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Abstract

This thesis presents solutions to two problems of biochip synthesis; namely the
application model synthesis problem and the architectural synthesis problem.

The application model synthesis derives an application model from an assay
written in Aqua. We use ANTLR4 to generate a parser and then traverse the
parse tree to derive the application graph. During the synthesis we also show
how to achieve a mixture of fluids using only one-to-one mixer components, as
these common.

The architectural synthesis focuses on deriving a netlist for a biochip archi-
tecture to efficiently execute a specific assay. The synthesis uses a resource-
constrained list-base scheduling algorithm to determine an allocation of compo-
nents from a component library, as well a preliminary binding and scheduling
of the application. The binding and application model is then used to derive
interconnections of components in the allocation and this yiels the netlist.
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Chapter 1

Introduction

Miniaturized Total Chemical Analysis Systems (µTAS) were introduced in 1990
by Manz et al. [MGW90]. These systems carry out chemical analyses automat-
ically, handling fluid sample transportation and preparation, and performing
laboratory functions such as mixing, heating, measurement and detection for
the analyses. The systems are called miniaturized, or micro, when they handle
the fluid samples very close to the place of detection, for example on a small
chip. Miniaturized total analysis systems have several advantages compared
conventional analysers, due to their small size. Some advantages are requiring
smaller sample and reagent volumes, having faster biochemical reaction times,
and giving more accurate detection.

Microfluidic biochips, also known as Lab-on-a-Chip, are examples of µTAS.
Biochips are made of a biocompatible material using microfabrication tech-
niques, and are typically classified as either droplet-based biochips or flow-based
biochips depending on how fluids are manipulated on the chip. Biochips are used
to automate performance of many biochemical protocols, also called assays, and
have multiple application areas, such as cell analysis, DNA analysis, drug dis-
covery, forensics, and environmental analysis [CMSJ+14].

In this thesis we will focus on flow-based microfluidic biochips and the first steps
of how to automate their architectural design.
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1.1 Flow-Based Microfluidic Biochips

Flow-based micriofluidic biochips manipulate continuous flow of discrete vol-
umes of fluids. The biochips consist of a substrate in which there are integrated
microfluidic channels, micromechanical valves and biochemical components such
as heaters, filters and sensors. The valves are the basic building blocks on the
chips, and can be used to implement pumps, mixers, multiplexers, and switches
to control the flow of fluids in the channels. The valves can be manufactured
at very high densities on the chip, approaching 1 million valves per cm2, giving
rise to the technology name microfluidic very large scale integration (mVLSI)
analogous to the electronic counterpart VLSI [AQ12]. The chips can be man-
ufactured with soft lithography using PDMS as substrate, making them cheap
and fast to produce.

We consider biochips as logically having two layers; a flow layer and a control
layer. The flow layer is the layer where fluid is routed through channels to
perform the assays. Fluids are typically emulsified in oil or another emulsifier
to avoid evaporation and contamination from fluid remnants on the channel
surfaces. Discrete volumes of fluids are achieved by knowing the metrics of the
flow channels and metering out a known length of fluid to achieve a multiple of
a predetermined volume, referred to as a unit volume. The flow in the flow layer
is controlled by the valves, which are activated in the control layer. The control
layer’s channels are filled with air and are applied pressure to open and close
the valves in the flow layer. When no pressure is applied in the control layer of
a valve, the valve is open and fluid can flow through the underlying flow layer
channel. When pressure is applied to the valve, a thin membrane is pressed into
the flow layer, completely cutting off the flow in the underlying channel. This
kind of valve is called a normally open valve. A conceptual illustration of a valve
with flow- and control layer (blue and red respectively) is shown in Figure 1.1.
The pressure for the control layer is typically supplied and controlled by an
off-chip pump and runtime system.

The current practise for designing biochips takes a full-custom, bottum-up ap-
proach where an application-specific chip is designed manually using CAD pro-
grams to lay out the channels, valves and component in the two layers and to
schedule the control signals for the valves and components. This approach is
very labour intensive and error-prone, and is not very cost-effective if the im-
plemented assay later needs to be modified or integrated into another biochip.
Every change to the assay requires a revisit to the manual design phases of the
biochip which is time-consuming, thus reducing the usefulness of biochips.
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Figure 1.1: Conceptual illustration of a microvalve [Min12].

1.2 Biochip Design Methodology

A top-down design methodology is proposed by Minhass in [Min12] as an al-
ternative to the full-custom, bottom-up approach. Models for the biochemical
components, biochip architecture and biochemical application are defined and
the design process is subdivided into phases. We will present the models in more
detail in chapter 2. An overview of the design methodology is shown in Fig-
ure 1.2. The three major design phases are architectural synthesis, application
mapping and control synthesis.

The architectural synthesis derives a biochip architecture given a biochem-
ical application and a component library. The component library is a listing of
all the available types of biochemical components. The synthesis is divided into
two steps:

1. Allocation and Schematic Design: Components are allocated from the
component library and the schematic design, also called the netlist, of the
biochip is extracted from the application.

2. Physical Synthesis: The physical placement of components and routing of
channels for the flow- and control layer is decided.

The application mapping takes a biochemical application and a biochip ar-
chitecture and determines a binding and scheduling of the operations, which
attempts to minimize the application completion time while taking fluid rout-
ing and channel contention into account.

The control synthesis takes a biochip architecture and a correspondingly
mapped biochemical application and generates the control logic, i.e. timing of
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Figure 1.2: Overview of biochip design methodology [Min12].

valve and component activations, required to execute the application on the
biochip.

1.3 Thesis Objective

In this thesis we will focus on the representation of biochemical applications in
a high-level protocol language, and implement the first step of the architectural
synthesis, namely allocation and schematic design. The objective of the thesis is
to provide a tool which automatically derives an application-specific schematic
design of a flow-based biochip architecture given a biochemical assay written
in the high-level protocol language. The workflow of the tool is illustrated in
Figure 1.3.

First, we will specify an appropriate high-level protocol language to describe
biochemical applications. Next, we will build a parser which extracts a bio-
chemical application model from an assay written in the high-level language.
The application model will be represented as a sequencing graph, which is a
directed, acyclic, and polar graph. Finally, from the application model we will
generate the schematic design for a biochip architecture suitable to perform the
application.
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Figure 1.3: Overview of the tool workflow.

We will apply our proposed methods and algorithms on several biochemical
protocols and show the resulting application models and generated schematics
for biochip architectures.
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Chapter 2

System Model

In this chapter we will give an informal presentation of the syntax and seman-
tics of our high-level protocol language and define the biochemical application
model and biochip architecture model used in the thesis. The application and
architecture models are adopted from [Min12].

The purpose of the high-level protocol language is to describe biochemical as-
says in a precise and unambiguous way to allow automatic extraction of the
biochemical application.

The biochemical application model represents the microfluidic operations of an
assay and their interdependencies in terms of input and output relations.

The biochip architecture model represents the schematic and physical design of
the biochip. The schematic design specifies the components and their intercon-
nections, and the physical design specifies the actual placement and routing of
the components and channels.
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2.1 High-Level Protocol Language

For a high-level protocol language we will use the Aqua language [Ami15]. We
use Aqua since its syntax and semantics are simple and intuitive with the pur-
pose of making it accessible to users who are not necessarily programmers (e.g.
biologists or chemists). However, the Aqua language is designed to program
assays for multi-purpose biochip architectures developed by Microfluidic Inno-
vations, whereas our goal is to derive the architecture for an application-specific
biochip. Thus, some features of the Aqua language are tied to knowing the
biochip architecture when writing the assay and are not suited for architectural
synthesis. Therefore we will use a slightly modified version of the language
where we focus on the parts relevant for architectural synthesis. In section 4.1
we will give a formal definition of the language, including the features that we
do not use otherwise. In this section we will give an informal presentation of
the modified language, excluding unused features.

We list the language with keywords highlighted in bold, optional parts enclosed
in curly brackets, and parts which should be replaced in italic:

1 KEYWORD
2 {optional}
3 replace

The language is case-sensitive and ignores excess whitespace.

The basic structure of an assay described in the language is:

1 ASSAY name START
2 declarations
3 statements
4 END

The name of the assay should be indicative of the purpose of the assay and will
be used as the name of the extracted biochip architecture. The name must be
a valid identifier, but does not have to be distinct from other identifiers.

A valid identifier consist of an alphabetic or underscore character followed by
zero or more alphanumeric or underscore characters. Keywords in the language
are not valid identifiers.

An assay then consists of one or more declarations followed by one or more
statements. We will distinguish between two types of statements: control-flow
statements and microfluidic operation statements. We will often refer to the
latter type as just an operation.
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2.1.1 Declarations

The language has two data types: integers and fluids.

Integers use the regular decimal system and support the standard arithmetic
operators +, -, * and / for addition, subtraction, multiplication and integer
division respectively. Arithmetic expressions may be enclosed in parenthesis to
specify operator precedence. The result of an integer division will discard the
fractional part if there is any, rounding the result towards zero. For example
the expression

1 5 / 2

will evaluate to the value 2. It is worth noting that due to integer division
rounding, the order of multiplication and division operands is significant. For
instance, the two expressions

1 5 / 2 ∗ 2
2 5 ∗ 2 / 2

will not evaluate to the same values. The first expression will evaluate to 4 and
the second will evaluate to 5.

