
ARTICLE IN PRESS

JID: MICPRO [m5G; September 12, 2016;20:42]

Microprocessors and Microsystems 0 0 0 (2016) 1–15

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

Design optimization for security- and safety-critical distributed

real-time applications

Wei Jiang

a , ∗, Paul Pop

b , Ke Jiang

c

a School of Information and Software Engineering, University of Electronic Science and Technology of China, China
b Department of Compute, Technical University of Denmark, Denmark
c ÅF-Technology AB, Sweden

a r t i c l e i n f o

Article history:

Received 11 February 2016

Revised 23 July 2016

Accepted 9 August 2016

Available online xxx

Keywords:

Embedded system

Security

Safety

Energy

Design optimization

a b s t r a c t

In this paper, we are interested in the design of real-time applications with security, safety, timing, and

energy requirements. The applications are scheduled with cyclic scheduling, and are mapped on dis-

tributed heterogeneous architectures. Cryptographic services are deployed to satisfy security requirements

on confidentiality of messages, task replication is used to enhance system reliability, and dynamic voltage

and frequency scaling is used for energy efficiency of tasks. It is challenging to address these factors si-

multaneously, e.g., better security protections need more computing resources and consume more energy,

while lower voltages and frequencies may impair schedulability and security, and also lead to reliability

degradation. We introduce a vulnerability based method to quantify the security performance of com-

munications on distributed systems. We then focus on determining the appropriate security measures

for messages, the voltage and frequency levels for tasks, and the schedule tables such that the security

and reliability requirements are satisfied, the application is schedulable, and the energy consumption is

minimized. We propose a Tabu Search based metaheuristic to solve this problem. Extensive experiments

and a real-life application are conducted to evaluate the proposed techniques.

© 2016 Elsevier B.V. All rights reserved.

1

a

e

r

a

r

f

t

c

a

n

o

o

l

t

d

d

a

v

s

i

t

I

c

i

a

d

t

o

a

a

m

e

w

b

h

0

. Introduction

Embedded systems are increasingly used in critical areas, e.g.,

utomotive and avionic electronic systems. Such systems are facing

merging challenges from security, reliability, energy, and timing

equirements. In this paper, we refer to such systems as security-

nd safety-critical systems (SSCSs). SSCSs have to function cor-

ectly while meeting timing constraints even in the presence of

aults. Such faults can be permanent, intermittent, or transient. In

his paper, we focus on protecting the system against the most

ommon type of faults, namely, the transient faults [1] .

With the integration of new communication interfaces, SSCSs

re exposed to increasingly severe security threats, hence the

eed of protecting sensitive communication information becomes

f utmost importance [2] . The snooping, spoofing, or alteration

f critical data does not only compromise security but can also

ead to system failure, resulting in great financial loss and poten-

ially endangering human life and the environment. For example,

isclosure or tampering of critical messages, e.g., of braking or
∗ Corresponding author.

E-mail addresses: weijiang@uestc.edu.cn (W. Jiang), paupop@dtu.dk (P. Pop),

alingog@gmail.com (K. Jiang).

q

c

t

a

ttp://dx.doi.org/10.1016/j.micpro.2016.08.002

141-9331/© 2016 Elsevier B.V. All rights reserved.

Please cite this article as: W. Jiang et al., Design optimization for secu

processors and Microsystems (2016), http://dx.doi.org/10.1016/j.micpro.
cceleration, in automotive electronic systems can compromise

ehicles security and, consequently, safety. Although embedded

ystem security has been addressed in literature [3,4] , security

ssues in distributed embedded system communication, especially

he internal communication, have not received as much attention.

n [5] , several attack scenarios in automotive networks were dis-

ussed, and the importance of utilizing cryptography to protect the

nternal bus communication was highlighted. To provide system-

ffordable security protection for the internal communication of

istributed SSCSs, it is of critical importance to find efficient solu-

ions at early design stages [6,7] . Considering the security issues

n mixed-criticality real-time applications, authors of [8] proposed

 GA (Genetic Algorithm) based efficient heuristic algorithm to

ddress the system-level optimization of the security-sensitive

ixed-criticality real-time applications. However, the underlying

nergy and reliability issues in the context of distributed SSCSs

ere not addressed in these works.

Energy efficiency is a fundamental requirement of many em-

edded systems, not only in battery powered systems. In SSCSs,

uick energy depletion or early exhaustion of batteries may

ompromise security and even cause failure of mission-critical

asks, resulting in unexpected outcomes. One of the most common

pproaches in energy management is to utilize dynamic voltage
rity- and safety-critical distributed real-time applications, Micro-

2016.08.002

http://dx.doi.org/10.1016/j.micpro.2016.08.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/micpro
mailto:weijiang@uestc.edu.cn
mailto:paupop@dtu.dk
mailto:dalingog@gmail.com
http://dx.doi.org/10.1016/j.micpro.2016.08.002
http://dx.doi.org/10.1016/j.micpro.2016.08.002

2 W. Jiang et al. / Microprocessors and Microsystems 0 0 0 (2016) 1–15

ARTICLE IN PRESS

JID: MICPRO [m5G; September 12, 2016;20:42]

Table 1

Mostly used symbols and abbreviations.

Notation Definition

G Application graph

V The set of tasks

M The set of messages

E The set of dependency relations of tasks

N The set of DVFS-enabled processing nodes

P i The i -th task

N i The i -th processing node

m i The i -th message

D Deadline of application G

C i Execution time of P i
L i Security level of m i

K i The number of replicas of P i
SI i Security input task of m i

SO i Security output task of m i

RE System reliability

RE B System reliability bound

En System energy consumption

OV Overall vulnerability

VD Vulnerability deficiency

MOV Maximal overall vulnerability

OV B The upper bound of overall vulnerability

VB i The vulnerability bound of m i

η System reliability degradation

� DVFS mode assignment for all tasks

ϒ Security level assignment for all messages

x The solution for the optimization problem

LS List scheduling

TS Tabu search

DVFS Dynamic voltage & frequency scaling

SSCSs Security- and safety-critical systems

TSHO Tabu search-based hybrid optimization

GHO Greedy-based hybrid optimizing

MVFS Mapping, voltage and frequency scaling optimization

EO Energy optimization

RSO Reliability and security constrained optimization

VCC Vehicle cruiser controller

WCET Worst case execution time

CP Critical path

MPCP Modified partial critical path

t

i

a

w

t

a

c

o

c

t

D

S

p

r

d

I

i

t

t

n

i

e

I

t

g

a

& frequency scaling (DVFS) [9] . The effectiveness of DVFS for the

modern processors is debatable because of their reduced dynamic

power range [10] . However, safety-critical systems typically use

older-generation architectures (for which detailed failure data

is available). DVFS can have a negative impact on the system

reliability, since lowering the voltage leads to exponential increase

in the number of transient faults as shown in [11] . Based on such

DVFS-related reliability model, efficient reliability management

mechanisms have been presented for energy-critical uni-processor

systems and distributed systems [12,13] . However, the security

issues were seriously overlooked in these works.

In this paper, we are interested in optimizing the energy con-

sumption for security- and reliability-critical applications on DVFS-

enabled heterogeneous distributed real-time embedded systems,

where both tasks and messages are statically scheduled. We con-

sider both security and reliability issues together for DVFS-enabled

real-time embedded systems with a general application model,

which is highly different to the work on energy optimization of

security-related mixed-criticality real-time applications [8] . Due to

the huge complexity of the problem, we propose an efficient Tabu

Search-based heuristic that decides on the system variables, i.e.,

the voltage levels and start time of tasks, the transmission time of

messages and their security levels, such that the energy consump-

tion is minimized, while the reliability, real-time, and security re-

quirements of the application are satisfied. The main contributions

of this paper are: (1) we introduce a vulnerability based method

to quantify the security performance of communications on dis-

tributed systems; (2) we address a unified design problem for

security- and safety-critical embedded systems which simultane-

ously considers the security, reliability, energy, and timing require-

ments; (3) we evaluate the proposed approach on several synthetic

benchmarks and one real-life case study (a vehicle cruise controller

application) and compare it to other approaches from related work.

The rest of this paper is organized as follows. Section 2 de-

scribes the system application and hardware architecture.

Sections 3 and 4 present the security model and DVFS-related

reliability model we used in this paper, respectively. Section 5 for-

mulates the design optimization problem, and depicts an illus-

trative example. Our TS-based heuristic and experimental results

are given in Sections 6 and 7 , respectively. The conclusions of the

paper are drawn in Section 8 .

2. System architecture

In this section, we describe both application model and hard-

ware architecture for SSCSs. For future reference, we give the most

used symbols and abbreviations of this paper in Table 1 .

2.1. Application model

We model the application as a directed acyclic task graph

G (V , E , M) . V is the set of vertices, and each node in V represents

one task P i . An edge e i j ∈ E from P i to P j indicates that there is a

data dependency between P i and P j . M is the set of messages that

need to be transmitted over the communication bus. We assume

that the mapping of tasks to processors is given by the designer

based on his/her former experience, depending on the concrete

execution requirements of the application and usage constraints.

The worst case execution time (WCET) C i of each task P i is known.

In this paper, we focus on the confidential security of messages

delivered over the internal communication bus of distributed sys-

tems. Thus, messages exchanged by tasks on the same processor

are assumed to be secure (e.g., protected by memory isolation,

with no communication bus delivery), and their transmission time

is ignored. These messages are not explicitly modelled in our

application graph. Thus, we only model the messages between
Please cite this article as: W. Jiang et al., Design optimization for secu

processors and Microsystems (2016), http://dx.doi.org/10.1016/j.micpro.
asks on different processors, which are transmitted over the

nternal communication network. Such messages are denoted with

 solid circle on top of the corresponding edges. A task is activated

hen all its inputs have arrived. Tasks are non-preemptive, and

hus, cannot be interrupted during execution. Fig. 1 (a) depicts an

pplication consisting of five tasks, P 1 to P 5 , and two communi-

ation messages, m 1 and m 2 , which are supposed to be executed

n two processors (N 1 , N 2). The mapping and the WCETs (in μs ,

onsidering the highest operating mode) are also given in the grey

able of Fig. 1 (a). The application must finish all executions within

 time units after released, known as its global deadline.

