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This paper focuses on mastering the automatic architecture synthesis and application mapping for het-
erogeneous massively-parallel MPSoCs based on customizable application-specific instruction-set pro-
cessors (ASIPs). It presents an overview of the research being currently performed in the scope of the
European project ASAM of the ARTEMIS program. The paper briefly presents the results of our analysis
of the main challenges to be faced in the design of such heterogeneous MPSoCs. It explains which system,
design, and electronic design automation (EDA) concepts seem to be adequate to address the challenges
and solve the problems. Finally, it discusses the ASAM design-flow, its main stages and tools and their
application to a real-life case study.
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1. Introduction

The recent spectacular progress in semiconductor technologies
has enabled the implementation of increasingly proficient multi-
processor systems on chip (MPSoC). New important opportunities
have been created: the traditional applications can now be served
better, and numerous sorts of new systems became technologically
feasible and economically justified.

A big stimulus has been created towards the development of
innovative embedded systems. Examples of the new systems in-
clude various measurement, monitoring, control, multi-media
and communication systems that can be embedded in machines
or devices, or even implanted in human or animal bodies. However,
these new opportunities come with a price. On the one hand, unu-
sual silicon and system complexity has been introduced. This com-
plexity results in a number of difficult design issues, such as:

– ensuring high-quality complex systems and their validation;
– adequately addressing the need of energy reduction;
– resolving the interconnect scalability problems;
– adequately accounting for the dominating influence of

interconnects and communication on major physical system
characteristics;
– decreasing the high system development and production costs,
and long development times.

On the other hand, new highly-demanding embedded applica-
tions appear in several fields (e.g. consumer electronics, medical,
monitoring and control systems, etc.) for which the straightforward
software solutions are not satisfactory. These complex embedded
applications typically include various parts, implementing different
algorithms and kinds of processing. They are from their nature het-
erogeneous and highly demanding. Consequently, they require
application-specific heterogeneous MPSoCs to perform real-time
computations with extremely tight schedules, energy, area and costs
requirements. Moreover, due to the rapid evolution of the embedded
applications towards newer improved versions and due to the high
cost of application specific circuit realization, a flexible hardware
solution is needed, as provided by ASIP technology.

This paper focuses on mastering the automatic MPSoC architec-
ture design for such highly-demanding embedded applications. It
presents an overview of the research being currently performed in
the scope of the European project ASAM (Architecture Synthesis
and Application Mapping for heterogeneous MPSoCs based on
adaptable ASIPs) of the ARTEMIS program. The paper briefly pre-
sents the results of our analysis of the main problems and challenges
to be faced in the design of such heterogeneous MPSoCs. It explains
which system, design, and electronic design automation (EDA) con-
cepts seem to be adequate to resolve the problems and address the
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challenges. Finally, it introduces and discusses the design-flow, its
main stages and the tools proposed by the ASAM project consortium
to enable an effective and efficient solution of these problems. It also
shows the application of the ASAM tools to a real-life case study.
2. ASIP-based MPSoC technology

The architecture platform targeted in the ASAM project is a het-
erogeneous multi-ASIP platform of Intel (previously SiliconHive –
SH), which can be configured and extended for specific applications.
Each ASIP of the platform forms a VLIW machine capable of execut-
ing parallel software with a single thread of control. An ASIP (see
Fig. 1) includes a processor core (core) performing the actual data
processing and core I/O (coreio) ensuing the communication of the
ASIP with the rest of the system. The ASIP core includes a VLIW data-
path controlled by a sequencer that uses status and control registers
and executes programs from the local program memory. The data-
path contains scalar and/or vector functional units organized in sev-
eral parallel issue slots. The issue slots are connected via
programmable input and output interconnections to several regis-
ters organized in register files. The functional units perform compu-
tations on intermediate data stored in the register files. The coreio
provides the access to the local memory and I/O subsystem enabling
an easy integration of the ASIP in any larger system, which can access
the devices in coreio via master/slave interfaces. Both SIMD and
MIMD processing can be realized.

The ASIPs are configurable and extensible. The parameters to be
explored and set to create a new ASIP configuration include: the
number and type of issue slots and (scalar or vector) instructions
inside the issue slots, the number and type of issue slot clusters
to optimize parallelism exploitation and communication between
the issue slots, the number and size of register files, the type, data
width, and size of local memories, the architecture and the param-
eters of the local communication structure, etc.

Several different ASIPs, each customized for a particular part of
a complex application, can be interconnected via a bus or a
Fig. 1. Generic ASIP architecture of
Network-on-Chip (NoC) including shared memories and DMAs.
The parameters to be explored and set at the system-level include:
the number and types of ASIPs; the number, type and size of shared
memories; the scheduling and mapping of the application parts
onto the ASIPs and their data onto the memories; and the architec-
ture and parameters of the global communication structure.

Several ASIPs with approximately 100 issue slots in total, each
for 64-way vector processing, can be placed on a single chip imple-
mented in 22 nm CMOS technology. When operated at 400–
600 MHz, these ASIPs can deliver more than 1 Tops/s, with power
consumption far below the upper limit of mobile devices. Such
ASIP-based heterogeneous MPSoC platforms enable efficient
exploitation of various kinds of parallelism: the multiple ASIPs en-
able the coarse-grain parallelism at the task level, while the ASIP’s
parallel issue slots, and vector instructions enable the fine-grained
data and instruction-level parallelism.

This adaptable ASIP-based MPSoC technology addresses several
fundamental challenges for the development of highly-demanding
embedded applications:

- it is able to deliver high performance, high flexibility and low
energy consumption at the same time;

- it is relevant for a very broad range of application domains;
- it is applicable to several implementation technologies, e.g.:

SOC or ASIC, structured ASIC, and FPGA.

Provided that an effective and efficient highly automated cus-
tomization technology will become available, it will become possi-
ble to build adaptable ASIP-based MPSoCs at substantially lower
costs and with shorter time to market than the hardwired ASICs.
This is the primary target of the ASAM project.
3. Issues and challenges of the ASIP-based MPSoC development

The realization of complex and highly demanding applications,
for which the presented ASIP technology is suitable, requires
the targeted MPSoC platform.
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performance and energy usage comparable to those of hardwired
ASICs. It also requires programmability, area and cost efficiency.
Satisfaction of these stringent and often conflicting requirements
fosters the construction of highly-optimized hardware architec-
tures and of their embedded software. The optimization of such
ASIP construction can be achieved through an efficient exploitation
of the application parallelism and an efficient exploration of the
trade-off between the hardware solutions design characteristics,
which are considered at different design levels and concern differ-
ent system parts.

Typically, the development of an embedded MPSoC for a highly-
demanding application involves many stages as: application analy-
sis and characterization, application parallelization and partitioning,
system macro-architecture design, processor selection or design,
application scheduling and mapping, hardware generation and soft-
ware compilation.

Unfortunately, in the traditional approaches for embedded system
design, these major stages are largely disjoint. They are performed by
different teams and with different supporting tools. This leads to inef-
ficiencies, errors, and costly reiterations in the design process.

In particular, the traditional algorithm and software develop-
ment approaches require an existing and stable computation plat-
form, while for the modern MPSoCs based on adaptable ASIPs, the
quality of hardware and software architectures can be substan-
tially improved through a process of HW/SW co-tuning. Indeed,
on the one hand, based on the results of the application software
analysis and parallelization, optimized hardware architectures
can be proposed.

On the other hand, the optimized parallel software structures
have to be restructured to optimally map the proposed hardware
structures. So, the designs of parallel software and hardware archi-
tectures influence each other and should be decided at the same
time. Unfortunately, the efficiency of the required combined HW
and SW development is still too low with the currently available
development technology. This is due to lack of a holistic automated
method and to the weak interoperability of the HW/SW architec-
ture design, and hardware synthesis tools. The identified inefficien-
cies can substantially lower the attainable quality of the resulting
systems and can also increase the necessary development time
and the development costs.