Fluids represent a specific type of fluid rather than a single sample or a specific
volume. The fluid can either be an input which is supplied to the biochip by the
user, or the result of an on-chip operation such as a mixing or heating operation.
A fluid may be used arbitrarily many times without regard to consumption of
the actual sample.

A declaration has one of the following forms:

1 FLUID name {dimensions};
2 VAR name {dimensions};
3 INPUT name {volume};

The FLUID keyword declares a fluid variable. The name must be a valid and
unique identifier. Fluid variables may be assigned to results of operations as
shown later.

The VAR keyword declares an integer variable which may later be assigned
to literal values or results of arithmetic expressions and may be used in other
statements and expressions. Assignment to integer variables is done with the
equals operator:

1 a = 2;
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2 b = 3 ∗ a ∗ a;

Both types of variables may optionally be declared with a series of one or more
dimensions to declare the variable as an array. Each dimension is specified as
the dimension size enclosed in square brackets, e.g.

1 FLUID f[5];
2 VAR i[2][7];

Variable arrays are 1-indexed and values are accessed using square bracket in-
dices, e.g. i[1][1] for the first integer in the i array.

The INPUT declaration designates a previously declared fluid variable to be an
input. The optional volume part is an integer specifying the amount of available
fluid in nL. Input variables cannot be assigned to the results of operations.

A special fluid variable called it is automatically declared and will always refer-
ence the result of the last executed operation. This variable cannot be assigned
manually.

2.1.2 Statements

Our language has two control-flow statements and three microfluidic operation
statements.

The two control-flow statements are:

1 REPEAT num_times START statements ENDREPEAT
2 FOR var FROM var_start TO var_end START statements ENDFOR

The language does not support conditional statements and as such is determin-
istic at compile-time allowing every reachable program state to be computed.

For the REPEAT statement, num_times must be an expression and statements
must be one or more statements. The given statements are then executed the
specified number of times.

The FOR statement sets the value of the integer variable var to each value in
the range from var_start to var_end, both inclusive, and executes statements
for each value in increasing order. The var_start and var_end parameters must
both be expressions.

The syntax for each of the three microfluidic operations is:
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1 MIX f1 AND f2 {AND f3...} {IN RATIOS r1 : r2 {: r3...}} FOR duration;
2 INCUBATE fluid AT temperature FOR duration;
3 SENSE sense_type fluid INTO var;

The MIX operation takes two or more fluids and mixes them in the ratios
specified for the given duration. If the IN RATIOS part is omitted then all
fluids are assumed to be in ratios of 1. The number of specified fluids and ratios
must always match if the ratios are not omitted entirely.

The INCUBATE operation takes a single fluid and heats it up to and maintains
the given temperature for the given duration.

The SENSE operation moves the given fluid into a sensor and stores the result
in the given variable. The sense_type argument specifies the type of sensor to
use; it can be either OPTICAL or FLUORESCENCE. It is unclear from
the documentation on Aqua how this is actually achieved. In particular the
interface between the sensor and the runtime system is not specified, as well as
what the format of the stored value will be, and if and how it may be used in
other statements. We will assume that the variable that stores the result will
not be used in other statements as the outcome is undefined.

For the MIX and INCUBATE operations, the resulting fluid type may be
stored in a fluid variable with the equals operator:

1 f3 = MIX f1 AND f2 IN RATIOS 1 : 2 FOR 15;
2 f4 = INCUBATE f3 AT 60 FOR 30;

An example assay described in the high-level language is shown in Listing 2.1.

1 ASSAY example START
2 FLUID f1;
3 FLUID f2;
4 FLUID f3;
5 FLUID f4;
6
7 VAR v1;
8 VAR v2;
9 VAR v3[4];
10
11 INPUT f1;
12 INPUT f2;
13 INPUT f3;
14
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15 MIX f1 AND f2 AND f3 IN RATIOS 1 : 3 : 7 FOR 60;
16 INCUBATE it AT 75 FOR 15;
17 SENSE FLUORESCENCE it INTO v1;
18
19 f4 = MIX f1 AND f2 FOR 30;
20 FOR v2 FROM 1 TO 4 START
21 INCUBATE f4 AT 15∗v2 FOR 30;
22 SENSE OPTICAL it INTO v3[v2];
23 ENDFOR
24 END

Listing 2.1: A small example of an assay specified in the high-level language.

2.2 Biochemical Application Model

A biochemical application consists of a set of microfluidic operations and a set
of dependencies between the operations. An operation Oi depends on another
operation Oj if the input to Oi is the output of Oj .

We model a biochemical application as a sequencing graph G(O, E). The model
captures the operations of an assay as the vertices O and the dependencies
between operations as the edges E . The graph is directed, acyclic, and polar,
having a source vertex with no ingoing edges and a sink vertex with no outgoing
edges. If v and u are two vertices in the graph, representing the operations Oi

and Oj respectively, then there exists a directed edge from u to v if and only if
Oi depends on Oj . Each operation has a specified execution time, or duration,
which is modelled as the weight of the corresponding vertex.

The application model assumes that all operations have the correct volume of
fluids available from their dependencies and that any excess fluid of an operation
is discarded. The volumes for the operations are not specified in the application
model, as the actual volumes of operations will depend on the components on
which they are executed. For example, one mixer component may take two unit
volumes of fluids and mix them, resulting in two units of mixed fluid, whereas
another mixer might take four units of fluid and mix them, resulting in four
units of mixed fluid.

For the purpose of this thesis we will let the source and sink vertices be implicit
in the application graphs and assume that every operation without an ingoing
edge is connected to the source vertex and every operation without an outgoing
edge is connected to the sink.
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O0

Input (f1)
(1)

O3

Mix
(60)

O6

Mix
(30)

O1

Input (f2)
(1)

O2

Input (f3)
(1)
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(1)

O7

Incubate@15
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Incubate@30
(30)
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O10

Sense (optical)
(1)

O12

Sense (optical)
(1)

O14

Sense (optical)
(1)

Figure 2.1: Application graph for the example assay in Listing 2.1.

Each operation has a specified type, which defines what components it can be
executed on. The types used are

• input ;
• mix ;
• heat ; and
• detect.

The last three correspond to the operations MIX, INCUBATE and SENSE
available in the high-level language, respectively. The input operation type
indicates a pseudo-operation which is only used to reflect which fluids are used
in the following operations. In practise, an input operation simply corresponds
to moving a fluid sample from any of its input ports into the component where
it is needed. Collectively, all the input operations in an application graph can
be thought of as the source vertex.

An example application graph is shown in Figure 2.1, corresponding to the
example assay in Listing 2.1. The source and sink vertices are not shown, as
they are implicit. If they were shown, the source vertex would have outgoing
edges to O0, O1 and O2 as they’re the operations without any ingoing edges.
Likewise, the sink vertex would have incoming edges from O8, O11, O13, O15 and
O17. The operation execution times are shown as the number in parenthesis
under the operation names.
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2.3 Biochip Architecture Model

The biochip architecture model captures the schematic and physical design of
biochip components as well as the biochip itself.

The components are defined in a component library L(M,U). Each component
is characterized by its nameM, dimensions, functions U , valves, and input and
output ports. The component’s nameM identifies each specific type of compo-
nent in the library and is unique within the library. A component’s functions
U are the operation types that the component can execute, giving a mapping
of components to and from operation types. Basic components normally only
perform a single type of operation, but more complex components might im-
plement more functions. The dimensions specify the size of the component as
the width and height of a bounding rectangle. The valves specify how many
valves are used to implement the component. Input and Output ports specify
the coordinates of the entry and exit points for the component on the bounding
rectangle. Neither dimensions, valves, nor input or output ports are relevant to
automating the schematic design of a biochip, but are relevant to the physical
design of the flow- and control layers.

The component library used in the thesis is shown in Table 2.1. Two of the
components have functions that our high-level language does not support op-
erations for; an extension to the language could implement these. Also, some
components do not have a function specified because they are used to control
the flow on the biochip rather than performing a microfluidic operation. We
will assume that the Mixer component takes two units of fluids as input, thus
mixing in one-to-one ratios. For all other components we assume that they take
a single unit of fluid as input.

The schematic design of a biochip defines which components are on the biochip
and how they are connected. This is represented in a netlist, which we model
as a directed graph N (C,P) where the vertices C represent components and
the directed edges P represent the connections between the components. A
directed edge exists between components if fluids can flow from one component
to the other. This implies that there must be a path of flow channels in the
physical design that has a pressure source at the beginning and a waste outlet at
the end and goes through the two designated components in the correct order.
Components are allowed to be connected to themselves, so the netlist graph
may have loops.

