
Synthesis of Flow-Based Biochip Architectures
from High-Level Protocol Languages

Mathias Kaas-Olsen
B.Sc. Thesis, DTU
August 12th 2015

2015-08-12 Mathias Kaas-Olsen 2/27

Introduction

● Flow-based microfluidic biochips.
● Design methodology:

● Full-custom bottom-up.
● Top-down by Minhass.

● My focus:
● Application model synthesis.
● Architecural synthesis.

2015-08-12 Mathias Kaas-Olsen 3/27

Application Model Synthesis

2015-08-12 Mathias Kaas-Olsen 4/27

High-Level Language: Aqua

● Declarations:
● Fluids.
● Integers.

● Statements:
● Control-flow (loops).
● Operations (mix, etc.)

● Language is deterministic at compile-time.

2015-08-12 Mathias Kaas-Olsen 5/27

Application Model

● Directed, acyclic graph:
● Vertices are operations.
● Edges are dependencies.

● Duration of operations
is modelled as the
weight of vertices.

2015-08-12 Mathias Kaas-Olsen 6/27

Problem Formulation

● Application Model Synthesis Problem:
● Given an assay written in Aqua, derive the

application graph.

● Mixing Problem:
● Derive the graph such that it can be executed on

architectures with only one-to-one mixers.

2015-08-12 Mathias Kaas-Olsen 7/27

Solution Overview

● Define Aqua grammar in EBNF.
● ANTLR generates a parser.
● Parser builds a parse tree from Aqua code.
● Parse tree is traversed to extract operations

and dependencies, deriving the application
model.

2015-08-12 Mathias Kaas-Olsen 8/27

Parse Tree Traversal

● Begin with empty application graph G.
● Recursively visit nodes in the parse tree.
● Tracking variable values:

● Integer variable value.
● Fluid variable operation vertex.

● Statements:
● Control-flow: Visit child statements multiple times.
● Operation: Add vertices and edges to application

graph.

2015-08-12 Mathias Kaas-Olsen 9/27

Example: Visit a mix node.

Fluid Variable Operation Vertex

f1 O
5

f2 O
6

f3 O
8

f4 O
10

Application graph fragment:

Parse tree fragment:

Variable values:

2015-08-12 Mathias Kaas-Olsen 10/27

Mixing Problem

● Problem: Determine a sequence of 1:1 mixes
which achieve a mixture of given ratios.

● Not every set of ratios are reachable using 1:1
mixers. Ratios are reachable if and only if they
sum to a power of two.

● Approximate reachable ratios. Approximation
can come arbitrarily close to desired ratios.

● Having reachable ratios, use Min-Mix algorithm
to determine desired mixing sequence.

2015-08-12 Mathias Kaas-Olsen 11/27

Approximation Algorithm

● First determine a target power of two which we will
approximate the ratios to.

● Map ratios linearly into target ratio range. Ratios no longer
integers.

● Round off ratios to get integers. Ratios are approximations
and no longer sum to target.

● Add difference from sum to target by adding or subtracting
one from ratios giving least error.

● Absolute error is at most one for every ratio. Relative error
compared to desired ratio tends towards zero as the target
sum increases towards infinity.

2015-08-12 Mathias Kaas-Olsen 12/27

Example

● Given unreachable ratios (2, 5, 6), sum 13.

● Choose target power of two: 16.

● Linearly map ratios into new range: (2.46, 6.15, 7.38).

● Round off ratios: (2, 6, 7), sum 15.

● Rounded sum off by 1 from target.

● Add 1 to ratio which gives least error: (3, 6, 7).

2015-08-12 Mathias Kaas-Olsen 13/27

Min-Mix Algorithm

● Construct mixing tree by observing that each mixing
operation halves contribution of a fluid to the final mixture.

● Use this observation to determine at what depths of mixing
tree to put a leaf for each input fluid.

● Connects leaves to form internal nodes, representing the
sequence of mixes required to obtain desired mixture.

● Runtime and mixing tree size: O(n log2 R) where n is
number of fluids and R is sum of ratios.

2015-08-12 Mathias Kaas-Olsen 14/27

Example

● Mixture of (A,B,C) in ratios (3, 6, 7).

● A: 3/16 = 1/16 + 2/16,
 3 is 011 in binary.

● B: 6/16 = 2/16 + 4/16,
 6 is 110 in binary.

● C: 7/16 = 1/16 + 2/16 + 4/16,
 7 is 111 in binary.

● Ordinal positions of ones in
binary representation determines
the depths at which leaves are placed.

2015-08-12 Mathias Kaas-Olsen 15/27

Arcitectural Synthesis

2015-08-12 Mathias Kaas-Olsen 16/27

Component Library and Constraints

● Component library:
● Characterise components.
● Name, functions, size, etc.

● Constraints:
● A set of restrictions for

number of allocated
components of each type.

2015-08-12 Mathias Kaas-Olsen 17/27

Architecture Model

● Netlist - directed graph:
● Vertices are components.
● Edges are connections.

2015-08-12 Mathias Kaas-Olsen 18/27

Problem Formulation

● Architectural Synthesis Problem:
● Allocation and Schematic Design: Given an

application graph, a component library and a set of
resource constraints, derive a biochip architecture
to efficiently perform the application.

2015-08-12 Mathias Kaas-Olsen 19/27

Allocation

● Resource-constrained list-based scheduling
algorithm; determine preliminary binding and
scheduling:
● Prioritize operations on urgency criteria: length of

longest path to sink node.
● Repeatedly determine list of ready operations.
● Greedily schedule operations on already allocated

components.
● Allocate more components if an operations is ready

and we're not violating the constraints.

2015-08-12 Mathias Kaas-Olsen 20/27

Example

● Scheduled and bound application graph:

2015-08-12 Mathias Kaas-Olsen 21/27

Schematic Design

● Use application graph along with preliminary
binding to derive netlist.

● For each allocated component, add a vertex to
the netlist.

● For each dependency between two operations
in the application graph, add an edge between
the two components to which the operations
were bound.

2015-08-12 Mathias Kaas-Olsen 22/27

Example

● Netlist derived from bound application graph:

2015-08-12 Mathias Kaas-Olsen 23/27

Results, Conclusion and Future Work

2015-08-12 Mathias Kaas-Olsen 24/27

Results

2015-08-12 Mathias Kaas-Olsen 25/27

Results

2015-08-12 Mathias Kaas-Olsen 26/27

Conclusion

● We have a tool which synthesises the
application model from an assay in Aqua.
● The application graph can be tailored to execute on

architectures with 1:1 mixers for any number of
fluids and mixing ratios.

● Approximation of ratios can be arbitrarily accurate.

● We have a tool which synthesises an
application-specific allocation and schematic
design of a biochip architecture. The efficiency
is hard to determine.

2015-08-12 Mathias Kaas-Olsen 27/27

Future Work

● Extend High-Level Language to add more
operations.

● Extend application graph to capture intrinsic
details of operations.

● Mixing algorithms for other ratios than 1:1.
● Fluid Volume Management during Application

Model Synthesis?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

