outgoing port on which the flit is
sent; the remaining body flits do not contain any routing information and the switch is
responsible for forwarding them according to the header flit, in a pipelined manner. A
tail flit is used to terminate the flit forwarding and then a new packet can be processed.

As for the implementation with a bus (Chapters 3 and 5), we assume a message-
passing approach, i.e., the exchange of data between tasks assigned to different PEs
happens through the exchange of messages and not through the access to a shared
memory [105]. We use a static XY routing, because it is deterministic and simple to
calculate: all the communication paths between each couple of source and destination
PEs can be calculated offline, before starting the DSE. In our model, each flit has a fix
size of four bytes and it is the amount of data that can be stored in a switch on each
incoming port. We suppose packets with a variable number of flits. Each packet corre-
sponds to a message mg in the application model. When we process a packet, we add
a header and tail flits.

The PEs in the initial NoC platform are ASIPs which micro-architecture configurations
have not been defined yet. They are defined after the selection of a task clustering
solution, which is established by our schedulability analysis with UM.

The number of PEs is specified by the input CP model. However, we assume a square
MESH topology for the initial platform; therefore, we add PEs, if needed. For example,
given a CP model with two PEs, we add two extra PEs to obtain a square (2x2) MESH
topology.

2This is a constraint that will be released in future work allowing multiple transfer if there is no contention
of the input and output ports.

94 Experimental evaluation with the SDFG model

PE4 PE3

PE2 PE1

PE6 PE5

CE1

CE5

CE2

PE8 PE7 CE7

CE8 CE6

CE4 CE3

PE1

NI

SW

PE2

NI

SW

PE3

NI

SW

PE4

NI

SW

(a)

NI

SW

(b)

Figure 6.7: Example of CP model for a 2x2 MESH NoC (a) Switch (SW) model (b)

6.6.2 Schedulability analysis

We model the application using a SDFG and we use a static non-preemptive schedu-
lability analysis similar to the one presented in Section 5.2. The application has a
deadline, d. The WCET of each task is a stochastic variable and it is modeled by the
UM as described in Chapter 2. We know the size (in bits) of each message. We suppose
that a message corresponds to a packet with a variable number of flits. Given the flit
size, we calculate the number of flits contained in each packet for a specific message.
The schedulability analysis uses Monte Carlo simulation to enable the analysis with
the UM of the tasks.

6.6 Experimental evaluation with a NoC 95

Using the XY routing policy, we estimate the communication path between each couple
of PEs before starting the DSE. Each communication path include the source PE (and
the attached NI), the set of traversed switches and the target PE (with its NI). Knowing
the path between each couple of PEs, we can determine the transmission time Cmg
associated to each message mg . As for the bus, the Cmg of each message is not a
stochastic variable.

In order to schedule the SDFG of the application to the CP model of the NoC, we
modify the message representation in the model of the application. An example is
depicted in Figure 6.8. First we calculate the number of flits in each message and
we add an header and tail flits. m1, in Figure 6.8a, contains three flits (a header, a
payload and a tail flit). m1 is transferred from PE1 to PE2 using two switches (for
simplicity we add the NI traverse time to the WCET of the task). Therefore, m1 is
split into two sub-messages to model the transfer through the network: mPE5

1 and
mPE6

1 . Additionally we need to split each one of these messages into the corresponding
number of flits as specified in Figure 6.8b. This representation allows considering the
pipelined transmission of the flits through the network.

The modified version of the SDFG is dynamically calculated for each evaluated task
clustering solution as it depends on the task clusters, the number of flits per message
and the number of traversed switches. It is used as application model for the schedu-
lability analysis that is performed as described in Chapter 3. We take into account the
hardware resource contentions and the flit propagation happens only when a switch is
not involved in another transfer2. The contention is resolved based on the message
and task priorities (statically assigned). The output of the schedulability analysis is the
probability of a task clustering solution to meet the application deadline. The main
advantage of the NoC is that is can reduce the communication time exploiting multiple
communication paths and introducing pipeline parallelism also in the communication
architecture. As shown in Figure 6.8b, a PE can transmit multiple flits through the net-
work without waiting for them to be received. In fact the buffers in the NIs and in the
switches can store the flits and allow a pipelined transmission.

6.6.3 Results

We tested the tool with the MJPEG encoder application already used in Section 6.1;
the SDFG model is depicted in Figure 6.2; we used the upper and lower bounds for the
WCET of each task and the size for messages listed in Tables 6.2 and 6.3. We also used
the same input constraints: a frequency f = 166MHz for the PEs and the network and
a deadline d = 500, 000µs for the elaboration of 15 frames. The initial platform is the
2x2 MESH NoC represented in Figure 6.7.

As the design space was limited (i.e., 256 task clustering solutions, without considering

96 Experimental evaluation with the SDFG model

PE5

PE3

PE7

CE8

CE3

τ1

τ2

m1

PE1

CE1

m1
PE5

τ1

τ2

m1
PE6

τ1

m1,1
PE5

m1,1
PE6

τ2

m1,2
PE5

m1,2
PE6

m1,3
PE6

m1,3
PE5 Number

of flit

Number of
switch

m1,1 m1,2 m1,3

flits in m1

(a) (b)

Figure 6.8: Clustering of a message, m1, on the NoC

the source and sink tasks which WCET is set to zero), we could run an exhaustive DSE.
The cumulative distribution functions obtained from the DSE are shown in Figure 6.9.
Between the solutions found, we chose the one with the highest probability of meeting
the deadline, the smallest quantile value at δ0.5

AMJPEG
= P−1(p0.5) and the smallest

number of PEs and switches. The selected solution is summarized in Table 6.10. The
solution found is the same one already found using a simple bus; this means that the
communication network is not the bottleneck for the MJPEG case study, which WCET
depends on task mainDCT that is the slowest one. Furthermore, we observed that the
quantile value δ0.5

AMJPEG
= 293, 302µs is comparable (0.2% difference) to the one

estimated with the bus (292, 700µs) that also confirmed that the NoC and the bus have
similar performances for the MJPEG encoder application.

The MJPEG encoder, due to its limited size cannot exploit the potential of a NoC as
the performance of the platform depends on the processing time that is much higher
than the time spent in the exchange of messages; however, our goal with this example
was to show that the schedulability analysis with the UM could be extended to work
with communication architectures different from a bus and, in particular, that it can
be applied to a NoC. As future work, more applications and larger NoCs should be
considered to verify the performance improvements obtained from the use of a NoC as
communication network.

6.7 Summary 97

2 2.5 3 3.5 4 4.5 5 5.5 6
x 105

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C (µs)

P(
C i<x

)

deadline

Figure 6.9: Output CDFs for MJPEG application clustered on a MESH NoC

Table 6.10: Clustering solutions for MJPEG encoder with MESH NoC

Clusters P (δAMJPEG < d)
δ0.5AMJPEG

= P−1(p0.5)

(µs)

PE1 PE2

mainDCT
mainQ,

mainVLE,
mainVideoOut

∼ 1 293302

6.7 Summary

In this chapter we described the MJPEG encoder, the ECG and SC case studies modeled
as a SDFG. We ran our DSE with UM, with the schedulability analysis (TLA and PA)
described in 5.2. We demonstrated that with our analysis, we could select the proper
task clustering solution for implementation.

We verified that the SDFG model allows a smaller level of granularity and, hence,
better performance can be reached compared to the task graph model.

We evaluated the influence of the upper and lower bounds in our DSE and, as we did for
the case studies modeled as task graph, we concluded that our analysis is not sensitive

98 Experimental evaluation with the SDFG model

to big variations in the Clj and Cuj . However, we verified that with more precise values
for the upper and lower bounds, we could obtain estimated values (the quantile function
at 0.5) very close to the ones obtained with SH technology (less than the 8% of error
for the MJPEG case study).

In this chapter, we also presented a small example to show that our schedulability
analysis can be applied to more complex communication architecture than a bus.

CHAPTER 7

ASAM project

In this chapter, we present the integration of our DSE with UM to ASAM [7], a semi-
automatic design flow for the implementation of multi-ASIP platforms. ASAM is a
project in the framework of the European ARTEMIS Research Program and ARTEMIS
Joint Undertaking that completed in February 2014. Its goal is to provide tools and a
design flow for the design and synthesis of ASIPs and multi-ASIP systems. ASAM
design flow takes into account the constraints of MPSoC design including power, per-
formance and area. It is out of the scope of this thesis to describe the details of the
ASAM project and we consider only a subset of the design flow. Specifically, we focus
on the two tools that we created for the macro-architecture DSE and on their integra-
tion within the ASAM flow. The first tool is used in the very early phases of the design
when there is no information about the platform composition (this includes our DSE
with UM). The second one is used in a later phase of the design flow and includes
a multi-objective DSE to select within a group of available micro-architectures, the
proper micro-architecture for each task cluster.

This chapter is organized as follows. In Section 7.1, we give an overview of ASAM
design flow, then in Section 7.2 we introduce Compaan tool for the application par-
titioning, the micro-architecture DSE tools developed at the Technical University of
Eindhoven and the SH technology for the design of ASIPs. In the same section, we
describe the tools that we implemented for the macro-architecture DSE. Finally in Sec-
tion 7.3 we apply the described part of the ASAM flow to the ECG case study [93].

100 ASAM project

7.1 ASAM design flow

The ASAM project has been carried out with the collaboration of multiple partners
from industry and academia. In this section, we provide a high level description of the
project and of the parts of the flow that are relevant for the macro-architecture DSE
that we implemented (Figure 7.1). The ASAM design flow takes as input the C code
of an application Ai, the design constraints (e.g. application deadline, maximum area)
and the CP model of the initial platform, i.e. a bus based platform with PCmax PEs. It
produces as output a multi-ASIP platform optimized for Ai.

All tools communicate exchanging files in a XML format, except for the interfaces to-
wards SH tools, in which the files needed by SH are generated (TIM and HSD formats
as presented in Section 7.2.4). Examples of the XML files generated, with a short de-
scription for each of them, are available in Appendix B. Figure 7.1 depicts the exchange
of data between the tools.

Compaan extracts a KPN model from the application C code. It also produces an XML
file with a list of the tasks and edges between them (application model).

The code analysis tool (Phase 1 of micro-architecture DSE) elaborates the application
C code and returns an estimation of the upper and lower bound values of each task.
These values are produced considering a profiled execution of the application. The
XML file with the application model (both task graph and SDFG model are accepted)
is annotated with the upper and lower bounds and the number of firing of each task.

Our first tool for macro-architecture DSE is then invoked. If the SDFG model is used,
the macro-architecture DSE automatically calculates the consumption and production
rates for each task. We named this tool probabilistic DSE to denote the use of the
UM. The probabilistic DSE explores the space of task clustering solutions using the
schedulability analysis with UM and returns the clustering solution with the highest
chance to meet the deadline.

Then, for each of the task cluster found, the micro-architecture definition tool (Phase
2 of micro-architecture DSE) is invoked. It uses an ArrayOL model [32] of each task
(obtained from the polyhedral model generated by Compaan) and determines a number
of possible micro-architectures for each task cluster. For each micro-architecture, it
returns an estimation of area (in µm2) and performance (in cycles) for task.

Finally, we can run our second tool for macro-architecture DSE, named deterministic
DSE, which uses the output produced by Phase 2 to perform a schedulability analysis
of the application running on the multi-ASIP platform and to calculate the total area.
We evaluate the different micro-architectures proposed by Phase 2 and select the ones
that allow meeting the input constraints.

7.2 Tools in ASAM design flow 101

ASAM design flow also includes the optimization of the energy and a specific opti-
mization of the communication architecture that we omit as it is out of the scope of this
thesis. The last step of the design flow is the implementation of the multi-ASIP system
using SH technology. This step is not automated and it requires the manual intervention
of the user to map the C code of the application to the ASIPs (e.g. insertion of APIs for
synchronization and exchange of data between processors).

7.2 Tools in ASAM design flow

In this section, we describe the tools developed for ASAM design flow and that we
used in Sections 4.2 and 6.1 for our case studies. Compaan compiler and SH toolchain
are commercial tools, while the micro-architecture DSE (Phase 1 and 2) were devel-
oped at the Technical University of Eindhoven (TU/e). At the Technical University of
Denmark, we developed the two tools for macro-architecture DSE.

7.2.1 Compaan Compiler

Compaan Compiler (part of Compaan Design) [1] is a commercial tool for C-to-dataflow
conversion. It takes as input the sequential C code of an application and returns its KPN
applying polyhedral models that are based on an algebraic representation of the code
[90]. The KPN model allows expressing the C code in terms of tasks, data and pipeline
parallelism. It also computes the firing rates for each task.

In ASAM design flow, we use Compaan compiler for the partitioning of the application
into tasks. For the analysis with Compaan, the generic C code of an application needs
to be modified as follows [50]:

• selection of a top-level function (indicated by a pragma compaan_procedure)
that is the one analyzed by Compaan compiler to generate the KPN;

• identification of the kernel functions invoked inside the top-level function that
will become the nodes (i.e. tasks) of the KPN;

• modification the top-level function so that it contains affine nested loops.

102 ASAM project

m
ain(){

…

}

A
pplication

<area/>
<deadline/>
<frequency/>

Input
C

onstraints

Probabilistic
D

SE

C
om

paan
C

om
piler

τ3 (){
…

} τ2 (){
…

}

τ1 (){){
…

} τ1
m

1
m

2

τ3 τ2
τ2

τ1
τ3

Task clustering +
bus selection

C
ode analysis

tool (Phase 1 -
m

icro)

τ1

m
1

m
2

τ3 τ2

C
P m

odel

X
M

L

X
M

L
C

M
icro-

architecture
definition
(Phase 2 –

m
icro)

U
pdated

C
P m

odel

X
M

L

C
1 l

C
1 u

C
2 l

C
2 u

C
3 l

C
3 u

PE
1

PE
2

PE
3

C
E

PE
1

PE
2

C
E

X
M

L

D
eterm

inistic
D

SE

A
SIP

1

A
SIP

2

R
F

FU

FU

M
em

R

F

FU

FU

M
em

R

F

FU

M
em

c
2

c
1

c
3

Area

Perform
ance

Area Perform
ance

Area

Perform
ance

System

perform
anc

es w
ith

m
icro-

architecture
selection

X
M

L

X
M

L

X
M

L

SH

Tools

A
SIP

1

bus

A
SIP

2

τ1 (){){
…

}

τ1 (){){
…

}

τ1 (){){
…

}

R
F

FU

FU

M
em

c
1

C

TIM

H
SD

G
enerate
H

SD

Figure
7.1:

A
SA

M
design

flow
and

interfaces
w

ith
m

acro-architecture
D

SE

7.2 Tools in ASAM design flow 103

7.2.2 Code Analysis tool - Phase 1 of micro-architecture DSE

The code analysis tool [43] allows estimating the number of cycles of the overall ap-
plication performance and of each function. The tool uses LLVM compiler frame-
work [64] for translating the input application from C to a lower-level intermediate
representation (IR). The IR is used to estimate the upper and lower bounds, Cu and Cl

for each function in the C code. This estimation is done using real profiled informa-
tion extracted from the execution of the C code. The estimated number of cycles, for
each task identified by Compaan, is calculated summing the number of cycles of each
function invoked inside the task code as specified by the call graph of the application.
Cu is the expected number of execution cycles when the task is executed on a scalar
processor. Cl is the expected number of cycles when the task is executed on a virtual
processor according to an as soon as possible (ASAP) scheduling without architectural
constraints. In Sections 4.2 and 6.1, for our case studies, we observed a discrepancy
between the estimated upper and lower bounds and the number of cycles obtained when
compiling the same code on SH ASIP. This discrepancy can derive from complex op-
erations (e.g. load and increment pointer) that are automatically detected and used
by the SH compiler; additionally LLVM and SH compiler perform different kinds of
optimization on the target application (e.g. different loop optimization performed).

As mentioned in Section 4.2.1, the code analysis tool does not return a theoretical esti-
mation of the WCET; it returns an estimated number of cycles of a profiled execution of
the application. Our probabilistic and deterministic DSE would both expect the WCET
of each task, in fact, with static scheduling, to provide schedulability guarantees we
should use the WCET. However, we tested the code analysis tool with different set of
input data for our case studies and we considered the ones producing the longest exe-
cution time. We know that this is not a theoretical WCET, but we consider this value
good enough for our DSE. The same consideration applies to the Phase 2 of the micro-
architecture DSE that is described in the following section. In fact the performance
values returned by Phase 2 are calculated with a similar approach.

7.2.3 Micro-architecture DSE tool - Phase 2 of micro-architecture
DSE

The micro-architecture DSE [43] performs a data-oriented software and hardware co-
design to decide the ASIP micro-architecture. It takes as input a task cluster and
the polyhedral model generated by Compaan of each task in the cluster. The micro-
architecture DSE uses a data-oriented polyhedral representation of the application [32],
which is used to rapidly evaluate the task’s code and the corresponding hardware archi-
tectures. It performs a DSE in order to select the loop transformations that are used to
infer the ASIP micro-architecture. This evaluation happens through a static analysis of

104 ASAM project

the data-oriented representation. The micro-architecture DSE decides the data memory
size and the data parallelism through vectorization or usage of multiple issue slots (IS).
Each micro-architecture is composed of a selection of ISs taken from a library and is
characterized by an estimated area (in µm2) and performance per task (in cycles).

Examples of loop transformations are loop unrolling or loop fusion (merging two or
more loops in a same iteration space, reducing the loop control [48]). Depending on
the loop transformation applied, the micro-architecture DSE establishes if the ASIP
micro-architecture should contain ISs with vector instructions and how many ISs are
necessary to exploit the data parallelism.

For each task and micro-architecture, it adds information about the estimated area and
the performance of the tasks. For each task, it specifies the start and end cycles (with
respect to an initial offset=0). As Phase 2 performs DSE considering one cluster at a
time, it has no visibility of the other clusters and cannot determine if synchronization
with tasks associated with different ASIPs is needed. Moreover, in case of micro-
architecture optimization as loop fusion, multiple tasks in a cluster are executed in
parallel. Therefore, the next phase in the ASAM flow, i.e. the deterministic DSE, to
perform a schedulability analysis of the entire system, needs to know the start and end
cycles for each task (a latency value is not sufficient). More details are available in
Section 7.2.5.2.

7.2.4 Silicon Hive technology

SH tools [63] allow the definition of a multi-ASIP platform in which the ASIPs are
connected to each other and to external memories through a hierarchy of buses.

SH provides TIM language for the description of the ASIPs and Hive System De-
scription (HSD) language for the definition of the platform. Both TIM and HSD are
proprietary hardware description languages and have their own compiler. TIM Com-
piler checks the design rules for the ASIP and generates a pre-processed version of the
ASIP design description, while HSD Compiler generates a pre-processed version of
the multi-ASIP design description (including buses and external memories).

Additionally, SH provides an ANSI-C compiler, HiveCC, that can be used to compile
the application code and to generate executable code for the multi-ASIP platform de-
scribed by TIM and HSD languages. HiveCC includes also a simulator that returns a
cycle-accurate estimation of the application running on the multi-ASIP platform.

The SH ASIPs are single-threaded processors and have a VLIW architecture that is
configurable depending on the functionalities required by the tasks. They can contain
scalar or vector functional units and one or more ISs. Each IS contains a set of

7.2 Tools in ASAM design flow 105

functional units available in a library that are connected to local or external memories,
register file(s) and input/output FIFO ports. Figure 7.2 shows an example of the micro-
architecture of a SH ASIP [62].

….

Status
control

registers

Additional logical memory (1 or more)

Core address mapping

Point-to-point interconnect

load/sore unit
mmio port

core status/
control port

arbiter arbiter

System address mapping System address mapping

SRAM
data

memory
SRAM

data
memory

SRAM
data

memory

SRAM
data

memory
SRAM

data
memory

flipglop
data

memory

SRAM
data

memory
SRAM

data
memory

Master
interface

SRAM
data

memory
SRAM

data
memory

Stream
interface

SRAM
data

memory
SRAM

data
memory
Slave

interface

Master port(s)

Mandatory logical memory

SRAM
program
memory

arbiter

Stream port(s) Slave port(s)

…. ….