An example netlist is shown is Figure 2.2. The netlist is tailored to execute the
example assay presented earlier in Figure 2.1. The netlist graph does not in any
way indicate what the physical layout of the biochip should be.
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Type Name Function Size Valves
Input - (5, 5) 1
Output - (5, 5) 1
Filter filter (120, 30) 2
Heater heat (40, 15) 2
Mixer mix (30, 30) 9
Detector detect (20, 20) 2
Separator separate (70, 20) 2
Metering - (30, 15) 6
Multiplexer - (30, 10) 2
Storage - (90, 30) 28
Switch - (1, 1) 3
SwitchI - (1, 1) 2
SwitchT - (1, 1) 3
SwicthX - (1, 1) 4

Table 2.1: The Component Library L used for this thesis.

input0

mixer0

mixer1

input1

input2

heater1

heater0

heater2

detector0

Figure 2.2: An example netlist graph.
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Name Limit
Filter ∞
Heater 3
Mixer 3
Detector 1
Separator ∞

Table 2.2: Example component constraints.

During the architectural synthesis, we will decide how many components should
be on the biochip as well as how they’re connected. To that end, we take a
set of resource constraints R which specify an upper limit on the number of
components of each type that should be on the chip. The resource constraints
define a mapping from component types to a limit of that component, R :M→
N. An example of resource constraints is shown in Table 2.2, which are also the
constraints used to generate the example netlist.



Chapter 3

Problem Formulation

In this thesis we will present methods to solve the problem of generating a
flow-based biochip architecture to run a biochemical application specified in a
high-level language. We will divide this problem into two subproblems:

1. The application model synthesis problem: Generate the application graph
for a biochemical assay written in the high-level protocol language.

2. The architectural synthesis problem: Generate the schematic design for a
biochip architecture to run the biochemical application.

The application model synthesis problem takes a biochemical assay written in
the high-level protocol language and derives an application graph G(O, E) as
per the biochemical application model. For example, we derive the application
graph shown in Figure 2.1 from the assay written in Listing 2.1. Our solution
to this subproblem is presented in chapter 4.

The application model synthesis gives rise to another subproblem which we will
also address. It is common in modern biochips that the mixer components take
exactly two units of fluids and mix them in one-to-one ratios, and we assume the
mixers in our component library to do the same. Since our high-level language
supports statements for mixing several fluids in arbitrary ratios, we will address
the problem of how to achieve mixing of fluids in arbitrary ratios using only one-
to-one mixer components. Under the assumption that all mixing operations are
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Figure 3.1: An application graph with mixing operations in one-to-one ratios.

in one-to-one ratios, an amended application graph for the assay in Listing 2.1 is
shown in Figure 3.1. We will describe the approach to solve the mixing problem
in section 4.3.

The architectural synthesis problem takes an application graph G(O, E), a com-
ponent library L(M,U) and a set of resource constraints R, and derives the
schematic design, or netlist N (C,P), of a biochip architecture which is suitable
to execute the biochemical application. The netlist shown in Figure 2.2 is gen-
erated from the application graph shown in Figure 2.1, the component library
shown in Table 2.1 and the resource constraints shown in Table 2.2. We will
present our solution to the architectural synthesis in chapter 5.

The biochemical assay, component library and resource constraints are the in-
puts to the system, and the application graph and architecture netlist are the
outputs.



Chapter 4

Application Model
Synthesis

In this chapter we will describe our solution to the application model synthesis
problem, i.e. how we parse an assay described in the high-level language to
derive an application graph as per the biochemical application model.

The strategy is to build a parser which will generate a parse tree from an as-
say written in the high-level language. We will then utilize the deterministic
property of the language to statically analyse the parse tree and derive all the
microfluidic operations and their dependencies. During the static analysis we
will apply a transformation to solve the mixing problem.

Parsers are generally divided into two major categories, depending on how they
parse the input. The two types are LL parsers, short for Left-to-right Leftmost
derivation, and LR parsers, for Left-to-right Rightmost derivation. Both types
of parsers are further divided into more specific categories and able to parse
different subsets of context-free languages. General parsing algorithms also exist
which can parse any context-free language. Whereas it is certainly possible
to build parsers from scratch, they are usually constructed automatically by a
parser generator. Parser generators, also known as compiler-compilers, are tools
which build parsers from a formal specification of the language they must parse,
usually described as a context-free grammar.
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For this project we considered a few different parser generators to build our
parser:

• ACCENT [ACC15] generates parsers implementing the Earley parsing al-
gorithm [Ear70] in C. This is a general parsing algorithm and thus AC-
CENT can generate parsers for any context-free language. The Earley
algorithm in general takes O(n3) time and O(n2) space where n is the size
of the parser’s input. However, these are upper-bounds and the algorithm
performs significantly better for many grammars.

• PLY (Python Lex-Yacc) [Lex15] is an implementation of the canonical
Lex and Yacc tools in Python, generating LALR(1) parsers (1-token Look-
Ahead LR). LALR(1) parsers are memory and time efficient, and parse a
fairly large subset of context-free languages. The parsing algorithm runs
in O(n) time and linear space in the size of the grammar. The parser
offers extensive error handling.

• ANTLR 4.5 [ANT15, Par13] generates parsers which use the ALL(*) pars-
ing algorithm [PHF14]. The ALL(*) parsing algorithm can handle any
context-free grammar which does not have left-recursion, and ANTLR
automatically rewrites direct left-recursive rules. As such, ANTLR can
generate parsers for any context-free language which is not inherently left-
recursive. The ALL(*) algorithm runs in O(n4) worst-case time, but per-
forms significantly better on many parser inputs.

To build the parser we decided on using ANTLR due to the fairly general parsing
algorithm, prior experience with LL(*) grammars which are very intuitive, and
the fact that ANTLR generates parsers in our desired programming language.
ANTLR takes a language specification as a context-free grammar in Extended
Backus-Naur Form and generates the source code for a lexer and parser for one
of a number of supported programming languages, in our case Python. The lexer
reads input and splits it up into tokens which it feeds the parser. The parser
generates a parse tree from the tokens if the input is valid syntax according to
the grammar. It also implements tree-walking functions to traverse the parse
tree to implement semantics.

An overview of our solution is shown in Figure 4.1. First we will give the formal
definition of the high-level language grammar and have ANTLR build a parser.
We then use the generated parser to build a parse tree for a high-level language
input and describe how we walk the parse tree to perform the static analysis and
extract the application graph. We will finally present the method to generate
the application graph such that it can be executed on architectures which use
one-to-one mixer components.
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Figure 4.1: Overview of solution to the application model synthesis problem.

4.1 High-Level Language Grammar

In section 2.1 we gave an informal description of our high-level language syntax
and semantics. In this section we will give the formal definition of the language
syntax expressed as a context-free grammar in Extended Backus-Naur Form, as
is the required input format for ANTLR.

A context-free grammar defines a context-free language by a set of terminal
symbols Σ, non-terminal symbols V , a starting symbol S, and a set of production
rules R. The production rules define a mapping from non-terminals into strings
of terminals and non-terminals: R : V → (Σ ∪ V )∗, where ∪ is the closure of
the symbol sets and ∗ is the Kleene star. We write a production rule as a left-
hand side which is the non-terminal, and a right-hand side which is the string
of terminals and non-terminals. A production rule specifies that its left-hand
non-terminal may be replaced by its right-hand string. The language defined
by a grammar consists of the set of all strings which can be constructed by
recursively applying production rules from the starting symbol until a string of
only terminals is reached.

Our high-level language is not a context-free language, since it includes context-
sensitive semantics such as the use of variables. However, we can use a context-
free grammar to initially verify the syntax of the language, and then later apply
logic to verify the semantics such as variable declaration before use and type-
checking.

4.1.1 Notation

When listing the grammar, we separate the left- and right-hand side of a produc-
tion rule with the ::= symbol and enclose every non-terminal in angled brackets
and each terminal in single quotes. Each production rule has one or more pro-
ductions, each alternative separated by a | operator. The | operator is the
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logical "or" operator and binds as loosely as possible, but may be bound tighter
by grouping string parts in parenthesis. When a production string is made from
several terminals and non-terminals, we separate each symbol with whitespace.
An example of a production rule with two alternatives, of which the second is a
string of two symbols, is:

〈production-rule〉 ::= ’terminal’
| 〈non-terminal〉 ’terminal’

The extension to Backus-Naur Form includes additional constructs which are
familiar to anyone who uses regular expressions; namely the "one-or-more" op-
erator +, the ("zero-or-more") Kleene star operator ∗, and the "one-or-zero"
operator ?. The operators specify that the string which they operate on may
be repeated the specified number of times. These operators bind as tightly as
possible, but parenthesis can be used to group the parts of the production string
which is the subject of the operators. The operators + and ∗ are greedy, mean-
ing they will consume as much input as can match the subject substring while
still allowing the entire input to match the grammar (if a matching exists).

4.1.2 Lexer Rules

The lexer has three explicit token rules along with an implicit rule for each of
the literal strings used in the grammar. Each lexer rule is specified as the token
name followed by a regular expression which defines the valid content of the
token type:

〈IDENTIFIER〉 ::= [a-zA-Z_][a-zA-Z0-9_]*

〈INTEGER〉 ::= ’-’?[0-9]+

〈WS 〉 ::= [ \t\r\n]+

The IDENTIFIER rule specifies the valid identifier names and the INTEGER
rule specifies valid integer literals.