Although many application analysis, restructuring, compilation
tools and ASIP configuration frameworks exist (see Section 4), the
automated customization decision making is missing, and the col-
laboration among the different tools is not yet automated. Also,
most of the ASIP customization tools are devoted to a single ASIP
customization. While, as mentioned above, current heterogeneous
applications require multi-ASIP systems. Consequently, also the
customization tools should be able to handle the design of multiple
ASIPs at the same time. The various ASIPs in a system have to be
customized together, and in a strict relation with system level con-
cerns as the selection of the number of ASIPs and inter ASIPs com-
munication sub-system. The MPSoC macro-architecture and the
ASIP micro-architectures are strictly interrelated. Many trade-offs
have to be resolved regarding the granularity of individual process-
ing cells, and between the amount of parallelism realized at the
system and processor levels.

The two architecture levels are strongly interwoven also
through their relationships with the memory and communication
structures. Each micro-/macro-architecture combination, with a
different parallel computation structure, requires different com-
patible memory and communication architectures. For instance,
exploitation of more data parallelism in a computing unit micro-
architecture requires a simultaneous access to memories in which
the data reside (with e.g. vector, multi-bank or multi-port memo-
ries) and a simultaneous transmission of the data (with e.g. multi-
ple interconnects). The requirement of simultaneous access and
transmission radically increases the memory and communication
hardware. Additionally, many applications require implementation
of algorithms that involve complex interrelationships between the
data and computing operations. For applications of this kind, the
main design problems are related to an adequate resolution of
memory and communication bottlenecks and to decreasing the
memory and communication hardware complexity. The memory
and communication structure design, and the architecture design
for computing units cannot be performed independently, because
they substantially influence each other.

Finally, the existing methods and tools for custom instruction-set
construction or extension are devoted to a single processor; usually
they extend a simple RISC processor with large hardware accelera-
tors. In our method, we target the extension of VLIW processors, with
a set of re-usable and efficient custom functional units.

The optimization of the performance/resources trade-off re-
quired by a given highly demanding application can only be
achieved in a holistic approach performing an actual HW/SW co-
design; a combined synthesis of processing, memory and commu-
nication sub-systems; and a combined macro- and micro-architec-
ture synthesis.
4. Contribution and related works

The general aim of the ASAM project is to enhance the design
efficiency of the ASIP-based MPSoCs for highly demanding applica-
tions, while improving the result quality. This aim is being realized
through the development of a coherent system-level design-space
exploration and synthesis flow including automatic analysis, syn-
thesis and rapid prototyping environment. The flow and its imple-
mentation have to provide efficient exploration of the architecture
and application design alternatives and tradeoffs.

Based on the analysis of the application, computing platform
and parametric requirements, the ASAM flow will efficiently parti-
tion a given complex application and select the most appropriate
set of ASIPs to create the MPSoC macro- and micro-architecture.
It will reuse, instantiate, and extend the ASIPs with new applica-
tion-specific hardware, developing this way the ASIP micro-archi-
tecture. Moreover, in correspondence with the macro- and
micro-architecture design, it will restructure the application’s soft-
ware and implement the software on the so constructed applica-
tion-specific multi-processor platform. Finally, it will analyze and
validate the design through a rapid prototyping.

The research of the ASAM project builds on the methodology of
quality-driven model-based system design proposed in [1].

The ASAM project builds also on the platform-based design of
heterogeneous multi-processor embedded systems [1,2], ASIP de-
sign methods [3–8], hardware compilation techniques [2], and
software analysis, re-structuring and compilation techniques [2,9].

With respect to the MPSoC macro-architecture synthesis, the
project exploits the quality-driven model-based design exploration
and architecture synthesis approach [2,10], and modeling, emula-
tion, estimation and design exploration concepts developed in
[2,10–12].

The new macro-architecture design space exploration (DSE)
methodology proposes enhancements in reuse of generic architec-
ture platforms, modeling of the platform in the form of an abstract
architecture template, generic architecture template instantiation,
abstract behavioral and parametric requirement modeling, and
application scheduling and mapping.

The ASIP micro-architecture exploration and synthesis proposes
enhancements in application analysis and parallelization,
automatic customization of ASIP architecture in terms of storage
mechanism, parallel computing and instruction set. It will be able
to re-use and customize available ASIPs and also to construct new
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ASIPs from scratch. The existing commercial and academic devel-
opments in this field do not provide adequate support for this crit-
ical correlated parts of ASIP design (see e.g. [2]).

As explained in the previous section, there are very strong inter-
relations between the macro- and micro-architecture syntheses.
Therefore, ASAM architecture synthesis method considers the
macro-architecture and micro-architecture synthesis as one coher-
ent complex system architecture synthesis task, and not two sepa-
rate tasks, as in the state-of-the-art methods. There are common
aims and a strong consistent collaboration between the two sub-
tasks. The macro-architecture synthesis proposes a certain number
of customizable ASIPs of several types with a part of the applica-
tion assigned to each of the proposed ASIPs. The micro-architecture
synthesis customizes each of the ASIPs, together with its local
memories, communication and other blocks, and correspondingly
restructures its software to implement the assigned application
part as effective and efficient as possible. Subsequently, the
restructured application part software is compiled, and the RTL-le-
vel HDL descriptions of the customized ASIPs are automatically
generated and synthesized to an actual hardware design. From sev-
eral stages of its application restructuring and ASIP design, includ-
ing the actual HW/SW implementation, the micro-architecture
synthesis provides feedback to the macro-architecture synthesis
on the physical characteristics of each particular sub-system
implemented with each ASIP core. This way the micro-/macro-
architecture trade-off exploitation is enabled. After several itera-
tions of the combined macro/micro-architecture exploration and
synthesis an optimized MPSoC architecture is constructed.

A complete MPSoC architecture involves of course the ade-
quately instantiated ASIPs together with their local memories
and communication, as well as, adequate global memory and com-
munication structures. As explained in the previous section an
effective and efficient design of the memory and communication
structures is especially important for many modern applications
that involve massive parallelism and algorithms with complex
interrelationships between the data and computing operations.
While current research in this area is mainly focused on the sepa-
rate design of memory and interconnection systems, ASAM project
considers the mutual relationships between interconnections,
memories and processors. The memory and communication struc-
tures are optimized in an iterative refinement process, when
accounting for the application-specific memory-processor commu-
nication and the technology related memory and communication
features, such as power dissipation or area. Regarding the global
memory and communication structures the project builds on re-
cent results of some of the project partners [13–15].

From the above it should be clear that the ASAM design flow
and its tools will implement an actual coherent HW/SW co-design
process through performing a quality-driven simultaneous co-tun-
ing of the application software and processing platform architec-
ture to produce HW/SW systems highly optimized for a specific
application. The ASAM flow and its tools consider the macro-archi-
tecture and micro-architecture synthesis as one coherent complex
task, and perform the application-specific synthesis of processor,
memory and communication architectures in a strict collaboration
to ensure their compatibility and effective trade-off exploration
among the different design aspects. As a consequence, ASAM de-
sign methods and tools have to deal with decisions regarding a
huge number of architectural aspects and values of customization
parameters.

To effectively and efficiently cope with such a massive combi-
nation of design choices, ASAM exploits the abstraction, separation
of concerns and quality-driven design decision making principles
through introducing several abstraction levels in the design flow,
decomposing complex design problems into hierarchical networks
of simpler sub-problems (issues), ordering the consideration of the
sub-problems, and using various abstract and partial models when
solving particular sub-problems [1]. The methods and tools used
for each level/issue deal with a sub-set of correlated design con-
cerns. They collaborate with each other in a well-defined coherent
way to together deliver a high-quality application-specific HW/SW
system design.

To the best of our knowledge, the ASIP-based MPSoC design
problem as formulated above is not yet explored in any of the pre-
viously performed and published works. The related research in
the MPSoC, ASIP, application analysis and restructuring, and other
areas considers only some of the sub-problems of the adaptable
ASIP-based MPSoC design in isolation. In result, the proposed par-
tial solutions are usually not directly useful in the much more com-
plex actual context.