….

…. ….

…. …
.

core

Argument connection network ACN

IS

sequencer Op.
decoder

Output connection network OCN

RF RF PC ……………. SR

…. ….

….

….

…. ….

….

FU FU FU

Input connection network ICN

…. …. ….
Result select network RSN

Instruction dispatcher

cell

core

coreIO

coreIO

Figure 7.2: Example of micro-architecture of a SH ASIP [62]

For the execution of the C code on SH processors, it is necessary to edit the code as
follows. First, the code of the different tasks in a task cluster is merged in a single
function that corresponds to the task cluster’s code. Then, we add the APIs for the
access to the local or external memories and for the transfer of data. The multi-ASIP
platform, to be simulated, requires also an host processor that is in charge of loading
the code of the task clusters on the ASIPs, starting their execution and also dispatching
the input data or verifying the output, if necessary.

In ASAM and in the case studies described in this thesis, we impose some design
constraints that consider only a subset of SH functionalities. We add two FIFOs be-
tween each couple of ASIPs that needs to exchange data. The FIFOs are used only for
synchronization purposes while the data are transferred on the bus. We use a single
32-bit bus for interconnecting the ASIPs. For the synchronization of the ASIPs with
the host processor, we need to provide the host with the access to the FIFO ports of the
ASIPs. The host does not have any FIFO ports; it has only access to the system bus

106 ASAM project

(and to the hardware components connected to the bus). Therefore, to guarantee the
synchronization host-ASIP, we use a hardware block, called FIFO adapter, that works
as an interface between the ASIP FIFO ports and the bus. Using the bus and the FIFO
adapter, the host can synchronize with the ASIPs.

7.2.5 Macro-architecture DSE

In this section, we describe the probabilistic and deterministic DSE tools developed
for the macro-architecture DSE. We specify how they interface the other tools of the
ASAM design flow. We implemented two versions of the tools, one that works through
command line (used inside the ASAM flow) that support both the task graph and SDFG
application models and one with a GUI (to use it as a stand alone tool) that support
only the task graph application model. Both versions have been implemented in Java.
Screenshots of the GUI of the probabilistic and deterministic DSE tools are shown in
Figures 7.3 and 7.4.

(a) (b)

Figure 7.3: GUI of the probabilistic DSE tool, input (a) and output (b)

7.2.5.1 Probabilistic DSE

The probabilistic DSE is executed in the early phases of the design flow when there
is no information about the platform and its composition. The inputs available are the
graphs (SDFG or task graph) of one or more applications, their design constraints and
the CP model of the initial platform (in XML format). In Listings B.1, B.2 and B.3 there
are examples of input files. The purpose of this DSE is to identify which tasks should be
grouped into the same ASIP without a precise knowledge of the underlying hardware
(ASIPs and their communication architecture). The probabilistic DSE implements the
DSE with UM described in Chapters 3 and 5. The probabilistic DSE tool accepts as

7.2 Tools in ASAM design flow 107

(a) (b)

Figure 7.4: GUI of the deterministic DSE tool, input (a) and output (b)

input also the SSEA parameters: population size, mutation and crossover probabilities
and the time the exploration should run.

The output is a set of task clustering solutions that have high chances to meet the dead-
line when continuing through the successive phases of the ASAM flow. The task clus-
tering solution with higher chances to meet the deadline is sent to the micro-architecture
DSE (Phase 2) for ASIP optimization (an example is available in Listing B.4).

The micro-architecture DSE (Phase 2) requires also a KPN model for each task cluster.
We obtain the KPN model of a cluster extracting it from the KPN model of the entire
application (generated by Compaan). For each cluster, we take the KPN nodes that
correspond to the tasks in the cluster and all edges connected to them. In most of the
cases, extracting nodes and edges from a KPN model is not enough to get a new KPN.
In fact, as we split the tasks among different clusters, some input/output messages of
the tasks are unconnected. Therefore, we add dummy tasks that have no computation
associated to complete the KPN.

7.2.5.2 Deterministic DSE

The deterministic DSE is the second tool that we developed for macro-architecture
DSE. It is invoked in a later phase of ASAM design flow, after the micro-architecture
DSE. At that point in time, we have more precise information about the possible micro-
architecture implementation for each ASIP: this allows substituting the UM of each
task, with a set of more precise performance values. The performance is not expressed
as a WCET value, but as a start and end times. The deterministic DSE uses these
values to run the schedulability analysis. Each performance value assigned to a task,

108 ASAM project

corresponds to a micro-architecture configuration. The micro-architecture DSE returns
also an estimation of the area for each micro-architecture. Therefore, we can also
estimate the area for the entire system.

The deterministic DSE runs a multi-objective DSE; we use the NSGA II algorithm [19]
implemented in the Java library jMetal [4]. The objectives to optimize are the area and
the scheduling length. The algorithm terminates after a number of iterations that is
specified as input. It accepts as input also the population size, the crossover and the
mutation probabilities (only in the command line version of the tool).

The deterministic DSE can perform a schedulability analysis using both a task graph
and a SDFG application models. The schedulability analysis follows the same steps
presented in Sections 3.3.1 and 5.2 for the scheduling with UM. The main differ-
ences are that instead of Monte Carlo arrays with n samples, we use single values and
that the deterministic DSE has to consider the optimization performed by the micro-
architecture DSE. This last point makes the schedulability analysis more complex.
When the micro-architecture DSE performs loop fusion, it means that the tasks are
merged and executed in parallel as a single thread. However they do not start at the
same time: they are shifted of a certain number of cycles. The same applies to their
completion time. Moreover, it is possible that the merged tasks have different data
dependencies and, as they have to execute as a single task, they have to wait for the
dependencies of all merged tasks to be satisfied. This is also the reason for having the
start and end cycles for each task and not a WCET value, as we need to know which
tasks have to be scheduled in parallel as a single task.

The output of the deterministic DSE is a file containing the id of the selected micro-
architecture configurations of each ASIP with the estimation of area and performances
for the entire system. As the deterministic DSE uses a multi-objective DSE, it returns
not a single solution but a Pareto set of solutions. Therefore, we ask the designer to
indicate which design parameter he wants to optimize (e.g. area or performance). We
use this information for selecting a single solution when there are multiple solutions
meeting the constraints. Listing B.6 contains an example of output of the deterministic
DSE.

The design flow completes when a platform description that meets the input constraints
is available, then it is possible to synthesize the entire multi-ASIP platform using SH
tools.

7.3 Experimental evaluation 109

7.3 Experimental evaluation

In this section, we present the results obtained for the ECG case study elaborated
with the portion of the ASAM design flow previously described. We consider the
SDFG model for the ECG application. Some of these results are also presented in Ap-
pendix A.2.1 where there is an extended analysis of the output of the system-level DSE
with UM for the ECG.

The input constraints for the ECG are summarized in Table 7.1. We suppose the elabo-
ration of 10,000 samples and a deadline of 16s. The XML file with the input constraints
that is used as input to the ASAM design flow is shown in Listing B.1. The initial plat-
form model (CP model) is in Listing B.2. We consider a bus-based platform with a
maximum of 2 PEs, PCmax = 2. Moreover, we assume that the parameter to mini-
mize is the area (used by the deterministic DSE to select a design point from a Pareto
set of solutions).

The first step of ASAM design flow is the elaboration of the C code with Compaan
compiler. The KPN model produced by Compaan is depicted in Figure 7.5a. Starting
from this model, we derived the SDFG model in Figure 7.5b.

The second step is the elaboration of the input C code with the code analysis tool (Phase
1 of micro-architecture DSE) that produces the upper and lower bounds of the WCET.
The XML files with the application model annotated with the upper and lower bounds
value is shown in Listing B.3. The upper and lower bounds, Cuj and Clj , for a single
iteration of each task τj , are summarized in Table 7.2.

Table 7.1: Input constraints for ECG

d (µs) f (MHz) max. area (µm2) PCmax Bus type

16,000,000 1 8,000,000 2 b132

Table 7.2: C values for ECG (average number of cycles for a single iteration of the
task)

C lowpass highpass derivative square integrative detect

Cu
j 46 85 1 1 2038 16

Cl
j 41 46 1 1 1084 10

As a third step, we run our probabilistic DSE that performs a schedulability analysis
and returns the task clustering with higher chances to produce a schedulable solution

110 ASAM project

printOut/
SINK

(a)

(b) 1 m1 1 m2 1 m3 1 1 1 1 1 1 1
get_sample/
SOURCE

lowpass highpass derivative

m4 1 m5 1 m6 1

1

1 1
square integrative detect

m7 1 1 1 1 1 1

1 1 1 1

111 1

Figure 7.5: KPN model generated by Compaan for the ECG (a) and corresponding
SDFG model (b)

once the final platform is available. The clustering solution found is depicted in Fig-
ure 7.6a and the corresponding CDF modeling its performance is in Figure 7.6b. The
file with the clustering solution produced as output of the probabilistic DSE is available
in Listing B.4.

0 0.5 1 1.5 2
x 107

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C (µs)

P(
C i<x

)

sol1
P(C1<d)

CE1

PE2 PE1

(a)

lowpass, highpass,
derivative, square

integral,
detect

(b)

Figure 7.6: Task clustering solution (a) and its CDF (b) produced by the probabilistic
DSE

The fourth step is the execution of the micro-architecture DSE (Phase 2). It considers
one cluster of tasks at a time and it defines a number of possible micro-architectures
for each ASIP. The results obtained by Phase 2 for clusters PE1 and PE2 are depicted

7.3 Experimental evaluation 111

in Figure 7.7; ch indicates the micro-architecture configuration h. Phase 2 finds four
possible micro-architecture configurations for PE1: three of them have scalar micro-
architectures with three ISs (the difference in the area derives in the number of register
files included) and one (c2) has a vector micro-architecture with 2 scalar ISs and one
with vector instructions. One scalar micro-architecture configuration is found for PE2.
The details about the micro-architecture configurations are not available as the library
of ISs used is proprietary and not public available.

For each micro-architecture configuration the corresponding TIM description is avail-
able, so that it can be processed by TIM compiler (presented in Section 7.2.4). The
performance values in Figure 7.7 consider the execution of all iterations of the tasks
and are only indicative as they are calculated building a schedule for a single clus-
ter (without considering the data dependencies with the tasks on other clusters). The
output produced by the micro-architecture DSE for ECG case study is available in
Listing B.5. The WCETs estimated by the micro-architecture DSE, for each task, are
extracted from the range of values delimited by the upper and lower bounds calculated
by the code analysis tool. As the estimations provided by the code analysis tool might
be subject to inaccuracies (as presented in Chapters 4 and 6), the results produced by
the micro-architecture DSE suffers from these errors and extra simulations might be re-
quired to obtain more accurate WCET values. The selected WCETs depend on the the-
oretical instruction level parallelism (ILP) that is provided by each micro-architecture
configurations.

The fifth and final step of the ASAM design flow that we consider is the deterministic
DSE. It performs a multi-objective DSE using the information provided by Phase 2.
It returns a set of Pareto points (Figure 7.8) that meet the design constraints. As the
parameter to minimize is the area (specified as input), the deterministic DSE tool selects
solution solDet2 with area = 7, 767, 160µm2 and WCET = 12, 550, 167µs.

This part of the flow executes in less then twenty minutes. The flow for the ECG case
study is completed building the TIM description of the selected ASIPs (generated by
Phase 2), writing the HSD description of the multi-ASIP platform and mapping the ap-
plication code to the processors. Then we can run the simulation using HiveCC (as pre-
sented in Section 7.2.4). The simulation returns 13, 790, 796 cycles or 13, 790, 796µs
at f = 1MHz. This implies an error of 9% between the performance estimated by
ASAM flow and the one obtained with SH tool. We cannot calculate the error for the
area, as we do not have the real area measurement. However, we assume that the area
values estimated by Phase 2 are built considering a precise definition of the micro-
architecture configurations and are good enough to perform a qualitative comparison
between different micro-architectures.

112 ASAM project

(a) (b)

3 4 5 6
x 106

2

4

6

8

10

12

x 105

Area (µ m2)

W
CE

T
(c

yc
le

s)
PE1

c0
c1
c2
c3

3 4 5 6
x 106

2

4

6

8

10

12

x 106

Area (µ m2)

W
CE

T
(c

yc
le

s)

PE2

c0

Figure 7.7: Output of the micro-architecture DSE for clusters PE1 (a) and PE2 (b)

7.4 Summary

In this section we presented part of the ASAM design flow. ASAM offers a semi-
automatic design flow for the implementation of multi-ASIP platforms customized for
the execution of specific applications. In particular we presented how the tools for
macro-architecture DSE can be integrate in a design flow to support the automatic
generation of multi-ASIP platforms. We developed two tools, the probabilistic and
deterministic DSEs. The first one is used in the early phase of the design flow and it
implements the DSE with UM presented in Sections 3.3.1 and 5.2. The second one
is used in a later phase of the design and evaluates the platform performance and area
once a set of micro-architecture configurations has already been defined for each ASIP.
We also showed the results for the ECG application produced by the presented ASAM
tools.

7.4 Summary 113

7.765 7.77 7.775 7.78 7.785 7.79 7.795
x 106

1.255

1.255

1.255

1.255

1.255

1.255

1.255

1.255

1.255

1.255

1.255 x 107

Area (µ m2)

W
CE

T
(c

yc
le

s)

solDet1
solDet2
solDet3

Figure 7.8: Output of the deterministic DSE

114 ASAM project

CHAPTER 8

Uncertainty model and task
similarities

This section presents an extension of the application of the UM for the design of multi-
ASIP platform. As described in Chapter 1, an ASIP micro-architecture is configured
to execute a cluster of tasks that corresponds to a set of functionalities: the micro-
architectural parameters such as number and size of registers and memory blocks and
number of functional units are tuned for the task cluster. In the previous chapters we
considered the influence of these parameters on the WCET of the tasks assigned to an
ASIP. In this chapter we also analyze how a task clustering influences the area of the
datapath (i.e., the portion that performs computations) of the ASIP.

We describe an approach to derive a platform defined by a task clustering solution
such that there is a simultaneous minimization of the area cost and a maximization
of the schedulability probability of the applications. The area cost is different from
the platform cost defined in Chapter 3, where we use it to indicate the number of
ASIPs in the platform. In this chapter, the minimization of the area cost consists in
the optimization of the ASIP datapath area considering the task similarities: two tasks
are said to have similarities if some of the operations constituting the tasks are identical
and, hence, they can share the same datapath resources. We exploit task similarities to
design cost-efficient platform solutions by using resource sharing techniques employed
in the synthesis of Custom Instruction Set Extensions (ISEs) [106, 107], where the
design of the datapath is optimized considering the hardware resources that can be
shared by two tasks with similar operations.

116 Uncertainty model and task similarities

Additionally, we consider event-triggered (ET) [51] real-time applications. In the ET
approach, all activities are initiated whenever a significant event occurs. ET systems
require a dynamic scheduling strategy where an appropriate task is initiated in response
to an event; this also means that we are considering ASIPs that can implement a dy-
namic preemptive scheduler. We use fixed-priority preemptive scheduling (fpps) to
schedule tasks in the applications.

The contents described in this chapter have been published in [28]; the chapter is or-
ganized as follows. In Section 8.1, we present the system model; as we use a different
scheduling policy and different assumptions compared to Chapters 2 and 5, we redefine
the platform and application models for clarity to the reader. Then, we define the prob-
lem and explain how task similarities are used for the area optimization (Section 8.2).
In Section 8.3, we discuss the multi-objective metaheuristic that we apply. We present
the experimental results for a set of benchmark applications in Section 8.4.

The tool described in this section has been implemented in MATLAB 2011 and using
its Global optimization toolbox.

8.1 System model

The system consists of multiple applications and the underlying hardware platform.
The platform can be modeled using the CP model and consists of PEs interconnected
through a bus. A PE is denoted by PEk. The PEs correspond to ASIPs that we imple-
ment accordingly to the tasks that they run. Although we consider only ASIPs in the
rest of the chapter, our method can handle the inclusion of other processors, as GPPs
and DSPs.

Each application is modeled as a task graph A = (V,E), where V is a set of nodes that
represent the tasks and E is the set of edges that represent the communication between
the tasks. Each edge corresponds to a message, i.e. the data exchanged between a
couple of tasks. Each message has associated the number of bits of data to transmit (its
transmission time is defined by the bus type). A task i is denoted by τi. Each task τi
has a period Ti. When there are multiple input applications, we aggregate the tasks in
all the applications into one global task set. For all the applications, we want to meet
a global deadline (which is explained later in Section 8.2.3). The area required for the
implementation of each task τi on an ASIP is denoted by aGi , where Gi is the data
flow graph (DFG) model associated to the task (as presented in Section 8.2.1).

As described in Chapter 2, the WCETCi of a task τi is modeled as a stochastic variable,
which probability distribution is described by the UM. Ci is a normally distributed
stochastic variable that is defined using an interval of WCETs delimited by the upper

8.2 Problem formulation 117

and lower bound values, Cui and Cli . Therefore, we define the task information tuple
for every task τi as Γi = {Cui , Cli , aGi , Ti}.

8.2 Problem formulation

Given multiple applications where each application is modeled as a task graph, the task
information tuple Γi for each task τi in each application, a global deadline d and a set
of PEs, the problem is to design a multi-ASIP platform that simultaneously minimizes
the area cost and maximizes the schedulability probability of the applications.

We perform a multi-objective DSE to identify the task clustering solution that has high
chances of meeting the deadline and minimizes the area cost (i.e. platform area). We
use the UM together with a fpps analysis to determine the schedulability probability,
i.e., the probability of a task clustering solution to meet the deadline (Section 8.2.3).
As the WCETs of the tasks are modeled as stochastic variables, each task clustering
solution is evaluated using a Monte Carlo simulation (MCS) loop. Each MCS loop
iteration performs a schedulability analysis to verify if a solution is schedulable (Sec-
tion 8.2.3). The output of all iteration of MCS are combined to generate the schedula-
bility probability of a task clustering solution. For the area minimization, we use the
area estimation model presented in Section 8.2.1 that is based on task similarities. The
output of the multi-objective DSE consists of the number of ASIPs required and the
cluster of tasks on each ASIP.

8.2.1 Area Estimation Model

The area estimation model used to reduce the area cost is based on task similarities that
influence the ASIP datapath area and the WCET uncertainty model.

The source code associated to a task τi can be described by a DFG. An example is
available in Figure 8.1a. A DFG consists of nodes that perform some operations such
as addition, multiplication, bit shifting etc. There are many approaches in the literature
that, starting from a DFG representation of the C code, derive the corresponding dat-
apath [80, 34, 53]. In particular we look into techniques based on datapath merging:
the DFGs of multiple tasks can be merged together and then a single data path for all
tasks can be implemented. The datapath merging enables the reuse of hardware blocks
(i.e., functional units and registers) and interconnections (at micro-architectural level)
by identifying similarities among the DFGs, and produces a single datapath that can
work for each DFG. Using datapath merging it is possible to minimize the amount of
hardware blocks and interconnections in the datapath [88].

118 Uncertainty model and task similarities

Let us consider two tasks τ1 and τ2 represented by their DFGs G1 and G2 as shown
in Figure 8.1a. The clustering of two tasks is represented as the merging of the DFGs
G1 and G2 and the merged graph (shown in Figure 8.1b) represents the datapath of
the ASIP for the task cluster comprising of τ1 and τ2. The shaded parts in Figure 8.1a
depict the task similarities between tasks τ1 and τ2. The task similarities derive from
the identical set of nodes (that perform the same functionalities) and edges connecting
these nodes in the DFG of the tasks. In Figure 8.1a, the nodes {o1,o2,o4,o5} in G1 are
similar to nodes {O1,O2,O5,O7} in G2. When we cluster together two tasks, similar
nodes are merged together (as shown in Figure 8.1b) to reduce the area of the final
ASIP datapath.