The WS rule uses an ANTLR feature to suppress redundant whitespace char-
acter by sending them to the parser on a channel which indicates that they’re
not used. The first character in the WS character class is a literal space. This
effectively causes the language to ignore excess whitespace as desired.
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4.1.3 Parser rules

The starting symbol of the grammar is the assay non-terminal symbol. The
EOF symbol is a special ANTLR terminal which is the end of the input file.

〈assay〉 ::= ’ASSAY’ 〈IDENTIFIER〉 ’START’ 〈decls〉 〈stmts〉 ’END’ 〈EOF 〉

The syntax for declarations is as follows. Coupled with fluid and integer dec-
larations is a syntax definition for conflicts, which is an Aqua specific feature
that we do not implement. Information on the feature can be found in the Aqua
manual [Ami15] and papers.

〈decls〉 ::= (〈decl〉 ’;’)+

〈decl〉 ::= 〈fluid〉
| 〈input〉
| 〈var〉
| 〈conflict〉

〈fluid〉 ::= ’FLUID’ 〈IDENTIFIER〉 〈dimension〉* (’WASH’ 〈IDENTIFIER〉)?
(’PORT’ 〈INTEGER〉)?

〈input〉 ::= ’INPUT’ 〈IDENTIFIER〉 〈INTEGER〉?

〈var〉 ::= ’VAR’ 〈IDENTIFIER〉 〈dimension〉*

〈dimension〉 ::= ’[’ 〈INTEGER〉 ’]’

〈conflict〉 ::= ’CONFLICT’ 〈IDENTIFIER〉 (’FOLLOWS’ 〈IDENTIFIER〉 | ’,’
〈IDENTIFIER〉) (’WASH’ 〈IDENTIFIER〉)?

The syntax for the statements is as follows. The statements are again logi-
cally divided into control-flow statements (the control_stmt rule) and operation
statements (the stmt rule). A statement is allowed to produce the empty string,
which means that the empty statements is also a valid statement; this in turn
means that excess semicolons can be ignored as they represent a no-operation.
A consequence of this is that a valid assay can contain declarations and only
the empty statement one or more times, which makes little sense since it’s not
really an assay at all, but it would run on any architecture making it a trivial
problem.
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〈stmts〉 ::= (〈stmt〉 ’;’ | 〈control_stmt〉)+

〈control_stmt〉 ::= 〈repeat〉
| 〈for_loop〉

〈repeat〉 ::= ’REPEAT’ 〈expr〉 ’START’ 〈stmts〉 ’ENDREPEAT’

〈for_loop〉 ::= ’FOR’ 〈IDENTIFIER〉 ’FROM’ 〈expr〉 ’TO’ 〈expr〉 ’START’
〈stmts〉 ’ENDFOR’

〈stmt〉 ::= 〈assign〉
| 〈mix 〉
| 〈incubate〉
| 〈sense〉
| /* empty statement */

The assign statement handles assignment to both variable types, each is their
own alternative production of the rule.

〈assign〉 ::= 〈identifier〉 ’=’ (〈mix 〉 | 〈incubate〉)
| 〈identifier〉 ’=’ 〈expr〉

The syntax for each microfluidic operation statement is:

〈mix 〉 ::= ’MIX’ 〈identifier〉 (’AND’ 〈identifier〉)+ (’IN RATIOS’ 〈expr〉 (’:’
〈expr〉)+)? ’FOR’ 〈expr〉

〈incubate〉 ::= ’INCUBATE’ 〈identifier〉 ’AT’ 〈expr〉 ’FOR’ 〈expr〉

〈sense〉 ::= ’SENSE’ 〈sense_type〉 〈identifier〉 ’INTO’ 〈identifier〉

〈sense_type〉 ::= ’FLUORESCENCE’
| ’OPTICAL’

The order in which the expression alternatives are given is intentional and can-
not be changed without ruining the mathematical operator precedence. When
ambiguities in parsing arise, ANTLR chooses the alternative which is listed first;
this gives precedence to multiplication and division over addition and subtrac-
tion.
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〈expr〉 ::= 〈expr〉 (’*’ | ’/’) 〈expr〉
| 〈expr〉 (’+’ | ’-’) 〈expr〉
| ’(’ 〈expr〉 ’)’
| 〈identifier〉
| 〈INTEGER〉

〈identifier〉 ::= 〈IDENTIFIER〉 〈index 〉*

〈index 〉 ::= ’[’ 〈expr〉 ’]’

4.2 Generating the Application Graph

Using the above grammar, ANTLR generates a lexer and parser that can parse
our high-level language. The parser in turn generates a parse tree which rep-
resents the structure of the parsed assay. The parse tree has an internal node
for each non-terminal symbol derived and a leaf node for each terminal symbol.
The parse tree is equivalent to the assay code; if every leaf node is printed by
an in-order traversal of the parse tree, then the original assay code is printed
except discarded whitespace. An example parse tree for the high-level language
code example in Listing 2.1 is shown in Appendix A (due to its large size, it will
not fit on A4-paper).

To generate the application model from the parse tree, we start with an empty
application graph G. We then recursively walk through the parse tree by visiting
nodes, and for each visit performing appropriate actions such as modifying the
assay variables, adding operations and dependencies to G, and visiting other
nodes. The actions taken are determined by the node we’re visiting and the
context it is in, i.e. ancestors and descendants. The first node we visit is the
root node of the parse tree.

The root node of the parse tree is always an 〈assay〉 node, as this is the starting
symbol of the language grammar. When we visit this node we initialize the
empty application graph G(O, E) and set up two auxiliary functions Vi and Vf
to maintain the integer and fluid variables in the assay respectively. Vi and Vf
are functions which map variable names and indices into variable values;

Vi : var_name× index→ Z
Vf : var_name× index→ operation

where var_name is a string, and index is an Nd vector of dimension d ≥ 1.
The functions are initially undefined for every variable name and index except
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the it variable with the (1) index, reflecting that no variables are explicitly de-
clared. We then proceed to visit, from left-to-right, each descendant declaration
node 〈decl〉, followed by each statement node 〈stmt〉 or 〈control_stmt〉. The
〈assay〉 node and its immediate descendants in the parse tree are shown in the
following figure. The IDENTIFIER text value is stored as the assay name for
outputting later.

?assay?

IDENTIFIER ?decls? ?stmts?

?decl? ?decl? . . . ?stmt? . . .?control_stmt?

After every declaration and statement has been visited, the application graph
will have been constructed and G contains the application model corresponding
to the assay.

Since the entire parse tree of an assay can have many different structures, we
will show the different possible sub-trees of the parse tree separately and explain
the actions we take when we visit each sub-tree. We show internal nodes in sub-
trees as the non-terminal symbol name in angled brackets, and leaf nodes as
the terminal symbol name without angled brackets. We will omit nodes for any
literal symbols in the production rules which do not contribute to the semantic
actions taken for a particular sub-tree.

4.2.1 Declarations

During the visit of the 〈assay〉 node, all the descendant declarations are visited
in order. The sub-tree structure for declarations is shown in the following figure,
where there can be zero or more branches of dimensions. We will refer to the
value of the IDENTIFIER token as var_name as it represents the variable
name to be declared.
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?decl?

?fluid?/?var?

IDENTIFIER ?dimension?

INTEGER

. . .

?decl?

?input?

IDENTIFIER

If the visited declaration is a fluid or integer declaration, then the corresponding
integer or fluid function is defined for the given variable name and dimensions.
The function is initially defined to map to a special uninitialized value. Attempt-
ing to use the variable value before assignment is an error, and this special value
is used to recognize uninitialized variables. The parse tree structure for both
integer and fluid variable declarations is identical, and the only semantic dif-
ference is in which variable function values will be defined. If the dimensions
are omitted, then the (1) vector is assumed for the dimension. Formally, if
var_name is declared as a fluid with dimensions (n1, n2, ..., nd), then

Vf (var_name, (i1, i2, ..., id)) = uninitialized | ∀j ∈ [1, d] : 1 ≤ ij ≤ nj

is defined, and every other point with var_name is undefined. The same applies
for Vi if the declaration is for an integer variable.

If the visited declaration is an input declaration, then it is checked if the given
variable name is defined in Vf with a dimension of (1). If the variable name is
not defined, or if it has other dimensions, then it is illegal to declare the variable
an input and the assay is invalid. If the declaration is valid, then a vertex Oi

with weight 1 and type input is added to G, the variable name is marked as
an input, and Vf (var_name, (1)) = Oi is defined. When the variable name is
marked as an input, it is no longer legal to modify the value of the variable and
it will reference the input operation for the entire assay.

4.2.2 Expressions and Identifiers

Visiting expression and identifier nodes has no side-effects on the application
graph G, or variable functions Vi and Vf . Instead, visiting an expression node
returns the integer value which is represented by the descending sub-tree, and
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visiting an identifier node returns the identifier name and index represented by
the descending sub-tree.

The identifier tree is shown in the following figure. There can be zero or more
branches of 〈index〉 nodes. If no index nodes are present, then an index of (1)
is assumed. The 〈identifer〉 node returns a tuple containing the variable name
and index vector. The variable name is determined by the text value of the
IDENTIFIER token, and the index vector is the vector of values attained by
visiting all the descendant expression nodes in left-to-right order.