As stated in [16], ASIP auto-customization methods can be sub-
divided into configuration-based and specification-based. The con-
figuration-based methods use well defined processors optimized
for an application field. Only a few parameters are left to enable
customization of the processor to requirements of a specific appli-
cation. This simplifies the DSE, but reduces the possibilities of tun-
ing. The configuration-based approach is exploited by Cadence
(previously Tensilica) Extensa Configurable Core [7], ARC Configu-
rable Cores [6], etc. The specification-based methods provide the
possibility to entirely describe a new processor based on an ab-
stract model that only defines the general design rules, when using
an Architecture Description Languages (ADLs) that allow describ-
ing the relevant (application-specific) aspects of the ASIP architec-
ture at several abstraction levels. Specification-based methods and
corresponding ADLs include EXPRESSION [5] and its EXPRESSION
ADL [17], CoWare Processor Designer [4] using LISA ADL [18], Tar-
get Compiler Technology [3] using nML ADL [19]. Most of these
methods and related tools target the design of systems involving
only a single ASIP. Intel SH uses TIM language for the ASIP architec-
ture description and HSD language for the MPSoC system-level
architecture description (e.g. global communication, processors
synchronization, etc.). There are several differences between TIM/
HSD and the other ADL languages. TIM is a high-level HDL (it does
not describe an instruction set); HSD describes multi-core systems.

Although the existing ASIP customization frameworks usually
involve tools for application analysis, application re-targetable
compilation, as well as, single ASIP architecture configuration,
and automatic HDL generation, they usually lack any automated
architecture design-space exploration and decision support, even
for a single ASIP. On contrary, ASAM project aims at developing
such an effective and efficient highly automated DSE and decision
support, additionally not limited to a single ASIP, but for the multi-
ASIP systems.

Other related works focus on the application code transforma-
tions [20] to improve the application software mapping onto a
fixed architecture optimized to a broader application area, e.g.
DSP or GPU. Their results are not directly applicable to the com-
bined software and hardware structuring of the adaptable ASIP-
based systems. Yet other works target the processor Instruction
Set Extension (ISE) [21] and related hardware extension. Some of
them try to explore and exploit the effect of loop transformations
[22], e.g. unrolling, on the ISE generation. They are however de-
voted to a single processor, usually a simple RISC processor with
one issue slot and not to a complex VLIW processor with several
different issue slots. Moreover, the proxy formulations of their cus-
tom instruction set construction problems and their suggested
solutions usually do not reflect well the actual problems to be
solved and their required solutions.

Many published research results [1,10,23] and system design
frameworks, e.g. Metropolis [24], Daedalus [39], etc., target heter-
ogeneous MPSoC design, but they do not addresses adaptable ASIP-
based MPSoCs being the target of ASAM. Nevertheless, some of the
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valuable ideas and general methodologies developed in these re-
search works will be reused for ASAM purposes, as for instance,
the formalization of DSE methodologies as surveyed in [25], the
methodology of quality-driven model-based system design as in
[1], the DSE methodologies for memory management as in
[26,27] and the DSE methodology for system design as in [28].

Most importantly however, to our knowledge, none of the pub-
lished methods, tools or frameworks implements an actual coher-
ent HW/SW co-design process through a combined simultaneous
structuring of the application software and processing platform
architecture. Also, most of the published research works focus on
the processing unit design and application mapping, but underes-
timate the importance of the memory and communication archi-
tecture design. Although [16] proposes to use profiling
techniques to customize memory hierarchy and infer Instruction
Set Architecture design (i.e. instruction opcodes, instruction encod-
ing, memory/register addressing modes and data types), ASAM ex-
plores the effect of loop transformations on the Data Transfer and
Storage Mechanisms [20] in order to benefit from previous ad-
vances in design automation for ASICs. To our knowledge, no for-
mer research addressed the problem of the combined concurrent
processor, memory and communication architecture exploration
and synthesis, except for a recent work of the ASAM partners
[16], but in [16] it was done for a different design target. Moreover,
ASAM project proposes a novel rapid prototyping for ASIPs and
ASIP-based MPSoCs. Although this platform is based on the well-
known FPGA emulation, it differs in several aspects from similar
existing platforms. It enables emulation of complete HW/SW de-
signs and their characterization regarding performance and power.
It also enables prototyping of several architectures concurrently.
Further extensive discussion of related research can be found in
the overview papers [2,23].
5. Design flow

An overview of the ASAM design flow is presented in Fig. 2. The
flow involves four main stages, which are organized in three
abstraction levels and correspond to the main design issues:

– System DSE,
– ASIP DSE,
– Global communication and memory (GC&M) DSE, and
– HW/SW synthesis and rapid prototyping.

These stages communicate and collaborate with each other di-
rectly or through the system DSE. All together, the stages realize
a quality-driven evolutionary design flow. They transform step-
wise an initial high-level application specification into an ASIP-
based MPSoC. In this process, they use generic ASIP-based platform
models.

The input high-level application specification includes the
application’s C code, the design parametric requirements and rep-
resentative input stimuli.

The multi-ASIP SoC design is compliant with a generic SH/Intel
hardware template, which includes a library of hierarchical cus-
tomizable components and their rules of composition.

The ASAM design flow is based on the concept of service-ori-
ented EDA system. Each of its main stages can be requested for
and provides services for the others. The collaboration among the
stages of the flow or some of their parts follows a request-response
protocol. This enables clear organization of the stages collaboration
and results in a high flexibility. Indeed, the flow can be further ex-
tended with additional features and the modifications of one of its
services are independent from the others. The stages of the ASAM de-
sign flow use services of the underlying SH/Intel design flow, which
provides a library of Intellectual Properties (IP), HW generation, SW
compilation and simulation environments. In particular, each stage
of the ASAM flow can get an IP from the SH/Intel library, use it as is
(e.g. for simulation or emulation) or customize it and insert into
the IP library anew. The flow execution is originally determined by
its primary inputs and the user control inputs. However, the progress
of the flow execution is more and more influenced by the results of
previous explorations, in order to ensure its convergence.

System DSE takes as inputs: an application C-code, parametric
and structural requirements, and representative stimuli. It is
responsible for the entire design of the multi-ASIP SoC. It defines
its structure composed of several ASIPs communicating though a
network of distributed shared memories. While performing this
task, System DSE asks for specific services from the middle abstrac-
tion level which includes the stages ASIP DSE and the GC&M DSE.
These services can range from a coarse estimation of design param-
eters to the optimized synthesis of ASIPs and GC&M subsystems.
System DSE can also ask for services from the lower stage of ‘‘rapid
prototyping’’ (the communication is represented by light color ar-
rows in Fig. 2). This request aims at performing simulation or emu-
lation of (parts of) a multi-ASIP SoC. When asking for a service, the
system DSE specifies to a given stage what is the requested ser-
vices, the C code of the application part to be analyzed and the re-
lated design requirements and input stimuli. Orchestrating the
analysis and synthesis services of the different stages and combin-
ing their results, the system DSE produces a final optimized ASIP-
based MPSoC design.

ASIP DSE aims at the design of a single ASIP and its associated
software for the execution (of a part of) the whole application.
From the System DSE, it takes as inputs a service request, the C
code of the application part on the target, the partial design
requirements, and the related input stimuli. ASIP DSE consists of
a simultaneous co-tuning of the ASIP architectures and their
embedded software. It integrates HW/SW co-design techniques
from high-level synthesis for the architectural decision-making
and parallelization techniques from software compilation for the
code optimization. In performing design and parallelization tasks,
the ASIP DSE can ask for specific services from the HW/SW synthe-
sis and rapid prototyping, as well as, from the SH/Intel design flow.