We concentrate on tolerating the transient faults of the tasks.

everal fault-tolerant techniques have been proposed for this

urpose [14] , e.g., re-execution, replication and checkpointing with

ollback recovery. The techniques have different advantages and

isadvantages in terms of performance and energy consumption.

n this paper, we have chosen to use active task replication for

ts simplicity in terms of scheduling. Note that our proposed

echniques can be easily extended to support other fault-tolerant

echniques. The designer specifies, for each critical task P i , a

umber of K i replicas to ensure execution reliability. For example

n Fig. 1 (a), task P 2 has two replicas, i.e., K 2 = 2 . We assume that

rror detection is performed by each critical task and its replicas.

n case a majority voting on the outputs is required, we assume

hat the designer will add such a voter task to the application

raph. The mapping of these replicas is also given by the designer

nd can be on a different or on the same processor with P .
i

rity- and safety-critical distributed real-time applications, Micro-

2016.08.002

http://dx.doi.org/10.1016/j.micpro.2016.08.002

W. Jiang et al. / Microprocessors and Microsystems 0 0 0 (2016) 1–15 3

ARTICLE IN PRESS

JID: MICPRO [m5G; September 12, 2016;20:42]

Fig. 1. System architecture.

Fig. 2. Critical message security.

2

s

[

i

d

n

f

s

n

t

3

3

m

R

F

t

t

m

e

Table 2

Security comparison of RC6 variants.

Level � Rounds � Plaintexts Vul θ (μs/Block)

1 4 2 29 98 3 .08

2 8 2 61 67 3 .58

3 12 2 94 34 4 .15

4 16 2 118 10 4 .63

5 20 2 128 0 5 .21

(

m

a

a

o

w

t

w

t

c

o

a

d

t

c
.2. Hardware architecture

The target hardware architecture is a distributed embedded

ystem composed of N DVFS-enabled processing nodes (as in

15]) that are connected by an internal communication bus as

llustrated in Fig. 1 (b). A processor is characterized by a set of

iscrete operating modes. Each mode, φ
N j
i

= (f
N j
i

, v
N j
i

, pw

N j
i

) , of

ode N j consists of three parameters: f
N j
i

is the operating clock

requency; v
N j
i

is the supply voltage; pw

N j
i

is the power. For

implicity, we denote F
N j

i
= f

N j
i

/ f
N j
max and V

N j
i

= v
N j
i

/ v
N j
max as the

ormalized frequency and voltage, respectively. Fig. 1 (b) shows

wo processors, each with three operating modes.

. Security model

.1. Security overhead of messages

In this paper, we focus on protecting confidentiality of each

essage communication by block ciphers (BCs), e.g., 3DES, IDEA,

C5, RC6, SKIPJACK, and Blowfish. Let us consider the example in

ig. 2 . P 1 and P 2 are two tasks exchanging a message m . Assuming

hat P 1 and P 2 are mapped to different processing nodes, m will

hen be transferred over the internal communication bus, and

ust be protected against eavesdropping attack, i.e., we must

nsure its confidentiality. SI and SO denote the Security Input task
Please cite this article as: W. Jiang et al., Design optimization for secu

processors and Microsystems (2016), http://dx.doi.org/10.1016/j.micpro.
before message transmission) and Security Output task (after

essage reception), respectively. SI includes message encryption

nd checksum generation, while SO includes checksum verification

nd message decryption. Note that, SO is the inverse procedure

f SI . Hence, SI and SO have the same execution time if executed

ith the same hardware configuration, which is also evaluated by

he measurement on our testbed. In this paper we consider the

idely used RC6 [6] , notable for its simplicity and flexibility, for

he encryption and decryption of sensitive messages.

We use Security Level to capture the relative strengths of

onfidentiality techniques used for a message. The security level

f a cryptographic algorithm is reflected by its robustness against

ttacks. Taking RC6 as a example, the relative security level is

irectly affected by the number of encryption rounds as shown in

he level and � Rounds columns of Table 2 . However, the designer

an find other tradeoff tables of robustness and throughput based
rity- and safety-critical distributed real-time applications, Micro-

2016.08.002

http://dx.doi.org/10.1016/j.micpro.2016.08.002

4 W. Jiang et al. / Microprocessors and Microsystems 0 0 0 (2016) 1–15

ARTICLE IN PRESS

JID: MICPRO [m5G; September 12, 2016;20:42]

C

C

a

s

s

T

p

p

s

r

b

p

i

t

t

n

t

a

V

P

w

o

b

P

v

c

s

2

(

s

c

m

m

s

O

o

t

d

t

s

w

e

t

t

“

s

3

m

a

o

s

a

s

t

f
on the relative merits of employed services and his own expe-

rience. The approach presented in this paper can take as input

any rankings provided by the designer. � Plaintexts, Vul and θ in

Table 2 present the number of plaintexts needed for successful

cryptanalysis attack, the vulnerability metric (see the next subsec-

tion) and the encryption/decryption overhead for RC6 variants, 1

respectively.

Note that we must use the same security algorithm on the

sender and receiver sides. Therefore, the task that generates and

receives the message will have the same security level. Similar

to [3] , the security related execution time on message m i can

be characterized by a linear function of data size and selected

security level as follows,

SI
i = C SO

i = I i + θ (L i) · S i . (1)

I i is the WCET for doing the pre-/post-whitening on the encryption

and decryption. In this paper, we also incorporate the overhead

of checksum generation or verification within I i . L i is the security

level for message m i , which indicates the algorithm selection of

confidentiality. S i is the size of the message in blocks. θ (L i) is the

worst-case computation time of the BC function for one block (128

bits) of data on level L i . C SI
i

and C SO
i

are the WCETs of SI and SO

at the maximal frequency on the fastest processor. If the hardware

of the processing nodes executing SI and SO is different, then

SI
i

� = C SO
i

.

We have measured the execution overheads of RC6 variants

based on a real-time operating system, μC/OS-II, running on a

hardware platform with a S3C2440 ARM processor (500 MHz) and

64 MB SDRAM. The measurement instrument is PXI 1024Q with

a NI 6221 data acquisition card [16] . More information about the

testbed can be found in [17] .

RC6 is a parametrized family of symmetric algorithms. Each

variant of RC6 is accurately specified as RC6-w/r/b, where w is

the word size in bits, r is the number of encryption rounds and b

denotes the key size in bytes. We focus in this paper on the impact

of encryption rounds, then we set the word size as 32 bits, and

the key size of RC6 as 16 Bytes (128 bits). This also means that we

deploy the operating mode of RC6 as RC6-32/r/16 in the measure-

ment, and we only reconfigure r to change the operating mode

and test the corresponding overhead. Note that the time overhead

is independent of key size for RC6 according to our measurement

results. We set the data size (block size) as 16 Bytes (128 bits). The

measured WCETs (per unit of data block) of different security lev-

els on our testbed, θ (L i), are shown in the last column of Table 2 .

In the measurement, we also obtain that the encryption overhead

is equal to the decryption overhead for the same security level.

3.2. Security quantification and constraints

We assume that the system applies RC6 to protect confi-

dentiality of message communications. RC6 is a iterated block

cipher, notable for its simplicity and flexibility. With a variable

number of rounds, the user can explicitly manipulate the trade-off

between higher throughput and higher security. All the follow

up discussions are based on the assumption of applying RC6 in

the system. But our techniques is also applicable to other iterated

block ciphers.

One effective way to quantify the security is to compare the

vulnerability of a cipher to a cryptanalysis attack against an

exhaustive key search [18] . There have been a lot of cryptanalysis

evolutions since the publication of RC6. For example, references

[19,20] have analysed the security performance of RC6 against

linear and differential cryptanalytic attacks. Cryptanalytic attacks
1 We denote the cipher with a concrete encryption/decryption round as one of

its variants.

a

t

a

a

Please cite this article as: W. Jiang et al., Design optimization for secu

processors and Microsystems (2016), http://dx.doi.org/10.1016/j.micpro.
re theoretical attacks, and require a large number of plaintexts to

uccessfully estimate the encryption key bit(s). Required amount of

uch plaintexts grows exponentially as encryption rounds increase.

he number of rounds (from 4 to 16) and corresponding required

laintexts by the linear cryptanalytic attack for key recovery are

resented in Table 2 . RC6 with 20 rounds is considered to be

ecure enough against cryptanalytic attacks, since the amount of

equired plaintexts exceeds 2 128 plaintexts [19] . Consequently, the

rute force attack is more effective, which requires maximally 2 128

laintexts. Thereby, 2 128 is listed as last item of the third column

n Table 2 .

In this paper, we use a vulnerability metric as the quantifica-

ion of each message’s security strength. Similar to [18] , we define

he vulnerability, V i , as the logarithm of the ratio of the maximum

umber of plaintexts required by the brute-force search, PT bf , to

he number of plaintexts required using a chosen cryptanalysis

lgorithm, PT cc .

 i = log 2

[
P T b f

P T cc (L i)

]
(2)

T cc (L i) is the required plaintexts to successfully attack RC6 variant

ith security level L i by linear cryptanalytic method. The number

f plaintexts needed by brute-force is equal to the power of

lock size, for example attacking RC6 (block size 128 bits) requires

 T b f = 2 128 plaintexts. Based on the case of linear cryptanalysis, the

ulnerabilities of RC6 operating in these five chosen variants are

alculated and listed as the 4-th column in Table 2 . For example, a

uccessful attack on RC6 with 12 rounds (security level 3) requires

94 plaintexts, then the vulnerability is log 2 (2 128 / 2 94) = 34 .