?identifier?

IDENTIFIER ?index? . . .

?expr?

Expression trees take one of four different forms and may be recursively nested:

?expr?

?expr? ?expr?operator

?expr?

?expr?( )

?expr?

?identifier?

?expr?

INTEGER

The simplest expression type is the fourth expression tree, representing a con-
stant expression. For this sub-tree, the integer value is directly returned.

The remaining three expression trees are recursively defined, and relies on the
base case of constant expressions to evaluate.

The first expression tree represents a binary arithmetic operator applied to two
integers represented as expressions. The operator is either addition, subtrac-
tion, multiplication, or integer division. These trees first visit their two child
expressions and then return the value of the arithmetic operator applied to the
two results.

The second expression tree is used to group other expressions by forcing spe-
cific parser interpretations due to the parenthesis. This expression tree directly
returns the value provided by visiting the child expression.

The third expression tree represents variable expressions. These expressions re-
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turn the value of the integer variable currently defined by Vi(var_name, index)
for the var_name and index obtained by visiting the child identifier node. If
Vi does not define a value for the variable name and index returned by the iden-
tifier node, or if the returned value is the uninitialized value, then the assay is
invalid.

4.2.3 Assignments

Integer variables can be assigned to results of expressions, and fluid variables
can be assigned the result of mix or incubate operations. When visiting an
〈assign〉 node, we will redefine the value of Vi or Vf for a specific variable name
and index. The three sub-trees for these assignments are shown in the figure
below.

?assign?

?identifier? ?expr?

?assign?

?identifier? ?mix?

?assign?

?identifier? ?incubate?

?stmt? ?stmt? ?stmt?

The first sub-tree is for integer variable assignments. First the 〈identifier〉 node
is visited to determine the variable name var_name and index. If Vi(var_name, index)
is undefined, then the variable has not been declared and the assay is invalid.
Otherwise, we visit the 〈expr〉 node and redefine Vi(var_name, index) to be
the expression’s returned integer value.

The two next sub-trees are for fluid variable assignments. The var_name and
index is determined by visiting the 〈identifier〉 node and if Vf (var_name, index)
is undefined or marked as an input then the assay is again invalid. Otherwise
we visit the 〈mix〉 or 〈incubate〉 node, which will return an operation Oi. We
then redefine Vf (var_name, index) = Oi.

4.2.4 Control Flow Statements

The control flow statements come in two variants, but they are handled in much
the same way. The statements implement looping semantics for their child
statements. The structure of the sub-trees are shown in the figure below.
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?control_stmt?

?repeat?

?expr? ?stmts?

?control_stmt?

?for_loop?

IDENTIFIER ?stmts??expr? ?expr?

?stmt? ?control_stmt? . . . ?stmt? ?control_stmt? . . .

Common to both is that they have a 〈stmts〉 node with a sequence of 〈stmt〉
and 〈control_stmt〉 child nodes that they will repeatedly visit.

For the 〈repeat〉 node we will first visit the 〈expr〉 node to determine how many
times the child statements must be repeated, and then we will visit all child
statement the given number of times.

For the 〈for_loop〉 node, we will first visit the two expressions to determine the
from and to values of the iteration variable var_name given by the IDENTIFIER
token value. For each integer value x ∈ [from, to], we define Vi(var_name, (1)) =
x and visit all the child statements. It is assumed that the variable name given
by the IDENTIFIER token has been declared with (1) as the dimension. If
this is not the case the assay to be invalid.

4.2.5 Operation Statements

For the operation statement nodes we will be adding vertices and edges to the
application graph G. Each operation node will initially add a single vertex to the
application graph, and one or more edges. To determine the dependencies of an
operation, and thus which edges need to be added, we will use Vf to determine
the operations that each involved fluid variable were generated by.

The structure of the sub-trees for the three operation statements is shown below.
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?stmt?

?mix?

?identifier? . . . ?expr? . . . ?expr?

?stmt?

?incubate?

?identifier? ?expr? ?expr?

?stmt?

?sense?

?sense_type? ?identifier? ?identifer?

The first sub-tree is for the mix operation. There are two or more 〈identifier〉
child nodes which represent the fluid variables to be mixed. Then there are an
equal number of 〈expr〉 nodes which define the ratios of the mixing, and finally a
last 〈expr〉 node which is the duration of the mixing operation. If there are not
an equal number of 〈identifier〉 and 〈expr〉 nodes plus the final 〈expr〉 node,
then ratios have not been specified for all fluids and the assay is invalid. The
only exception to this is if there is exactly one 〈expr〉 node, in which case the
ratios have been omitted entirely and we assume the fluids are mixed in equal
ratios.

When visiting a 〈mix〉 node, we first determine the fluids that are used in the
operation by visiting the 〈identifier〉 child nodes and for each var_name and
index returned add the Vf (var_name, index) operation to a list F . If any
Vf (var_name, index) is undefined or set to the uninitialized value, then the
assay is invalid. We then visit the following 〈expr〉 nodes to get the mixing
ratios and add these to a list R, and visit the final 〈expr〉 node to determine the
mixing duration c. We finally add a new vertex Oi to G with weight c and for
each operation Oj ∈ F add a directed edge (Oj , Oi) to G. We set Vf (it, (1)) = Oi

to refer to the result of the last operation, which was the added mix operation.

The next sub-tree is for the incubate operation. An 〈incubate〉 node has three
relevant children; first is the 〈identifier〉 node which specifies the fluid variable
(var_name, index) to incubate, next are two 〈expr〉 nodes which are the tem-
perature t to incubate at and the duration c of incubation respectively. After
visiting the three child nodes, a new vertex Oi with weight c and an edge (Oj , Oi)
is added to G where Oj = Vf (var_name, index). We finally set Vf (it, (1)) = Oi.
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The last sub-tree is for the sense operation. First the sense type is determined
by inspecting the text value of the 〈sense_type〉 node, then the fluid variable
(var_name, index) is determined by visiting the first 〈identifier〉 node. A
vertex Oi for the sense operation is added to G and an edge (Oj , Oi) where
Oj = Vf (var_name, index) is added as well. Due to the undefined semantics
of the operation, we do not modify the value of the integer variable to store the
result, which could also only occur at runtime.

The biochemical application model currently does not capture any details of
operations other than the execution time and involved fluids. Therefore the
temperature of the incubation and the type of sensor ends up being discarded,
which is obviously unintended. This warrants a revision of the biochemical
application model to account for different kinds of operations which require
capturing different details, but we consider a revision of the system model to be
out of scope of this thesis and will leave it for future work.

4.3 Solving the Mixing Problem

When we visited the 〈mix〉 node we added a single vertex to the application
graph and several edges to it. We do this under the assumption that a mixer
component is available which can carry out the operation directly. However,
as stated in the problem formulation, it is not common to have a component
capable of handling arbitrary mixing ratios of any number of fluids, and so we
need another way to achieve the mixing operation. The most common mixer
component is a one-to-one mixer which takes two units of fluids and mixes them
in even ratios. In this section we will describe an efficient mixing algorithm
which determines how to cascade one-to-one mixing operations to achieve a
mixture of several fluids in specified ratios. We will use this algorithm to add
vertices and edges to the application graph necessary to allow architectures to
execute the application with one-to-one mixer components.

First we will note that not every set of ratios for a mixture can be achieved when
using one-to-one mixers. In particular, if the constituent fluids of a mixture are
in ratios (r1, r2, ..., rn) ∈ Nn, then the mixture can be achieved using one-to-
one mixers if and only if the total sum of the ratios is a power of two, i.e.
∃x : 2x =

∑
i=1..n ri. If the ratios do not sum up to a power of two, then no

number of one-to-one mixes can achieve a mixture with the desired ratios. If a
mixture is unreachable, then the ratios can be approximated by increasing or
decreasing the relative ratios of the constituent fluids until the ratios sum to a
power of two. This introduces an error in the ratios of the final mixture, but
the error can be made arbitrarily small at the cost of using more intermediate
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mixing operations.

Our approach to approximate a set of reachable ratios (a1, a2, ..., an) from a set
of unreachable ratios (r1, r2, ..., rn) is to first determine a target power of two
X which we want the approximated ratios to sum up to. The larger a power
of two we choose, the smaller the approximation errors will be, but the more
mixes are required. If the total sum of the desired ratios is R =

∑
i=1..n ri,

then a simple target choice X is the smallest power of two greater than R, i.e.
X = 2dlog2 Re. Upon choosing an X, we multiply each ratio by X

R , which will
cause the ratios to no longer be integers but now sum up to X which is a power
of two. To bring the ratios back into integers, we round each ratio to the nearest
integer. This in turn might cause the ratios to no longer sum up to X, since
each rounding introduces an error −0.5 ≤ ei ≤ 0.5. If the rounded ratios now
sum up to A, then we determine by how much we’re off the target as δ = A−X.
If δ = 0, then the rounded ratios sum to a power of two, namely X, and we use
these ratios to approximate the desired mixture. If δ > 0, then we choose the |δ|
ratios with largest positive rounding errors ei and decrease each of these ratios by
one. Otherwise if δ < 0 we choose the |δ| largest negative rounding errors ei and
increase each of those ratios by one. This brings the sum of approximated ratios
back to X and now every ratio is an integer. We use these ratios to approximate
the desired mixture ratios. Pseudocode for the ratio approximation algorithm
is shown in Algorithm 1. The algorithm takes O(n2) time since δ < n and
determining i takes O(n) time with a naive implementation.

