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Introduction

● Flow-based microfluidic biochips.
● Design methodology:

● Full-custom bottom-up.
● Top-down by Minhass.

● My focus:
● Application model synthesis.
● Architecural synthesis.
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Application Model Synthesis
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High-Level Language: Aqua

● Declarations:
● Fluids.
● Integers.

● Statements:
● Control-flow (loops).
● Operations (mix, etc.)

● Language is deterministic at compile-time.
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Application Model

● Directed, acyclic graph:
● Vertices are operations.
● Edges are dependencies.

● Duration of operations
is modelled as the
weight of vertices.
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Problem Formulation

● Application Model Synthesis Problem:
● Given an assay written in Aqua, derive the 

application graph.

● Mixing Problem:
● Derive the graph such that it can be executed on 

architectures with only one-to-one mixers.
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Solution Overview

● Define Aqua grammar in EBNF.
● ANTLR generates a parser.
● Parser builds a parse tree from Aqua code.
● Parse tree is traversed to extract operations 

and dependencies, deriving the application 
model.
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Parse Tree Traversal

● Begin with empty application graph G.
● Recursively visit nodes in the parse tree.
● Tracking variable values:

● Integer variable value.
● Fluid variable operation vertex.

● Statements:
● Control-flow: Visit child statements multiple times.
● Operation: Add vertices and edges to application 

graph.
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Example: Visit a mix node.

Fluid Variable Operation Vertex

f1 O
5

f2 O
6

f3 O
8

f4 O
10

Application graph fragment:

Parse tree fragment:

Variable values:
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Mixing Problem

● Problem: Determine a sequence of 1:1 mixes 
which achieve a mixture of given ratios.

● Not every set of ratios are reachable using 1:1 
mixers. Ratios are reachable if and only if they 
sum to a power of two.

● Approximate reachable ratios. Approximation 
can come arbitrarily close to desired ratios.

● Having reachable ratios, use Min-Mix algorithm 
to determine desired mixing sequence.
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Approximation Algorithm

● First determine a target power of two which we will 
approximate the ratios to.

● Map ratios linearly into target ratio range. Ratios no longer 
integers.

● Round off ratios to get integers. Ratios are approximations 
and no longer sum to target.

● Add difference from sum to target by adding or subtracting 
one from ratios giving least error.

● Absolute error is at most one for every ratio. Relative error 
compared to desired ratio tends towards zero as the target 
sum increases towards infinity.
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Example

● Given unreachable ratios (2, 5, 6), sum 13.

● Choose target power of two: 16.

● Linearly map ratios into new range: (2.46, 6.15, 7.38).

● Round off ratios: (2, 6, 7), sum 15.

● Rounded sum off by 1 from target.

● Add 1 to ratio which gives least error: (3, 6, 7).
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Min-Mix Algorithm

● Construct mixing tree by observing that each mixing 
operation halves contribution of a fluid to the final mixture.

● Use this observation to determine at what depths of mixing 
tree to put a leaf for each input fluid.

● Connects leaves to form internal nodes, representing the 
sequence of mixes required to obtain desired mixture.

● Runtime and mixing tree size: O(n log2 R) where n is 
number of fluids and R is sum of ratios.
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Example

● Mixture of (A,B,C) in ratios (3, 6, 7).

● A: 3/16 = 1/16 + 2/16,
     3 is 011 in binary.

● B: 6/16 = 2/16 + 4/16,
     6 is 110 in binary.

● C: 7/16 = 1/16 + 2/16 + 4/16,
     7 is 111 in binary.

● Ordinal positions of ones in
binary representation determines
the depths at which leaves are placed.
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Arcitectural Synthesis
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Component Library and Constraints

● Component library:
● Characterise components.
● Name, functions, size, etc.

● Constraints:
● A set of restrictions for

number of allocated
components of each type.
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Architecture Model

● Netlist - directed graph:
● Vertices are components.
● Edges are connections.
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Problem Formulation

● Architectural Synthesis Problem:
● Allocation and Schematic Design: Given an 

application graph, a component library and a set of 
resource constraints, derive a biochip architecture 
to efficiently perform the application.
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Allocation

● Resource-constrained list-based scheduling 
algorithm; determine preliminary binding and 
scheduling:
● Prioritize operations on urgency criteria: length of 

longest path to sink node.
● Repeatedly determine list of ready operations.
● Greedily schedule operations on already allocated 

components.
● Allocate more components if an operations is ready 

and we're not violating the constraints.
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Example

● Scheduled and bound application graph:
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Schematic Design

● Use application graph along with preliminary 
binding to derive netlist.

● For each allocated component, add a vertex to 
the netlist.

● For each dependency between two operations 
in the application graph, add an edge between 
the two components to which the operations 
were bound.
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Example

● Netlist derived from bound application graph:
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Results, Conclusion and Future Work
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Results
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Results
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Conclusion

● We have a tool which synthesises the 
application model from an assay in Aqua.
● The application graph can be tailored to execute on 

architectures with 1:1 mixers for any number of 
fluids and mixing ratios.

● Approximation of ratios can be arbitrarily accurate.

● We have a tool which synthesises an 
application-specific allocation and schematic 
design of a biochip architecture. The efficiency 
is hard to determine.
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Future Work

● Extend High-Level Language to add more 
operations.

● Extend application graph to capture intrinsic 
details of operations.

● Mixing algorithms for other ratios than 1:1.
● Fluid Volume Management during Application 

Model Synthesis?
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