We define the system vulnerability as the Overall Vulnerability

 OV) of all critical messages. We assume that the designer will

pecify a system vulnerability bound OV B for the whole security-

ritical application. In this paper we assume the weight of each

essage’s vulnerability is different due to the sensitivity of the

essage content. Denoting w i as the weight of m i , we have the

ystem vulnerability constraint as follows,

V (M) =

∑

m i ∈ M

w i · V i ≤ OV B . (3)

The system vulnerability bound is intended to reduce the

verall system vulnerability by protecting the messages. However,

here may be messages that are highly security-critical, which if

ecrypted would jeopardise the system security. Our assumption is

hat, similar to the safety-critical tasks for which the designer as-

igns a number of replicas to increase their reliability, the designer

ill identify the most security-critical messages, and specify for

ach of them an individual vulnerability bound VB i . By reducing

he vulnerability of highly security-critical messages, together with

he overall system vulnerability, we guarantee that there are no

weakest link” messages that can be attacked to jeopardise the

ecurity.

.2.1. Short discussion

In this paper, we focus on the confidentiality protection of

essages. We take RC6, one widely used confidential algorithm,

s an example to protect the messages. Although the main work

f this paper is based on the assumption of applying RC6 in the

ystem. But our techniques are also applicable to other confidential

lgorithm (iterated block ciphers), e.g., RC5 and AES [18] . Generally

peaking, there are three types of security protections (i.e., au-

hentication, integrity and confidentiality) need to be considered

or distributed embedded systems to resist attacks of snooping,

lteration and spoofing [3] . To incorporate these security protec-

ions into our model, we can extend our model by considering an

ccumulated weighted vulnerability model similar to [3] . For ex-

mple, if message m needs to be protected by both confidentiality
i

rity- and safety-critical distributed real-time applications, Micro-

2016.08.002

http://dx.doi.org/10.1016/j.micpro.2016.08.002

W. Jiang et al. / Microprocessors and Microsystems 0 0 0 (2016) 1–15 5

ARTICLE IN PRESS

JID: MICPRO [m5G; September 12, 2016;20:42]

a

m

p

p

r

c

i

fi

w

e

d

c

c

t

a

w

4

c

o

c

[

t

G

a

λ

r

w

p

e

R

w

m

r

f

R

w

t

t

w

R

W

b

t

f

i

5

5

s

D

o

b

i

c

a

a

a

g

t

h

t

c

u

w

o

t

o

c

o

t

E

F

i

E

w

a

d

l

a

t

f

o

a

d

i

D

n

s

o

l

t

M

S

R

F

OV (M) ≤ OV B and V ≤ V B , ∀ m ∈ M (12)
nd integrity protection, we can use V i = w

con f .
i

V
con f .
i

+ w

int.
i

V int.
i

to

odel the whole vulnerability. Our vulnerability for confidential

rotection cannot be directed used for other type of security

rotections, but we can use similar method to model the cor-

esponding vulnerability by attack complexity analysis, e.g., the

omplexity of collision attack on the family of SHA algorithms for

ntegrity protection.

Note that, in this paper we only focus on the message con-

dential protection over the internal communication bus, while

e ignore the protection operations on the processor during the

ncryption or decryption of messages. We assume the system

esigner has deployed high-level security protection on the pro-

essors, which can resist Side Channel Attacks. Along with the

ommunication security protection, considering security protec-

ions to resist Side Channel Attacks in the system-level will be

 very interesting work, which will be conducted in our future

ork.

. Energy/reliability model

Although DVFS is a practical approach for reducing the energy

onsumption of embedded systems, it can have a negative impact

n reliability. Recent works have shown that decreasing the pro-

essor frequency and voltage will increase the transient fault rate

11,12] . The fault rate is influenced by the operation mode, i.e.,

he supply voltage and frequency, in which the processor runs.

iven the operation mode φ
N j
i

with normalized frequency F
N j

i

nd voltage V
N j
i

, the fault rate is calculated as in [13] , λ(φ
N j
i

) =

0 · (F
N j

i
) a · 10 −bV

N j
i , where a and b are frequency and voltage

elated architecture dependent constants, and λ0 is the fault rate

hen system runs with maximal voltage v
N j
max and frequency

f
N j
max .

The reliability RE i of task P i under operating mode φ
N j
i

is the

robability of its successful execution. This is captured using the

xponential failure law,

E i = exp

(

−λ(φ
N j
i

) · C i

F
N j

i

)

, (4)

here C i is the WCET of task P i under the highest operation

ode φ
N j
max with frequency f

N j
max . If the critical task P i needs to be

eplicated K i times, then its overall reliability can be calculated as

ollows,

E critical
i = 1 −

K i +1 ∏

k =1

(1 − exp

(

−
λ(φ

N j
i,k

) · C i

F
N j

i,k

)

, (5)

here F
N j

i,k
and φ

N j
i,k

indicate the frequency and operating mode of

he k -th replica of P i , respectively.

Not all tasks in an application are critical. Let us assume that

here are h normal tasks and g critical tasks, then the reliability of

hole application is calculated as:

E =

h ∏

i =1

RE i ·
g ∏

i =1

RE critical
i (6)

e assume that the designer will specify a system reliability

ound RE B . The idea is that if the system reliability is below this

hreshold, then more replicas would be needed to tolerate the

ailures, i.e., the system is no longer fault-tolerant. Hence, we

mpose the reliability constraint as RE ≥ RE .
B

Please cite this article as: W. Jiang et al., Design optimization for secu

processors and Microsystems (2016), http://dx.doi.org/10.1016/j.micpro.
. Design problem and motivational example

.1. Problem formulation

In this paper, we are interested in minimizing the energy con-

umption of security- and safety-critical real-time applications on

VFS-enabled distributed systems. Based on the application model

f [21] , we also assume that all collaborative tasks and messages

elonging to an application graph G have the same period, which

s the period of the application graph. We have a global deadline

onstraint D on the end-to-end completion time, FinishTime , of the

pplication G , which is less than its period. Applications can have

ssociated individual release times and deadlines. Multiple-rate

pplications can also be handled by merging them into a single

raph G with the hyper-period, i.e, the least common multiple, of

he application periods. The security and reliability requirements

ave been described in Sections 3 and 4 . For simplicity, we assume

hat (1) the message communication is reliable, i.e., we will not

onsider fault-tolerance for messages, and (2) the SI and SO tasks

se the highest operating mode due to their importance.

We focus on the energy management of processing nodes,

hich is the main component of the overall system energy. But

ur model can be extended to capture also the energy consump-

ion by leakage, memories, I/Os, etc. The energy consumption

f the application is composed of two parts, namely energy

onsumed by task executions and message security protection

perations. For each task P i running in the operating mode φ
N j

l
,

he energy consumption is:

n (P i) = C i · pw

N j
l

/F
N j

l
(7)

or security protections of each message m i , energy consumption

s:

n (m i) = C SI
i · pw

N j
l

/F
N j

l
+ C SO

i · pw

N k
q /F

N k
q (8)

here pw

N j
l

and pw

N k
q are the power in the operation mode φ

N j

l

nd φ
N k
q for the SI and SO tasks, respectively.

The energy consumption and execution time of the application

epend on the operating mode assignment � and the security

evel assignment ϒ. The system reliability is also related to oper-

ting mode assignment �, and the system vulnerability relies on

he security assignment ϒ.

The problem we address in this paper can be formulated as

ollows. Given an application G and its mapping to an architecture

f N processing nodes, each with a set of operating modes φ and

 set of chosen security services (Table 2), we are interested to

etermine an implementation solution x such that the energy

s minimized, and the requirements on schedulability (deadline

), security (system vulnerability bound OV B and individual vul-

erability VB i of each critical message), and reliability (RE B) are

atisfied. Deriving an implementation solution x means deciding

n the set of operating modes � for the tasks, the set of security

evels ϒ for the messages and the scheduling table � for both

asks and messages. The problem can be formally expressed as:

in En =

∑

P i ∈ V
En (P i) +

∑

m i ∈ M

En (m i) (9)

ubject to

E ≥ RE B (10)

 inishT ime (G) ≤ D (11)
i i i

rity- and safety-critical distributed real-time applications, Micro-

2016.08.002

http://dx.doi.org/10.1016/j.micpro.2016.08.002

6 W. Jiang et al. / Microprocessors and Microsystems 0 0 0 (2016) 1–15

ARTICLE IN PRESS

JID: MICPRO [m5G; September 12, 2016;20:42]

Fig. 3. Motivational example.

c

μ

t

a

f

fl

P

m

a

E

r

r

r

l

t

s

t

s

t

L

a

g

m

a

P

w

t

a

s

t

T

i

6

6

s

n

t

u

f

u

r

(

t

fi

A

I

O

5.2. Motivational example

An illustrative example is depicted in Fig. 3 . The application

consists of five tasks mapped to a DVFS-enabled architecture of

two processing nodes connected by a bus. We use the same hard-

ware architecture as Fig. 1 (b). The task mapping and corresponding

task parameters can be found in the figure. Let us assume that

P 2 is a critical task for which the designer has introduced one

replica, P 2
′ , to tolerate one transient failure, and mapped the

replica on the same processing node, N 2 . The reliability goal is set

to be RE B = 0 . 9999 , which is a little lower than upper bound re-

liability (0.999994), assigning all tasks with the fastest frequency.

The system vulnerability and individual vulnerability demands

of messages m 1 and m 2 are OV B = 90 , V B 1 = 70 and V B 2 = 40 ,

respectively. The application end-to-end deadline is set as D = 300

time units. We use the vulnerability value of each security level

according to Table 2 . For simplicity, we assume the vulnerability

weight of both messages are the same, i.e., w 1 = w 2 = 1 .

Without considering the security requirements and DVFS, we

can get the shortest schedule of the application as in Fig. 3 (a),

in which the deadline constraint (depicted by a red vertical line)

and the reliability goal RE B of the solution (shown to the top

of the schedule) are both satisfied. The energy consumption is

En a = 4053 μJ, and the end-to-end delay is F inishT ime (G) a = 180 .

However, there is absolutely no security protections achieved at

this moment.