Algorithm 1 Ratio Approximation Algorithm.
Input: Unreachable ratios (r1, r2, ..., rn).
Output: Reachable approximation (a1, a2, ..., an).
1: R :=

∑
ri

2: X := 2dlog2 Re

3: (x1, x2, ..., xn) := (X
R · r1,

X
R · r2, ...,

X
R · rn)

4: (a1, a2, ..., an) := (bx1e, bx2e, ..., bxne)
5: (e1, e2, ..., en) := (a1 − x1, a2 − x2, ..., an − xn)
6: A :=

∑
ai

7: δ := A−X
8: while δ > 0 do
9: Choose i such that ei = max{e1, e2, ..., en}.

10: Decrement ai, ei and δ by 1.
11: end while
12: while δ < 0 do
13: Choose i such that ei = min{e1, e2, ..., en}.
14: Increment ai, ei and δ by 1.
15: end while
16: return (a1, a2, ..., an)
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For example, the ratios (2, 5, 6) are unreachable as R = 13. To approximate a
reachable set of ratios, we can choose X = 16, and multiply each ratio by X

R =
1.23 giving ratios (2.46, 6.15, 7.38). Rounding these to the nearest integers gives
(2, 6, 7) with rounding errors (−0.46,−0.15,−0.38). Now A = 15, so δ = −1.
We then choose the (one) ratio with the largest negative rounding error, being
−0.46, and increase that ratio by one, giving (3, 6, 7) which are reachable ratios
that approximate the desired ratios with a deviation of (21.9%,−2.5%,−5.2%)
from the desired relative ratios. The deviation is calculated as the percentile
deviation between the desired ratio ri

R compared to the approximated ratio xi

X . If
we increase our choice ofX by three (binary) orders of magnitude,X = 128, then
we get the approximated ratios (20, 49, 59) deviating by (1.6%,−0.5%,−0.1%)
from the desired ratios, which is a notably smaller deviation.

The mixing algorithm we use is the Min-Mix Algorithm presented in [TUTA06].
Pseudocode for the algorithm is shown in Algorithm 2. The algorithm takes
as input the desired mixture as a set of input fluids (f1, f2, ..., fn) in reachable
ratios (r1, r2, ..., rn) and outputs a mixing tree to achieve the desired mixture.
For one-to-one mixing, the mixing tree is a binary tree where the leaves are
input fluids and internal nodes are mixtures obtained by mixing its two child
nodes. The root node is the desired final mixture. When two fluids are mixed it
is assumed that half of the resulting mixture fluid is discarded, thus producing
only one unit of mixed fluid. Under this assumption the algorithm is optimal
with respect to the number of mixes required to reach the desired mixture.

The construction of the mixing tree relies on the observation that each time a
fluid is mixed, its contribution to the final mixture is halved. This implies that
an input fluid at depth d in the mixing tree constitutes 2−d parts of the final
mixture. The algorithm uses this to determine for each fi at what levels in the
mixing tree it must have a leaf node to contribute the ratio ri. This is decided
by inspecting the binary representation of the ratio ri. For each ordinal position
p of a 1-bit in ri, the fluid fi gets a leaf node at depth p in the mixing tree.
After determining all the leaves of the mixing tree, the algorithm connects the
leaves with internal nodes to complete the tree. If the desired ratios are not
reachable, the leaves can not be connected into a binary tree.

The Min-Mix algorithm runs in O(n log2R) time, where n is the number of input
fluids and R is the sum of the desired ratios. An upper bound on the number
of nodes in the mixing tree is necessarily the same. The higher the sum R of
the ratios is, the longer the algorithm takes and the larger the mixing trees can
become. Our approximation algorithm improves in accuracy by exponentially
increasing the sum of ratios, so each step of increase in accuracy results in a
linear increase of Min-Mix runtime and mixing tree sizes due to the logarithmic
scaling with R. This supports that arbitrary accuracy can be efficiently achieved
in terms of execution time and application graph size.
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The generated mixing tree is equivalent to a sequencing graph of mix operations
that must be carried out from the inputs in order to achieve the desired mixture,
so this graph can be directly inserted into G when visiting a 〈mix〉 node to allow
the application to be executed on architectures with one-to-one mixers.

Algorithm 2 Min-Mix Algorithm.
Input: Fluids (f1, f2, ..., fn) and reachable ratios (r1, r2, ..., rn).
Output: A mixing tree for the desired mixture.
1: function Min-Mix((f1, f2, ..., fn), (r1, r2, ..., rn))
2: depth := log2(

∑
ri)

3: bins := new stack[depth+ 1]
4: for i = 1..n do
5: for j = 1..depth do
6: if the jth bit in ri is 1 then
7: Push fi on bins[j].
8: end if
9: end for

10: end for
11: return Build-Mixing-Tree(bins, depth)
12: end function
13: function Build-Mixing-Tree(bins, depth)
14: if bins[depth] is empty then
15: c1 := Build-Mixing-Tree(bins, depth− 1)
16: c2 := Build-Mixing-Tree(bins, depth− 1)
17: Add internal node v to mixing tree.
18: Add edges (c1, v) and (c2, v) to mixing tree.
19: return v
20: else
21: Pop v from bins[depth].
22: Add leaf node v to mixing tree.
23: return v
24: end if
25: end function

Two mixing trees are shown in Figure 4.2. Both trees are for a mixing of ratio
(2, 5, 6) after it has been approximated to (3, 6, 7) (left) and (20, 49, 59) (right).
We note that even though the sums of ratios are orders of magnitude apart, the
mixing trees are still comparable in size.
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Figure 4.2: Mixing trees for approximations of (2, 5, 6) ratios. The left tree is
for approximation (3, 6, 7) and the right tree is for approximation
(20, 49, 59).



Chapter 5

Architectural Synthesis

In this chapter we will describe our solution to the architectural synthesis prob-
lem. Given an application graph G(O, E), component library L(M,U) and re-
source constraints R we will derive a netlist N (C,P) for a biochip architecture
with components from the component library while respecting the resource con-
straints.

Architectural synthesis is a well-known problem in high-level synthesis for elec-
tronics and several solutions to the problem exist. Strictly speaking, architec-
tural synthesis spans a larger problem than the one we presented in chapter 3.
In addition to deciding the allocation and schematic design for the biochip ar-
chitecture, the physical placement and routing is also part of the architectural
synthesis. Since the solutions to both subproblems are fairly involved, we will
focus on a solution to the first subproblem. Thus, when we write ’architectural
synthesis’, we refer to the allocation and schematic design subproblem. The ar-
chitectural synthesis problem is known to be NP-hard in general, and therefore
no efficient and optimal algorithms are known. Instead, the problem is decom-
posed into simpler subproblems and heuristic algorithms are used to solve the
problem.

Our solution to the problem for biochips is based on the solutions to the problem
in the electronics domain provided in [Mic94]. We will focus on optimizing the
latency, or execution time, of the application, which will be a trade-off of the
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chip size. We assume the chip size to be dominated by the allocated components
on the chip, and so the resource constraints is the deciding parameter for the
chip size. Since the constraints are an input, the design space can be explored
by fiddling with the constraints to search for an acceptable solution in both
biochip size and application execution time. Since the biochip size is decided
by the input, we can narrow our focus to generating an architecture which
minimizes the execution time of the application without trying to optimize the
chip size. To solve the architectural synthesis problem we will first decide the
allocation, and then decide the schematic design.

5.1 Allocation

The allocation decides how many of each component from the component li-
brary is to be placed on the biochip while ensuring that the given constraints
are not exceeded. We will solve this problem by deciding a preliminary binding
and scheduling of the application graph. The binding defines for each operation
which component it must be executed on and the scheduling defines when the
operation must be executed. If two operations are bound to the same compo-
nent, then their schedules may not overlap. Since we are prior to the actual
routing and placement phase of the architectural synthesis, we do not yet know
the routing delays between components and a generated binding and schedule
will not be valid on the final architecture. We use the binding and scheduling
as a heuristic to estimate an efficient allocation and schematic design.

To perform the binding and scheduling while trying to minimize the application
execution time, we will use a resource-constrained list-based scheduling algo-
rithm. During the scheduling we will greedily allocate more components so long
as operations are ready to be executed and the resource constraints are not
exceeded for the corresponding component types.