The existing graph merging techniques for datapaths can be optimized for area [71]
and latency [106]. In [71], compatibility graphs are used to detect the similar nodes in
the merged DFGs and to minimize the area. However, area and latency are traded off
during datapath merging in [106]. In this chapter, we assume that the designer would
use a datapath merging technique more optimized for area as the platform cost is one of
our optimization objectives. This merging method can be used by the designer before
the DSE to find the area required to implement each task on a dedicated ASIP and
the area required for two tasks (i.e. task pair) clustered together on an ASIP. These
areas can be computed by using area values of hardware components such as an adder,
multiplier, etc. that will be used in the final implementation of the ASIP.

During DSE, we estimate the area required by various task clusters and the conse-
quences of datapath merging on the WCET and, hence, on the schedulability of the
solution.

We indicate as aGi , the area of the ASIP required for implementing task τi (represented
by DFG Gi). The area is expressed in number of gates. The total area required by two
merged task τi and τj (represented by the DFGs Gi and Gj) is given by Equation 8.1,
where ai,j is the merged area of two clustered tasks and aoi,j is the area overhead due
to the introduction of Sel nodes. The node Sel selects one of the inputs and passes
it to the output (as shown in Figure 8.1b, in the ASIP implementation corresponds to
a multiplexer). Depending on the percentage of dissimilar nodes, the number of Sel
nodes may vary and it affects the area of the datapath. The area overheads for task
pairs can also be computed offline, before DSE. We indicate with NSel, the number
of Sel nodes introduced during task merging and with aSel, the area of a standard Sel;
hence, the area overhead due to task merging is NSel × aSel.

aGiGj = aGi + aGj − ai,j + aoi,j (8.1)

To compute the area requirements of more than two tasks, after the area of the clus-
tered task pair aGiGj is computed as shown earlier, the merged/clustered task pair are
considered as a new task with area requirements aGiGj . If another task τk represented
by DFG Gk is clustered with this new task, then the area of the merged nodes between

8.2 Problem formulation 119

aG1G2 = aG1 + aG2 − a1,2 + a
o
1,2

a1,2 ao1,2

aG2aG1

τ1 τ2
G1

+

x

+

- <<

o1 o2 o3

o4

o5

+

x

+

-

O1 O2 O3

+

x

-

O4

O5 O6

O7

G2

τ1 τ2

sel

<< +

x

+

-

o1/O1 o2/O2 -/O3

+

x

-

-/O4

o4/O5 -/O6

o5/O7

G1G2

o2/-

(a)

(b)

Figure 8.1: A Graph Merging (or Task Clustering) Example, (a) DFG for τ1 and τ2 (b)
Merged DFG for τ1 and τ2 [28]

DFGs GiGj and Gk is given by

ai,j,k = min(ai,k, aj,k) (8.2)

As shown in Equation 8.2, we consider the merged area between GiGj and Gk as
the minimum of the area given by similar nodes between tasks in Gi and Gk, and Gj
and Gk. We select the minimum area to reduce the area overhead which may also
contribute to WCET (discussed in Section 8.2.2): a higher number of merged nodes
usually requires a higher number of Sel nodes. The area overhead when DFGs GiGj
and Gk are merged is

aoi,j,k = Area overhead between Gk and Gmin (8.3)

120 Uncertainty model and task similarities

where Gmin is the graph among Gi and Gj that has minimum area of similar nodes
with Gk. The total area of Gk merged with GiGj is given by aGiGjGk = aGiGj +
aGk−ai,j,k+aoi,j,k. This area estimation can be iteratively performed until all the tasks
in a task cluster are considered. The total area estimated for the task cluster associated
to PEk is indicated as ACPEk . Our iterative technique for area estimation implies
that, given a cluster with multiple tasks, the order in which we consider the tasks for
calculating the area will influence the final result. In this chapter, we use a fixed order
that is based on the task priority, so that tasks with higher priority incur lesser overhead
in the critical path of the DFG (explained in Section 8.2.2). To estimate the area of the
entire system, we sum theACPEk for every PE in the platform; assumingM PEs in the
platform solution, then one of our optimization objective during DSE is to minimize∑M
k=1ACPEk .

8.2.2 Effect of Clustering on the Uncertainty Model

As mentioned in the previous section, datapath merging might influence the WCET,
and hence the CDF, of a task due to the introduction of Sel nodes in the critical path
of a task, when it is clustered with other tasks. In Figure 8.1b, in the DFG G2 of task
τ2, there are four critical paths before merging: O1 → O5 → O7, O2 → O5 → O7,
O3 → O6 → O7 and O4 → O6 → O7. Due to merging, there is an additional
overhead of a Sel node in the third and fourth critical paths. The overhead in the
WCET originates from the group of nodes that are not merged and feed an input to one
of the merged nodes. This can result in increased estimated upper and lower bounds of
the CDF. If the WCET overhead for a task during clustering of two tasks is ω cycles
(or some unit of time), Cu is the upper bound of the WCET and Cl is the lower bound
of WCET, then the CDF for the task is built by shifting the upper and lower bound as
Cunew = Cu +ω and Clnew = Cl +ω, respectively. The WCET overhead for each task
pair can be found before DSE when the area overhead is computed and the number of
introduced Sel nodes is known. Here, we only consider the sharing of resources in the
datapath while accounting for the change in the WCET bounds and in the CDF. The
sharing of memory and other resources is not considered.

8.2.3 Schedulability Analysis of a task clustering solution

The schedulability analysis with the UM is done using MCS, similarly to what we
described Chapter 3. Our approach is to randomly sample, at each MCS iteration, a
new value for Ci based on its CDF. Unlike the schedulability analysis described in
Chapter 3 where we apply a static non-preemptive scheduling, here we use a fpps.

At each MCS iteration, the sampled Ci value is used to compute the number of tasks

8.2 Problem formulation 121

completed within the global deadline d. The schedulability probability is then com-
puted using the number of tasks completed. We call service the number of jobs of a
task processed by each ASIP within a deadline d. The global deadline that we consider
is the hyper-period1. The schedulability analysis is performed by computing the worst-
case time remaining for each task and, therefore, worst-case service provided to each
task. We use the worst-case service as parameter for schedulability analysis because
exact service offered to each task is not known until the ASIP architectures are defined.
Moreover, instead of using conventional response time analysis (RTA) for schedulabil-
ity, we use the worst-case service based approach because a large number of applica-
tions (such as multimedia applications) would require a certain number of jobs of a task
to be completed in a particular time interval instead of having individual job deadlines.
Therefore, we first find the worst-case remaining time ∆i for each task τi in accordance
to the fpps policy, which is given by:

∆i = max


∆h −

∑
τj∈hp(τi)

(
∆h

Tj
Cj

) , 0

 (8.4)

where hp(τi) is the set of tasks which have higher priority than task τi and are clustered
together with τi on the same ASIP. Tj is the period and Cj is the WCET of the higher
priority task τj . Cj is one of the Monte Carlo samples from the CDF of τj . The hyper-
period is denoted by ∆h. We use Equation 8.4 to compute the worst-case remaining
time for a task τi in an interval equal to the hyper-period. For this, we first compute the
worst-case number of jobs (computed as ∆h

Tj
) of all higher priority tasks and the worst-

case times required to process them (computed as ∆h

Tj
Cj). The worst-case processing

times of tasks τj are then summed up to get the worst-case processing time of the higher
priority tasks in hp(τi) and this is finally subtracted from the hyper-period to get the
worst-case remaining time for task τi. If there is no remaining time after the higher
priority tasks are processed, then we set ∆i = 0. Tasks having the longer critical path
are assigned a higher priority [56].

Once we know the worst-case remaining time for task τi, we need to verify if this time
is enough to service all jobs of τi. The maximum number of jobs of a task τi that can
complete within an interval ∆h is given by ∆h

Ti
; we compare this value with the number

of jobs that can actually complete within the worst-case remaining time ∆i. If these
two values are equal, then the task can be scheduled.

More formally, using ∆i, we can compute the worst-case number of processed jobs of
each task as shown in Equation 8.5, where ti = ∆h

Ti
Ci is the worst-case processing time

for maximum possible number of jobs of task τi in an interval ∆h. The worst-case num-

1least common multiple (LCM) of the periods of the tasks

122 Uncertainty model and task similarities

ber of processed jobs of each task can be used to evaluate the overall schedulability of
the task clusters onM ASIPs using the schedulability metric as shown in Equation 8.6.

Ji =

{
b∆i

Ci
c if ti < ∆i

∆h

Ti
otherwise

(8.5)

SM =

{
SM + 1 if

∑
i Ji =

∑
i

∆h

Ti

SM otherwise
(8.6)

If a task clustering on the ASIPs is schedulable (i.e., all jobs of the tasks mapped to M
ASIPs complete within ∆h or

∑
i Ji =

∑
i

∆h

Ti
), then schedulability metric value SM

is incremented. If the task clustering is not schedulable, SM does not change. For each
iteration of MCS, SM is updated according to Equation 8.6. To incorporate message
communication between tasks on the bus, we check for schedulability of messages on
the bus by ensuring that the bus utilization is below 100%. Although this does not
guarantee the worst-case end-to-end schedulability (we do not consider the presence
constraints between tasks), we provide the task clusters that have a high probability
for schedulability of tasks and messages. This can be used as the starting point for
ASIP synthesis. Once the ASIPs are synthesized, a detailed end-to-end schedulability
analysis can be performed using techniques proposed in [35].

We consider n iterations of MCS corresponding to n sample points of WCET probabil-
ity density function of each task. Then the probability of schedulability of the platform
solution is computed as p = SM

n if the bus utilization is less than 100%, otherwise p is
set to zero. Our optimization objective for performance is to maximize p.

8.3 DSE for Cost and performance optimization

The design space of the possible clustering solutions is huge and cannot be exhaus-
tively explored. Therefore, we use an optimization approach based on a Genetic Al-
gorithm (GA). In particular, among the algorithms described in literature, we use a
controlled elitist GA (a variant of the Non-dominated Sorting Genetic Algorithm-II
(NSGA-II) [19]) for multi-objective optimization.

GA is a meta-heuristic optimization strategy that defines an initial set of randomly gen-
erated candidate solutions called population. Each candidate solution is identified by
an array called chromosome. A set of solutions from the initial population is evolved

8.4 Experimental evaluation 123

through crossover and mutation that combine and vary the existing chromosomes (par-
ent solutions) to create new child solutions. The child solutions have a better fitness
value and are used to replace the existing population. This new set of solutions forms
the next generation over which the earlier steps are repeated.

The controlled elitist GA that we use allows maintaining some diversity in the popula-
tion by also retaining solutions with a lower fitness value across different generations.
This is important for the convergence to an optimal Pareto front. The GA causes the
population to evolve towards a better one until a termination condition is reached. In
our case the algorithm stops when there is no improvement in the fitness of the popu-
lation after a certain number of generations gmax.

In a task clustering solution, a chromosome is encoded as an array in which each el-
ement called gene represents a task τi and the value assigned indicates the k-th index
of PEk to which the task is assigned. The initial population is composed of Pop
solutions. From this initial population, a set of solutions is selected as the parent pop-
ulation. First, the crossover is performed according to a probability Pc. We used a
standard single point crossover [15]: given two parents, they are partitioned at a ran-
dom point and the resulting parts of the two parents solutions are combined to generate
a child solution if a randomly generated number ≤ Pc. Mutation is then applied on the
children generated from crossover. A probability Pm is used to determine if each sin-
gle gene of a child solution is randomly changed or not (i.e. modify the PE associated
to each task). After mutation, Pop offspring solutions are generated. Finally, out of
the 2 ∗ Pop solutions (Pop parent solutions + Pop offspring solutions), the best Pop
solutions are selected according to the fitness function. These steps are repeated until
a certain number of generations are produced. The parameters gmax, Pop, Pc and Pm
have been tuned according to the results obtained running multiple executions of the
algorithm with different synthetic applications.

The fitness function consists of two optimization objectives discussed in Sections 8.2.1
and 8.2.3: the computation of the area cost considering the task similarities and the
schedulability probability (p). These computations are performed for every candidate
platform solution in each generation of GA.

We denote our DSE with task similarities and the UM as Pareto Optimal Clustering
method, Pareto_OM.

8.4 Experimental evaluation

Without the Pareto_OM approach, the designer would characterize the WCET of each
task τi with a reference value Crefi and will not use task similarities to minimize the

124 Uncertainty model and task similarities

area. The optimization objective in this case is the maximization of the number of jobs
served considering the Crefi values of the tasks. We denote this as straightforward
method (SFM).

To evaluate the effectiveness of our Pareto_OM approach in deriving a multi-ASIP
platform we compared it against the SFM. We used three real-life benchmarks from the
Embedded System Synthesis Benchmark Suite (E3S), version 0.9 [2] and four synthetic
benchmarks. The real-life benchmarks used from E3S are consumer-cords, telecom-
cords and networking-cords. The details of the real-life and synthetic benchmarks are
presented in Tables 8.1 and 8.2, respectively. In each of the tables, the number of tasks
constituting each benchmark is given in column 2 and the number of ASIPs used for
task clustering is given in column 3.

Table 8.1: Results for the realistic case studies [28]

Case No. of M SFM Pareto_OM

Study Tasks Area p Area p

consumer-cords 12 2 531.011 0% 532.5 74.88%

networking-cords 13 2 182.845 0% 182.845 95.96%

telecom-cords 30 3 1163.929 0% 1148.896 98.16%

Table 8.2: Results for the synthetic case studies [28]

Case No. of M SFM Pareto_OM

Study Tasks Area p Area p

synth_1 24 4 408.092 0% 394.665 94.04%

synth_2 30 4 521.364 0% 377.344 75.72%

synth_3 34 4 615.237 0% 407.307 55.02%

synth_4 46 6 723.982 0% 493.012 94.22%

The WCET value given in the real-life benchmark is used as the average WCET value
Crefi of task τi and the WCET upper (Cui) and lower (Cli) bounds of each task are ob-
tained by scaling Crefi with some multiplication factors. For the synthetic benchmarks
and for each task, the value of Crefi is randomly generated and the values of Cui and
Cli are obtained by scaling the corresponding Crefi .

For real-life benchmarks, the area of each task τi (denoted as aGi) is obtained from
the code size of tasks in the E3S benchmark and area of real implementation of a well-

8.4 Experimental evaluation 125

known task (from the benchmark) on a processor. For instance, if the area of the real
implementation of a well known task τj (such as FFT) obtained from literature is arealj

and the code sizes of tasks τi and τj are csi and csj , respectively, the area of the task
τi was computed as arealj × csi

csj
. In the case of synthetic benchmarks, these values are

generated.

The values for the task similarity and WCET overhead are obtained as follows. Once
the area values required for the implementation of each task are obtained, for real-life
benchmarks, we estimated the merged area of two clustered tasks (τi and τj) ai,j , the
area overhead aoi,j and the WCET overhead ω by looking at the task similarity. We
assumed that a technique as the one presented in Section 8.2.1 is applied. In the case of
synthetic benchmarks, ai,j and aoi,j are generated such that they did not exceed the area
of each task, while the WCET overhead ω is manually generated such that the WCET
overhead did not exceed Crefi value of each task in a clustered task pair.

The parameters of GA were tuned as follows. The initial population size was set to
Pop = 100. The crossover and mutation probability were set to Pc = 0.4 and Pm =
0.2, respectively. The GA terminated when there was no improvement in the fitness
function for 6 generations. The maximum number of generations were set to gmax =
100. The execution time of the DSE for the benchmarks varied between 10 minutes to
1 hour.

In our experiments, we presented the advantage of our proposed platform synthesis
approach Pareto_OM in comparison to the SFM approach for real-life benchmarks and
synthetic benchmarks. In order to compare the performances of the two approaches,
the task clustering solution obtained by SFM was then evaluated under the inclusion of
WCET uncertainty and task similarity effects.

The results obtained using both approaches are presented in Table 8.1 and Table 8.2.
We provided the area cost (in KGates) and schedulability probability, p, obtained with
the SFM approach in columns 4 and 5. The same results obtained with Pareto_OM
approach are shown in columns 6 and 7.

The Pareto_OM approach generates a Pareto front of solutions. We only report the
solution that gives maximum schedulability probability, but still has lesser area than
what is obtained using SFM in Table 8.1 and Table 8.2. These are the task clustering
solutions that should be considered for the platform synthesis. It is clear from the
results that the solution obtained using Pareto_OM approach outperforms the solution
obtained using SFM approach for all the real-life and synthetic benchmarks.

We also present the Pareto plots for the real-life and synthetic benchmarks. For consumer-
cords (Figure 8.2a), using the Pareto_OM approach, there are two solutions which
have a high schedulability probability, but require higher area in comparison to the

126 Uncertainty model and task similarities

SFM approach. Therefore, a better choice would be to select the solution given in Ta-
ble 8.1. The comparison between the SFM approach and the Pareto_OM approach for
networking-cords is shown in Figure 8.2b. Although the Pareto_OM approach returns
a couple of solutions with almost comparable area cost to the solution given by SFM
approach, these solutions have a higher probability of schedulability. This result high-
lights the fact that for networking-cords, the solution that optimizes for performance is
not able to exploit the task similarities well to reduce area. The comparison between
the SFM approach and the Pareto_OM approach for telecom-cords is shown in Fig-
ure 8.2c. In this case, there a few solutions proposed by Pareto_OM that have higher
probability of schedulability in comparison to the solution proposed by SFM with sig-
nificant area savings. This result is because the task similarities in telecom-cords are
well exploited by the Pareto_OM approach. However, there are fewer points on the
Pareto front because the message schedulability condition (Section 8.2.3) on the bus
was not satisfied.

The comparison of SFM approach and the Pareto_OM approach for the synthetic
benchmarks confirms the results obtained for the real-life benchmarks. Synth_1 is
shown in Figure 8.3a; our Pareto_OM approach produces clustering solutions with
better area cost and performance in comparison to SFM approach. Figure 8.3b shows
the comparison of SFM approach and the Pareto_OM approach for synth_2. There
are multiple clustering solutions shown for synth_2, which save considerable area in
comparison to SFM approach, but still having a higher p in comparison to the cluster-
ing solution proposed by SFM approach in red marker. Better clustering solutions were
also observed for synth_3 (Figure 8.3c) and synth_4 (Figure 8.3d) using the Pareto_OM
approach. For synth_3, the schedulability probability is lower than the other synthetic
benchmarks because the contention on the bus due to inter-processor task communica-
tion does not satisfy the message schedulability condition.

8.5 Summary

In this chapter, we proposed an extension of our DSE with UM for multi-ASIP platform
synthesis. We applied the UM together with a fpps scheduling to evaluate the schedu-
lability probability of multiple task clustering solutions. We also introduced a method
to evaluate the area cost, based on datapath merging techniques and task similarities.
An NSGA-II optimization algorithm was used for running the DSE. The efficacy of
our approach was demonstrated using real-life and synthetic benchmarks. From the
experimental results, we observed that our proposed approach (Pareto_OM) could find
platform solutions that exhibited lesser cost and higher schedulability probability in
comparison to the SFM approach.

Additionally, in this chapter, we demonstrated that our UM can be applied to different

8.5 Summary 127

(a) Comparison of results using SFM
and Pareto_OM for consumer-
cords case study

(b) Comparison of results using SFM
and Pareto_OM for networking-
cords case study

(c) Comparison of results using SFM
and Pareto_OM for telecom-
cords case study

Figure 8.2: Results obtained for the real-life benchmarks [28]

schedulability analysis and, therefore, can have a general application targeting also
multiple types of ASIP architectures. In the previous chapters, we considered a static
schedulability analysis, while in this chapter, we applied a dynamic and preemptive
scheduling.