GC&M DSE aims at the exploration and optimization of the glo-
bal communication and memory structures for a multi-ASIP sys-
tem. This is performed through an iterative construction and
refinement of interconnect and memory structures driven by the
constraints and objectives decided by the System DSE. In particu-
lar, the System DSE mapping of the application tasks is used to pro-
duce a communication graph, which is the input of the GC&M DSE.
GC&M DSE iteratively proposes and evaluates candidate intercon-
nect and memory architectural configurations, characterizes them
using simulation-based methods and, when needed, accesses the
lower-level prototyping infrastructure to endorse the simulation-
based characterization. A Pareto front of configurations compliant
with the input mapping and the input constraints is selected and
serves as a feedback to the System DSE. HW/SW synthesis accepts
as input service requests from the System DSE, ASIP DSE and GC&M
DSE. It also takes as input the abstract architecture description (in
TIM and HSD languages) of the designed MPSoCs or their parts, and
the corresponding restructured application C-code. From the TIM/
HSD descriptions the HW synthesis automatically generates the
RTL hardware description and the SW synthesis generates and
compiles the restructured C-code. In this way a complete HW/
SW (sub-) system design is produced. Rapid prototyping accepts
as its inputs the HW, SW or HW/SW designs and performs their
simulation or emulation. All parts of the ASAM flow use specific
services of the SH/Intel design flow.

In the next sections each of the main flow stages will be dis-
cussed more precisely.
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Fig. 3. System DSE.
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6. Main stages of the ASAM flow

6.1. System DSE

The System DSE is in charge of developing the macro-architec-
ture of a multi-ASIP system. This involves deciding the number and
type of ASIPs, the structure of global memories and interconnec-
tions, as well as, the scheduling and mapping of different applica-
tion parts onto the ASIPs. The system-level design decisions are
taken selecting among multiple design possibilities of the system
parts, as provided by the ASIP DSE and the Communication and
Memory DSE (Fig. 3).

The System DSE requires as input the C-code of one or more
applications and the parametric requirements of the design, e.g.
the execution deadline of each application, the area and power
requirements of the whole system, etc. The original application
code is modeled as a task graph: the C code is partitioned into tasks
(application parts) to extract task and inter-task (pipeline) paral-
lelism. The partitioned application is generated by commercial tool
of one of the project partners, Compaan Design [29]. The tool iden-
tifies the tasks and their execution concurrencies. The communica-
tion between connected tasks is modeled by messages, which
represent the amount of exchanged data.

The main purposes of the System DSE is to determine, from the
initial task graph, the clustering/mapping and scheduling of the
tasks on the ASIPs and of the messages on the interconnection
resources.

An initial instance of the computing platform, obtained by
assigning each task to a separate ASIP, defines the upper bound
of the number of allocated ASIPs. This is decided according to the
number of tasks and annotated with the information of on Worst
Case Execution Time (WCET) of each task provided by ASIP DSE.
It is also possible to define a maximum number of ASIPs as an input
constraint of the analysis. The initial platform model assumes the
use of a very generic Network-on-Chip (NoC), in which each ASIP
is assigned to a switch and all switches are connected through
point-to-point links, generating a fully connected network. This
choice is justified by the need of a general initial platform allowing
for a wide exploration of tasks clustering onto the different ASIPs.
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A first set of possible clustering solutions is generated by Sys-
tem DSE at the beginning of the ASAM flow. This set is then passed
to the other DSE stages, i.e. the ASIP DSE and Communication and
Memory DSE, and improved through a number of exploration iter-
ations as outlined in Fig. 3. In particular the ASIP DSE provides mul-
tiple ASIP micro-architectures characterized by the corresponding
values of performance, area and power, while the Communication
and Memory DSE returns an optimized interconnection network
satisfying given performance constraints. The System DSE collects
these partial results from the different DSE stages and combines
them together to verify the performances, area and power con-
sumption of the entire system. As depicted in Fig. 3, the System
DSE exchanges information with the other DSE stages in an itera-
tive way. This allows a gradual refinement of the design space
reducing the number of system solutions towards better solutions,
in order to finally converge to a single multi-ASIP system.

The System DSE is composed of two phases (Probabilistic and
Deterministic DSE), both in charge of performing a DSE and evalu-
ating the entire system. The final output of the System DSE is the
description of a multi-ASIP system that meets the design require-
ments to a satisfactory degree. In the next two sections we present
details of the Probabilistic and Deterministic DSE and details of
their interaction with the other design stages.

Probabilistic DSE: This is the first and also the most challenging
phase of the System-level Design. At the beginning of the ASAM
flow, there is no computing platform available (the interconnec-
tions and the ASIP micro-architectures are unknown). Only the
task graphs of the applications, their C-code and parametric
requirements are provided. We are facing a so-called chicken-
and-egg problem in which the tasks need to be grouped, scheduled
and assigned (clustered) to multiple ASIPs, without any knowledge
of the ASIP micro-architecture. This implies that it is not possible to
evaluate and therefore compare the performances of different clus-
tering solutions. At the same time, the ASIP DSE needs information
about the proposed clustering of tasks to define the micro-archi-
tecture of a single ASIP, as each ASIP has to be tuned to efficiently
execute the assigned tasks. The different micro-architectures that
can be identified during the ASIP design are called ASIP configura-
tions. The number of possible ASIP configurations is very high due
to the high number of configuration parameters. For this reason it
is not feasible to perform a System DSE analysis taking into ac-
count all the possible configurations of the ASIPs. In a traditional
approach, the task clustering is user-defined based on designers
experience and knowledge, the remaining problem is to tune the
ASIP micro-architecture and the tasks code accordingly. In the
ASAM flow we propose a method to automate the clustering of
the applications at the system level. To make it possible, we pro-
pose a Probabilistic Estimation Method to break the circular
dependency between the exploration of clustering solutions and
the need of an ASIP micro-architecture.

An initial estimation of the computing performance required to
execute a given task can be obtained from an analysis of the task
code. This allows estimating the bounds of the performances that
can be achieved for a specific task. As will be described in Sec-
tion 6.2 (Phase1), we evaluate the Worst Case Execution Time
(WCET) for two different possible executions of the same task: a
sequential execution on a scalar ASIP, upper bound WCET (uWCET)
and a parallel execution with an ASAP scheduling without architec-
ture constraints, lower bound WCET (lWCET). We chose the WCET,
as we need to verify if the input applications are able to meet their
deadline with a non-preemptive static scheduling policy. The range
identified by lower and upper bound of WCET is used to define a
cumulative distribution function (CDF) that represents the perfor-
mances for the execution of one task on all the possible micro-
architecture configurations of an ASIP (whose number and
individual performances are yet unknown). The WCET becomes a
stochastic variable that captures all the possible variations of the
ASIP micro-architecture for that specific task.

In the Probabilistic DSE, the WCET is considered to be the only
optimization parameter, as there is no actual synthesis of the ASIPs
or a particular definition of their micro-architectures. Therefore it
is not possible to build a model for their power and area require-
ments. A CDF is built for each task. More details on the probabilis-
tic model of the WCET are available in [30]. We assume a fully
connected NoC with point-to-point connections between each pair
of switches to be an initial interconnection network. Each element
of the NoC (network interfaces and switches) has certain latency
and throughput, which we assume to be constant. Given this
assumption on the interconnections, we model the latency of mes-
sage passing as the time spent for transferring the amount of data
in the message. However, it is also possible to consider different
types of switches and network interfaces having multiple WCETs
for each message. Values of latency and throughput for the NoC
elements are provided by the Communication and Memory DSE.
Once all messages and tasks have been characterized, it is possible
to evaluate the performances of a particular clustering solution.
The tasks are assigned to the ASIPs and the messages are assigned
to the interconnection elements. The WCET CDF of each applica-
tion executing on the system is calculated based on the individual
task CDFs. We take into account both task level and pipeline paral-
lelism. Moreover, we consider the data dependences between tasks
and the resource contentions. When multiple tasks/messages want
to access a shared hardware resource, they are ordered according
to their priority (fixed value assigned to each task/message at the
beginning of the ASAM flow). Then, using the deadline constraints
provided as input, we obtain the probability of meeting the dead-
line of each application. We calculate the mean value of these
probabilities to get the final cost of a specific clustering solution.
A design space exploration engine has been built to explore and
evaluate different clustering solutions. The ones with the highest
probability of meeting the deadline are chosen. When multiple
clustering solutions have the same probability, the one that uses
less hardware resources (e.g. smaller number of ASIPs) is selected.
The first output of the Probabilistic DSE is therefore a set of clus-
tering solutions. Every single solution is composed of multiple
clusters; a cluster corresponds to one or more tasks grouped to-
gether to be executed on a single ASIP. Each solution in the set of
clustering solutions is then separately considered. For each of
them, the Probabilistic DSE is re-run multiple times as discussed
below. For each solution, System DSE requests the optimization
of one cluster (i.e. one ASIP) from the ASIP DSE. The ASIP DSE re-
turns to the System DSE a subset of micro-architecture configura-
tions for that ASIP. The result of this partial micro-architecture
synthesis is used by the System DSE, which can repeat on the basis
of this more precise information. The cluster of the already opti-
mized ASIP is maintained (one of the available ASIP micro-archi-
tecture received by the ASIP DSE is selected) and the Probabilistic
DSE is re-run on the other not-yet-configured ASIPs. This phase is
repeated until all ASIPs have been optimized by the second phase
of the ASIP DSE.