One way to meet the security requirements is to set the se-

curity levels for messages m 1 and m 2 to be L b
1

= L b
2

= 3 , which

satisfies the security requirements, i.e., OV = 68 < OV B , and V 1 =
34 < V B 1 , V 1 = 34 < V B 1 . The resulted schedule, which takes into

account the security input (SI) and security output (SO) tasks for

each message is depicted in Fig. 3 (b). The WCETs for SI and SO

tasks are determined as discussed in Section 3 , and depend on se-
Please cite this article as: W. Jiang et al., Design optimization for secu

processors and Microsystems (2016), http://dx.doi.org/10.1016/j.micpro.
urity level L i . The energy consumption in this case is En b = 6175

J, and the schedule length is F inishT ime (G) b = 215 < D . The sys-

em reliability is the same as in Fig. 3 (a), and meets the bound RE B .

Our ultimate goal is to minimize energy consumption of the

pplication. With DVFS, we can scale down the operating mode

or tasks to save energy, e.g., as the case in Fig. 3 (c). To give more

exibility to DVFS, we lower the security level of m 1 to L c
1

= 2 .

rocesses P 1 , P 2 , P 3 , and P 4 are set to run at the lowest operating

ode on their processor, while operating modes of other tasks

re not changed. By this, the energy is reduced by 19.6% from

n b . However, the system vulnerability V c
1

+ V c
2

= 101 violates the

equirement OV B = 90 even though the individual vulnerability

equirement is satisfied, i.e., V 1 = 67 < V B 1 , V 1 = 34 < V B 1 . The

eliability bound is also violated as RE c = 0 . 998671 < RE B , since

owering operating mode (the frequency and voltage) increases

he failure rate.

However, if we do operating mode assignments for tasks and

ecurity level selections for messages more carefully, it is possible

o meet the timing, security, and reliability requirements without

acrificing energy savings. Fig. 3 (d) depicts the optimal solution

hat can be reached. We choose to change the security levels to be

d
1

= 2 and L d
2

= 4 . The system vulnerability requirement OV B = 90

nd the individual vulnerability demands of m 1 and m 2 are both

uaranteed. In addition, P 3 is scaled to use the second operating

ode with frequency 800 MHz on N 1 . The operating modes of P 2
nd P

′
2

are all scaled down to the lowest operating mode on N 2 .

 1 , P 4 and P 5 are changed to highest operating modes. In this case,

e can save energy by 17.0% from En b , which is comparable to the

hird scenario (Fig. 3 (c)). Meanwhile, all operational constraints

re satisfied. This shows that we need to carefully optimize the as-

ignment of operating modes and security levels in order to meet

he imposed requirements and minimize the energy consumption.

he proposed solution to this optimization problem is presented

n the next section.

. Design optimization strategy

.1. Design optimization strategy overview

Due to the huge complexity of the problem, we choose Tabu

earch as our optimization approach. Tabu search is a very efficient

eighbourhood search, considering the most recently visited solu-

ions as tabus to avoid the local optimum. Tabu has been widely

sed for design optimization of embedded systems like in [14,22] .

We propose a Tabu Search-based Hybrid Optimization (TSHO)

ramework to search for the best solutions. Tabu Search (TS) is

sed to decide the mode assignment � for the tasks and the secu-

ity level assignment ϒ for the messages. We use List Scheduling

LS) policy [23] to determine, for a given � and ϒ, the schedule

able �. The TSHO design optimization strategy is carried out in

ve consecuti ve steps as shown in Algorithm 1 .

lgorithm 1 Tabu search-based hybrid optimization (TSHO)

nput: Application G , Hardware arch. N

utput: x ∗, En , OV , RE

1: SecExtend(G, N) /*Add security-related tasks into the
system*/

2: x 0 = (�0 , ϒ0) /*Generate the initial solution*/
3: x ∗ = T S(x 0) /*Tabu Search for the best solution x ∗ =

(�∗, ϒ ∗) */
4: �∗ = LS(G, N , �∗, ϒ ∗) /*Build the schedule table using

extended List Scheduling*/
5: Calculate energy En , vulnerability OV and reliability RE

based on x ∗
rity- and safety-critical distributed real-time applications, Micro-

2016.08.002

http://dx.doi.org/10.1016/j.micpro.2016.08.002

W. Jiang et al. / Microprocessors and Microsystems 0 0 0 (2016) 1–15 7

ARTICLE IN PRESS

JID: MICPRO [m5G; September 12, 2016;20:42]

s

s

r

i

i

o

t

d

t

a

W

a

a

c

T

t

s

g

v

w

f

s

a

m

e

s

d

d

s

a

t

b

t

p

m

a

e

c

v

s

s

t

l

s

T

d

6

w

s

S

(

f

l

t

c

Algorithm 2 Tabu Search (TS)

Input: x 0 , SecExtend(G, N) , RE B , D, OV B
Output: x ∗

1: x best = (�best = �o , ϒbest = ϒo) ; bestCost = cost(G, N ,
, x o)
2: T abu

� = ∅ ; T abu

ϒ = ∅ /*Init Tabu lists of OpMove and

SecMove*/
3: while not reach the stop condition do

4: � = SecMov es (ϒbest : ±1 , swap)
5: for each L ∈ � do

6: �
′ = OpMov e (�best : ±1 , swap)

7: /*determine qualified candidate set by adding non-
tabu and aspirated solutions*/

8: �
′
ql f

= { � / ∈ T abu

� or aspirated(�) ∈ T abu

�| � ∈

�
′ }

9: /*add diversification candidates*/
10: �

′
di v = { choose � ∈ T abu

� with probability p }
11: /*for each SecMove, we find the best OpMove*/
12: Find �best ∈ �

′
ql f

∪ �
′
di v

13: U pdate (T abu

�) , execute (�best) /*Renew the tabu list
and perform this OpMove*/

14: �ql f = { ϒ / ∈ T abu

ϒ or aspirated(ϒ) ∈ T abu

ϒ | ϒ ∈ �}
/*the qualified set*/

15: �di v = { choose ϒ ∈ T abu

ϒ with probability p } /*add

diversified candidates*/
16: Find ϒbest ∈ �ql f ∪ �di v
17: U pdate (T abu

ϒ) , execute (ϒbest) /*Renew the tabu list
and perform temporarily best SecMove*/

18: if cost(�best , ϒbest) < bestCost then

19: x ∗ = (�best , ϒbest) , bestCost = cost(�best , ϒbest)
20: Return x ∗ = (�∗, ϒ ∗)

n

t

“

l

s

q

I

t

w

t

s

f

o

M

i

s

w

i

s

t

(

t

A

m

t

a

a

i

d

s
In the first step of Algorithm 1 , we extend the application with

ecurity related tasks, namely SI and SO , that are mapped to the

ame processing nodes as messages sender and receiver tasks,

espectively. In the second step, an initial solution x 0 = (�0 , ϒ0)

s generated with lowest security level (that can guarantee the

ndividual vulnerability requirement) for each message and highest

perating mode for each task. Given the input x 0 , TS searches for

he best solution x ∗ which minimizes the energy consumption un-

er the constraints in the third step. In the fourth step, we extend

he basic LS policy to determine the schedulable table �∗ for the

pplication based on the solution x ∗ = (�∗, ϒ∗) returned by TS.

e finally calculate the energy consumption, overall vulnerability

nd reliability of the application in Step 5.

The cost function which TS uses to evaluate each solution x is

s follows,

ost(x) = En +

∑

e ∈ (D,RE,OV)

W e · degree (e) . (13)

he first term is the energy consumption En to be minimized and

he second term is used to check if the timing D , reliability RE B and

ystem vulnerability OV B requirements are satisfied. Instead of ne-

lecting solutions which violate constraints, we penalize constraint

iolations in the cost function based on the user defined penalty

eights of W D , W RE and W OV . By this, we can explore even the in-

easible regions of the search space in order to find better quality

olutions. All these requirements are defined in a similar way using

 “degree function”, which checks the degree to which the require-

ent is met. If the constraint is satisfied, then degree (e) = 0 . Oth-

rwise, it is how much the constraint is violated. For example, the

ystem vulnerability constraint degree (OV) is defined as follows,

egree (OV) =

{
0 , if OV (M) � OV B

OV (M) − OV B , otherwise.

Similarly, we can calculate the degree of reliability as

egree (RE) = RE B − RE in case of reliability violation. For each

olution TS visited, we use LS to determine the finish time of the

pplication G , then we calculate degree (D) = F inishT ime (G) − D, if

he deadline is violated.

Note that the purpose of incorporating penalty function in the

ase of cost function is to explore even the infeasible regions of

he search space, so as to find better quality solutions. We set

enalty weights of W D , W RE and W OV according to user require-

ent. If user cannot tolerate the solutions violating the constraints,

 very large corresponding weight will be expected to be set. For

xample, we can set high value to W D for hard real-time appli-

ations. This will result in a high-cost solution when deadline is

iolated, and the generated solutions will not be chosen for next

earching iterations. These weights only have the impact on the

election of intermittent solutions. These weights are insensitive

o the final solution. This is because lots of solutions without vio-

ating all these constraints (having much lower cost than punished

olutions) can be found to generate the final solution by TSHO.

he most important role of penalty function is to enhance the

iversification of TSHO during the searching procedure.

.2. Tabu search

In this section, we focus on the Tabu Search optimization,

hich is shown in Algorithm 2 . TS is a meta-heuristic which

earches for the best solution with respect to the cost function.

tarting from a current solution, TS uses design transformations

called moves) to generate neighbouring solutions. To escape

rom a local optimum, TS incorporates an adaptive memory (Tabu

ist) to prevent the search from revisiting previous solutions,

hus avoiding cycling. In each iteration, we define the qualified

andidate set as non-tabu solutions (generated by moves, but
Please cite this article as: W. Jiang et al., Design optimization for secu

processors and Microsystems (2016), http://dx.doi.org/10.1016/j.micpro.
ot in the Tabu list), and the “aspirated” solutions (better than

he best-so-far solution, regardless of their tabu status). TS uses

diversification” by randomly selecting the older moves in Tabu

ist to direct the search into unexplored region. To find the best

olution in the current iteration, we prefer a solution in the

ualified candidate set that is better than the best-so-far solution.

f such a solution does not exist, then we choose the best one in

he diversification candidate set. If no diversification solution exits,

e simply set current solution as the best non-Tabu solution in

his iteration. We choose the final best solution x ∗ as the current

olution if its cost is globally better.