128 Uncertainty model and task similarities

(a) Comparison of results using SFM
and Pareto_OM for synth_1 case
study

(b) Comparison of results using SFM
and Pareto_OM for synth_2 case
study

(c) Comparison of results using SFM
and Pareto_OM for synth_3 case
study

(d) Comparison of results using SFM
and Pareto_OM for synth_4 case
study

Figure 8.3: Results obtained for the synthetic benchmarks [28]

CHAPTER 9

Conclusion

This final chapter consists of two sections: Section 9.1 contains a summary of the con-
tributions and additional comments on the work described in this thesis and Section 9.2
describes the open issues and directions for future research.

9.1 Contributions

In this thesis we presented an innovative approach for the system-level design of multi-
ASIP platforms optimized to run one or more input applications. We targeted streaming
applications that we modeled initially with a task graph and then with a SDFG to take
advantage of the task level and pipeline level parallelism. We introduced a method-
ology that is applied in the very early phases of the design to support the designer in
identifying the platform composition. We believe in the novelty of our approach and,
to the best of our knowledge, there are no other methods in the literature that address
the circular dependencies described in Section 1.3. The circular dependency derives
from the fact that the micro-architecture of an ASIP is designed according to the tasks
that it has to run (i.e. task clustering); at the same time, to evaluate a task clustering
solution, we need the WCET of each task, which is available only when the micro-
architecture of the ASIP is defined. Our solution breaks this circular dependency by
using a probabilistic approach called UM.

130 Conclusion

The UM is used to estimate the performance of a task running on an ASIP which
has not been designed yet. For each task, our UM predicts the range of performance
(i.e. WCET) of a set of possible micro-architecture configurations. The range of
performance is limited by two values, an upper and lower bound. In Chapter 2, we
demonstrated that a normal distribution, drawn between these two bounds, is a valid
approximation of the probability distribution of the WCETs of a task when executed
on multiple micro-architecture configurations.

Given as input the application model, an initial platform model (that specifies the num-
ber of PEs and how they are interconnected) and the UM for each task, we build a static
non-preemptive schedulability analysis for the evaluation of a task clustering solution
(Chapters 3 and 5). Our evaluation is implemented using Monte Carlo simulation and
considers the data dependencies between the tasks. The data dependencies are modeled
as messages that are assigned to the communication architecture. Also the resource
(PEs and CEs) contention is considered. The output of our schedulability analysis is
a task clustering solution, with the highest chance of meeting the application deadline
after the platform implementation. A task clustering solution indicates how the tasks
are assigned to the different PEs, which in turns defines, how many ASIPs we should
include in the platform and which bus type should be used to interconnect them.

For the applications modeled as a SDFG, we split the schedulability analysis into two
parts, one that evaluates the scheduling of a single iteration of the SDFG (TLA) and one
for the estimation of multiple iteration of the SDFG considering the pipeline parallelism
at macro-architecture level (PA). This speeds up the schedulability analysis of a task
clustering solution and allows reducing the execution time of the SSEA DSE used to
explore the design space of the task clustering solutions.

Our DSE with UM, applied to the task graph and SDFG models, is evaluated using
multiple case studies, including real applications as MJPEG, ECG and SC. For the real
case studies, the evaluation is done implementing the multi-ASIP platform associated
to the best task clustering solution with SH tools and technology (Chapters 4 and 6).

Additionally, we evaluated the influence of the upper and lower bounds used to define
the UM of each task. Our analysis suggests that is not necessary to define these values
with high accuracy; the code analysis tool that we used for the estimation of the upper
and lower bounds can produce relatively high estimation errors, depending on the task
and the application. For example, for the MJPEG encoder modeled as a SDFG, there is
an error up to 41%, however, even with such relevant errors, our DSE is able to identify
the proper task clustering. Our intuition is that it suffices to have accuracy in the relative
number of execution cycles of the tasks when comparing them to the execution cycles
of the entire application.

In Chapter 7, we presented how our DSE with UM is integrated into the ASAM flow.
In relation to ASAM, we described the two tools for macro-architecture DSE that we

9.2 Open issues 131

developed. A probabilistic DSE tool implementing the UM that is used at the beginning
of the design flow when there is no information about the micro-architecture of each
ASIP, and a deterministic DSE tool that is used in a later phase of the design when, for
each task cluster identified, we have a set of possible micro-architecture configurations.
Using this more refined information, the deterministic DSE runs a multi-objective DSE
optimizing area and performance of the entire platform. For the integration of the tools
with the ASAM flow, we generated ad-hoc XML interfaces.

Finally, we presented an extension to our DSE with UM. Up to Chapter 7, we con-
sidered a static non-preemptive schedulability analysis that can be implemented by
SH ASIPs. On the other hand, in Chapter 8, we show that the UM can be applied
to different scheduling policies, in particular we applied a fixed priority preemptive
scheduling. We also proposed a method for evaluating task similarities. We used it to
cluster together tasks that share a similar datapath with a consequent minimization of
the micro-architecture area. We implemented a multi-objective DSE, which objectives
are the maximization of the schedulability probability and the minimization of the area.

We believe that the UM described in this thesis can help designers to speed up the
definition of a multi-ASIP platform by automatically evaluating multiple task clustering
solutions. Our DSE required around thirty minutes for the more complex case studies
and a few minutes for the smaller ones.

Moreover, our intent is to propose a general approach for the design of a multi-ASIP
platform. However, knowing the characteristics of the ASIP technology used, it is
possible to improve the results produced by our estimation. In Chapters 4 and 6, we
described how we improved our schedulability analysis including some aspects of the
underlying SH ASIP technology. For example, we adjusted the bus model to be consis-
tent with the SH one and we considered the extra cycles required by the synchronization
between tasks assigned to different clusters. Additionally, in our schedulability anal-
ysis (Chapters 3 and 5), we considered a static non-preemptive scheduling policy that
can be implemented with the single threaded VLIW ASIPs from SH. Other types of
architecture might allow using the UM with other schedulability analysis like the fpps
policy described in Chapter 8.

9.2 Open issues

There is still a number of open issues related to the application of the UM that is worth
exploring. Below we will list some of them.

During the DSE with UM we used a bus-based platform as communication architecture,
with the option of evaluating different types of buses. We also described a small exam-

132 Conclusion

ple in which the DSE with UM is applied to an initial platform model with a MESH
NoC. Depending on the applications in input and the number of ASIPs in the platform,
it becomes important to explore more intensively the impact of different communica-
tion architectures that can be included during DSE. An option would be to start the
DSE with a single bus, then, switching to a NoC implementation in case the commu-
nication architecture is identified as the bottleneck of the performance. We can use the
PA described in the schedulability analysis with a SDFG application model. With PA,
we can calculate the size of the slowest pipeline stage that is the one determining the
total performance of the platform. A pipeline stage corresponds to a PE or CE. If the
slowest pipeline stage is due to the communication network, it is possible to substitute
the bus with a NoC.

Another aspect to investigate is the inclusion of the area estimation to the DSE with
UM used in the ASAM design flow. The task similarities approach described in Chap-
ter 8 can be applied here. Another option would be to use the information that can
be extracted by the code analysis tool: while estimating the lower bound value, that
is the expected number of cycles when the task is executed on a virtual processor ac-
cording to an ASAP scheduling without architectural constraints, it is also possible to
calculate the maximum ILP of each task. Moreover, it is also straightforward to get the
ILP per instruction type. This value can be used to determine the maximum number of
resources (e.g., FUs) required by each task. The similarity in the level of parallelism
of the tasks can be used to determine which tasks should be clustered together. Fur-
thermore, also the size of the local memories of each ASIP can be optimized during
the macro-architecture DSE. At system-level it is possible to consider the size of the
messages exchanged by the tasks and evaluate how the data exchange influences the
sizes of the local memories.

In this thesis, we presented and motivated the UM and we applied it to different ap-
plication models and schedulability analysis. The results obtained show that associat-
ing the UM with a schedulability analysis can guide the macro-architecture DSE for a
multi-ASIP platform when there is no pre-established information about the underlying
hardware implementation.

APPENDIX A

Additional results

A.1 Additional results from Experiment 2

In this section, there are the additional results obtained for Experiment 2 from Sec-
tion 2.3.1.2. Figures A.1, A.2, A.3 and A.4 contain the relative error between the
scheduling length calculated usign normal, Gumbel and uniform distributions and the
scheduling length obtained using a deterministic DSE, DSEdet. The four figures refer
to the case studies in Table 2.3.

A.2 Additional case studies using SDFG application model

In this section, we present the details of the ECG and Spatial Coding (SC) case studies
described in Chapter 6. The results presented in this section are partially described
in [70] that is currently under revision.

134 Additional results

Figure A.1: Histogram of the percentage (%) differences in the scheduling length for
Case Study 2

Figure A.2: Histogram of the percentage (%) differences in the scheduling length for
Case Study 3

A.2 Additional case studies using SDFG application model 135

Figure A.3: Histogram of the percentage (%) differences in the scheduling length for
Case Study 5

Figure A.4: Histogram of the percentage (%) differences in the scheduling length for
Case Study 6

136 Additional results

A.2.1 ECG case study

In this section, we present the ECG application: we model the application as a SDFG
and we apply our DSE with UM to it. The KPN and the SDFG of the ECG application
are shown in Figure A.5a and A.5b. In the KPN of ECG, between actors ND7 and
ND8 there are multiple edges. From the C code analysis, we can determine that we
fall under case B (as presented in Section 4.2), i.e., all messages are executed when
ND7 completes. We generate a message between ND7 and ND8 with size equal to
the sum of the data to transfer on all edges.

In Table A.1 (first row), there are the input constraints for the ECG case study: we
consider the elaboration of 10,000 ECG samples measured with a sampling frequency
of 600 Hz, giving a deadline of 16s. We suppose a frequency f of 1MHz and
PCmax = 2. The average numbers of cycles for each task firing (obtained using
the code analysis tool described in the ASIP DSE (Phase 1) of [43]) are in Table A.2.

We built the CDF for each task using the estimated Cl and Cu and the input frequency
f = 1MHz (Figure A.6). The amount of data expressed in bits of each message is
shown in Table A.3. Then we ran our DSE (for 200s and with n = 5, 000): the best
clustering solution found has a probability pECG = 0.56 (Figure A.7) and uses two
ASIPs. The task clustering and its cost are summarized in the first row of Table A.4
(Sol1). We generated the ASIPs according to the task clustering solution found and
using the micro-architecture design tool described in [43]. We obtained three-issue slot
ASIPs; the final platform contains the same interconnections as the platform imple-
mented for the MJPEG encoder (Figure 4.5b).

Then we implemented the cores and the platform using SH tools and we ran the ECG
code obtaining a schedulable solution. Columns 5-6 of Table A.4 show the number of
cycles and the execution time (at a frequency f = 1MHz) that we obtained with SH
simulator.

In Table A.4 and Figure A.7, there are the results that we obtained for additional task
clustering solutions (Sol2, Sol3, Sol4 and Sol5). We verified that our UM was able
to identify which clustering solutions were better previous the actual implementation
of the multi-ASIP platform. There was a correspondence between the probability of
meeting the deadline (and the value of the quantile function) that we estimated and the
actual schedule length that we obtained from the SH simulator: to a higher probability
corresponded also a shorter schedule length. All solutions are schedulable except for
Sol5.

A.2 Additional case studies using SDFG application model 137

printOut/
SINK

(a)

(b) 1 m1 1 m2 1 m3 1 1 1 1 1 1 1
get_sample/
SOURCE

lowpass highpass derivative

m4 1 m5 1 m6 1

1

1 1
square integrative detect

m7 1 1 1 1 1 1

1 1 1 1

111 1

Figure A.5: KPN model generated by Compaan for the ECG (a) and corresponding
SDFG model (b)

Table A.1: Input constraints for ECG and SC applications

Case study d (µs) f (MHz) PCmax Bus type

ECG 16,000,000 1 2 b132

SC 205,000 1,600 3 b1,60032

Table A.2: C values for ECG (average number of cycles for a single iteration of the
task)

C lowpass highpass derivative square integrative detect

Cuj 46 85 1 1 2038 16

Clj 41 46 1 1 1084 10

Table A.3: Message sizes (in bits) for ECG

m1 m2 m3 m4 m5 m6 m7

32 32 32 32 32 32 96

138 Additional results

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

C (µs)

P(
C i<x

)

derivative
lowpass
detect
highpass
square
integrative

Figure A.6: Cumulative distribution functions for the tasks of the ECG application
(with f = 1MHz)

0 0.5 1 1.5 2
x 107

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C (µs)

P(
C i<x

)

sol1
P(C1<d)

Figure A.7: Results from the macro-architecture DSE for ECG

A.2 Additional case studies using SDFG application model 139

Table A.4: Comparison of clustering solutions for ECG

SolID Clusters
P (δAECG <

d10,000ECG)

δ0.5AECG
=

P−1(p0.5)
(µs)

sim
(cycles) sim (µs) sched

PE1 PE2

1

lowpass,
high-
pass,

deriva-
tive,

square

integral,
detect 0.56 15783000 13790796 13790796 yes

2

lowpass,
high-
pass,

deriva-
tive

square,
integral,
detect

0.54 15853000 14000776 14000776 yes

3
lowpass,

high-
pass

derivative,
square,
integral,
detect

0.52 15928000 14460733 14460733 yes

4

lowpass,
high-
pass,

deriva-
tive,

square,
integral

detect 0.23 16942800 15934010 15934010 yes

5

lowpass,
high-
pass,

deriva-
tive,

square,
inte-
gral,

detect

- 0.22 16991000 16692594 16692594 no

140 Additional results

0 0.5 1 1.5 2
x 107

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C (µs)

P(
C i<x

)

sol1
sol2
sol3
sol4
sol5
P(C1<d)
P(C2<d)
P(C3<d)
P(C4<d)
P(C5<d)

Figure A.8: Comparison of the CDF of different clustering solutions for ECG

Table A.5: Comparison between the number of cycles estimated by the profiling tool
[43] and the ones obtained from simulation for ECG

Task Name Cl
j (cycles) Cu

j (cycles) sim (cycles) %TotClj
%Totsim Err |%TotClj - %Totsim|

lowpass 400,015 450,010 750,016 3.39 4.55 1.16

highpass 450,084 840,021 1,330,203 3.81 8.08 4.26

derivative 10,000 10,000 350,012 0.08 2.12 2.04

square 10,000 10,000 100,000 0.08 0.61 0.52

integrative 10,830,071 20,370,915 12,753,683 91.78 77.42 14.36

detect 99,614 155,070 358,661 0.84 2.18 1.33

Total (cycles) 11,799,784 21,836,016 16,472,592

A.2 Additional case studies using SDFG application model 141

A.2.2 SC case study

In this section, we present the Spatial Coding application (part of MPEG4) provided by
STMicroelectronics [91]. The KPN and the SDFG of the SC application are depicted
in Figures A.9 and A.10, respectively. The multiple edges between the same couple of
nodes in the KPN in Figure A.9 fall under case B and they are substituted in the SDFG
by a single message with size equal to the sum of the data to transfer on all edges.

In Table A.1 (second row), there are the input constraints for the SC case study: we con-
sider the elaboration of 5 frames, each of them composed of 40x30 blocks. This give
us iter = 6, 000 for the SDFG of SC. We have f = 1, 600MHz and PCmax = 31. As
we are considering a throughput of 24 fps, we have a deadline d6,000

SC = 205, 000µs.

The average number of cycles for each task firing (obtained using the code analysis
tool in [43]) is in Table A.6. Some rows in the table contain multiple tasks (e.g., fe-
foIDCT8_{1,2} indicates the two tasks fefoIDCT8_1 and fefoIDCT8_2): tasks with
a similar naming have the same C code; therefore, they also have the same estimated
upper and lower bound values (if depending on the data in input, they also have the
same profiled execution).

With the values in Table A.6, we built the CDF for each task using the estimated Cl

and Cu. The resulting CDFs are represented in Figure A.11 (due to the very dissimilar
sizes of the tasks we split them in two figures). The size in bits of each message of the
SDFG is shown in Table A.7.

The design space for the SC case study is bigger than the one of the MJPEG and ECG;
hence we ran our macro-architecture DSE for 1, 800s. We used n = 5, 000. Our DSE
found a task clustering solution with pSC = 0.99 and with three ASIPs. The details of
the solution are summarized in the first row, Sol1, of Table A.8. The CDF of Sol1 is
in Figure A.13. For the SC case study, we manually defined the micro-architecture of
the three processors (due to some incompatibility of the code representation available
with the tool described in [43]). We used the same library of IS used for the MJPEG
and ECG case study and we implemented three processors, PE1 and PE3 with 4 ISs
and PE2 with 3 ISs (including the default IS). Then we built the three-ASIP platform
(Figure A.12): we needed synchronization FIFOs between PE1 and PE2 and between
PE2 and PE3 (there was no direct communication between PE1 and PE3 so we
could avoid the insertion of extra FIFOs) and one FIFO adapter for each ASIP (for
synchronization between host and ASIPs).

We clustered the tasks to the three ASIPs as suggested by our DSE and we obtained a

1We set the frequency to 1,600 MHz to find a schedulable solution after the implementation of the plat-
form; however, we are aware that it is not a realistic frequency and the optimization of the application code
and additional processors should be used to achieved the desired performance at a lower frequency.

142 Additional results

Figure
A

.9:
K

PN
m

odelgenerated
by

C
om

paan
forSpatialC

oding
case

study

A.2 Additional case studies using SDFG application model 143

1

m
32

1

m
2

8
m

9
8

m
10

1

1

8
1

1
1

du
m

m
yP

ro
du

ce
r_

1/
SO

U
R

C
E

M
B

Ze
ro

0
M

B
Pa

ck
G

et
Li

ne
1

1

1

1

m
33

1

M
B

Ze
ro

1 1

1

m
34

1

M
B

Ze
ro

2 1

1

1

m
35

1

M
B

Ze
ro

3 1

1

1

1

m
36

1

M
B

Ze
ro

4 1

1

m
37

1

M
B

Ze
ro

5 1

1

1
1

M
B

Pa
ck

G

et
Li

ne
2

1
1

8
m

12

1
1

1

D
C

T_
2

1

du
m

m
yP

ro
du

ce
r/

SO
U

R
C

E
1

m
31

8

m
1

8
8

1
1

1
M

B
G

et
Li

ne
1

1
1

D
C

T_
1

m
8

1
1

m
3

8

8
m

14

8
m

15

1
1

1
1

iq
ua

nt
iz

eS
R

sl
R

ow
3

1
1

8

m
16

1

1

1

M
B

Pa
ck

G

et
Li

ne
3

8
m

13

1
1

M
M

TC
_f

qu
an

tS
R

1

8
m

18

8
1

1
1

1

1

1

m
17

1

8
m

19

1
1

1
1

fx
ID

C
T8

_1

fx
ID

C
T8

_2

fe
fo

ID
C

T8
_1

m
20

M
B

Pa
ck

G

et
Li

ne
4

8

m
21

1

1

1
8

m
23

8
1

1
1

1

1

1

m
22

1

8
m

24

1
1

1
1

fx
ID

C
T8

_4

fx
ID

C
T8

_3

fe
fo

ID
C

T8
_2

1

m
4

8

m
5

8

m
25

1

8
m

27

8
1

1
1

1
sr

Tr
im

 1
1

M
B

Pa
ck

6

8
m

26

1
1

sr
A

dd
R

ow
3

1

m
38

1

8

1

du
m

m
yC

on
su

m
er

/
SI

N
K

m
7

8
1

1

1

M
B

Pa
ck

3

m
6

8 8

1

<P
ro

c0
>/

SO

U
R

C
E

1

m
30

8

1

m
29

8

1

m
28

8

1

m
11

8

1
1

1

ke
ep

2x
2

m
39

8

Fi
gu

re
A

.1
0:

SD
FG

m
od

el
fo

rS
pa

tia
lC

od
in

g
ca

se
st

ud
y

144 Additional results

Table A.6: C values for SC (average number of cycles for a single iteration of the task)

Task Name Cl
j Cu

j

MBPackGetLine3 53 77

fxIDCT8_{1,2,3,4} 160 467

keep2x2 16 19

srAddRow3 16 35

srTrim 122 146

iquantizeSR 227 314

MBPack3 31 47

MBPackGetLine{2,4} 38 54

MBPack6 16 24

slRow3 16 26

fefoIDCT8_{1,2} 16 38

MMTC_fquantSR 4929 6520

MBPackGetLine1 44 61

MBZero{0,1,2,3,4,5} 1 2

DCT_{1,2} 70 215

MBGetLine1 27 36

Table A.7: Message sizes (in bits) for SC

m2 −m7,
m31 −m39

m28 −m30
m18-m19,
m23-m24

m1, m8 −m17,
m20 −m22,
m25-m27

2048 224 128 256

schedulable solution that run for 274,847,324 cycles (171,799.58 µs at f = 1, 600MHz).