The second phase DSE is quite fast (its execution can be com-
pleted in a few minutes) and can be repeated multiple times if
needed. Once the design of all ASIPs has been sufficiently decided,
i.e. a bounded subset of the most promising specific configurations
has been identified for each ASIP; the System DSE requests the
Communication and Memory DSE to start the optimization of the
interconnection network, given a certain clustering, as well as,
throughput and latency constraints on each communication link.
This is repeated for each solution in the set of clustering solutions.

Deterministic DSE: Is the second phase of the System DSE. It
performs a DSE similar to the Probabilistic one, but with much
more precise information on the platform and its parts. This phase
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works with concrete ASIPs, memories and communication config-
urations and verifies the performances of the global ASIP-based
system. As a consequence, in this part of the flow, it is possible
to perform a multi-objective optimization taking into account also
the values of the area and power consumptions obtained from the
ASIP DSE.

The Deterministic DSE can interact with both the second and
the third phases of the ASIP DSE. The interaction with the second
phase of the ASIP DSE can be repeated multiple times, while the
interaction with the third phase is more time-consuming and
should be limited. Moreover the Communication and Memory
DSE needs to be re-run every time the constraints on latency or
throughput on the links between the processors and memories
are changed due to changes in the micro-architecture configura-
tions of each ASIP. In fact, even if the clustering solution is not
modified after a second interaction with the second phase of the
ASIP DSE, it will be modified after the interaction with phase 3. In-
deed the third phase of the ASIP DSE is in charge of optimizing the
ASIP data-path and generating custom instruction sets. This will
result in changes in the performances, area and power consump-
tion and may affect the whole system. When the design constraints
are not met, the Deterministic DSE has to perform adjustment in
the selected clustering solution. The number of changes in the clus-
ters, i.e. moving one task from one processor to another, should be
minimized. Moreover, these changes should take into account the
characteristics of the clusters of tasks and of the ASIPs themselves.
For example, it makes sense to move a task to an ASIP that is able
to execute it and on which similar tasks are already running. This
will limit the number of changes required in the micro-architec-
ture of the ASIPs involved.

These DSE interactions are repeated until the design require-
ments are satisfied or it becomes clear that it is impossible to sat-
isfy them given the available resources.
Fig. 4. ASIP level DSE.

6.2. ASIP DSE

ASIP DSE, presented in Fig. 4, aims at a blend software restruc-
turing and ASIP architecture design. It does it for application parts
assigned to a single ASIP by the System DSE.

For a given part, ASIP DSE performs application analysis and
characterization, exploration and selection of possible application
parallelization and ASIP designs. It can provide services related to
these activities to the System DSE or directly to an end-user. Each
service request has to be associated with related inputs, i.e. C code
of the application parts, parametric requirements and input
stimuli.

Due to the high number of possible solutions for the application
restructuring and ASIP customization, a synthesis method with a
reduced exploration complexity is necessary. We propose a meth-
od based on a ‘‘divide and conquer’’ strategy, which address differ-
ent design concerns in different phases of the flow. This method is
shown in Fig. 4 and involves three main phases:

Phase 1, performing application analysis and characterization,
Phase 2, performing software and hardware co-design for par-
allel processing, communication and storage, and
Phase 3, performing instruction set synthesis and refined appli-
cation restructuring.

The services of these three phases can be provided to the Sys-
tem DSE or directly to an end-user. The phases can be executed
separately or in combination, depending on the precision of the re-
quired analysis and synthesis. A given phase can also ask the suc-
cessive phases for services.

Each phase is more precisely described below.
Phase 1 performs application analysis and characterization.
It takes as input the C code of an application or an application part
from the System DSE. It profiles and characterizes it in different
ways.

Initially, it provides information about the upper and lower
bound of the worst-case execution time (WCET) of the given C
code. That is, it estimates the WCET for a sequential execution of
the C code (upper bound) and for the most parallel version of the
application without architectural constraints (lower bound). As ex-
plained earlier, the WCET values are used by the System DSE for
the initial evaluation of the proposed application partitioning and
to infer the design requirements of the application parts (cf.
Section 6.1).

Subsequently, the application analysis detects and classifies the
different parts of the input C code, according to the kind of process-
ing they need. For instance, for data-intensive hot-spots, it will
advocate a realization based on vector processing. As a conse-
quence of this analysis, Phase 1 prepares the data for further anal-
yses and calls either Phase 2 to solve parallelization issues or Phase
3 to solve synthesis issues.

Phase 2 performs data-oriented software and hardware co-
design to decide the ASIP parallel processing, communication
and storage architectures. It takes as input the parts of the C code
identified by Phase 1 as data-intensive hotspots.

It explores and selects possible parallel restructuring of the soft-
ware and the corresponding hardware architectures. Phase 2 is
built on an internal data-oriented representation of the applica-
tion, called Array-OL [31], which is used to rapidly evaluate the
software restructuring and the corresponding ASIP hardware



Fig. 5. Data oriented model of a loop-based C code. The terms N, 3 and 1 indicate the sizes of the arrays and data patterns that are consumed and produced by the two loop
nests, L1 and L2.

Fig. 6. Example of transformations for parallelization.
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architectures. Fig. 5 shows a simplified example of the data-ori-
ented model corresponding to the loop-based C code on the left.
Such a model captures data dependencies and granularities; but,
it abstracts information about the computations in the straight line
code, which are a concern of Phase 3.

In order to select Pareto optimal parallel versions of the loop-
based code and infer from this the corresponding ASIP architecture,
Phase 2 evaluates the improvements of the code execution due to
some loop transformations. This evaluation is a result of a static
analysis performed on the internal data-oriented Array-OL repre-
sentation. The evaluation accounts also for the performances of
the allocated ASIP architecture though an analytical model of its
area and execution time. A simplified example of the representa-
tion of the loop transformations through the data-oriented Array-
OL model is sketched in Fig. 6, where the transformations fusion
and unrolling are shown.

Using several established allocation and mapping rules, Phase 2
infers also the ASIP architecture from the internal data-oriented
representation. In particular, it decides for memory hierarchy and
data parallelism through vectorization or usage of multiple issue
slots. An example is shown in Fig. 7, where allocation and mapping
are represented. In particular the allocation of issue slots (IS1 and
IS2) and the mapping of loop body (L1 and L2) on them, as well as,
the allocation of register files (RF) and local memories (LM) and the
mapping of data on them are represented.

The number of instantiated LMs also fixes the number of
needed load and store (LS) units. To better understand the allocat-
ing and mapping rules, let us consider some example. A transfor-
mation such as loop unrolling can be used to identify possible
vectorizations. Indeed, the unrolling of independent loop iterations
identifies identical kernels (i.e. independent iterations of a same
loop body) which can be vectorized, provided that the necessary
vector instructions are allocated.