We develop the TS procedure as a two-level tabu searching

ramework, which is composed of security level searching and

perating mode searching. We define two types of moves: Security

oves (SecMove) and Operating mode Moves (OpMove). After the

nitialization (lines 1–2), we firstly use TS to generate a set of

ecurity solutions by SecMove (line 4). For each security solution,

e search for the best operating mode solution (lines 5–13), then

n the outer iteration we can focus on searching for the best

ecurity solution (lines 14–19). For each kind of move, we utilize

wo operations to generate neighbouring solutions: ± 1 and swap

lines 4 and 6). In a ± 1 operation, TS increases or decreases

he operating mode or security level of a solution with one step.

 swap operation within OpMove means to swap the operating

odes of two selected tasks, whereas for a SecMove, it means

o swap the security levels of two messages. Since evaluating

ll neighbouring solutions can be extremely expensive for large

pplications, we design these moves to be stochastic. For example,

n an OpMove, we choose each task with a certain probability to

o ± 1 operation and do the swap operation for two randomly

elected tasks. We take non-improving search for a certain number
rity- and safety-critical distributed real-time applications, Micro-

2016.08.002

http://dx.doi.org/10.1016/j.micpro.2016.08.002

8 W. Jiang et al. / Microprocessors and Microsystems 0 0 0 (2016) 1–15

ARTICLE IN PRESS

JID: MICPRO [m5G; September 12, 2016;20:42]

i

h

e

e

w

m

m

a

e

7

2

3

a

a

d

t

b

b

b

n

t

T

b

m

t

p

s

i

a

a

o

t

O

W

a

t

i

t

p

b

w

b
of iterations as the stop condition. Then TS terminates and returns

the best-found-solution x ∗ (line 20).

6.3. Extended list scheduling

In this paper, we use LS policy to determine the schedule tables

for the application. LS utilizes a priority list of ready tasks, L ready ,

and schedules the ready task with the highest priority. A task P i is

scheduled when it is ready (its predecessors have finished, and its

messages have arrived), and it has the highest priority in the ready

list L ready . We extended the classical LS to take into account also

the tasks reliability and messages security operations. Considering

the bus as a computation node for messages, we firstly extend

L ready = L task
ready

∪ L
Msg

ready
. Then we assign a Critical Path (CP) priority

value to both SI, SO tasks and messages. We sort the ready list

using the Modified Partial Critical Path (MPCP) priority function

[23] , in which dependent tasks have the same priority (CP value) if

assigned to the same processing node. Thus, the priority of SI and

SO tasks is set to the CP values of message’s original predecessor

and successor tasks, respectively. The CP of each message is equal

to the sum of the CP of its successor task and the communication

time needed for bus transmission.

With the extended List Scheduling policy, we can check

whether the deadline of each temporarily generated solution

is violated in the TS procedure, and determine the application

scheduling table when the best-so-far solution is found.

7. Experimental evaluation

We conducted extensive experiments to evaluate the efficiency

of our proposed TSHO framework. All experiments were performed

on a Windows desktop machine with a dual-core CPU at 2.5 GHz

and 4 GB of RAM. TSHO was implemented in C#. For comparison

purposes, we also compared TSHO with four other approaches,

namely MVFS, GHO, EO and RSO.

• MVFS (Mapping, Voltage and Frequency Scaling optimization):

A reliability-aware mapping and DVFS optimization algo-

rithm proposed in [13] , aiming for energy minimization while

satisfying the system reliability constraint. To facilitate the

comparison, we assume that the mapping for MVFS is fixed.

• GHO (Greedy-based Hybrid Optimizing) considers also energy,

reliability and security factors in one framework. Similar to the

SASES algorithm [3] , we design GHO as a benefit-cost iteration

searching algorithm.

• EO (Energy Optimization) minimizes the energy consump-

tion using DVFS without imposing reliability and security

constraints in our framework.

• RSO (Reliability and Security constrained Optimization) does

not optimize the energy, but optimizes the security and

addresses the reliability constraint in our framework.

For GHO, we set initially the security level of each message as

the lowest one, and operating mode of each task as the highest

one. In each iteration, we increase gradually the security level by

comparing the reduced energy-vulnerability ratio among of all

messages and then reduce the operating mode of tasks according

to the reduced energy-reliability ratio without violating the dead-

line and system vulnerability goal. EO and RSO are all using the

same TS as presented in Section 6 . The difference is in the types of

moves that they perform and the cost function used to guide the

search. Thus, EO uses the energy En as the cost function (ignoring

the security and reliability degree terms) and uses only moves to

change the operating mode. RSO only considers SecMoves. For EO

and MVFS we set the security level L i of each message to be 1, and

then increase it gradually for all critical messages, to meet their
Please cite this article as: W. Jiang et al., Design optimization for secu

processors and Microsystems (2016), http://dx.doi.org/10.1016/j.micpro.
ndividual vulnerability bound VB i . We used the execution over-

eads of the RC6 variants measured on a real embedded system

nvironment, which are shown in Table 2 . We used also the DVFS-

nabled processing nodes given in Table 3 [13] . For simplicity,

e scaled the overheads of RC6 variants for other processors by

ultiplying the relative frequency ratio (compared with 500 MHz).

Based on the proposed TSHO algorithm, we can see that the

ost important metrics are energy consumption, system reliability

nd overall vulnerability. Thus, in the experiment we also need to

valuate these three metrics.

• Energy consumption: In the experiment, we will first test

the energy cost of all algorithms. RSO always obtains highest

energy cost without considering DVFS to reduce the energy

cost. Thus, to make the results easier to follow, we normalize

the energy costs of all algorithms to the highest value of RSO.

• Reliability: We use the real reliability value (absolute re-

liability of the whole application) to denote the reliability

performance of all algorithms. Moreover, we also introduce

η = (1 − RE) / (1 − RE 0) to denote the reliability degradation

comparing with the given reliability goal.

• Vulnerability: For easier comparison, we use a “Vulnerability

Deficiency (VD)” measure to evaluate the system vulnerability

performance, namely, V D = (OV B −
∑

m i ∈ M

w i V i) /OV B . Thus, a

value of VD ≥ 0 means that the system vulnerability require-

ment OV B is satisfied. However, a value of VD < 0 means that

the system vulnerability bound OV B is not satisfied.

.1. Impact of application size

We first evaluated the performance of TSHO on applications of

0, 30, 40, 50 and 60 tasks mapped hardware architecture with 2,

, 4, 5 and 6 processing nodes, respectively. The task graph of each

pplication is obtained with TGFF [24] . We only use TGFF to gener-

te the application graph, which denotes the task number and the

ependency among all tasks. The value of other parameters, e.g.,

ask execution time and message size, are additionally generated

y our simulated codes. Therefore, the parameters in TGFF need to

e configured for each application graph are task _ cnt (task num-

er) and task _ degree . In this group of experiments, we set the task

umber from 20 to 60. We set task _ degree = (3 , 3) , which means

hat each task can have up to 3 incoming and 3 outgoing tasks.

he size of each message is chosen randomly between 1 and 5

locks (Note: 1 block equals 16 Bytes for RC6); the weight of each

essage is set randomly between 0.1 and 1; the WCET of each

ask is distributed between 10 and 50 μs, referred to the fastest

rocessing node. We assume that one third of all messages are

ecurity-critical messages, and the system vulnerability demand

s set to be 2 times of the vulnerability when all messages are

ssigned with security level L i = 3 . The number of critical tasks is

ssigned as half of the total tasks, and each critical task has K = 1

r 2 replicas. The deadlines of these five problem sizes are chosen

o be 1700 μs, 2100 μs, 3100 μs, 3300 μs, 3500 μs, respectively.

n each problem size, 5 different applications with different task

CET, and message size were generated, and the results reported

re averages over these five applications.

The reliability goal RE B of the application has been set such that

he probability of failure is less than 20 times of RE 0 , where RE 0

s the reliability of a system running with the maximum opera-

ion mode. Thus, we have defined the reliability degradation η =
(1 − RE) / (1 − RE 0) , and we have calculated RE B such that η ≤ 20.

The obtained results of TSHO together with the other ap-

roaches used for comparison are presented in Figs. 4–6 . As can

e observed from Fig. 4 , RSO has the highest energy consumption,

hile the others are approximately on the same level. This is

ecause RSO does not consider DVFS for saving energy. Mean-
rity- and safety-critical distributed real-time applications, Micro-

2016.08.002

http://dx.doi.org/10.1016/j.micpro.2016.08.002

W. Jiang et al. / Microprocessors and Microsystems 0 0 0 (2016) 1–15 9

ARTICLE IN PRESS

JID: MICPRO [m5G; September 12, 2016;20:42]

Table 3

Parameters of processing nodes.

Fast node Medium node Slow node

Freq. Volt. Power Freq. Volt. Power Freq. Volt. Power

(MHz) (V) (W) (MHz) (V) (W) (MHz) (V) (W)

500 1 .2 9.2 300 1 .4 4 .3 133 1 .1 1 .36

600 1 .25 12 350 1 .5 5 .6 166 1 .2 1 .9

700 1 .3 15 .1 400 1 .6 7 .1 200 1 .3 2 .58

800 1 .35 18 .6 450 1 .7 8 .95 233 1 .4 3 .4

10 0 0 1 .4 25 500 1 .8 11 .4 266 1 .5 4 .4

a = −6 . 5 , b = −0 . 039 a = −8 . 9 , b = −0 . 038 a = −6 . 5 , b = −0 . 039

Fig. 4. Impact of application size on energy.

Fig. 5. Impact of application size on reliability.