As for the previous case studies, to demonstrate the validity of the solution found, we
compared it with other task clustering solutions that are summarized in Table A.8: Sol2
has a single ASIP, while Sol3, Sol4 and Sol5 use three ASIPs. Please note that de-
pending on the clustering solutions, the ASIPs and their interconnections may change.
Except for Sol2 that had a probability ∼ 0 to meet the deadline, the other task clus-
tering solutions, once implemented, provided schedulable implementations. Due to the
high number of tasks in the SC application, it was possible to select multiple task clus-
tering solutions to compare with. We selected Sol2 to analyze a solution in which task

A.2 Additional case studies using SDFG application model 145

0 0.01 0.02 0.03 0.04
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C (µs)

P(
C i<x

)

MBPackGetLine_3
keep2x2
srAddRow3
MBPack3
MBPackGetLine2,4
MBPack6
slRow3
fefoIDCT8_1,2
MBPackGetLine1
MBZero
MBGetLine1

(a)

(b)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C (µs)

P(
C i<x

)

fxIDCT8_{1,2,3,4}
srTrim
iquantizeSR
MMTC_fquantSR
DCT_{1,2}

Figure A.11: (a) and (b) Cumulative distribution functions of the tasks of the SC ap-
plication (with f = 1, 600MHz)

level and pipeline parallelism (at system level) could not be exploited and to get an
estimation of the performance obtainable on a single ASIP. We selected Sol3 and Sol4
as they did not differ very much from the task clustering found by our DSE: we evalu-
ated those solutions in which the pipeline parallelism could be conveniently exploited
and in which the communication and synchronization between processors were not the
bottleneck. In particular, analyzing Sol3, we verified that it is not convenient to clus-
ter tasks with MMTC_fquantSR. Analyzing Figure A.11 with the CDFs of the single

146 Additional results

tasks, we observed that task MMTC_fquantSR had the highest Cl and Cu; therefore,
clustering it with other tasks penalized the pipeline parallelism (even if MBZero4 is a
task with almost negligible WCET). When we evaluated Sol3 and Sol4 with our UM,
we obtained a probability of 0.99, but we could observe higher values in the quantile
function δ0.5

ASC
; these results are reflected in higher scheduling length. In Sol5 we ex-

plored a clustering solution in which the task level parallelism between tasks fxIDCT_1
and fxIDCT_2 can be exploited. In this case we have a lower probability (0.95) and a
higher scheduling length than the previous solutions after implementation.

In this section we demonstrated that our UM and the associated DSE can explore in a
reasonable time (less than 1 hour) multiple task clustering solutions and provide a good
indication of which task clustering should be selected. Even if we cannot claim to find
a schedulable task clustering solution with our UM, we demonstrated that we could
find a clustering solution that has a high probability of being schedulable after design.
Additionally, we showed that the probability and the quantile function values can be
used to compare different task clustering solutions and that the results obtained after
implementation are consistent with our evaluations. Our approach can offer a valid
starting point for a designer that has to implement a multi-ASIP platform in which the
ASIPs have not being designed yet.

PE2 PE1

host
Fifo adapter

Fifo

Bus

PE3

Figure A.12: Block schematic of the platform generated for Sol1 for SC

A.2 Additional case studies using SDFG application model 147

0 0.5 1 1.5 2
x 105

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C (µs)

P(
C i<x

)

sol1
P(C1<d)

Figure A.13: Results from the macro-architecture DSE for SC

0 0.5 1 1.5 2 2.5
x 105

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C (µs)

P(
C

i<
x)

sol1
sol2
sol3
sol4
sol5
P(C

1
<d)

P(C
2
<d)

P(C
3
<d)

P(C
4
<d)

P(C
5
<d)

Figure A.14: Comparison of the CDF of different clustering solutions for SC

148 Additional results

Table
A

.8:
C

om
parison

ofclustering
solutions

forSC

S
o
l
I
D

C
lusters

P
(δ
A
S
C
<

d
6
0
0
0

S
C

)

δ
0
.5
A
S
C

=

P
−

1
(p

0
.5

)
(µ
s
)

sim
(cycles)

sim
(µ
s)

sched

P
E

1
P
E

2
P
E

3

1
M

B
G

etL
ine1,D

C
T

_{1,2},
M

B
Z

ero{0,1,2,3,4,5},
M

B
PackG

etL
ine{1,2},keep2x2

M
M

T
C

_fquantSR

iquantizeSR
,M

B
-

PackG
etL

ine{3,4},
slR

ow
3,

fxID
C

T
8_{1,2,3,4},

fefoID
C

T
8_{1,2},

srTrim
,srA

ddR
ow

3,
M

B
Pack6,M

B
Pack3

0.99
172000

274847324
171799.58

yes

2

M
B

G
etL

ine1,D
C

T
_{1,2},

M
B

Z
ero{0,1,2,3,4,5},

M
B

PackG
etL

ine{1,2},keep2x2,
M

M
T

C
_fquantSR

,iquantizeSR
,

M
B

PackG
etL

ine{3,4},slR
ow

3,
fxID

C
T

8_{1,2,3,4},
fefoID

C
T

8_{1,2},srTrim
,

srA
ddR

ow
3,M

B
Pack6,M

B
Pack3

-
-

0
242600

573715348
358572.09

no

3
M

B
G

etL
ine1,D

C
T

_{1,2},
M

B
Z

ero{0,1,2,3,5},
M

B
PackG

etL
ine{1,2},keep2x2

M
B

Z
ero4,

M
M

T
C

_fquantSR

iquantizeSR
,M

B
-

PackG
etL

ine{3,4},
slR

ow
3,

fxID
C

T
8_{1,2,3,4},

fefoID
C

T
8_{1,2},

srTrim
,srA

ddR
ow

3,
M

B
Pack6,M

B
Pack3

0.99
185400

275255614
172034.76

yes

4

M
B

G
etL

ine1,D
C

T
_{1,2},

M
B

Z
ero{0,1,2,3,4,5},

M
B

PackG
etL

ine{1,2},keep2x2,
iquantizeSR

M
M

T
C

_fquantSR

M
B

PackG
etL

ine{3,4},
slR

ow
3,

fxID
C

T
8_{1,2,3,4},

fefoID
C

T
8_1,2,

srTrim
,srA

ddR
ow

3,
M

B
Pack6,M

B
Pack3

0.99
185500

278939568
174337.23

yes

5
M

B
G

etL
ine1,D

C
T

_{1,2},
M

B
Z

ero{0,1,2,3,4,5},
M

B
PackG

etL
ine{1,2},keep2x2

M
M

T
C

_fquantSR
,

iquantizeSR
,

M
B

PackG
etL

ine3,
slR

ow
3,fxID

C
T

8_1

M
B

PackG
etL

ine4,
slR

ow
3,

fxID
C

T
8_{2,3,4},

fefoID
C

T
8_{1,2},

srTrim
,srA

ddR
ow

3,
M

B
Pack6,M

B
Pack3

0.95
194300

303402927
189626.83

yes

A.2 Additional case studies using SDFG application model 149

Ta
bl

e
A

.9
:C

om
pa

ri
so

n
be

tw
ee

n
th

e
nu

m
be

ro
fc

yc
le

s
es

tim
at

ed
by

th
e

pr
ofi

lin
g

to
ol

[4
3]

an
d

th
e

on
es

ob
ta

in
ed

fr
om

si
m

ul
at

io
n

fo
r

SC

Ta
sk

N
am

e
C

l j
(c

yc
le

s)
C

u j
(c

yc
le

s)
si

m
(c

yc
le

s)
%
T
o
t C
l j

%
T
o
t s

im
E

rr
|%
T
o
t C
l j

-%
T
o
t s

im
|

M
B

Pa
ck

G
et

L
in

e3
2,

55
6,

00
0

3,
70

8,
00

0
16

93
20

00
0.

83
2.

95
2.

12

fx
ID

C
T

8_
{1

,2
,3

,4
}

7,
68

0,
00

0
22

,4
16

,0
00

23
,6

88
,0

00
2.

50
4.

13
1.

62

ke
ep

2x
2

79
2,

00
0

93
6,

00
0

8,
04

0,
00

0
0.

26
1.

40
1.

14

sr
A

dd
R

ow
3

76
8,

00
0

1,
68

0,
00

0
2,

49
6,

00
0

0.
25

0.
44

0.
18

sr
Tr

im
5,

85
6,

00
0

7,
00

8,
00

0
6,

24
0,

02
2

1.
91

1.
09

0.
82

iq
ua

nt
iz

eS
R

10
,9

08
,0

03
15

,0
90

,0
00

37
,3

08
,0

00
3.

56
6.

51
2.

95

M
B

Pa
ck

3
1,

50
0,

00
0

2,
26

8,
00

0
12

,7
20

,0
00

0.
49

2.
22

1.
73

M
B

Pa
ck

G
et

L
in

e{
2,

4}
1,

80
6,

00
0

2,
57

4,
00

0
17

,7
00

,0
00

0.
59

3.
09

2.
50

M
B

Pa
ck

6
75

0,
00

0
1,

13
4,

00
0

12
,7

20
,0

00
0.

24
2.

21
1.

97

sl
R

ow
3

76
8,

00
0

1,
24

8,
00

0
2,

01
6,

00
0

0.
25

0.
35

0.
10

fe
fo

ID
C

T
8_

{1
,2

}
76

8,
00

0
1,

82
4,

00
0

3,
21

6,
00

0
0.

25
0.

56
0.

31

M
M

T
C

_f
qu

an
tS

R
23

6,
57

9,
11

8
31

2,
95

6,
82

8
27

5,
88

5,
11

2
77

.1
7

48
.1

0
29

.0
6

M
B

Pa
ck

G
et

L
in

e1
2,

09
4,

00
0

2,
91

0,
00

0
17

,7
00

,0
00

0.
68

3.
09

2.
40

M
B

Z
er

o{
0,

1,
2,

3,
4,

5}
36

,0
00

72
,0

00
6,

04
8,

00
0

0.
01

1.
05

1.
04

D
C

T
_{

1,
2}

3,
36

0,
00

0
10

,3
20

,0
00

13
,4

88
,0

00
1.

10
2.

35
1.

26

M
B

G
et

L
in

e1
1,

29
6,

00
0

1,
72

8,
00

0
12

,6
24

,0
00

0.
42

2.
20

1.
78

To
ta

l(
yc

le
s)

30
6,

58
1,

12
1

46
9,

92
8,

82
8

57
3,

52
1,

13
4

150 Additional results

APPENDIX B

XML interfaces in ASAM
design flow

Following we describe a subset of the XML files used in ASAM design flow: we
present the input and output files of the probabilistic and deterministic DSE.

B.1 Input constraints

This XML file contains the input constraints provided by the designer for each of the
applications in input. In particular there is the working frequency (in MHz) for the final
platform, the maximum area (in µm2) and the deadline (in µs) of each application. In
Listing B.1 there are the input constraints for ECG application.

Listing B.1: Input constraints of ECG application
1 <? xml v e r s i o n =" 1 . 0 " e n c o d i n g =" u t f−8" ?>
2

3 < sys tem i d =" 1 " a r e a =" 8000000 " power=" 0 " f r e q u e n c y =" 1 ">
4 < a p p l i c a t i o n i d =" 1 " name=" ecg " d e a d l i n e =" 16000000 ">
5 < / a p p l i c a t i o n >
6 < / sys tem >

152 XML interfaces in ASAM design flow

B.2 Initial Platform

The initial platform file contains the CP model of the platform expresses as a graph, in
which the nodes are PEs or communication elements (CEs). For each CE, there is also
the information required to estimate the transmission time of a message. For a bus, we
have the information about the width w and frequency f ; we can set multiple width ad
frequency to allow the macro-architecture DSE to explore them. In Listing B.2 there is
CP model with two PEs and a host processor interconnected by a bus.

Listing B.2: Input platform for ECG application
1 <? xml v e r s i o n =" 1 . 0 " e n c o d i n g =" u t f−8" ?>
2

3 < p l a t f o r m i d =" 1 " a d d r e s s W i d t h =" 32 " da t aWid th =" 32 " b u r s t S i z e =" 4 ">
4 <node i d =" 0 ">
5 <name> h o s t < / name>
6 < t y p e >PE< / t y p e >
7 < / node>
8 <node i d =" 1 ">
9 <name>PE1< / name>

10 < t y p e >PE< / t y p e >
11 < / node>
12 <node i d =" 2 ">
13 <name>PE2< / name>
14 < t y p e >PE< / t y p e >
15 < / node>
16 <node i d =" 3 ">
17 <name>CE1< / name>
18 < t y p e >bus < / t y p e >
19 < t y p e B u s L i s t >
20 < typeBus i d =" 1 " wid th =" 32 " f r e q u e n c y =" 1 " / >
21 < / t y p e B u s L i s t >
22 < / node>
23 <edge s o u r c e =" 1 " t a r g e t =" 3 " / >
24 <edge s o u r c e =" 2 " t a r g e t =" 3 " / >
25 <edge s o u r c e =" 0 " t a r g e t =" 3 " / >
26 < / p l a t f o r m >

The initial platform file is update after the probabilistic DSE, e.g. only the selected bus
type is listed and if there are PEs that are not used, they are removed.

B.3 Application model

The application model, both for SDFG and task graph (TG) models, is represented as a
set of nodes (i.e. tasks) interconnected by edges (i.e. messages). An example is shown
in Listing B.3 (ECG application). Each task contains:

B.3 Application model 153

• name and id: identifiers of the task (the name is use to find the corresponding
node in the KPN generated by Compaan)

• functionName: the name of the kernel function executed by the task

• lWECT and uWCET: the lower and upper bound for the WCET (Clj and Cuj),
respectively

• layer and priority: used as support to the schedulability analysis (the layer is
automatically calculated, the priority is assigned according to the task name, but
can be modified by the user)

• firing: total number of executions of the task

Each message contains:

• name and id: identifiers of the message (the name is use to find the corresponding
edge in the KPN generated by Compaan)

• source and target: id of the source and target tasks that the message connects

• data: size of a token of data (in bit) that it is exchange between the source and
target tasks.

• layer and priority: used as support to the schedulability analysis (the layer is
automatically calculated, the priority is assigned according to the task name, but
can be modified by the user)

Listing B.3: Application model for ECG application annotated with the upper and
lower bounds by Phase 1 of micro-architecture DSE (input of the proba-
bilistic DSE)

1 <? xml v e r s i o n =" 1 . 0 " e n c o d i n g =" u t f−8" ?>
2 < a p p l i c a t i o n s >
3 < a p p l i c a t i o n i d =" ">
4 <node i d =" 8 ">
5 <name>ND_3< / name>
6 < func t ionName > h i g h p a s s < / func t ionName >
7 <lWCET i d =" 1 "> 450084 .0 < / lWCET>
8 <uWCET i d =" 1 "> 840021 .0 < /uWCET>
9 < f i r i n g >10000< / f i r i n g >

10 < l a y e r >5< / l a y e r >
11 < p r i o r i t y >3< / p r i o r i t y >
12 < t y p e > t r a n s f o r m e r < / t y p e >
13 < / node>
14 <node i d =" 7 ">
15 <name>ND_4< / name>
16 < func t ionName > d e r i v a t i v e < / func t ionName >
17 <lWCET i d =" 1 "> 10000 .0 < / lWCET>

154 XML interfaces in ASAM design flow

18 <uWCET i d =" 1 "> 10000 .0 < /uWCET>
19 < f i r i n g >10000< / f i r i n g >
20 < l a y e r >7< / l a y e r >
21 < p r i o r i t y >4< / p r i o r i t y >
22 < t y p e > t r a n s f o r m e r < / t y p e >
23 < / node>
24 <node i d =" 2 ">
25 <name>ND_6< / name>
26 < func t ionName > i n t e g r a t i v e < / func t ionName >
27 <lWCET i d =" 1 "> 1 .0830071 E7< / lWCET>
28 <uWCET i d =" 1 "> 2 .0370915 E7< /uWCET>
29 < f i r i n g >10000< / f i r i n g >
30 < l a y e r >11< / l a y e r >
31 < p r i o r i t y >6< / p r i o r i t y >
32 < t y p e > t r a n s f o r m e r < / t y p e >
33 < / node>
34 <node i d =" 6 ">
35 <name>ND_8< / name>
36 < func t ionName > p r i n t O u t < / func t ionName >
37 <lWCET i d =" 1 "> 10000 .0 < / lWCET>
38 <uWCET i d =" 1 "> 10000 .0 < /uWCET>
39 < f i r i n g >10000< / f i r i n g >
40 < l a y e r >15< / l a y e r >
41 < p r i o r i t y >8< / p r i o r i t y >
42 < t y p e > s i n k < / t y p e >
43 < / node>
44 <node i d =" 3 ">
45 <name>ND_7< / name>
46 < func t ionName > d e t e c t < / func t ionName >
47 <lWCET i d =" 1 "> 99614 .0 < / lWCET>
48 <uWCET i d =" 1 "> 155070 .0 < /uWCET>
49 < f i r i n g >10000< / f i r i n g >
50 < l a y e r >13< / l a y e r >
51 < p r i o r i t y >7< / p r i o r i t y >
52 < t y p e > t r a n s f o r m e r < / t y p e >
53 < / node>
54 <node i d =" 5 ">
55 <name>ND_5< / name>
56 < func t ionName > s q u a r e < / func t ionName >
57 <lWCET i d =" 1 "> 10000 .0 < / lWCET>
58 <uWCET i d =" 1 "> 10000 .0 < /uWCET>
59 < f i r i n g >10000< / f i r i n g >
60 < l a y e r >9< / l a y e r >
61 < p r i o r i t y >5< / p r i o r i t y >
62 < t y p e > t r a n s f o r m e r < / t y p e >
63 < / node>
64 <node i d =" 4 ">
65 <name>ND_2< / name>
66 < func t ionName > lowpass < / func t ionName >
67 <lWCET i d =" 1 "> 400015 .0 < / lWCET>
68 <uWCET i d =" 1 "> 450010 .0 < /uWCET>
69 < f i r i n g >10000< / f i r i n g >
70 < l a y e r >3< / l a y e r >
71 < p r i o r i t y >2< / p r i o r i t y >
72 < t y p e > t r a n s f o r m e r < / t y p e >

B.3 Application model 155

73 < / node>
74 <node i d =" 1 ">
75 <name>ND_1< / name>
76 < func t ionName > g e t _ s a m p l e < / func t ionName >
77 <lWCET i d =" 1 "> 130003 .0 < / lWCET>
78 <uWCET i d =" 1 "> 150004 .0 < /uWCET>
79 < f i r i n g >10000< / f i r i n g >
80 < l a y e r >1< / l a y e r >
81 < p r i o r i t y >1< / p r i o r i t y >
82 < t y p e > s o u r c e < / t y p e >
83 < / node>
84 <edge i d =" 14 " s o u r c e =" 7 " t a r g e t =" 5 ">
85 <name>ED_4< / name>
86 < d a t a >32< / d a t a >
87 < l a y e r >8< / l a y e r >
88 < p r i o r i t y >12< / p r i o r i t y >
89 < t h r o u g h p u t >10000< / t h r o u g h p u t >
90 < / edge >
91 <edge i d =" 15 " s o u r c e =" 3 " t a r g e t =" 6 ">
92 <name>ED_7_ED_8_ED_9< / name>
93 < d a t a >32< / d a t a >
94 < l a y e r >14< / l a y e r >
95 < p r i o r i t y >15< / p r i o r i t y >
96 < t h r o u g h p u t >10000< / t h r o u g h p u t >
97 < / edge >
98 <edge i d =" 12 " s o u r c e =" 1 " t a r g e t =" 4 ">
99 <name>ED_1< / name>

100 < d a t a >32< / d a t a >
101 < l a y e r >2< / l a y e r >
102 < p r i o r i t y >9< / p r i o r i t y >
103 < t h r o u g h p u t >10000< / t h r o u g h p u t >
104 < / edge >
105 <edge i d =" 9 " s o u r c e =" 8 " t a r g e t =" 7 ">
106 <name>ED_3< / name>
107 < d a t a >32< / d a t a >
108 < l a y e r >6< / l a y e r >
109 < p r i o r i t y >11< / p r i o r i t y >
110 < t h r o u g h p u t >10000< / t h r o u g h p u t >
111 < / edge >
112 <edge i d =" 10 " s o u r c e =" 2 " t a r g e t =" 3 ">
113 <name>ED_6< / name>
114 < d a t a >32< / d a t a >
115 < l a y e r >12< / l a y e r >
116 < p r i o r i t y >14< / p r i o r i t y >
117 < t h r o u g h p u t >10000< / t h r o u g h p u t >
118 < / edge >
119 <edge i d =" 13 " s o u r c e =" 4 " t a r g e t =" 8 ">
120 <name>ED_2< / name>
121 < d a t a >32< / d a t a >
122 < l a y e r >4< / l a y e r >
123 < p r i o r i t y >10< / p r i o r i t y >
124 < t h r o u g h p u t >10000< / t h r o u g h p u t >
125 < / edge >
126 <edge i d =" 11 " s o u r c e =" 5 " t a r g e t =" 2 ">
127 <name>ED_5< / name>

156 XML interfaces in ASAM design flow

128 < d a t a >32< / d a t a >
129 < l a y e r >10< / l a y e r >
130 < p r i o r i t y >13< / p r i o r i t y >
131 < t h r o u g h p u t >10000< / t h r o u g h p u t >
132 < / edge >
133 < / a p p l i c a t i o n >
134 < / a p p l i c a t i o n s >

B.4 Task clustering solution

An XML file is also used to define a task clustering solution. The file containing the
solutions is generated by the probabilistic DSE and during the execution of the ASAM
flow is update with the information produced by the micro-architecture DSE (Phase 2)
and by the deterministic DSE.