As a consequence, the architecture design should allocate a
standard or custom issue slot containing vector instructions to
realize the foreseen vectorization. The construction of the appro-
priate set of used issue slots is a concern of Phase 3. Another exam-
ple of allocation and mapping rule can be given by loop fusion.
Loop fusion merges two or more loops in a same iteration space,
reducing the loop control to a single thread. As a consequence, it
is possible to process the tasks of two or more merged loops in par-
allel on the same ASIP. To make this possible, the architecture de-
sign should allocate an issue slot per merged loop with the
associated register files and local memories.

A simplified example of an ASIP architecture allocated to realize
the example of Figs. 5 and 6, is given in Fig. 8. Such architecture in-
cludes a sequencer to manage the control thread and the issue slots
associated with the loop bodies. If a loop body is unrolled and the
unrolled iterations are independent, then the issue slot type is
‘‘vector’’, which means it includes vector instructions.
Fig. 7. Allocation and mapping rules.



Fig. 8. Example of selected ASIP architecture. The number of allocated registers is
equal to the number of the allocated issue slots. However, some register sizes are
not known because their final value is computed from the subsequent phase 3.
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The vector width is equal to the number of the loop body unroll-
ing factor. The architecture also contains local memories (LM) and
register files (RF) as specified by the allocation and mapping rules
(Fig. 7). Each LM needs to be associated with a load/store unit to be
accessed without conflict. Finally, in order to maximally benefit
from the parallel issue slots of the architecture, Phase 2 instanti-
ates a number of RFs (or RF ports) equal to the number of used is-
sue slots.

In order to rapidly evaluate and select the solutions of this
exploration, Phase 2 uses an analytic model. This technique avoids
the error-prone and time-consuming process that actually con-
structs all the considered architectures. In particular, the analytic
model estimates the execution time of the proposed software
structure onto the proposed architecture; it estimates the area of
the proposed solution; and, in a future version, it will estimate
the power consumption. An exploration process based on the Opt4J
genetic algorithm framework [32] creates and evaluates a large
number of possibilities. Few solutions with the best area and exe-
cution time trade-off are selected and can be communicated either
to the System DSE for an improvement of the currently considered
application partitioning or to the rapid prototyping environment
for a more accurate evaluation of the found solutions. This part
of Phase 2 is based on previous works further explained in
[27,33–35]. For each selected Pareto solution, Phase 2 generates
two outputs.

– An AOL file containing the restructured data-oriented model.
This file suggests the loop transformations that should be
applied to the C code of the application part.

– A XML file describing how to compose the ASIP architecture out
of the elements of SH/Intel library.

Using the AOL file together with the services of the software
restructuring and compilation flow of SH/Intel environment, Phase
2 constructs the restructured C code. Using the XML file and the
SH/Intel library, Phase 2 constructs the TIM code of the ASIP. The
ASIP system defined by the pair of restructured C code and TIM
code, can be used for simulation in the SH/Intel simulation envi-
ronment or in the rapid prototyping stage.

Phase 3 performs instruction architecture synthesis and re-
lated application restructuring. It mainly involves the identifica-
tion and selection of an application specific instruction set for each
ASIP design. Phase 3 takes as architectural constraints of the
instruction architecture synthesis, the number of parallel load
and store (LS) operations that can be executed per cycle and mem-
ory mapping as computed by Phase 2. The selection in Phase 3 of
an appropriate instruction set goes through several stages. First,
the number of needed issue slots is computed in order to execute
the input straight-line code according to required scheduling con-
straints. Then, the required hardware operators are identified and
distributed over the allocated issue slots so that the scheduling
requirements are met. The selection of an instruction set may con-
cern individual basic blocks (e.g. loop bodies). In this case, the re-
sult of Phase 3 is used to update the library of issue slots used by
Phase 2. But, the instruction set selection, may also concern multi-
ple basic blocks executed in parallel. In this case, Phase 3 provides
a refinement of the design performed in Phase 2 and accounts for
possible hardware sharing among the instructions of different ba-
sic blocks. The selection of the best instruction set is performed
with respect to three design optimization criteria such as area
occupancy, execution time or throughput, and energy consump-
tion. If after the initial selection the instruction set does not meet
the design requirements, custom operations can be proposed. In
this extension process, the original DFG are identified, realized in
hardware and included in the instruction library, before perform-
ing instruction set selection anew. Phase 3 also updates the size
of the register files to store the local variables alive during the basic
blocks execution.

After finishing the synthesis of a single ASIP based sub-system,
the generation of the TIM and/or HDL code describing the ASIP and
of the associated optimized C-code for the embedded software is
performed.

6.3. Global memory and communication DSE

The main aim of this stage is the exploration and optimization
of the global communication and memory structures for a multi-
ASIP system. This is performed through an iterative construction
and refinement of the interconnect and memory structures driven
by the constraints and objectives decided by the macro-architec-
tural level. In particular, the mapping of the application tasks at
the macro-architecture level is used to produce a communication
graph. Using this graph as input, the micro-architectural memory
and communication optimization iteratively proposes and evalu-
ates candidate interconnect and memory architectural configura-
tions, characterizes them using simulation-based methods and,
when needed, accesses the lower-level prototyping infrastructure
to endorse the simulation-based characterization. This way, a Par-
eto front of configurations compliant with the input mapping and
the input constraints is selected and serves as a feedback to the
system level, as depicted in Fig. 5. The selected design points are
characterized in terms of timing, area and energy consumption,
when exploiting the support for technology awareness described
in Section 6.4. In this way, the macro-architectural layer gets infor-
mation for a multi-objective architectural optimization.

GM&C configurations are compositions of different functional
blocks, such as:

– FIFO-based point-to-point connections.
– Single-layer shared buses.
– Multi-layer bus subsystems.
– NoC modules.
– Shared Parallel memory modules.

In this way architectural configurations compliant with a wide
variety of system-level designs (various number and kind of pro-
cessors, communication structures and global memories) can be
composed.

For simulative evaluation of design points during the GM&C
DSE, the Sesame MPSoC simulation framework [36] is exploited.
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Sesame is a modeling and simulation environment for an efficient
design space exploration of heterogeneous embedded systems.
According to the Y chart design approach, it recognizes separate
application and architecture models within a system simulation.
An application model describes the behavior of a (set of) concur-
rent application(s). An architecture model defines architecture re-
sources and captures their performance characteristics.
Subsequently, using a mapping model, the application model is
explicitly mapped onto the architecture model (i.e. the mapping
specifies which application tasks and communications are per-
formed by which architectural resources in an MPSoC).

The upper layers of the design flow provide details about the
application, that are fed into the application model. More in detail,
the aforementioned task graph is evaluated to obtain information
about the computational latency associated with each task and
about the communication channels between tasks (number and
size of the token exchanged through the channels).

When the application model is executed, each process records
its computational and communication actions, and generates a
trace of application events. These application events are an ab-
stract representation of the application behavior and are necessary
for driving the architecture model.

Typical examples of application events are:

– read (channel id, pixel block) that represents a communication
event, in this case a data from an input channel;

– execute (DCT) that represents an atomic computation event, for
example the execution of a DCT kernel.

The architecture model simulates the performance conse-
quences of such computation and communication events gener-
ated by the application model. It is parameterized with an event
table (calibration table hereafter), that contains latency values
associated for the events to the architectural components. More
in detail, for example, it includes the latency associated to the
NoC router components (input and output buffers, arbiter, cross-
bar), the stalls due to congestion, the network interfaces latencies,
related to buffering and packeting operations and the latency asso-
ciated with accesses to memory modules. Typically, the content of
the calibration table can be obtained by means of the FPGA based
prototyping environment.

As mentioned before, within the ASAM flow, the mapping infor-
mation is also provided in input to the GM&C optimization phase
by the System DSE. According to the mapping, the application
and architecture models are co-simulated to qualitatively and
quantitatively study the performance.