Fig. 6. Impact of application size on vulnerability deficiency.

w

o

e

s

e

s

t

o

r

t

t

g

a

l

r

r

t

f

t

t

d

w

c

o

t

m

d

a

o

n

v

7

o

g

t

t

m

r

R

i

s

c

c

l

β

W

p

Please cite this article as: W. Jiang et al., Design optimization for secu

processors and Microsystems (2016), http://dx.doi.org/10.1016/j.micpro.
hile, GHO does not make effort s to find the good combination

f security level and operating mode, then also results in more

nergy consumption than TSHO. EO, which does not impose

ystem vulnerability or reliability constraints, obtains the lowest

nergy consumption. Considering the reliability constraint in the

earching procedure, MVFS obtains the energy a little higher

han EO on average. Based on the results in Fig. 4 , TSHO saves

n average 21.3% and 4.4% energy compared with RSO and GHO,

espectively. This shows that using TSHO it is possible to reduce

he energy consumption while meeting the security, reliability and

iming requirements.

Fig. 5 shows that RSO delivers the highest reliability, while EO

ives the lowest. The reason is that RSO does not scale the voltage

nd frequency to sacrifice reliability, and EO ignores totally the re-

iability factor. GHO also obtains low reliability due to not consider

eliability constraint, even though it uses the energy/reliability

atio as one searching metric. MVFS and TSHO have approximately

he same reliability results since they are designed to search

or solutions within the reliability goal. MVFS and TSHO can get

he reliability degradation as 19.7 and 19.9 which are within

he predefined 20 times reliability degeneration. The reliability

egradation of GHO is 55.7. For EO, it is even η = 211 . 7 on average,

hich means the failure probability of EO is 211.7 times greater

ompared to RSO, which does not use DVFS.

We have also compared the optimization approaches in terms

f security. The results are presented in Fig. 6 . We can see from

he figure that RSO, GHO and TSHO meet the security require-

ents (The values of vulnerability deficiency are above zero). RSO

oes this at the expense of using the largest energy consumption

mong all the algorithms. However, MVFS and EO, which do not

ptimize the system vulnerability, are missing the system vul-

erability goal, though they are designed to satisfy the individual

ulnerability constraint of each critical message.

.2. Impact of system vulnerability constraint

In this set of experiments, we are interested to see the impact

f system vulnerability constraint on one application. In this

roup of experiments, we configure the task number as 30 and

ask _ degree = (3 , 3) in TGFF generation. The application has 30

asks that are mapped to 3 processing nodes, i.e., one slow, one

edium and one fast processor. In this simulation, we set also a

eliability goal which has the reliability degradation η ≤ 20 and

E B = 1 − 20 × (1 − RE o) . The number of security-critical messages

s set to 10. The application deadline is assigned to 20 0 0 μs. We as-

ume 14 critical tasks, each of which has K = 1 replica. For a set of

ritical messages, the Maximal Overall Vulnerability (MOV) can be

alculated when each message are assigned by the lowest security

evel. In this section we refer the system vulnerability constraint as

, so the system vulnerability can be obtained by OV B = β · MOV .

e increase the β from 0.2 to 0.7 with a step of 0.1. The other

arameters of messages and tasks are set as in the previous set of
rity- and safety-critical distributed real-time applications, Micro-

2016.08.002

http://dx.doi.org/10.1016/j.micpro.2016.08.002

10 W. Jiang et al. / Microprocessors and Microsystems 0 0 0 (2016) 1–15

ARTICLE IN PRESS

JID: MICPRO [m5G; September 12, 2016;20:42]

Fig. 7. System vulnerability constraint VS energy.

Fig. 8. System vulnerability constraint VS reliability.

Fig. 9. System vulnerability constraint VS vulnerability deficiency.

v

c

b

5

a

r

o

a

r

a

s

w

s

t

h

r

b

c

t

M

t

e

v

7

i

e

l

p

p

I

I

0

a

3

c

t

T

v

e

1

a

p

e

h

E

o

c

l

f

c

M

T

w

r

t

b

c

a

i

experiments. Figs. 7–9 show the system vulnerability impacts to

the energy, reliability and vulnerability deficiency, respectively.

As can be seen from Fig. 7 , the average energy of RSO is the

highest among the four approaches, which is 42,886 μJ. GHO has

the second highest energy consumption. Energy consumptions of

the other three ones are very close to each other. An interesting

decreasing trend with system vulnerability increment can be

observed for RSO, GHO and TSHO. This is because a higher system

vulnerability happens when there is reduced security protection

for messages, which also means more slack for scaling down the

CPU frequency (and voltage), that leads to more energy saving. EO

and MVFS set the security level only to guarantee the individual
Please cite this article as: W. Jiang et al., Design optimization for secu

processors and Microsystems (2016), http://dx.doi.org/10.1016/j.micpro.
ulnerability demand of each critical message, then their energy

onsumption did not decrease by the increase of system vulnera-

ility constraint. On average, the proposed TSHO saves 20.2% and

.3% energy compared with RSO and GHO, while achieves 3.8%,

nd 1.1% more energy than EO and MVFS, respectively.

The reliability results are shown in Fig. 8 . RSO has a constant

eliability of 0.9982 as no DVFS is deployed. MVFS and TSHO

btain relative low reliability but still manage to meet the reli-

bility goal, having the reliability degeneration as 19.9 and 19.8

espectively. EO has the lowest reliability and the value is aver-

gely 0.687, which means 175.0 times reliability degeneration and

eriously violate the reliability goal (20 times degradation). GHO,

hich obtains the reliability degeneration as 50.8, also misses

eriously the reliability goal.

Fig. 9 depicts the security results of the solutions obtained from

hese five studied approaches. We obtain that RSO, GHO and TSHO

ave the vulnerability deficiency values as 0.020, 0.004 and 0.028

espectively, meaning all of them satisfy the system vulnerability

ound. RSO does this at the expense of using the largest energy

onsumption among all the algorithms. GHO and TSHO improve

he vulnerability by considering the OV B as a constraint. EO and

VFS violate the system vulnerability goal because they ignore

he system vulnerability constraint. The system vulnerability of

ach of them is 305.8, resulting in the vulnerability deficiency

alues from -2.81 to -0.087.

.3. Impact of deadline constraint

In this set of experiments, we are interested to see the deadline

mpact of one fixed application with given task mapping. Gen-

rally, the power of processor includes both dynamic power and

eakage power [25] . In this section, besides the dynamic power of

rocessing nodes, we also consider to test the impact of leakage

ower . The power of node N j is extend to pw

N j = pw

N j
dyn

+ Pow

N j
leak

.

t can be easily extended to support other kind of static power.

n this set of experiments, we set the leakage power as 1.2 W,

.8 W, 0.4 W for fast, medium and slow node, respectively. The

pplication generated by TGFF has 30 tasks that are mapped to

 processing nodes, i.e., one slow, one medium and one fast pro-

essor. In this simulation, we set also a reliability goal which has

he reliability degradation η ≤ 20 and RE B = 1 − 20 × (1 − RE o) .

he number of security-critical messages is set to 10. The system

ulnerability is assigned to 200. We assume 14 critical tasks,

ach of which has K = 1 replica. We increase the deadline form

750 μs to 1950 μs. The other parameters of messages and tasks

re obtained with the same criteria as the previous set of ex-

eriments. Figs. 10–12 demonstrate the deadline impacts to the

nergy, reliability and vulnerability deficiency, respectively.

As can be seen from Fig. 10 , the average energy of RSO is the

ighest among the four approaches, which is 34,422 μJ specifically.

nergy consumptions of the other four ones are very close to each

ther. An interesting decreasing trend with deadline increment

an be observed for EO, MVFS, GHO and TSHO. This is because

onger deadlines leave more slacks for scaling down the CPU

requency (and voltage), that leads to more energy saving. EO

onsumes the least energy, while the energy expenditures of GHO,

VFS and TSHO are between them. On average, the proposed

SHO saves 19.3% and 5.6% energy compared with RSO and GHO,

hile achieves 2.2%, and 0.9% more energy than EO and MVFS,

espectively. Comparing with previous two sets of experiments,

he average energy saving in this section is relatively lower. This is

ecause the leakage power is incorporated to calculate the energy

onsumption, which results in relative higher energy cost for all

lgorithms. However, the superiority of TSHO to other algorithms

s still obvious.
rity- and safety-critical distributed real-time applications, Micro-

2016.08.002

http://dx.doi.org/10.1016/j.micpro.2016.08.002

W. Jiang et al. / Microprocessors and Microsystems 0 0 0 (2016) 1–15 11

ARTICLE IN PRESS

JID: MICPRO [m5G; September 12, 2016;20:42]

Fig. 10. Impact of deadline on energy.

Fig. 11. Impact of deadline on reliability.

Fig. 12. Impact of deadline on vulnerability deficiency.

s

T

r

1

a

a

G

s

f

T

Table 4

Runtime comparison (ms).

Task no. TSHO EO MVFS GHO RSO

20 4422 134 97 145 13

30 41 ,241 525 477 816 37

40 117 ,312 1803 1464 1920 110

50 322 ,926 6195 4396 6653 285

60 878 ,047 15 ,212 9422 14 ,224 603

t

t

w

v

v

a

e

a

s

R

G

s

c

v

T

d

7

c

a

m

l

T

p

m

f

w

s

M

r

m

t

R

a

o

h

a

t

B

o

t

i

i

T

t

t

t

o

R

r

f

m
The reliability results are shown in Fig. 11 . RSO has a con-

tant reliability of 0.9982 as no DVFS is deployed. MVFS and

SHO obtain relative low reliability but still manage to meet the

eliability goal, having the reliability degeneration as 19.9 and

9.7 respectively. EO has the lowest reliability and the value is

veragely 0.752, which means 138.7 times reliability degeneration

nd seriously violate the reliability goal (20 times degradation).

HO, which obtains the reliability degeneration as 35.4, also miss

eriously the reliability goal.