B.4.1 Output of probabilistic DSE

The XML file produced as output of the probabilistic DSE contains one or more task
clustering solutions. An example is available in Listing B.4 (task clustering solution
found for ECG case study). Each solution is described by the XML element <solution>
and contains a group of clusters (XML element <cluster>). A cluster is a group of
nodes (i.e. tasks) or edges (i.e. messages). The clusters containing tasks correspond
to ASIPs. The attribute processorId of each cluster indicates the ASIP id. The host
processor has processorId = 0. We cluster together the messages that are associated
with the same CE; the messages that are not associated with any CE (messages between
tasks clustered together) are also grouped in a dummy cluster identified by the attribute
processorId = −1.

Listing B.4: Task clustering solution found by the probabilistic DSE (input of Phase 2
of micro-architecture DSE)

1 <? xml v e r s i o n =" 1 . 0 " e n c o d i n g =" u t f−8" ?>
2 < s o l u t i o n s >
3 < s o l u t i o n i d =" 1 " c o s t =" 0 . 5 7 " p roc =" 3 ">
4 < c l u s t e r i d =" 1 : 1 : 0 " pathToKPN=" . / o u t p u t s / 1 _0_kpn . kpn " p r o c e s s o r I d ="

0 ">
5 <node i d =" 1 : 0 : 1 ">
6 <name>ND_1< / name>
7 < func t ionName > g e t _ s a m p l e < / func t ionName >
8 <lWCET i d =" 1 "> 13 .0003 < / lWCET>
9 <uWCET i d =" 1 "> 15 .0004 < /uWCET>

10 < f i r i n g >10000< / f i r i n g >
11 < l a y e r >1< / l a y e r >

B.4 Task clustering solution 157

12 < p r i o r i t y >1< / p r i o r i t y >
13 < t y p e > s o u r c e < / t y p e >
14 < / node>
15 <node i d =" 1 : 0 : 6 ">
16 <name>ND_8< / name>
17 < func t ionName > p r i n t O u t < / func t ionName >
18 <lWCET i d =" 1 "> 1 . 0 < / lWCET>
19 <uWCET i d =" 1 "> 1 . 0 < /uWCET>
20 < f i r i n g >10000< / f i r i n g >
21 < l a y e r >15< / l a y e r >
22 < p r i o r i t y >8< / p r i o r i t y >
23 < t y p e > s i n k < / t y p e >
24 < / node>
25 < / c l u s t e r >
26 < c l u s t e r i d =" 1 : 1 : 2 " pathToKPN=" . / o u t p u t s / 1 _2_kpn . kpn " p r o c e s s o r I d ="

2 ">
27 <node i d =" 1 : 2 : 2 ">
28 <name>ND_6< / name>
29 < func t ionName > i n t e g r a t i v e < / func t ionName >
30 <lWCET i d =" 1 "> 1083 .0071 < / lWCET>
31 <uWCET i d =" 1 "> 2037 .0915 < /uWCET>
32 < f i r i n g >10000< / f i r i n g >
33 < l a y e r >11< / l a y e r >
34 < p r i o r i t y >6< / p r i o r i t y >
35 < t y p e > t r a n s f o r m e r < / t y p e >
36 < / node>
37 <node i d =" 1 : 2 : 3 ">
38 <name>ND_7< / name>
39 < func t ionName > d e t e c t < / func t ionName >
40 <lWCET i d =" 1 "> 9 .9614 < / lWCET>
41 <uWCET i d =" 1 "> 15 .507 < /uWCET>
42 < f i r i n g >10000< / f i r i n g >
43 < l a y e r >13< / l a y e r >
44 < p r i o r i t y >7< / p r i o r i t y >
45 < t y p e > t r a n s f o r m e r < / t y p e >
46 < / node>
47 < / c l u s t e r >
48 < c l u s t e r i d =" 1 : 1 : 1 " pathToKPN=" . / o u t p u t s / 1 _1_kpn . kpn " p r o c e s s o r I d ="

1 ">
49 <node i d =" 1 : 1 : 4 ">
50 <name>ND_2< / name>
51 < func t ionName > lowpass < / func t ionName >
52 <lWCET i d =" 1 "> 40 .0015 < / lWCET>
53 <uWCET i d =" 1 "> 45 .001 < /uWCET>
54 < f i r i n g >10000< / f i r i n g >
55 < l a y e r >3< / l a y e r >
56 < p r i o r i t y >2< / p r i o r i t y >
57 < t y p e > t r a n s f o r m e r < / t y p e >
58 < / node>
59 <node i d =" 1 : 1 : 5 ">
60 <name>ND_5< / name>
61 < func t ionName > s q u a r e < / func t ionName >
62 <lWCET i d =" 1 "> 1 . 0 < / lWCET>
63 <uWCET i d =" 1 "> 1 . 0 < /uWCET>
64 < f i r i n g >10000< / f i r i n g >

158 XML interfaces in ASAM design flow

65 < l a y e r >9< / l a y e r >
66 < p r i o r i t y >5< / p r i o r i t y >
67 < t y p e > t r a n s f o r m e r < / t y p e >
68 < / node>
69 <node i d =" 1 : 1 : 7 ">
70 <name>ND_4< / name>
71 < func t ionName > d e r i v a t i v e < / func t ionName >
72 <lWCET i d =" 1 "> 1 . 0 < / lWCET>
73 <uWCET i d =" 1 "> 1 . 0 < /uWCET>
74 < f i r i n g >10000< / f i r i n g >
75 < l a y e r >7< / l a y e r >
76 < p r i o r i t y >4< / p r i o r i t y >
77 < t y p e > t r a n s f o r m e r < / t y p e >
78 < / node>
79 <node i d =" 1 : 1 : 8 ">
80 <name>ND_3< / name>
81 < func t ionName > h i g h p a s s < / func t ionName >
82 <lWCET i d =" 1 "> 45 .0084 < / lWCET>
83 <uWCET i d =" 1 "> 84 .0021 < /uWCET>
84 < f i r i n g >10000< / f i r i n g >
85 < l a y e r >5< / l a y e r >
86 < p r i o r i t y >3< / p r i o r i t y >
87 < t y p e > t r a n s f o r m e r < / t y p e >
88 < / node>
89 < / c l u s t e r >
90 < c l u s t e r i d =" 1 :−1" p r o c e s s o r I d ="−1">
91 <edge i d =" 1 :−1: 9 " s o u r c e =" 1 : 1 " t a r g e t =" 1 : 1 ">
92 <name>ED_3< / name>
93 < d a t a >32< / d a t a >
94 < p r i o r i t y >11< / p r i o r i t y >
95 < l a y e r >6< / l a y e r >
96 < / edge >
97 <edge i d =" 1 :−1: 1 0 " s o u r c e =" 1 : 2 " t a r g e t =" 1 : 2 ">
98 <name>ED_6< / name>
99 < d a t a >32< / d a t a >

100 < p r i o r i t y >14< / p r i o r i t y >
101 < l a y e r >12< / l a y e r >
102 < / edge >
103 <edge i d =" 1 :−1: 1 3 " s o u r c e =" 1 : 1 " t a r g e t =" 1 : 1 ">
104 <name>ED_2< / name>
105 < d a t a >32< / d a t a >
106 < p r i o r i t y >10< / p r i o r i t y >
107 < l a y e r >4< / l a y e r >
108 < / edge >
109 <edge i d =" 1 :−1: 1 4 " s o u r c e =" 1 : 1 " t a r g e t =" 1 : 1 ">
110 <name>ED_4< / name>
111 < d a t a >32< / d a t a >
112 < p r i o r i t y >12< / p r i o r i t y >
113 < l a y e r >8< / l a y e r >
114 < / edge >
115 <edge i d =" 1 :−1: 1 5 " s o u r c e =" 1 : 2 " t a r g e t =" 1 : 0 ">
116 <name>ED_7_ED_8_ED_9< / name>
117 < d a t a >32< / d a t a >
118 < p r i o r i t y >15< / p r i o r i t y >
119 < l a y e r >14< / l a y e r >

B.4 Task clustering solution 159

120 < / edge >
121 < / c l u s t e r >
122 < c l u s t e r i d =" 1 : 3 " p r o c e s s o r I d =" 3 ">
123 <edge i d =" 1 : 3 : 1 1 " s o u r c e =" 1 : 1 " t a r g e t =" 1 : 2 ">
124 <name>ED_5< / name>
125 < d a t a >32< / d a t a >
126 < p r i o r i t y >13< / p r i o r i t y >
127 < l a y e r >10< / l a y e r >
128 < / edge >
129 <edge i d =" 1 : 3 : 1 2 " s o u r c e =" 1 : 0 " t a r g e t =" 1 : 1 ">
130 <name>ED_1< / name>
131 < d a t a >32< / d a t a >
132 < p r i o r i t y >9< / p r i o r i t y >
133 < l a y e r >2< / l a y e r >
134 < / edge >
135 < / c l u s t e r >
136 < / s o l u t i o n >
137 < / s o l u t i o n s >

B.4.2 Output of micro-architecture DSE (Phase 2)

Phase 2 of micro-architecture DSE uses the file produced by the probabilistic DSE and
annotates it with the performance and area estimation of different micro-architecture
configurations. An example is available in Listing B.5 (output of Phase 2 for ECG case
study). The area together with other optimization parameters, if available, are specified
using the XML element parametersList; there is an XML element parameters for each
cluster and an XML element <config> for each of the micro-architecture configuration
found by Phase 2. Each XML element <config> has id, area and power attributes.
Additionally, for each task and micro-architecture, it adds information about the per-
formance of the tasks: i.e. the start and end cycles (with respect to an initial offset=0).
The source and sink tasks associated with the host processor are not evaluated by Phase
2; as a consequence there are no estimated start and end times for them.

Listing B.5: Task clustering solution annotated with area and performance for multiple
micro-architecture for each ASIP (input of the deterministic DSE)

1 <? xml v e r s i o n =" 1 . 0 " e n c o d i n g =" u t f−8" ?>
2 < s o l u t i o n s >
3 < s o l u t i o n i d =" 1 ">
4 < c l u s t e r i d =" 1 : 1 : 0 " pathToKPN=" . / o u t p u t s / 1 _0_kpn . kpn " p r o c e s s o r I d ="

0 ">
5 <node i d =" 1 : 0 : 1 ">
6 <name>ND_1< / name>
7 < func t ionName > g e t _ s a m p l e < / func t ionName >
8 < f i r i n g >10000< / f i r i n g >
9 < p r i o r i t y >1< / p r i o r i t y >

10 < l a y e r >1< / l a y e r >
11 < / node>

160 XML interfaces in ASAM design flow

12 <node i d =" 1 : 0 : 6 ">
13 <name>ND_8< / name>
14 < func t ionName > p r i n t O u t < / func t ionName >
15 < f i r i n g >10000< / f i r i n g >
16 < p r i o r i t y >8< / p r i o r i t y >
17 < l a y e r >15< / l a y e r >
18 < / node>
19 < / c l u s t e r >
20 < c l u s t e r i d =" 1 : 1 : 2 " pathToKPN=" . / o u t p u t s / 1 _2_kpn . kpn " p r o c e s s o r I d ="

2 ">
21 <node i d =" 1 : 2 : 2 ">
22 <name>ND_6< / name>
23 < func t ionName > i n t e g r a t i v e < / func t ionName >
24 < f i r i n g >10000< / f i r i n g >
25 < p r i o r i t y >6< / p r i o r i t y >
26 < l a y e r >11< / l a y e r >
27 < p a r e t o L i s t i d =" 1 ">
28 < p a r e t o i d =" 0 ">
29 < s t a r t P o i n t >0< / s t a r t P o i n t >
30 < e n d P o i n t >12450000< / e n d P o i n t >
31 < / p a r e t o >
32 < / p a r e t o L i s t >
33 < / node>
34 <node i d =" 1 : 2 : 3 ">
35 <name>ND_7< / name>
36 < func t ionName > d e t e c t < / func t ionName >
37 < f i r i n g >10000< / f i r i n g >
38 < p r i o r i t y >7< / p r i o r i t y >
39 < l a y e r >13< / l a y e r >
40 < p a r e t o L i s t i d =" 1 ">
41 < p a r e t o i d =" 0 ">
42 < s t a r t P o i n t >12450000< / s t a r t P o i n t >
43 < e n d P o i n t >12559989< / e n d P o i n t >
44 < / p a r e t o >
45 < / p a r e t o L i s t >
46 < / node>
47 < / c l u s t e r >
48 < c l u s t e r i d =" 1 : 1 : 1 " pathToKPN=" . / o u t p u t s / 1 _1_kpn . kpn " p r o c e s s o r I d ="

1 ">
49 <node i d =" 1 : 1 : 4 ">
50 <name>ND_2< / name>
51 < func t ionName > lowpass < / func t ionName >
52 < f i r i n g >10000< / f i r i n g >
53 < p r i o r i t y >2< / p r i o r i t y >
54 < l a y e r >3< / l a y e r >
55 < p a r e t o L i s t i d =" 1 ">
56 < p a r e t o i d =" 0 ">
57 < s t a r t P o i n t >0< / s t a r t P o i n t >
58 < e n d P o i n t >115046< / e n d P o i n t >
59 < / p a r e t o >
60 < p a r e t o i d =" 1 ">
61 < s t a r t P o i n t >0< / s t a r t P o i n t >
62 < e n d P o i n t >1840< / e n d P o i n t >
63 < / p a r e t o >
64 < p a r e t o i d =" 2 ">

B.4 Task clustering solution 161

65 < s t a r t P o i n t >0< / s t a r t P o i n t >
66 < e n d P o i n t >3634< / e n d P o i n t >
67 < / p a r e t o >
68 < p a r e t o i d =" 3 ">
69 < s t a r t P o i n t >0< / s t a r t P o i n t >
70 < e n d P o i n t >460000< / e n d P o i n t >
71 < / p a r e t o >
72 < / p a r e t o L i s t >
73 < / node>
74 <node i d =" 1 : 1 : 5 ">
75 <name>ND_5< / name>
76 < func t ionName > s q u a r e < / func t ionName >
77 < f i r i n g >10000< / f i r i n g >
78 < p r i o r i t y >5< / p r i o r i t y >
79 < l a y e r >9< / l a y e r >
80 < p a r e t o L i s t i d =" 1 ">
81 < p a r e t o i d =" 0 ">
82 < s t a r t P o i n t >644993< / s t a r t P o i n t >
83 < e n d P o i n t >654992< / e n d P o i n t >
84 < / p a r e t o >
85 < p a r e t o i d =" 1 ">
86 < s t a r t P o i n t >531787< / s t a r t P o i n t >
87 < e n d P o i n t >541786< / e n d P o i n t >
88 < / p a r e t o >
89 < p a r e t o i d =" 2 ">
90 < s t a r t P o i n t >17689< / s t a r t P o i n t >
91 < e n d P o i n t >27688< / e n d P o i n t >
92 < / p a r e t o >
93 < p a r e t o i d =" 3 ">
94 < s t a r t P o i n t >989947< / s t a r t P o i n t >
95 < e n d P o i n t >992447< / e n d P o i n t >
96 < / p a r e t o >
97 < / p a r e t o L i s t >
98 < / node>
99 <node i d =" 1 : 1 : 7 ">

100 <name>ND_4< / name>
101 < func t ionName > d e r i v a t i v e < / func t ionName >
102 < f i r i n g >10000< / f i r i n g >
103 < p r i o r i t y >4< / p r i o r i t y >
104 < l a y e r >7< / l a y e r >
105 < p a r e t o L i s t i d =" 1 ">
106 < p a r e t o i d =" 0 ">
107 < s t a r t P o i n t >634994< / s t a r t P o i n t >
108 < e n d P o i n t >644993< / e n d P o i n t >
109 < / p a r e t o >
110 < p a r e t o i d =" 1 ">
111 < s t a r t P o i n t >521788< / s t a r t P o i n t >
112 < e n d P o i n t >531787< / e n d P o i n t >
113 < / p a r e t o >
114 < p a r e t o i d =" 2 ">
115 < s t a r t P o i n t >7690< / s t a r t P o i n t >
116 < e n d P o i n t >17689< / e n d P o i n t >
117 < / p a r e t o >
118 < p a r e t o i d =" 3 ">
119 < s t a r t P o i n t >979948< / s t a r t P o i n t >