Pseudocode for our list scheduling algorithm is shown in Algorithm 3. The
algorithm takes as input the application graph G and the resource constraints
R, and outputs a scheduled and bound application graph as well as an allocation.
First we determine an urgency criteria for each operation Oi in G. We use the
weight of the longest path from Oi to the sink node as the urgency criteria. This
can easily be calculated by topologically sorting the operations in the application
graph and then using a DAG longest path algorithm. Next, we start at time
t = 0 and for this and every following time step we determine a list of ready
operations and bind and schedule as many as possible. When deciding which
operations to bind and schedule first, we choose the most urgent operations and
check if components are available to execute them. We define a component to
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be available if the starting time plus duration of the last operation bound to
the component is less than or equal to the current time step. If a component
is available, the operation is bound to the component and scheduled to start
at the current time step. If no component is available for a ready operation,
then we will allocate a new component if the allocated number of components
then does not exceed the given constraints. If an operation is ready, but no
allocated component is available and the maximum number of this component
is already allocated, then we will do nothing for the operation until a later
time step when more components have become available. The next time step
is determined as the next time where a scheduled operation finishes, as this is
the next earliest point in time where more components become available. The
algorithm is finished when every operation has been bound and scheduled. The
allocated components as well the as an application graph with annotated start
times and bindings is returned.

Algorithm 3 Resource-Constrained List-Scheduling.
Input: An application graph G(O, E) and constraints R.
Output: An allocation C and binding and schedule of G.
1: Calculate urgency of each operation as longest path to sink
2: Set time t := 0
3: repeat
4: Determine sorted list L of ready operations by descending urgency
5: for all opr ∈ L do
6: if an allocated component c of type opr is available then
7: Bind opr to c with starting time t
8: else if allocated components of type opr less than constraint then
9: Allocate a new component c of type opr

10: Bind opr to c with starting time t
11: else
12: Do nothing for operation
13: end if
14: end for
15: Set t to the time of the next finished operation
16: until all operations are scheduled.

Running the list scheduling algorithm on the application graph shown in Fig-
ure 3.1 with the constraints in Table 2.2, yields the allocation shown in Table 5.1
and the bound and scheduled application graph shown in Figure 5.1.
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Component Allocated
Input 3
Heater 3
Detector 1
Mixer 2

Table 5.1: Number of components allocated by list-based scheduling algo-
rithm.
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Figure 5.1: A bound and scheduled application graph.
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5.2 Schematic Design

After deriving an allocation and preliminary binding, we can now derive the
schematic design of the biochip architecture. The allocation already determines
the components C of the netlist N (C,P), so we just need to figure out the
required interconnections P of the components. We can derive these from the
bound application graph G(O, E), as an interconnection of two components ci
and cj is required exactly if two operations Ox and Oy are bound to ci and cj
respectively and an edge (Ox, Oy) exists in G. If we denote the binding of an
operation Ox as β(Ox), then we can define the set of component interconnections
as

P = {(ci, cj)|(Ox, Oy) ∈ E ∧ β(Ox) = ci ∧ β(Oy) = cj}

Pseudocode for a simple algorithm to generate the set P is shown in Algorithm 4.
The algorithm loops over every edge in the bound application graph and then
adds an edge to P for the corresponding interconnection if it is not in P already.

Algorithm 4 Schematic Design.
Input: A bound application graph G(O, E) and set of components C.
Output: A set of components interconnections P.
1: P = empty set
2: for all (Ox, Oy) ∈ E do
3: p = (β(Ox), β(Oy))
4: if p /∈ P then
5: Add p to P
6: end if
7: end for
8: return P

The schematic design derived by the given algorithm for the allocation in Ta-
ble 5.1 and bound application graph in Figure 5.1 is shown in Figure 5.2. The
derived biochip architecture is designed to execute the assay that we first gave
in Listing 2.1 using one-to-one mixer components.
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Figure 5.2: Schematic design of a biochip to run the assay in Listing 2.1.



Chapter 6

Implementation and Results

In this chapter we will describe our implementations of the proposed solutions
as well as the results we get on a set of test assays.

6.1 Implementation

Our synthesis tool is implemented in Python 3.4 with ANTLR 4.5. The tool
requires the ANTLR Python Runtime for Python 3 to be installed in the users
python distribution. In most distributions it can be installed by running the
command:

pip install antlr4-python3-runtime

The tool consists of the following files:

README.txt
main.py
assays/

complex_mix.aq
enzyme_test.aq
example.aq
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glucose_test.aq
simple_mix.aq

biochip/
Application.py
Architecture.py
Component.py
ComponentLibrary.py
Operation.py

parsing/
Aqua.tokens
AquaAssayVisitor.py
AquaException.py
AquaLexer.py
AquaLexer.tokens
AquaParser.py
AquaVisitor.py

synthesis/
Allocator.py
Scheduler.py

The files in assays/ are the Aqua assays used in testing.
The files in biochip/ implement the system model as described in chapter 2.
The files in parsing/ implement the Aqua parser as described in chapter 4.
The files in synthesis/ implement the architectural synthesis described in chap-
ter 5.

The main entry point is the main.py file. The instructions to run the tool are
specified in README.txt. The tool is invoked from the command line by the
command:

main.py [-h] -a aqua_file -l library_file -c constraints_file
[-x mix_accuracy]

If the -h flag is present, then the tool shows a help message displaying the usage
of the tool and exits.

Otherwise, the three flags -a aqua_file, -l library_file, and -c constraints_file
must be specified. The aqua_file argument must be a path to an assay in Aqua
or JSON, the library_file argument must point to a library file in XML, and
the constraints_file must be the path to a set of constraints in JSON. If the
-x flag is specified with an integer argument, then the accuracy of mixing ratio
approximation is increased by exponentially increasing the sum of ratios for the
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approximation by the argument. If -x is omitted, the approximation algorithm
uses the smallest power of two larger than the sum of ratios.

The syntax for the Aqua file is specified in section 2.1. If the file is in JSON
format, then it is assumed to represent the application model and the parsing
step is skipped and the application model is loaded directly.

The tool generates the following files in the folder of the Aqua file:

/application/<aqua_file>.dot
/application/<aqua_file>.json
/architecture/<aqua_file>.dot
/architecture/<aqua_file>.json
/scheduled/<aqua_file>.dot

where <aqua_file> is the file name without extension of the Aqua file given by
the -a flag.

The generated JSON files encode the application model and the netlist according
to the format proposed in [McD]. The generated DOT files are in the Graphviz
[Gra15] format and can be visualised using the Graphviz software. The files in
/application/ and /scheduled/ are intended to be visualised with the dot
tool, and the files in /architecture/ with the neato tool:

dot -Tpdf -O application/<aqua_file>.dot
dot -Tpdf -O scheduled/<aqua_file>.dot
neato -Tpdf -O architecture/<aqua_file>.dot

6.2 Results

We have tested our solutions on five different assays. Two of the assay are from
the Aqua language manual and the rest are synthetic examples. The two assay
from the Aqua language manual are the enzyme test and the glucose test. The
assays are listed in Appendix B, the generated application graphs in Appendix C
and architecture netlists in Appendix D. The netlists have been generated using
the component library shown in Table 2.1 and constraints in Table 2.2.

The assays’ code line counts, total time for parsing and synthesis, and applica-
tion model operation counts are shown in Table 6.1. The majority of the time
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Assay Lines Total time (seconds) Operations
simple_mix 10 0.10 3
complex_mix 11 0.10 9
example 24 0.17 17
enzyme_test 57 0.39 326
glucose_test 30 0.19 17

Table 6.1: Statistics of test assay synthesis.

-x Approximation Errors Operations
0 [3, 6, 7] [21.9, -2.5, -5.2]% 9
1 [5, 12, 15] [1.6, -2.5, 1.6]% 10
2 [10, 25, 29] [1.6, 1.6, -1.8]% 11
3 [20, 49, 59] [1.6, -0.5, -0.1]% 12
4 [39, 99, 118] [-1.0, 0.5, -0.1]% 15
5 [79, 197, 236] [0.3, 0.0, -0.1]% 16

Table 6.2: Results of ratio approximation algorithm for increasing accuracies.

for the assays is spent in the ANTLR runtime to build the parse tree for input
Aqua code. The enzyme test assay shows that Aqua is useful for expressing
large assays with many operations compactly and that the synthesis is fast even
for large application graphs.

It is difficult to determine a meaningful metric for how well the generated netlists
can execute the assays. Execution time would be the most interesting metric,
but to measure the execution time, the placement and routing is required and
the application graph must be scheduled on the complete architecture. At that
time, the performance of solutions to the two other major problems will affect
the execution time, and it is hard to conclude on the performance of just the
allocation and schematic design. For the same reason, fiddling with constraints
at this point will not give insight into the performance of out solution.

The ratio approximation algorithm has been tested on the complex mix assay
for varying values of the -x flag. The results are shown in Table 6.2. The
parsing time was 0.02 seconds for all approximations and the target mixing
ratios are (2, 5, 6). We see that the errors reduce drastically at first then slowly
converge towards zero while the number of operations required for the mixing
scales linearly. This support the claim that mixing ratios can be approximated
arbitrarily well.



Chapter 7

Conclusion and Future
Work

In this chapter we will conclude on our proposed solutions and present future
work in relation to the seen problems.

7.1 Conclusion

This thesis presents and solves two problems of high-level synthesis of biochips.
First is the application model synthesis problem, where an application model
must be derived from a representation of a biochemical application in a high-
level language. Second is the architectural synthesis problem of deriving a netlist
for an application-specific biochip architecture from the application model, a
component library, and a set of resource constraints.