Fig. 12 depicts the security results of the solutions obtained

rom these five studied approaches. We obtain that RSO, GHO and

SHO also meet the system vulnerability bound. RSO does this at
Please cite this article as: W. Jiang et al., Design optimization for secu

processors and Microsystems (2016), http://dx.doi.org/10.1016/j.micpro.
he expense of using the largest energy consumption among all

he algorithms. GHO has the nearly unchanging vulnerability value,

hich is very close to the vulnerability bound OV B . EO and MVFS

iolates the system vulnerability goal due to ignore the system

ulnerability constraint as a searching factor. Both EO and MVFS

re designed to satisfy the individual vulnerability constraint of

ach message, thus the system vulnerability deficiency of them

re the same and fixed under different deadlines.

According to above three groups of experiments, the conclu-

ions is that: EO and MVFS obtain relatively low security qualities;

SO is obviously not competent for energy-critical SSCSs; for

HO, the energy consumption is still more than TSHO although it

atisfies the system vulnerability constraint. The proposed TSHO

an achieve significant energy savings while satisfying system

ulnerability, deadline and reliability demands, which means that

SHO is the most suitable approach among of them for designing

istributed real-time SSCSs.

.4. Discussion about the efficiency of algorithms

In this section, we discuss about the complexity of these five

andidates. TSHO is the Tabu search based hybrid optimization

lgorithm, which is a globally neighbourhood searching based

eta-heuristic. We considered reliability, vulnerability and dead-

ine constraints within TSHO to search the best solution. Thus,

SHO has the highest complexity (both time and memory com-

lexity). Although RSO, MVFS and EO are also Tabu search based

ethods, they have lower complexity comparing with TSHO. EO

ocuses on energy optimization with only deadline constraint,

hich tries to explore the operating mode of all tasks to generate

olutions. MVFS has relative lower complexity than EO, because

VFS aims for energy optimization by considering deadline and

eliability constraints. Considering reliability constraint in MVFS

eans that we can utilize reliability violated solutions to diversify

he searching space, which will enhance the searching efficiency.

SO has the lowest complexity due to it only considers reliability

nd deadline constraints to optimize the security performance. We

nly considered to explore the security assignments to generate

ighly secure solution in RSO. As a benefit-cost driven greedy

lgorithm, GHO incorporates all constraints to iteratively search

he final solution, whose complexity is relative high.

We also test the runtime of these algorithms by simulation.

ased on the same experimental configurations as Section 7.1 , we

btain the runtime results of all algorithms for different applica-

ion size (Task no. changes from 20 to 60), which is summarized

n Table 4 . We can have following observations. The runtime

ncreases with the increase of application size for all algorithms.

his is because larger size will result in higher overhead to search

he security and frequency assignments for applications. TSHO has

he largest time overhead among these five candidates. RSO takes

he lowest runtime to generate the solutions. GHO has higher

verhead than RSO. MVFS and EO take higher time overhead than

SO. GHO even takes higher overhead than MVFS and EO. The

esults of Table 4 also evaluate the former analysis of complexity

or all algorithms. Note that, although the runtime of TSHO is

uch higher than all other candidates, it can also be used for the
rity- and safety-critical distributed real-time applications, Micro-

2016.08.002

http://dx.doi.org/10.1016/j.micpro.2016.08.002

12 W. Jiang et al. / Microprocessors and Microsystems 0 0 0 (2016) 1–15

ARTICLE IN PRESS

JID: MICPRO [m5G; September 12, 2016;20:42]

Fig. 13. Vehicle cruiser controller application.

t

e

(

c

t

G

t

t

c

p

a

s

a

w

m

a

P

w

o

1

t

T

a

design optimization of real-time applications in SSCSs. The reason

is that most design problems are static optimization problems,

which can be addressed using high-speed computer before the

real implementation.

7.5. A real-life application simulation

In this paper, we also conducted a real-life application, i.e.,

a vehicle cruiser controller (VCC for short), to evaluate the effi-

ciency of the proposed algorithm. Modern automotive vehicles are

emerging to be electricity powered, highly connected by vehicle to

vehicle (V2V) and vehicle to infrastructure (V2I), leading to serious

challenges on energy efficiency and security protection, besides

the typical safety requirements. We consider the VCC system de-

rived from a specification provided by the industry [26] . The main

purpose of VCC is to maintain a constant speed for the vehicle

and also maintain a safe following distance from the preceding

vehicle. VCC can also change automatically the maximum speed

depending on the speed-limit regulations and helps the driver

with the braking procedure in extreme situations.

The application graph that models the VCC has 32 tasks, and

is described in Fig. 13 . The VCC was mapped on an architecture

composed of five nodes: antilock breaking system (ABS), and
Please cite this article as: W. Jiang et al., Design optimization for secu

processors and Microsystems (2016), http://dx.doi.org/10.1016/j.micpro.
ransmission control module (TCM), engine control module (ECM),

lectronic throttle module (ETM), and central electronic module

CEM). In this experiment, we assume all these five nodes have the

haracteristic of slow node in Table 4 . The WCET of each task and

he size of each message are associated beside them accordingly.

iven the processing nodes, the frequency and the execution of

asks, we also use the reliability model in Section 4 to calculate

he system reliability. For the protection of messages, we also

onsider RC6 variants (in Table 2) to enhance the confidential

rotection. We have considered the reliability degradation bound

s η = 20 , system vulnerability bound as 350.9 (1.2 times of the

ystem vulnerability when all messages are assigned with level 3)

nd the period (deadline) of VCC as 10 0 0 μs. In VCC benchmark,

e have 18 messages that need to be delivered among the com-

on bus with bandwidth 1 MB/S. The weight of each message is

ssigned randomly within [0, 1]. We set P 0 , P 2 , P 5 , P 11 , P 12 , P 13 ,

 14 , P 15 , P 16 , P 17 , P 19 , P 21 , P 24 , P 27 , P 30 , P 31 as critical tasks, each of

hich is provided with 1 replica. The VCC application, consisting

f 32 tasks to maintain a constant speed, is repeated for every

0 0 0 μs. Obviously, it is a static optimization problem to find out

he best security and DVFS assignments for messages and tasks.

hus we can use our TSHO to address the design problem of VCC

pplication.
rity- and safety-critical distributed real-time applications, Micro-

2016.08.002

http://dx.doi.org/10.1016/j.micpro.2016.08.002

W. Jiang et al. / Microprocessors and Microsystems 0 0 0 (2016) 1–15 13

ARTICLE IN PRESS

JID: MICPRO [m5G; September 12, 2016;20:42]

Table 5

Results for ACC.

GHO RSO EO MVFS TSHO

Metric value met? value met? value met? value met? value met?

(RE, η) (0.9819, 61.7) × (0.9997, 1) � (0.9558, 150.8) × (0.9942, 19.8) � (0.9943, 19.4) �

OV 349.4 � 348.3 � 676.4 × 676.4 × 346.3 �

En 12081 μJ 14598 μJ 10897 μJ 10984 μJ 11277 μJ

f

T

c

N

s

i

3

6

e

r

t

(

a

e

8

a

p

r

n

t

b

n

f

s

c

o

s

b

t

t

s

r

s

c

p

T

i

e

t

r

i

d

p

r

t

b

t

d

e

a

t

e

t

s

A

F

o

N

L

u

R

The experimental results generated by TSHO and the other

our heuristics for one application period are summarized in

able 5 . In this experiment, we directly give the values of energy

onsumption, reliability and overall vulnerability for all algorithms.

ote that “met?” means whether the corresponding constraint are

atisfied. TSHO produced a schedulable security- and safety-critical

mplementation with energy as 11,277 μJ, system vulnerability as

46.3. Compared with GHO and RSO, TSHO can save energy by

.7% and 22.7% respectively. Although EO and MVFS obtain less

nergy consumption (saving 3.4% and 2.6% comparing with TSHO

espectively), both of them cannot provide ideal security protec-

ion, which violate seriously the system vulnerability constraint

 OV B = 350 . 9). TSHO is the only approach which can guarantee

ll the reliability and security requirements while providing low

nergy expenditure.

. Conclusion and future work

Security and safety are two emerging requirements for depend-

ble real-time embedded systems with constrained resources. This

aper proposed a unified framework for tackling energy, security,

eliability and timing requirements for SSCS systems. For commu-

ication security, we apply cryptographic algorithms on message

ransmissions to ensure confidentiality, and introduce a vulnera-

ility based metric to quantify the security strength of commu-

ications for distributed systems. Fault-tolerance against transient

aults is achieved by task replication. Besides meeting these con-

traints, our design objective is to minimize the overall energy

onsumption using DVFS. However, DVFS influences the reliability

f the application which is also modelled and studied in this work.

In this paper, our goal was to find the best system designs for

ecurity- and safety-critical embedded systems. Our main contri-

utions are: a vulnerability based method is proposed to quantify

he security performance of communications on distributed sys-

ems; a unified design problem for SSCSs is addressed, which

imultaneously considers security, reliability, energy, and timing

equirements; an evaluation of the proposed approach on several

ynthetic benchmarks and one real-life case study (a vehicle

ruise controller application). Due to the complexity of solving the

roblem, we proposed a Tabu Search-based optimization approach

SHO for finding the solution which minimizes energy under the

mposed constraints. Experimental results have demonstrated the

fficiency of the proposed approach.