162 XML interfaces in ASAM design flow

120 < e n d P o i n t >989947< / e n d P o i n t >
121 < / p a r e t o >
122 < / p a r e t o L i s t >
123 < / node>
124 <node i d =" 1 : 1 : 8 ">
125 <name>ND_3< / name>
126 < func t ionName > h i g h p a s s < / func t ionName >
127 < f i r i n g >10000< / f i r i n g >
128 < p r i o r i t y >3< / p r i o r i t y >
129 < l a y e r >5< / l a y e r >
130 < p a r e t o L i s t i d =" 1 ">
131 < p a r e t o i d =" 0 ">
132 < s t a r t P o i n t >115046< / s t a r t P o i n t >
133 < e n d P o i n t >634994< / e n d P o i n t >
134 < / p a r e t o >
135 < p a r e t o i d =" 1 ">
136 < s t a r t P o i n t >1840< / s t a r t P o i n t >
137 < e n d P o i n t >521788< / e n d P o i n t >
138 < / p a r e t o >
139 < p a r e t o i d =" 2 ">
140 < s t a r t P o i n t >3634< / s t a r t P o i n t >
141 < e n d P o i n t >7690< / e n d P o i n t >
142 < / p a r e t o >
143 < p a r e t o i d =" 3 ">
144 < s t a r t P o i n t >460000< / s t a r t P o i n t >
145 < e n d P o i n t >979948< / e n d P o i n t >
146 < / p a r e t o >
147 < / p a r e t o L i s t >
148 < / node>
149 < / c l u s t e r >
150 < c l u s t e r i d =" 1 :−1" p r o c e s s o r I d ="−1">
151 <edge i d =" 1 :−1: 9 " s o u r c e =" 1 : 1 " t a r g e t =" 1 : 1 ">
152 <name>ED_3< / name>
153 < d a t a >32< / d a t a >
154 < p r i o r i t y >11< / p r i o r i t y >
155 < l a y e r >6< / l a y e r >
156 < / edge >
157 <edge i d =" 1 :−1: 1 0 " s o u r c e =" 1 : 2 " t a r g e t =" 1 : 2 ">
158 <name>ED_6< / name>
159 < d a t a >32< / d a t a >
160 < p r i o r i t y >14< / p r i o r i t y >
161 < l a y e r >12< / l a y e r >
162 < / edge >
163 <edge i d =" 1 :−1: 1 3 " s o u r c e =" 1 : 1 " t a r g e t =" 1 : 1 ">
164 <name>ED_2< / name>
165 < d a t a >32< / d a t a >
166 < p r i o r i t y >10< / p r i o r i t y >
167 < l a y e r >4< / l a y e r >
168 < / edge >
169 <edge i d =" 1 :−1: 1 4 " s o u r c e =" 1 : 1 " t a r g e t =" 1 : 1 ">
170 <name>ED_4< / name>
171 < d a t a >32< / d a t a >
172 < p r i o r i t y >12< / p r i o r i t y >
173 < l a y e r >8< / l a y e r >
174 < / edge >

B.4 Task clustering solution 163

175 <edge i d =" 1 :−1: 1 5 " s o u r c e =" 1 : 2 " t a r g e t =" 1 : 0 ">
176 <name>ED_7_ED_8_ED_9< / name>
177 < d a t a >32< / d a t a >
178 < p r i o r i t y >15< / p r i o r i t y >
179 < l a y e r >14< / l a y e r >
180 < / edge >
181 < / c l u s t e r >
182 < c l u s t e r i d =" 1 : 3 " p r o c e s s o r I d =" 3 ">
183 <edge i d =" 1 : 3 : 1 1 " s o u r c e =" 1 : 1 " t a r g e t =" 1 : 2 ">
184 <name>ED_5< / name>
185 < d a t a >32< / d a t a >
186 < p r i o r i t y >13< / p r i o r i t y >
187 < l a y e r >10< / l a y e r >
188 < / edge >
189 <edge i d =" 1 : 3 : 1 2 " s o u r c e =" 1 : 0 " t a r g e t =" 1 : 1 ">
190 <name>ED_1< / name>
191 < d a t a >32< / d a t a >
192 < p r i o r i t y >9< / p r i o r i t y >
193 < l a y e r >2< / l a y e r >
194 < / edge >
195 < / c l u s t e r >
196 < p a r a m e t e r s L i s t >
197 < p a r a m e t e r s c l u s t e r I d =" 1 : 1 : 2 ">
198 < c o n f i g i d =" 0 " a r e a =" 3882879 .25 " power="−1" / >
199 < / p a r a m e t e r s >
200 < p a r a m e t e r s c l u s t e r I d =" 1 : 1 : 1 ">
201 < c o n f i g i d =" 0 " a r e a =" 3885215 .25 " power="−1" / >
202 < c o n f i g i d =" 1 " a r e a =" 3910444 .0 " power="−1" / >
203 < c o n f i g i d =" 2 " a r e a =" 5149420 .0 " power="−1" / >
204 < c o n f i g i d =" 3 " a r e a =" 3884280 .75 " power="−1" / >
205 < / p a r a m e t e r s >
206 < / p a r a m e t e r s L i s t >
207 < / s o l u t i o n >
208 < / s o l u t i o n s >

B.4.3 Output of deterministic DSE

The deterministic DSE performs a schedulability analysis of the application executing
on the multi-ASIP platform together with an evaluation of the total area of the plat-
form. It generates an XML file containing the task clustering solution: the information
produced by the micro-architecture DSE is removed, as it has already been processed
and the total WCET of the application and the platform area are added as attributes to
the XML elements <solution>. Moreover, for each XML element <cluster>, there is
an attribute config that contains the id of the selected micro-architecture configuration.
The output for the deterministic DSE for the ECG case study is shown in Listing B.6.

Listing B.6: Task clustering with selected micro-architecture for each ASIP and total
system area and performance

164 XML interfaces in ASAM design flow

1 <? xml v e r s i o n =" 1 . 0 " e n c o d i n g =" u t f−8" ?>
2 < s o l u t i o n s d e a d l i n e =" 1 . 6 E7 " maxArea=" 8450000 .0 " maxPower=" 100 .0 ">
3 < s o l u t i o n i d =" 2 " wcet=" 1 .2550167 E7 " a r e a =" 7767160 .0 " power="−2.0 ">
4 < c l u s t e r i d =" 1 : 0 " c o n f i g =" 0 " p r o c e s s o r I d =" 0 ">
5 <node i d =" 1 ">
6 <name>ND_1< / name>
7 < func t ionName > g e t _ s a m p l e < / func t ionName >
8 < p r i o r i t y >1< / p r i o r i t y >
9 < / node>

10 <node i d =" 6 ">
11 <name>ND_8< / name>
12 < func t ionName > p r i n t O u t < / func t ionName >
13 < p r i o r i t y >8< / p r i o r i t y >
14 < / node>
15 < / c l u s t e r >
16 < c l u s t e r i d =" 1 : 2 " c o n f i g =" 0 " p r o c e s s o r I d =" 2 ">
17 <node i d =" 2 ">
18 <name>ND_6< / name>
19 < func t ionName > i n t e g r a t i v e < / func t ionName >
20 < p r i o r i t y >6< / p r i o r i t y >
21 < / node>
22 <node i d =" 3 ">
23 <name>ND_7< / name>
24 < func t ionName > d e t e c t < / func t ionName >
25 < p r i o r i t y >7< / p r i o r i t y >
26 < / node>
27 < / c l u s t e r >
28 < c l u s t e r i d =" 1 : 1 " c o n f i g =" 4 " p r o c e s s o r I d =" 1 ">
29 <node i d =" 4 ">
30 <name>ND_2< / name>
31 < func t ionName > lowpass < / func t ionName >
32 < p r i o r i t y >2< / p r i o r i t y >
33 < / node>
34 <node i d =" 5 ">
35 <name>ND_5< / name>
36 < func t ionName > s q u a r e < / func t ionName >
37 < p r i o r i t y >5< / p r i o r i t y >
38 < / node>
39 <node i d =" 7 ">
40 <name>ND_4< / name>
41 < func t ionName > d e r i v a t i v e < / func t ionName >
42 < p r i o r i t y >4< / p r i o r i t y >
43 < / node>
44 <node i d =" 8 ">
45 <name>ND_3< / name>
46 < func t ionName > h i g h p a s s < / func t ionName >
47 < p r i o r i t y >3< / p r i o r i t y >
48 < / node>
49 < / c l u s t e r >
50 < c l u s t e r i d =" 1 :−1" c o n f i g ="−1" p r o c e s s o r I d ="−1">
51 <edge i d =" 9 " s o u r c e =" 1 " t a r g e t =" 1 ">
52 <name>ED_3< / name>
53 < d a t a >32< / d a t a >
54 < p r i o r i t y >11< / p r i o r i t y >
55 <bus >−1< / bus >

B.4 Task clustering solution 165

56 < / edge >
57 <edge i d =" 10 " s o u r c e =" 2 " t a r g e t =" 2 ">
58 <name>ED_6< / name>
59 < d a t a >32< / d a t a >
60 < p r i o r i t y >14< / p r i o r i t y >
61 <bus >−1< / bus >
62 < / edge >
63 <edge i d =" 13 " s o u r c e =" 1 " t a r g e t =" 1 ">
64 <name>ED_2< / name>
65 < d a t a >32< / d a t a >
66 < p r i o r i t y >10< / p r i o r i t y >
67 <bus >−1< / bus >
68 < / edge >
69 <edge i d =" 14 " s o u r c e =" 1 " t a r g e t =" 1 ">
70 <name>ED_4< / name>
71 < d a t a >32< / d a t a >
72 < p r i o r i t y >12< / p r i o r i t y >
73 <bus >−1< / bus >
74 < / edge >
75 <edge i d =" 15 " s o u r c e =" 2 " t a r g e t =" 0 ">
76 <name>ED_7_ED_8_ED_9< / name>
77 < d a t a >32< / d a t a >
78 < p r i o r i t y >15< / p r i o r i t y >
79 <bus >−1< / bus >
80 < / edge >
81 < / c l u s t e r >
82 < c l u s t e r i d =" 1 : 3 " c o n f i g =" 0 " p r o c e s s o r I d =" 3 ">
83 <edge i d =" 11 " s o u r c e =" 1 " t a r g e t =" 2 ">
84 <name>ED_5< / name>
85 < d a t a >32< / d a t a >
86 < p r i o r i t y >13< / p r i o r i t y >
87 <bus >3< / bus >
88 < / edge >
89 <edge i d =" 12 " s o u r c e =" 0 " t a r g e t =" 1 ">
90 <name>ED_1< / name>
91 < d a t a >32< / d a t a >
92 < p r i o r i t y >9< / p r i o r i t y >
93 <bus >3< / bus >
94 < / edge >
95 < / c l u s t e r >
96 < / s o l u t i o n >
97 < / s o l u t i o n s >

166 XML interfaces in ASAM design flow

Bibliography

[1] Compaan compiler. http://www.compaandesign.com, June 2014.

[2] E3S Benchmark. http://ziyang.eecs.umich.edu/~dickrp/e3s/,
June 2014.

[3] MAD, MPEG Audio Decoder. http://www.underbit.com/
products/mad/, June 2014.

[4] Metaheuristic Algorithms in Java, jMetal library. http://jmetal.
sourceforge.net, July 2014.

[5] TriMedia TM-1300 datasheet. http://www.datasheetcatalog.org/
datasheet/philips/PTM1300.pdf, June 2014.

[6] P. Agrawal, P. Raghavan, M. Hartman, N. Sharma, L. Van der Perre, and
F. Catthoor. Early exploration for platform architecture instantiation with multi-
mode application partitioning. In Proceedings of the 50th Design Automation
Conference, pages 1–8, 2013.

[7] ASAM. Automatic architecture synthesis and application mapping. http:
//www.asam-project.org, June 2014.

[8] J. Axelsson. A method for evaluating uncertainties in the early development
phases of embedded real-time systems. In Proceedings of the 11th IEEE In-
ternational Conference on Embedded and Real-Time Computing Systems and
Applications, pages 72–75. IEEE Computer Society, 2005.

[9] A. Baghdadi, D. Lyonnard, N. Zergainoh, and A. Jerraya. An efficient architec-
ture model for systematic design of application-specific multiprocessor soc. In

http://www.compaandesign.com
http://ziyang.eecs.umich.edu/~dickrp/e3s/
http://www.underbit.com/products/mad/
http://www.underbit.com/products/mad/
http://jmetal.sourceforge.net
http://jmetal.sourceforge.net
http://www.datasheetcatalog.org /datasheet/philips/PTM1300.pdf
http://www.datasheetcatalog.org /datasheet/philips/PTM1300.pdf
http://www.asam-project.org
http://www.asam-project.org

168 BIBLIOGRAPHY

Proceedings of the Conference on Design, automation and test in Europe, pages
55–63. IEEE Press, 2001.

[10] M.-W. Benabderrahmane, L.-N. Pouchet, A. Cohen, and C. Bastoul. The polyhe-
dral model is more widely applicable than you think. In Compiler Construction,
pages 283–303. Springer, 2010.

[11] L. Benini, D. Bertozzi, A. Bogliolo, F. Menichelli, and M. Olivieri. Mparm:
Exploring the multi-processor soc design space with systemc. Journal of VLSI
signal processing systems for signal, image and video technology, 41(2):169–
182, 2005.

[12] M. Berekovic. rASIP: reconfigurable application specific instruction set proces-
sors - slide set. http://www.dagstuhl.de/Materials/Files/10/
10281/10281.BerekovicMladen.Slides.pdf, July 2014.

[13] D. Bertozzi, A. Jalabert, S. Murali, R. Tamhankar, S. Stergiou, L. Benini, and
G. De Micheli. NoC synthesis flow for customized domain specific multipro-
cessor systems-on-chip. IEEE Transactions on Parallel and Distributed Systems,
16(2):113–129, Feb. 2005.

[14] C. Brehm, T. Ilnseher, and N. Wehn. A scalable multi-ASIP architecture for
standard compliant trellis decoding. In International SoC Design Conference,
pages 349–352. IEEE, Nov. 2011.

[15] E. Burke and G. Kendall. Search Methodologies: Introductory Tutorials in Op-
timization and Decision Support Techniques, chapter Introduction, Chapter 1,
pages 97–125. Springer, 2005.

[16] D. G. Chinnery and K. Keutzer. Closing the Power Gap between ASIC and
Custom - Tools and Techniques for Low Power Design. Springer, 2007.

[17] R. J. Cole, B. M. Maggs, and R. K. Sitaraman. On the benefit of supporting
virtual channels in wormhole routers. Journal of Computer and System Sciences,
62(1):152 – 177, 2001.

[18] M. Damavandpeyma, S. Stuijk, T. Basten, M. Geilen, and H. Corporaal.
Schedule-extended synchronous dataflow graphs. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 32(10):1495–1508,
Oct. 2013.

[19] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast elitist non-dominated
sorting genetic algorithm for multi-objective optimization: NSGA-II. Lecture
notes in computer science, 1917:849–858, 2000.

[20] M. Dion and Y. Robert. Mapping affine loop nests. Parallel Computing, 22,
1996.

http://www.dagstuhl.de/Materials/Files/10/10281/10281.BerekovicMladen.Slides.pdf
http://www.dagstuhl.de/Materials/Files/10/10281/10281.BerekovicMladen.Slides.pdf

BIBLIOGRAPHY 169

[21] H. C. Doan, H. Javaid, and S. Parameswaran. Multi-ASIP based parallel and
scalable implementation of motion estimation kernel for high definition videos.
In 2011 9th IEEE Symposium on Embedded Systems for Real-Time Multimedia,
pages 56–65. IEEE, Oct. 2011.

[22] S. F. Edgar. Estimation of worst-case execution time using statistical analysis.
University OF York Department of Computer Science-publications-YCST, 2004.

[23] C. Erbas, A. D. Pimentel, M. Thompson, and S. Polstra. A framework
for system-level modeling and simulation of embedded systems architectures.
EURASIP Journal of Embedded Systems, 2007(1):1–11, Jan. 2007.

[24] F. Ferrandi, P.-L. Lanzi, C. Pilato, D. Sciuto, and A. Tumeo. Ant colony heuristic
for mapping and scheduling tasks and communications on heterogeneous em-
bedded systems. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 29(6):911–924, June 2010.

[25] J. A. Fisher, P. Faraboschi, and C. Young. Embedded computing - a VLIW ap-
proach to architecture, compilers, and tools. Morgan Kaufmann, 2005.

[26] J. A. Fisher, P. Faraboschi, and C. Young. VEX, a VLIW Example. http:
//www.hpl.hp.com/downloads/vex/, June 2014.

[27] D. K. Frank Ieromnimon. Application of the MOSART Flow on the WiMAX
(802.16e) PHY Layer, 2013.

[28] D. Gangadharan, L. Micconi, P. Pop, and J. Madsen. Multi-ASIP platform
synthesis for event-triggered applications with cost/performance trade-offs. In
Proceedings of Embedded and Real-Time Computing Systems and Applications
(RTCSA), pages 277–286, Aug. 2013.

[29] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

[30] A. Geven. Mixed criticality for complex networked
systems. http://cordis.europa.eu/fp7/ict/
embedded-systems-engineering/presentations/geven.pdf,
July 2014.

[31] A.-H. Ghamarian, M. C. W. Geilen, S. Stuijk, T. Basten, A. J. M. Moonen,
M. Bekooij, B. Theelen, and M. Mousavi. Throughput analysis of synchronous
data flow graphs. In Proceedings of the 6th International Conference on Appli-
cation of Concurrency to System Design, pages 25–36, June 2006.

[32] C. Glitia, P. Boulet, E. Lenormand, and M. Barreteau. Repetitive model refac-
toring strategy for the design space exploration of intensive signal processing
applications. Journal of Systems Architecture, 57(9):815–829, 2011.

http://www.hpl.hp.com/downloads/vex/
http://www.hpl.hp.com/downloads/vex/
http://cordis.europa.eu/fp7/ict/embedded-systems-engineering/presentations/geven.pdf
http://cordis.europa.eu/fp7/ict/embedded-systems-engineering/presentations/geven.pdf

170 BIBLIOGRAPHY

[33] D. Goodwin and D. Petkov. Automatic generation of application specific proces-
sors. In Proceedings of the International Conference on Compilers, Architecture
and Synthesis for Embedded Systems, CASES ’03, pages 137–147. ACM, 2003.

[34] Z. Guo, B. Buyukkurt, W. Najjar, and K. Vissers. Optimized generation of data-
path from c codes for fpgas. In Proceedings of the Design, Automation and
Test in Europe Conference and Exhibition, DATE ’05, pages 112–117. IEEE
Computer Society, 2005.

[35] J. C. P. Gutiérrez and M. G. Harbour. Schedulability analysis for tasks with static
and dynamic offsets. In RTSS, pages 26–37. IEEE Computer Society, 1998.

[36] J. Hansen, S. A. Hissam, and G. A. Moreno. Statistical-based WCET estimation
and validation. In Proceedings of the 9th International Workshop on Worst-Case
Execution Time Analysis, pages 1–11, 2009.

[37] A. Hansson, M. Subburaman, and K. Goossens. Aelite: A flit-synchronous Net-
work on Chip with composable and predictable services. In Proceedings of the
Design, Automation and Test in Europe Conference and Exhibition, DATE ’09,
pages 250–255. European Design and Automation Association, Apr. 2009.

[38] P.-K. Huang, M. Hashemi, and S. Ghiasi. System-level performance estimation
for application-specific mpsoc interconnect synthesis. In Symposium on Appli-
cation Specific Processors, pages 95–100, June 2008.

[39] P.-K. Huang, M. Hashemi, and S. Ghiasi. System-level performance estima-
tion for application-specific MPSoC interconnect synthesis. In Symposium on
Application Specific Processors, pages 95–100, June 2008.

[40] M. Jain, M. Balakrishnan, and A. Kumar. ASIP design methodologies: survey
and issues. In 14th International Conference on VLSI Design, pages 76–81.
IEEE Comput. Soc, Jan. 2001.

[41] H. Javaid and S. Parameswaran. Synthesis of heterogeneous pipelined multipro-
cessor systems using ILP. In Proceedings of the 6th IEEE/ACM/IFIP interna-
tional Conference on Hardware/Software codesign and system synthesis, pages
1–6. ACM Press, Oct. 2008.

[42] R. Jordans, R. Corvino, L. Jozwiak, and H. Corporaal. Exploring processor par-
allelism: Estimation methods and optimization strategies. In IEEE 16th Inter-
national Symposium on Design and Diagnostics of Electronic Circuits Systems,
pages 18–23, Apr. 2013.