For the application model synthesis we use Aqua as the representation of bio-
chemical applications. We provide a formal definition of the language in the
form of a context-free grammar and use this grammar with ANTLR4 to gener-
ate a parser for Aqua. The parser generates a parse tree from an input assay,
and we use the deterministic property of Aqua to traverse the parse tree and
derive an application graph according to the application model.
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During the application model synthesis we also address the mixing problem of
how to achieve a mixture of any number of fluids in given ratios using only
one-to-one mixer components. As not every mixture ratio is reachable using
one-to-one mixers, we present an algorithm to determine reachable ratios which
approximate the desired ratios. The algorithm can increase the approximation
accuracy at the cost of more required mixing operations. When we have a set
of reachable ratios, we use the Min-Mix algorithm to decide how to cascade
one-to-one mixing operations to achieve a mixture of the target ratios.

For the architectural synthesis we propose a resource-constrained list-based
scheduling algorithm to derive a preliminary binding and scheduling of an ap-
plication graph as well as an allocation of biochip components. We use the
allocation, binding, and application model to derive the required interconnec-
tions of the allocated components which gives the desired netlist.

An implementation of the proposed solutions is provided to solve both prob-
lems. The proposed solutions are tested on five assays written in Aqua which
shows that the synthesis is feasible for large size applications. The generated
application models and derived architectures are provided. The mixing ratio
approximation algorithm is tested for different levels of accuracy which shows
that it scales well.

7.2 Future Work

In conventional electronics, the result of an operation can be used arbitrarily
often since it is stored in a register which can be read multiple times while
retaining its value. In biochips however, once a unit of fluid is used in an
operation, the original fluid no longer exists, so other operations that require a
unit of the same fluid may no longer have access to it. This gives rise to problems
when the result of an operation is required by more following operations than
the actual yield of the first operations. An example of the problem is seen in
Figure 3.1, where executing O9 on a one-to-one mixer takes two units of fluids
and results in two units of mixed fluid. However, the result is required by the
four following operations O10, O12, O14 and O16, requiring a total of four units of
mixed fluid. Solving this fluid volume management problem requires knowledge
of both the application and the architecture which it must run on.

A possible solution is to assume that operations use and yield predetermined
volumes and then adapt the application model accordingly. Another solution is
to adapt the application model when doing the final scheduling, since then both
the application and architecture are known. The first solution is sub-optimal
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because it imposes assumptions and restrictions on the biochip architecture in
the application model. The second solution is also sub-optimal, since synthesis
of a biochip architecture is then reliant on a non-final application graph which
can change drastically (c.f. the mixing problem).

This issue was considered during the work on the application model synthesis in
this thesis, but no sound solution was obvious and the problem is left for future
work.

Another problem encountered in the application model synthesis is the lack of
detail in the application model. The model does not capture intrinsic details of
different operations and a refinement of the application model could be future
work.
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Appendix A

Example Parse Tree



4

;

sense_type

f1

f4

INTO

stmt

TOf2

75

AND expr

sense

v2 identifier

it

INPUT

;

:

f2

;

incubatef1

index

fluid

decl

30

v2

stmt

identifier

START

f4

;

30

identifier

1

identifier

;

INPUT

stmts

identifier

decl

identifier

for_loop

:

OPTICAL

fluid

identifier

decl

IN RATIOS

AND

; stmtdecl

STARTexpr

INCUBATE identifier

control_stmt

expr

MIX

expr

*

stmt

;

3 60 ;

decl

expr

assign

v1

;

f3

f2

END

fluid mix

=

]

VAR FROM

expr

it

FOR

fluid

7

f1

15

1

SENSEFOR

sense

stmts

input_

assay

var

f1

expr

<EOF>

4

SENSE

15

identifier

AT

input_

v2

;

identifier

mixf3

sense_type

VAR

stmtFLUORESCENCE

expr

identifier

v3

expr

;decl

INCUBATE

expr

var

f3

input_

MIX

stmt

INTO

;

FLUID

FOR

ANDv3 dimension expr

it ;

]

identifier

INPUTv1

expr

FLUID

decl

[

FOR

;

ASSAY

FLUID f2

example

incubatevar

f4

;

VAR v2FLUID

expr

;

decls

decl

[

decl

identifierAT FORidentifier

decl

expr ENDFOR



Appendix B

Aqua Assays

B.1 Simple Mix

1 ASSAY simple_mix START
2 FLUID fluid1;
3 FLUID fluid2;
4 FLUID fluid3;
5
6 INPUT fluid1;
7 INPUT fluid2;
8
9 fluid3 = MIX fluid1 AND fluid2 IN RATIOS 1 : 1 FOR 10;
10 END

B.2 Complex Mix

1 ASSAY complex_mix START
2 FLUID a;
3 FLUID b;
4 FLUID c;
5
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6 INPUT a;
7 INPUT b;
8 INPUT c;
9
10 MIX a AND b AND c IN RATIOS 2 : 5 : 6 FOR 10;
11 END

B.3 Example

1 ASSAY example START
2 FLUID f1;
3 FLUID f2;
4 FLUID f3;
5 FLUID f4;
6
7 VAR v1;
8 VAR v2;
9 VAR v3[4];
10
11 INPUT f1;
12 INPUT f2;
13 INPUT f3;
14
15 MIX f1 AND f2 AND f3 IN RATIOS 1 : 3 : 7 FOR 60;
16 INCUBATE it AT 75 FOR 15;
17 SENSE FLUORESCENCE it INTO v1;
18
19 f4 = MIX f1 AND f2 FOR 30;
20 FOR v2 FROM 1 TO 4 START
21 INCUBATE f4 AT 15∗v2 FOR 30;
22 SENSE OPTICAL it INTO v3[v2];
23 ENDFOR
24 END

B.4 Enzyme Test

1 ASSAY enzyme_test START
2 VAR inhibitor_diluent;
3 VAR enzyme_diluent;
4 VAR substrate_diluent;
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5
6 FLUID Diluted_Inhibitor[4];
7 FLUID Diluted_Enzyme[4];
8 FLUID Diluted_Substrate[4];
9 FLUID inhibitor;
10 FLUID enzyme;
11 FLUID diluent;
12 FLUID substrate;
13 FLUID temp[4][4][4];
14
15 VAR i;
16 VAR j;
17 VAR k;
18 VAR RESULT[4][4][4];
19
20 INPUT inhibitor;
21 INPUT enzyme;
22 INPUT diluent;
23 INPUT substrate;
24
25 inhibitor_diluent = 1;
26 enzyme_diluent = 1;
27 substrate_diluent = 1;
28
29 FOR i FROM 1 TO 4 START
30 Diluted_Inhibitor[i] = MIX inhibitor AND diluent IN RATIOS
31 1 : inhibitor_diluent FOR 30;
32 inhibitor_diluent = inhibitor_diluent ∗ 10;
33 ENDFOR
34
35 FOR i FROM 1 TO 4 START
36 Diluted_Enzyme[i] = MIX enzyme AND diluent IN RATIOS
37 1 : enzyme_diluent FOR 30;
38 enzyme_diluent = enzyme_diluent ∗ 10;
39 ENDFOR
40
41 FOR i FROM 1 TO 4 START
42 Diluted_Substrate[i] = MIX substrate AND diluent IN RATIOS
43 1 : substrate_diluent FOR 30;
44 substrate_diluent = substrate_diluent ∗ 10;
45 ENDFOR
46
47 FOR i FROM 1 TO 4 START
48 FOR j FROM 1 TO 4 START
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49 FOR k FROM 1 TO 4 START
50 MIX Diluted_Inhibitor[i] AND Diluted_Enzyme[j]
51 AND Diluted_Substrate[k] FOR 60;
52 INCUBATE it AT 37 FOR 300;
53 SENSE OPTICAL it INTO RESULT[i][j][k];
54 ENDFOR
55 ENDFOR
56 ENDFOR
57 END

B.5 Glucose Test

1 ASSAY glucose_test START
2 FLUID Glucose WASH soap;
3 FLUID Reagent;
4 FLUID Sample;
5 FLUID a;
6 FLUID b;
7 FLUID c WASH h;
8 FLUID d WASH w;
9 FLUID e WASH x;
10 VAR Result[5];
11
12 INPUT Glucose;
13 INPUT Reagent 100;
14 INPUT Sample 120;
15
16 a = MIX Glucose AND Reagent IN RATIOS 1 : 1 FOR 10;
17 SENSE OPTICAL it INTO Result[1];
18
19 b = MIX Glucose AND Reagent IN RATIOS 1 : 2 FOR 10;
20 SENSE OPTICAL it INTO Result[2];
21
22 c = MIX Glucose AND Reagent IN RATIOS 1 : 4 FOR 10;
23 SENSE OPTICAL it INTO Result[3];
24
25 d = MIX Glucose AND Reagent IN RATIOS 1 : 8 FOR 10;
26 SENSE OPTICAL it INTO Result[4];
27
28 e = MIX Sample AND Reagent IN RATIOS 1 : 1 FOR 10;
29 SENSE OPTICAL it INTO Result[5];
30 END
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C.2 Complex Mix
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D.4 Enzyme Test
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