6.4. Rapid prototyping platform

The main role of the prototyping infrastructure in the ASAM
flow is to provide an accurate executable FPGA-based model, capa-
ble of reducing the gap between the estimation of the perfor-
mances considered during the early steps of the design flow and
those really measurable after the implementation. Furthermore,
the designed FPGA prototyping platform is enhanced with particu-
lar techniques that allow obtaining a speedup in the exploration
phase, especially useful when dealing with an exploration of many
different architectural configurations.

The prototyping platform is composed of several ASAM tools
that interact with each other and cooperate with several commer-
cial tools. The platform takes different inputs, namely micro- and
macro-architectural specifications that drive the HDL generation
step and the FPGA prototyping phase Fig. 10. The macro-architec-
tural description is provided as input to describe the top-level view
of the system, by means of a proprietary HSD format. The micro-
architectural description is related to both the topology of inter-
connect and memories, and the processor architectural configura-
tion of ASIPs.

The ASIP architecture is described using a proprietary language
(TIM). The interconnect topology description is provided using an
in-house developed format that can be translated by a dedicated
utility in a completely configured HDL description. The intercon-
nect structure, being based on a Network-on-Chip fabric, is cus-
tomizable to a great extent in terms of a number of switches,
connections among them, network interfaces and other
parameters.

The interconnect topology can be instantiated as a black-box in
the HSD system-level description, so that its HDL code can be com-
fortably linked to the main system (containing ASIP processor(s))
for synthesis. The HDL generation step envisions the code instru-
mentation for performances evaluation. The industrial tool-chain
for ASIP design has been customized in order to allow for the auto-
matic instantiation of hardware counters inside the processor/sys-
tem RTL code, to compute the event counts, i.e. counting the
number of accesses to each functional block in the ASIP processor,
memory or interconnect structure, and cycle counts, e.g. the num-
ber of clock cycles needed to execute a given application on a given
architecture. Analytic models have been developed within the pro-
ject (through performing training sets of experiments for a given
technology) in order to translate the counts obtained from the
FPGA prototyping hardware implementation into the technology
development energy and execution time figures.

Adequate custom Tcl scripts have been developed to enable,
without further user intervention or adaptation, the correct hard-
ware structures to be created and memory-mapped to be accessed
during software execution. By means of these extensions, the syn-
thesized hardware is automatically equipped with the correct
number of performance counter registers, placed in relevant parts
of ASIP processors/interconnect structure, ready to be fetched by
the simulation environment and coupled with appropriate area/
energy/frequency models.

Furthermore, a retargetable compilation tool-chain with com-
plete awareness of the ASIP processors/system specifications, and
thus able to efficiently schedule the application tasks on the hard-
ware resources, has been deployed. The RTL description of a sys-
tem, optimized for the FPGA implementation, can be synthesized
and implemented on FPGA exploiting commercial tools. At this
point, the target application is compiled by means of the ASIP soft-
ware compilation tool-chain, retargeted according to the ASIP pro-
cessors/system specifications, and executed on the FPGA platform,
to collect the relevant metrics at the end of the execution.

For the sake of manageability and data exchange between the
different phases of the flow, a co-simulation approach exploiting
the SysGen toolbox by Xilinx and MATLAB has been adopted. The
collaborative use of these tools allows for executing the software
on the FPGA board and collecting the evaluation data from a host
workstation, while accessing dedicated shared-memory structures
that are instantiated in the MATLAB workspace Fig. 9.

Through the SysGen toolbox, one can instantiate the FPGA hard-
ware as a black box inside the environment, being able to fetch/
send data to the memories instantiated inside the design, read
counter values, initialize data structures, etc. Once done, the FPGA
device is programmed as usual, and the execution is controlled di-
rectly inside the MATLAB environment.

In [37], we find an example of a typical setup where the FPGA
prototyping platform is used for a characterization of a single-ASIP
architectural configuration: an ASIP specification is instantiated,
capable of emulating many different single-core configurations; a
host processor is also present, in charge of uploading program
binaries to the ASIP core; a NoC-based interconnect and a shared
memory complete the diagram. At the end of the execution, from
MATLAB we are able to fetch relevant activity figures from the
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shared counters that can be used to further enhance the analysis,
enabling a pre-estimation of the quality-of-results achievable with
a prospective ASIP implementation.

In the prototyping tool-flow this objective is achieved with the
usage of accurate area and energy models. The models consist in a
set of analytic expressions, able to calculate the area occupation
and the energy consumption of each functional block inside a pro-
cessor as a function of the architectural parameters and of the
activity rate. The expressions have been defined, within the ASAM
project, studying the dependency of area and energy on the men-
tioned variables, for every ASIP functional block.

The models have to be calibrated for each target technology
considered for the ASIP implementation. The expressions have to
be characterized over a training set of processor configurations.

The ASIPs in the training set must be implemented at layout-le-
vel and the area occupation and energy consumption must be ana-
lyzed to build a table of coefficients to be filled in the expressions.
The coefficients typically represent area and energy values ‘‘nor-
malized’’ to the design parameters and to the activity rates. Obvi-
ously, the area model is activity-independent, while the energy
dissipation depends on the functional block activity, i.e. on the
number of cycles during which the considered functional block
was enabled or accessed (in case of memory and register files).

Once the models have been preliminary calibrated for a given
technology library, they can be used to back-annotate values ob-
tained from the previously mentioned hardware counters, ade-
quately connected to the relevant signals in the FPGA prototype.
In this way, it is possible to perform a detailed technology-aware
evaluation of every ASIP configuration under prototyping. More-
over, the prototyping tool-flow has been enriched with a novel
support for the multi-design point characterization, to enable the
extensive exploitation of FPGAs within the micro- and macro-
architectural DSE.

In order to push the hardware prototyping one step further,
within the framework we envision the synthesis of an emulation
platform equipped with the hardware resources necessary for the
evaluation of different system configuration types, to be reused
for different explorations employing a software-based reconfigura-
tion mechanism.

The general idea is to overcome the important time limitation in
FPGA-based design due to the time-consuming synthesis phase.
With this aim an over-dimensioned architectural description is de-
fined covering a number of different configurations to be explored,
and implemented on the FPGA.

The same kind of approach has been applied at the interconnec-
tion and processor-level, to enable rapid NoC topology selection
and evaluation for multiple ASIP configurations.

Consequently, through the usage of custom-developed tools, the
prototyping flow is capable of executing application binaries
Fig. 9. Block diagram for FPGA/M
compiled for all the candidate architectural configurations on the
same over-dimensioned FPGA prototype, leading to significant time
savings in the architectural configurations exploration and
selection.

7. Preliminary result

This section presents several experiments and preliminary re-
sults obtained while using main stages of the ASAM design flow
with representative applications and designs.

7.1. System and ASIP DSE

To demonstrate our hierarchical design method, involving a
tight cooperation between System and ASIP DSE, we use a motion
JPEG (MJPEG) encoder application provided with the Compaan
tool. This application is sufficiently complex to benefit from a map-
ping on a multi ASIP platform but also sufficiently simple to be
used as an explanatory example. The ASAM flow can address more
complex applications.

The Compaan tool analyses the C code of the application and gen-
erates the corresponding KPN in which the code is partitioned into
multiple tasks (or nodes) as shown in Fig. 11 a. From the KPN, a task
graph (Fig. 11 b) as the one required in input of System DSE is gener-
ated. The constraints provided as input are the application deadline,
d = 5000 ms and the maximum area of the platform, ap = 2 � 10 lm2.
Moreover we consider two different types of buses, b10

32 and b10
16 (32

and 16 bits width with a frequency of 10 MHz) during the hierarchi-
cal DSE. The C code of each single task sj is elaborated by the applica-
tion analysis phase that generates the upper and lower WCETs
values, respectively indicated as WCETu

j and WCETl
j.

Table 1 presents the values obtained for each task and normal-
ized with respect to the WCETl

s1
(the smallest value). For the ASIPs,

we assume a working frequency of 100 MHz that is compatible
with the available components of the micro-architecture library.