[43] L. Jozwiak, M. Lindwer, R. Corvino, P. Meloni, L. Micconi, J. Madsen,
E. Diken, D. Gangadharan, R. Jordans, S. Pomata, P. Pop, G. Tuveri, L. Raffo,
and G. Notarangelo. ASAM: Automatic architecture synthesis and application
mapping. Microprocessors and Microsystems, 37(8):1002–1019, Nov. 2013.

BIBLIOGRAPHY 171

[44] T. Kangas, P. Kukkala, H. Orsila, E. Salminen, M. Hännikäinen, T. D. Hämäläi-
nen, J. Riihimäki, and K. Kuusilinna. UML-based multiprocessor SoC design
framework. ACM Transactions on Embedded Computing Systems, 5(2):281–
320, May 2006.

[45] P. Karlstrom, W. Zhou, C.-h. Wang, and D. Liu. Design of PIONEER: A case
study using NoGap. In Proceedings of the Asia Pacific Conference on Postgrad-
uate Research in Microelectronics and Electronics (PrimeAsia), pages 53–56.
IEEE, 2010.

[46] K. Karuri, R. Leupers, G. Ascheid, and H. Meyr. A generic design flow for
application specific processor customization through instruction-set extensions
(ises). In Embedded Computer Systems: Architectures, Modeling, and Simu-
lation, volume 5657 of Lecture Notes in Computer Science, pages 204–214.
Springer Berlin Heidelberg, 2009.

[47] T. Kempf, M. Doerper, R. Leupers, G. Ascheid, H. Meyr, T. Kogel, and B. Van-
thournout. A modular simulation framework for spatial and temporal task map-
ping onto multi-processor soc platforms. In Proceedings of the Design, Automa-
tion and Test in Europe Conference and Exhibition, DATE ’05, pages 876–881.
IEEE Computer Society, 2005.

[48] K. Kennedy and K. S. McKinley. Maximizing loop parallelism and improving
data locality via loop fusion and distribution. Springer, 1994.

[49] K. Keutzer, A. Newton, J. Rabaey, and A. Sangiovanni-Vincentelli. System-
level design: Orthogonalization of concerns and platform-based design. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
19(12):1523–1543, 2000.

[50] B. Kienhuis, E. Rijpkema, and E. Deprettere. Compaan. In Proceedings of the
eighth international workshop on Hardware/software codesign - CODES ’00,
pages 13–17. ACM Press, May 2000.

[51] H. Kopetz. Real-Time Systems: Design Principles for Distributed Embedded
Applications. Kluwer Academic Publishers, Norwell, MA, USA, 1st edition,
1997.

[52] J. Kreku, M. Hoppari, T. Kestilä, Y. Qu, J.-P. Soininen, P. Andersson, and
K. Tiensyrjä. Combining uml2 application and systemc platform modelling for
performance evaluation of real-time embedded systems. EURASIP Journal of
Embedded Systems, 2008:6:1–6:18, Jan. 2008.

[53] V. Krishnan and S. Katkoori. A genetic algorithm for the design space explo-
ration of datapaths during high-level synthesis. IEEE Transactions on Evolu-
tionary Computation, 10(3):213–229, June 2006.

172 BIBLIOGRAPHY

[54] A. Kumar, S. Fernando, Y. Ha, B. Mesman, and H. Corporaal. Multiproces-
sor systems synthesis for multiple use-cases of multiple applications on FPGA.
ACM Transactions on Design Automation of Electronic Systems, 13(3):1–27,
July 2008.

[55] A. Kumar, A. Hansson, J. Huisken, and H. Corporaal. Interactive presentation:
An fpga design flow for reconfigurable network-based multi-processor systems
on chip. In Proceedings of the Conference on Design, automation and test in
Europe, pages 117–122, 2007.

[56] Y.-K. Kwok and I. Ahmad. Static scheduling algorithms for allocating directed
task graphs to multiprocessors. ACM Comput. Surv., 31(4):406–471, Dec. 1999.

[57] C. Lee, S. Kim, and S. Ha. A systematic design space exploration of mpsoc
based on synchronous data flow specification. Journal of Signal Processing
Systems, 58(2):193–213, 2010.

[58] E. A. Lee and D. G. Messerschmitt. Static scheduling of synchronous data flow
programs for digital signal processing. IEEE Trans. Comput., 36(1):24–35, Jan.
1987.

[59] T. Lei and S. Kumar. A two-step genetic algorithm for mapping task graphs to
a network on chip architecture. In Proceedings of the Euromicro Symposium on
Digital System Design, pages 180–187, Sept. 2003.

[60] Leiden University. MJPEG code. http://www.artist-embedded.
org/artist/Benchmarks.html, June 2014.

[61] Y. A. Li and J. K. Antonio. Estimating the execution time distribution for a
task graph in a heterogeneous computing system. In Proceedings of the 6th
Heterogeneous Computing Workshop, pages 172–184, 1997.

[62] M. Lindwer. The future of data-parallel embedded systems, keynote speach.
http://dsmc2.eap.gr/dsd2011/docs/DSD2011_Keynote_
Speaker3.pdffiles, July 2014.

[63] M. Lindwer, L. Jóźwiak, J. Madsen, B. Kienhuis, P. Meloni, L. Raffo, and G. No-
tarangelo. Initial design methodology, flow, and tool requirements. Deliverable
1.1, ASAM Project, Nov. 2010.

[64] LLVM. The compiler infrastructure. http://llvm.org, June 2014.

[65] Z. Lu and A. Jantsch. Tdm virtual-circuit configuration for network-on-chip.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 16(8):1021–
1034, Aug. 2008.

http://www.artist-embedded.org/artist/Benchmarks.html
http://www.artist-embedded.org/artist/Benchmarks.html
http://dsmc2.eap.gr/dsd2011/docs/DSD2011_Keynote_Speaker3.pdffiles
http://dsmc2.eap.gr/dsd2011/docs/DSD2011_Keynote_Speaker3.pdffiles
http://llvm.org

BIBLIOGRAPHY 173

[66] D. Lyonnard, S. Yoo, A. Baghdadi, and A. Jerraya. Automatic generation of
application-specific architectures for heterogeneous multiprocessor system-on-
chip. In Proceedings of the Design Automation Conference, pages 518–523,
2001.

[67] V. V. Mark Ewert, Prakash Iyer. Hotchips 2013: Clovertrail+ smartphone
soc platform; slide set. http://www.hotchips.org/wp-content/
uploads/hc_archives/hc25/HC25.10-SoC1-epub/HC25.26.
130-Clovertrail-Smartphone-Iyer-Intel.pdf, July 2014.

[68] H. Meyr, O. Schliebusch, A. Wieferink, D. Kammler, E. Witte, O. Lüthje,
M. Hohenauer, G. Braun, and A. Chattopadhyay. Designing and modeling
MPSoC processors and communication architectures. In Building ASIPS: The
Mescal Methodology, pages 229–280. Springer US, 2005.

[69] L. Micconi, D. Gangadharan, P. Pop, and J. Madsen. Multi-ASIP platform syn-
thesis for real-time applications. In 2013 8th IEEE International Symposium on
Industrial Embedded Systems, pages 59–67. IEEE, June 2013.

[70] L. Micconi, J. Madsen, and P. Pop. An Uncertainty Model for System-Level
design of Multi-ASIP Platforms. Under revision.

[71] N. Moreano, E. Borin, C. D. Souza, and G. Araujo. Efficient datapath merging
for partially reconfigurable architectures. In IEEE Transactions on Computer
Aided Design of Integrated Circuits and Systems, pages 969–980, 2005.

[72] A. Morgan, H. Elmiligi, M. El-Kharashi, and F. Gebali. Multi-objective opti-
mization of noc standard architectures using genetic algorithms. In IEEE Inter-
national Symposium on Signal Processing and Information Technology, pages
85–90, Dec. 2010.

[73] R. Muhammad, L. Apvrille, and R. Pacalet. Evaluation of ASIPs design with
LISATek. In M. Berekovic, N. J. Dimopoulos, and S. Wong, editors, SAMOS,
Lecture Notes in Computer Science, pages 177–186. Springer, 2008.

[74] O. Muller, A. Baghdadi, and M. Jezequel. From Parallelism Levels to a Multi-
ASIP Architecture for Turbo Decoding. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 17(1):92–102, Jan. 2009.

[75] L. M. Ni and P. K. McKinley. A survey of wormhole routing techniques in direct
networks. Computer, 26(2):62–76, 1993.

[76] M. Nicola, G. Masera, M. Zamboni, H. Ishebabi, D. Kammler, G. Ascheid, and
H. Meyr. FFT processor: a case study in ASIP development. In Proceedings of
the IST Mobile & Wireless Communications Summit, 2005.

http://www.hotchips.org/wp-content/uploads/hc_archives/hc25/HC25.10-SoC1-epub/HC25.26.130-Clovertrail-Smartphone-Iyer-Intel.pdf
http://www.hotchips.org/wp-content/uploads/hc_archives/hc25/HC25.10-SoC1-epub/HC25.26.130-Clovertrail-Smartphone-Iyer-Intel.pdf
http://www.hotchips.org/wp-content/uploads/hc_archives/hc25/HC25.10-SoC1-epub/HC25.26.130-Clovertrail-Smartphone-Iyer-Intel.pdf

174 BIBLIOGRAPHY

[77] H. Nikolov, T. Stefanov, and E. Deprettere. Systematic and Automated Multipro-
cessor System Design, Programming, and Implementation. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 27(3):542–555,
Mar. 2008.

[78] H. Nikolov, M. Thompson, T. Stefanov, A. D. Pimentel, S. Polstra, R. Bose,
C. Zissulescu, and E. F. Deprettere. Daedalus: toward composable multimedia
mp-soc design. In L. Fix, editor, DAC, pages 574–579. ACM, 2008.

[79] A. Nohl, F. Schirrmeister, and D. Taussig. Application specific processor design
architectures, design methods and tools. In Proceedings of the International
Conference on Computer-Aided Design, pages 349–352, 2010.

[80] P. G. Paulin, J. P. Knight, and E. F. Girczyc. Hal: A multi-paradigm approach
to automatic data path synthesis. In Proceedings of the 23rd ACM/IEEE Design
Automation Conference, DAC ’86, pages 263–270. IEEE Press, 1986.

[81] T. Pop, P. Eles, and Z. Peng. Holistic scheduling and analysis of mixed
time/event-triggered distributed embedded systems. In Proceedings of the 10th
International Symp. on HW/SW Codesign, pages 187–192, 2002.

[82] A. Sangiovanni-Vincentelli. Defining platform-based design. EEDesign of EE-
Times, 2002.

[83] S. Saponara, L. Fanucci, S. Marsi, and G. Ramponi. Algorithmic and architec-
tural design for real-time and power-efficient Retinex image/video processing.
Journal of Real-Time Image Processing, 1(4):267–283, May 2007.

[84] M. Schoeberl, F. Brandner, J. Sparsø, and E. Kasapaki. A statically sched-
uled time-division-multiplexed network-on-chip for real-time systems. In Sixth
IEEE/ACM International Symposium on Networks on Chip, pages 152–160.
IEEE, 2012.

[85] S. L. Shee and S. Parameswaran. Design Methodology for Pipelined Heteroge-
neous Multiprocessor System. In Proceedings of the 44th Design Automation
Conference, pages 811–816, 2007.

[86] A. K. Singh, T. Srikanthan, A. Kumar, and W. Jigang. Communication-aware
heuristics for run-time task mapping on NoC-based {MPSoC} platforms. Jour-
nal of Systems Architecture, 56(7):242 – 255, 2010. Special Issue on HW/SW
Co-Design: Systems and Networks on Chip.

[87] O. Sinnen. Task Scheduling for Parallel Systems (Wiley Series on Parallel and
Distributed Computing). Wiley-Interscience, 2007.

[88] C. C. d. Souza, A. M. Lima, G. Araujo, and N. B. Moreano. The datapath merg-
ing problem in reconfigurable systems: Complexity, dual bounds and heuristic
evaluation. J. Exp. Algorithmics, 10, Dec. 2005.

BIBLIOGRAPHY 175

[89] R. Stefan, A. Molnos, A. Ambrose, and K. Goossens. A TDM NoC support-
ing QoS, multicast, and fast connection set-up. In Proceedings of the Design,
Automation and Test in Europe Conference and Exhibition, DATE ’12, pages
1283–1288. EDA Consortium, 2012.

[90] T. Stefanov, C. Zissulescu, A. Turjan, B. Kienhuis, and E. Deprette. System de-
sign using Khan process networks: the Compaan/Laura approach. In Proceed-
ings of the Design, Automation and Test in Europe Conference and Exhibition,
volume 1, pages 340–345. IEEE, 2004.

[91] STMicroelectronics. MPEG4 application. http://www.st.com, June 2014.

[92] Synopsys. Synopsys Processor Designer. http://www.synopsys.com/
IP/ProcessorIP/asip/processor-designer/Pages/default.
aspx, July 2014.

[93] Technical University of Denmark. ECG application. Please contact the author
of the thesis to get a copy of the C code, June 2014.

[94] Technical University of Eindhoven. MAMPS project, Partitioned JPEG decoder
algorithm. http://www.es.ele.tue.nl/mamps/example.php, June
2014.

[95] Tensilica. tool-chain for XTensa processor. http://ip.cadence.com/
ipportfolio/tensilica-ip, July 2014.

[96] R. Walker and S. Chaudhuri. Introduction to the scheduling problem. Design
Test of Computers, IEEE, 12(2):60 –69, 1995.

[97] F. Wang, C. Nicopoulos, X. Wu, Y. Xie, and N. Vijaykrishnan. Variation-aware
task allocation and scheduling for mpsoc. In Proceedings of the IEEE/ACM In-
ternational Conference on Computer-Aided Design, pages 598–603, Nov. 2007.

[98] G. Wang, W. Gong, and R. Kastner. Application partitioning on programmable
platforms using the ant colony optimization. Journal of Embedded Computing,
2(1):119–136, 2006.

[99] A. Wieferink, T. Kogel, R. Leupers, G. Ascheid, H. Meyr, G. Braun, and
A. Nohl. A system level processor/communication co-exploration methodol-
ogy for multi-processor system-on-chip platforms. In Proceedings of the Design
Automation Conference, 2004.

[100] J. Yan and W. Zhang. A time-predictable VLIW processor and its compiler
support. Real-Time Systems, 38(1):67–84, 2008.

[101] Y. Yassin, P. Kjeldsberg, J. Hulzink, I. Romero, and J. Huisken. Ultra low power
application specific instruction-set processor design for a cardiac beat detector
algorithm. In Proceedings of the NORCHIP Conference, pages 1–4, Nov. 2009.

http://www.st.com
http://www.synopsys.com/IP/ProcessorIP/asip/processor-designer/Pages/default.aspx
http://www.synopsys.com/IP/ProcessorIP/asip/processor-designer/Pages/default.aspx
http://www.synopsys.com/IP/ProcessorIP/asip/processor-designer/Pages/default.aspx
http://www.es.ele.tue.nl/mamps/example.php
http://ip.cadence.com/ipportfolio/tensilica-ip
http://ip.cadence.com/ipportfolio/tensilica-ip

176 BIBLIOGRAPHY

[102] V. Zaccaria, G. Palermo, F. C. P. di Milano), and G. M. (USI). Multicube
Explorer. http://home.dei.polimi.it/zaccaria/multicube_
explorer_v1/Home.html, June 2014.

[103] H. Zhang. Service disciplines for guaranteed performance service in packet-
switching networks. In Proceedings of the IEEE, pages 1374–1396, 1995.

[104] W. Zhang, L. Hou, J. Wang, S. Geng, and W. Wu. Comparison research be-
tween XY and Odd-Even routing algorithm of a 2-dimension 3x3 Mesh topology
Network-on-Chip. In WRI Global Congress on Intelligent Systems, volume 3,
pages 329–333, May 2009.

[105] C. Zimmer and F. Mueller. Nocmsg: Scalable NoC-based message passing. In
14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Comput-
ing, pages 186–195. IEEE, 2014.

[106] M. Zuluaga and N. Topham. Resource sharing in custom instruction set ex-
tensions. In Symposium on Application Specific Processors, pages 7–13, June
2008.

[107] M. Zuluaga and N. Topham. Design-space exploration of resource-sharing so-
lutions for custom instruction set extensions. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 28(12):1788–1801, Dec. 2009.

http://home.dei.polimi.it/zaccaria/multicube_explorer_v1/Home.html
http://home.dei.polimi.it/zaccaria/multicube_explorer_v1/Home.html

	Summary (English)
	Summary (Danish)
	Preface
	Publications and technical reports
	Acknowledgements
	Contents
	Abbreviations
	1 Introduction
	1.1 Why ASIPs?
	1.1.1 Application-specific instruction set processors
	1.1.2 ASIP design

	1.2 Why a multi-ASIP platform?
	1.3 Challenges in multi-ASIP design
	1.4 Related work
	1.5 Objective
	1.6 Contributions
	1.7 Thesis outline
	1.8 Notes for the reader

	2 System models
	2.1 Application Model
	2.2 Platform Model
	2.3 Modeling WCET uncertainties
	2.3.1 Validation of the normal distribution for UM

	2.4 Summary

	3 Macro-architecture level DSE
	3.1 Motivational Example
	3.2 Problem Formulation
	3.3 Platform Definition using an Evolutionary Approach
	3.3.1 Schedulability Analysis
	3.3.2 Comparison of task clustering solutions
	3.3.3 Evolutionary Algorithm
	3.3.4 Example of schedulability analysis with UM

	3.4 Summary

	4 Experimental evaluation with Task Graph model
	4.1 Comparison of DSE with UM and SFM
	4.2 Experimental evaluation of DSE with UM using SH tools
	4.2.1 Additional considerations

	4.3 Accuracy of Clj and Cuj
	4.4 Summary

	5 Uncertainty model with SDFG
	5.1 Application model
	5.2 Schedulability Analysis
	5.2.1 Example of Task-level Analysis
	5.2.2 Example of Pipeline Analysis
	5.2.3 Algorithms for schedulability analysis

	5.3 Comparison of clustering solutions and DSE
	5.4 Summary

	6 Experimental evaluation with the SDFG model
	6.1 Case study: MJPEG encoder
	6.2 Case studies: ECG and SC
	6.3 Comparison of SDFG and task graph application models
	6.4 Accuracy of Clj and Cuj
	6.5 Additional discussion of the results
	6.6 Experimental evaluation with a NoC
	6.6.1 Network model
	6.6.2 Schedulability analysis
	6.6.3 Results

	6.7 Summary

	7 ASAM project
	7.1 ASAM design flow
	7.2 Tools in ASAM design flow
	7.2.1 Compaan Compiler
	7.2.2 Code Analysis tool - Phase 1 of micro-architecture DSE
	7.2.3 Micro-architecture DSE tool - Phase 2 of micro-architecture DSE
	7.2.4 Silicon Hive technology
	7.2.5 Macro-architecture DSE

	7.3 Experimental evaluation
	7.4 Summary

	8 Uncertainty model and task similarities
	8.1 System model
	8.2 Problem formulation
	8.2.1 Area Estimation Model
	8.2.2 Effect of Clustering on the Uncertainty Model
	8.2.3 Schedulability Analysis of a task clustering solution

	8.3 DSE for Cost and performance optimization
	8.4 Experimental evaluation
	8.5 Summary

	9 Conclusion
	9.1 Contributions
	9.2 Open issues

	A Additional results
	A.1 Additional results from Experiment 2
	A.2 Additional case studies using SDFG application model
	A.2.1 ECG case study
	A.2.2 SC case study

	B XML interfaces in ASAM design flow
	B.1 Input constraints
	B.2 Initial Platform
	B.3 Application model
	B.4 Task clustering solution
	B.4.1 Output of probabilistic DSE
	B.4.2 Output of micro-architecture DSE (Phase 2)
	B.4.3 Output of deterministic DSE

	Bibliography