The probabilistic DSE is executed and, from the set of clustering
solutions with the highest probability of meeting the deadline d,
we select the clustering solution with the minimum number of
clusters (i.e. two) and the smaller bus (b10

16). The selected clustering
solution is described in Table 2.

Given this clustering solution, Phase 2 of micro-architecture
DSE generates two ASIPs customized to the specific task clusters.
For each ASIP, depending on the available optimizations, multiple
Pareto micro-architecture solutions are generated: in particular,
1 solution for P1 (that allows a limited optimization as it contains
only one task) and 5 solutions for P2.

The start and end points of the tasks execution time for the Par-
eto solutions are estimated together with the areas values. The
improvement of the error of the start and end times estimation
ATLAB SysGen interfacing.



Fig. 11. KPN of the MJPEG encoder (a) and corresponding task graph (b).

Fig. 10. FPGA prototyping.

Table 1
Normalized output of the application analysis.

s1 s2 s3 s4 s5 s6

WCETu
j 1.4 83.5 1541 1746 790.1 26.2

WCETl
j

1 45 1151 83.3 540.5 22.1

Table 2
Selected clustering solution.

P1 P2

s2 s1, s3, s4, s5, s6
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is still work in progress, but in this paper we wanted to give a first
proof of concept. Then, the deterministic DSE selects between the
available Pareto solutions evaluating the area and performances
of the entire system. The results obtained are shown in Fig. 12.
For the given input constraints (red lines in Fig. 12), there are
two acceptable solutions. For the final implementation, we



Fig. 13. Set of 31 candidate architectures for rapid prototyping, automatically
selected by phase 3 after considering 186 alternative architectures in its design
space.

Fig. 12. Normalized output of the deterministic DSE.
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selected the one with the smaller WCET. With this case study we
demonstrate that our design flow can generate a heterogeneous
bus-based multi-ASIP system targeted to a specific application,
which meets the design constraints.

This section exemplifies the cooperative usage of System and
ASIP DSE in a hierarchical Design Space Exploration (DSE) method
to address the circular dependency problem in ASIP-based system
design and to produce efficient designs of heterogeneous multi-
ASIP platforms given an application task graph and design con-
strains as input specification. The method is demonstrated with
the MJPEG case study. The single ASIP design needs to be further
refined as explained in next section.

7.2. ASIP design refinement

When provided with an initial over-sized architecture by Phase
2, the third phase of the micro-level architecture exploration se-
lects candidate architectures for the rapid prototyping environ-
ment. It explores the removal of issue-slots, function-units, and
register file entries.

During this exploration, it considers the impact on the proces-
sor memory area (including program memory), application execu-
tion time, and total energy consumption of the candidate
architectures.

Fig. 13 shows how a set of 31 candidate architectures for rapid
prototyping were automatically selected after considering 186
alternative architectures from the design space. The Phase 3 tools
provide an intelligent architecture selection algorithm which
greatly reduces the number of design points that need to be con-
sidered during rapid prototyping.

7.3. Rapid prototyping

The FPGA-based prototyping platform is already fully imple-
mented and fully operational. It has been tested on several bench-
mark designs and works as expected. In this section we present a
use case of the previously described prototyping platform. We plot
the results obtained while performing the architecture selection
process over a set of 30 different ASIP configurations, which can
be provided by phase 3 of the ASIP DSE or by an end-user. In the
presented results, the explored design points were identified con-
sidering different permutations of the following parameter values:

– N_is (c): 2, 3, 4 or 5 (number of issue slots).
– FU_set (x, c): from 3 to 10 Functional Units (FUs) per issue slot.
– RF_size (x, c): 8, 16 or 32 entries – each 32 bits wide.
– N_mem (c): 2, 3, 4 or 5 (number of data memories).
To perform the analysis we chose an image filtering kernel,
compiled for every candidate configuration. The obtained binaries
were executed on the WCC prototype, after having been ade-
quately manipulated. The host processor of the prototype reads
the adapted binary from the local memory and uploads it to the
ASIP core.

After the binary has been uploaded, the host processor triggers
the ASIP core for its start and waits until the end of its execution, to
fetch the results of the execution from the ASIP’s local memory
and, eventually, checks them for the presence of any errors. The
adopted hardware FPGA-based platform uses the Xilinx Virtex5
XC5VLX330 device, with over 2M equivalent gates. In Fig. 14 we
present the results obtained with respect to the total execution
time, total latency, and total energy and power dissipation. Using
the prototyping results, multi-objective optimization can be effec-
tively performed: imposing a constraint on maximum execution
time (e.g. 200K cycles), one can identify a subset of candidates that
do not satisfy the constraint (gray bullets). Then, among the
remaining design points, the best configuration with respect to
the power or area (white bullet) can be selected.

To further extend the analysis depth, functional unit (FU)-level
detailed performance can be obtained, referring to each single FU
included in the configurations under test. As an example, we show
in Fig. 15 a graph reporting power consumption of each function
unit in a particular configuration, during the execution of the al-
ready mentioned binaries. All the presented data are obtained after
only once traversing the synthesis/implementation flow.

In order to evaluate the accuracy of the proposed approach
and the achievable speed-up, we compared the emulation results
obtained by means of our prototyping strategy with those
obtained using a cycle-accurate software-based simulator pro-
vided with the baseline SH/Intel flow tool-chain, referring to
the same image-filtering kernel. Exactly the same experimental
data were obtained by means of the two methods; with respect
to functional metrics such as the cycle count. But, while cycle-
accurate simulation performed on a workstation (Intel Quad-
Core) required few minutes (roughly five on average per configu-
ration), onboard execution on the FPGA prototype required only
few seconds (roughly two) to emulate each candidate
architecture.

A synthesis/implementation flow, performed on an Intel Quad-
Core machine with commercial tools, required less than half an



Fig. 14. Use case results. Every configuration could be represented by a different 4-tuple, whose elements represent total number of issue slots, register file capacity (in 32-bit
words), number of fully-featured issue slots, number of data memories.

Fig. 15. Power consumption for each FU in a particular configuration, composed of
four issue slots, with register files of 16 entries, reported in lW. As can be seen from
graph, load-store units and arithmetical units are the power hot-spots in the design.
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hour to complete. Such time obviously depends on the size of the
system, but can be estimated in the order of 1 h for moderately
complex systems.

Binary translation is also performed on the same machine, but
the related overhead in terms of emulation time is negligible (less
than a second). To provide an indication of the occupation of the
commercial FPGA devices by the prototype system on, it is worth
pointing out that a three ASIP processor system implementing
the mentioned image kernel application occupies 19,859 slices to-
tally on the previously cited XC5VLX330, of those 6923 are used as
slice registers and 16,387 as slice LUTs.
8. Conclusion

In the former sections an overview of the research results of the
European project ASAM has been presented. The overviewed re-
sults include: analysis of the main challenges to be addressed dur-
ing the development of ASIP-based MPSoCs for highly-demanding
applications; proposal of a multi-stage design flow that addresses
and overcomes the challenges; description of the developed meth-
ods and prototype tools that implement the stages of the design
flow; and discussion of the experimental results obtained when
using some of the design methods and tools.

All the design methods of the ASAM flow are already developed
and the related prototype EDA tools are implemented. However,
the initial versions of the tools have to be extended and refined,
and a few interfaces among the tools are still under development.
Although the ASAM flow is not yet fully implemented, its imple-
mentation is in an advanced stage. This allowed us to perform sev-
eral experiments, with representative applications and designs,
and obtaining some preliminary results. These results were briefly
discussed in this paper. They confirm that the proposed ASAM de-
sign flow and tools are appropriate for the automated design of
ASIP-based MPSoCs. They have the potential to produce high-qual-
ity HW/SW ASIP-based systems in limited lapse of time. More
information on the research results from ASAM can be found in
several already published papers [30,33–35,38–45] and on the
ASAM home-page (http://www.asam-project.org/).
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