For the future work, we are interested in considering simul-

aneously hardware acceleration of security protection and task

eplicas into our framework. Although this might result in the

ncrease of additional hardware overhead like FPGA unit, the

esign trade-off can be well incorporated in the framework. In this

aper, we targeted at the design of statically scheduled distributed

eal-time applications, which are periodically repeated to complete

he same mission, e.g., the VCC application. The solution can

e generated off-line (statically), and then be deployed to run

he application. The method we present here is not suitable for

ynamic systems. Therefore, a significant work is to find some

fficient methods to address the problem of dynamic real-time

pplications. Additionally, we would like to extend our framework
Please cite this article as: W. Jiang et al., Design optimization for secu

processors and Microsystems (2016), http://dx.doi.org/10.1016/j.micpro.
o support multi-objective optimizations for safety and security

mbedded applications. Finally, considering security protections

o resist Side Channel Attacks like fault injection attack in the

ystem-level will also be our future work.

cknowledgement

This work was partly supported by the National Natural Science

oundation of China under Grant No. 61003032 , the Research Fund

f National Key Laboratory of Computer Architecture under Grant

o. CARCH201501 the Open Project Program of the State Key

aboratory of Mathematical Engineering and Advanced Computing

nder Grant No. 2016A09.

eferences

[1] C. Constantinescu , Trends and challenges in VLSI circuit reliability, IEEE Micro

23 (4) (2003) 14–19 .
[2] F. Sagstetter , M. Lukasiewycz , S. Steinhorst , M. Wolf , A. Bouard , W.R. Harris ,

S. Jha , T. Peyrin , A. Poschmann , S. Chakraborty , Security challenges in auto-

motive hardware/software architecture design, in: Proceedings of DATE, 2013,
2013, pp. 458–463 .

[3] T. Xie , X. Qin , Improving security for periodic tasks in embedded sys-
tems through scheduling, ACM Trans. Embed. Comput. Syst. 6 (3) (2007)

20:1–20:20 .
[4] M. Lin , L. Xu , L.T. Yang , X. Qin , N. Zheng , Z. Wu , M. Qiu , Static security opti-

mization for real-time systems, IEEE Trans. Ind. Inf. 5 (1) (2009) 22–37 .

[5] T. Hoppe , S. Kiltz , J. Dittmann , Security threats to automotive CAN networks
practical examples and selected short-term countermeasures, Reliab. Eng. Syst.

Saf. 96 (1) (2011) 11–25 .
[6] K. Jiang , P. Eles , Z. Peng , Optimization of message encryption for distributed

embedded systems with real-time constraints, in: 14th IEEE Symposium
on Design and Diagnostics of Electronic Circuits and Systems, 2011, 2011,

pp. 243–248 .

[7] K. Jiang , P. Eles , Z. Peng , Co-design techniques for distributed real-time embed-
ded systems with communication security constraints, in: Proceedings of the

Conference on Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2012, 2012, pp. 947–952 .

[8] X. Zhang , J. Zhan , W. Jiang , Y. Ma , K. Jiang , Design optimization of security-sen-
sitive mixed-criticality real-time embedded systems, in: the 1th workshop of

Real-time Mixed Criticality Systems (ReTiMiCS), 2013, 2013, pp. 12–17 .

[9] Y. Wang , H. Liu , D. Liu , Z. Qin , Z. Shao , E.H.-M. Sha , Overhead-aware en-
ergy optimization for real-time streaming applications on multiprocessor sys-

tem-on-chip, ACM Trans. Des. Autom. Electron. Syst. 16 (2) (2011) 14:1–14:32 .
[10] E. Le Sueur , G. Heiser , Dynamic voltage and frequency scaling: the laws of di-

minishing returns, in: Proceedings of the International Conference on Power
Aware Computing and Systems, 2010, 2010, pp. 1–8 .

[11] D. Zhu , R. Melhem , D. Mossé, The effects of energy management on reliabil-

ity in real-time embedded systems, in: IEEE/ACM International Conference on
Computer Aided Design, 2004, 2004, pp. 35–40 .

[12] B. Zhao , H. Aydin , D. Zhu , Generalized reliability-oriented energy management
for real-time embedded applications, in: 48th ACM/IEEE Design Automation

Conference, 2011, 2011, pp. 381–386 .
[13] J. Gan , F. Gruian , P. Pop , J. Madsen , Energy/reliability trade-offs in fault-toler-

ant event-triggered distributed embedded systems, in: Proceedings of ASPDAC,

2011, 2011, pp. 731–736 .
[14] V. Izosimov , P. Pop , P. Eles , Z. Peng , Design optimization of time-and cost-con-

strained fault-tolerant distributed embedded systems, in: Proceedings of DATE,
20 05, 20 05, pp. 864–869 .

[15] E. Bini , G. Buttazzo , G. Lipari , Minimizing cpu energy in real-time systems with
discrete speed management, ACM Trans. Embedded Comput. Syst. 8 (4) (2009)

31:1–23 .
[16] Make Accurate Power Measurements with NI Tools, 2008, http://zone.ni.com/

devzone/cda/tut/p/id/7077 .

[17] W. Jiang , Z. Guo , Y. Ma , N. Sang , Measurement-based research on crypto-
graphic algorithms for embedded real-time systems, J. Syst. Archit. 59 (2013)

1394–1404 .
[18] R. Chandramouli , S. Bapatla , K.P. Subbalakshmi , Battery power-aware encryp-

tion, ACM Trans. Inf. Syst. Secur. 9 (2) (2006) 162–180 .
rity- and safety-critical distributed real-time applications, Micro-

2016.08.002

http://dx.doi.org/10.13039/501100001809
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0001
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0001
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0002
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0002
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0002
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0002
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0002
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0002
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0002
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0002
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0002
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0002
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0002
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0003
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0003
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0003
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0004
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0004
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0004
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0004
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0004
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0004
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0004
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0004
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0005
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0005
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0005
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0005
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0006
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0006
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0006
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0006
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0007
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0007
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0007
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0007
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0008
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0008
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0008
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0008
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0008
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0008
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0009
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0009
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0009
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0009
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0009
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0009
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0009
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0010
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0010
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0010
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0011
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0011
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0011
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0011
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0012
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0012
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0012
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0012
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0013
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0013
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0013
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0013
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0013
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0014
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0014
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0014
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0014
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0014
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0015
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0015
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0015
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0015
http://zone.ni.com/devzone/cda/tut/p/id/7077
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0016
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0016
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0016
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0016
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0016
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0017
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0017
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0017
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0017
http://dx.doi.org/10.1016/j.micpro.2016.08.002

14 W. Jiang et al. / Microprocessors and Microsystems 0 0 0 (2016) 1–15

ARTICLE IN PRESS

JID: MICPRO [m5G; September 12, 2016;20:42]

[

[

[
[19] S. Contini, R.L. Rivest, M.J.B. Robshaw, Y.L. Yin, The security of the rc6 block
cipher(1998).

[20] L.R. Knudsen , W. Meier , Correlations in rc6 with a reduced number of rounds,
in: Fast Software Encryption, 2001, 2001, pp. 94–108 .

[21] P. Pop , K.H. Poulsen , V. Izosimov , P. Eles , Scheduling and voltage scaling for en-
ergy/reliability trade-offs in fault-tolerant time-triggered embedded systems,

in: IEEE/ACM International Conference on Hardware/Software Codesign and
System Synthesis, 2007, 2007, pp. 233–238 .

[22] D. T ̌amas-Selicean , P. Pop , Design optimization of mixed-criticality real-time

applications on cost-constrained partitioned architectures, in: Proceedings of
IEEE 32nd Real-Time Systems Symposium (RTSS), 2011, 2011, pp. 24–33 .
Please cite this article as: W. Jiang et al., Design optimization for secu

processors and Microsystems (2016), http://dx.doi.org/10.1016/j.micpro.
23] P. Eles , Z. Peng , P. Pop , A. Doboli , Scheduling with Bus Access Optimization for
Distributed Embedded Systems, IEEE Trans. Very Large Scale Integr. Syst. 8 (5)

(20 0 0) 472–491 .
[24] R.P. Dick , D.L. Rhodes , W. Wolf , Tgff: task graphs for free, in: Proceedings of

the 6th International Workshop on Hardware/Software Codesign, 1998, 1998,
pp. 97–101 .

25] X. Pan , W. Jiang , K. Jiang , L. Wen , K. Zhou , Energy optimization of stochastic
applications with statistical guarantees of deadline and reliability, in: Proceed-

ings of ASPDAC, 2016, 2016, pp. 12–17 .

26] P. Pop , P. Eles , Z. Peng , Analysis and Synthesis of Distributed Real-Time Embed-
ded Systems, Kluwer Academic Publishers, 2004 .
rity- and safety-critical distributed real-time applications, Micro-

2016.08.002

http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0018
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0018
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0018
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0019
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0019
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0019
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0019
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0019
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0020
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0020
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0020
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0021
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0021
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0021
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0021
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0021
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0022
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0022
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0022
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0022
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0023
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0023
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0023
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0023
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0023
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0023
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0024
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0024
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0024
http://refhub.elsevier.com/S0141-9331(16)30137-5/sbref0024
http://dx.doi.org/10.1016/j.micpro.2016.08.002

W. Jiang et al. / Microprocessors and Microsystems 0 0 0 (2016) 1–15 15

ARTICLE IN PRESS

JID: MICPRO [m5G; September 12, 2016;20:42]

 the Ph.D. degree from the University of Electronic Science and Technology of China,

e Computer Science and Engineering Department, University of Electronic Science and
e real-time system, security/energy aware design, embedded system design, advanced

s a member of ACM and IEEE.

ersity, Sweden. He is currently a Professor with the Department of Compute, Technical

ty-critical embedded systems, real-time systems, system-level design methodology.

 received his Ph.D. degree from the Linkoping University, Sweden, in 2016, the M.S degree

gree from Hunan University, China, in 2006. His current research interests include design
wer embedded systems, and system co-design.
Wei Jiang received the B.S. degree, the M.S. degree and

Chengdu. He is currently an Associate Professor with th
Technology of China, China. His research interests includ

computer architecture and reconfigurable computing. He i

Paul Pop received the Ph.D. degree from Linkoping Univ

University of Denmark. His research interests include safe

Ke Jiang is associated with AF-Technology AB, Sweden. He

from Uppsala University, Sweden, in 2009, and the B.S. de
and optimization of secure systems, real-time and low-po
Please cite this article as: W. Jiang et al., Design optimization for security- and safety-critical distributed real-time applications, Micro-

processors and Microsystems (2016), http://dx.doi.org/10.1016/j.micpro.2016.08.002

http://dx.doi.org/10.1016/j.micpro.2016.08.002

	Design optimization for security- and safety-critical distributed real-time applications
	1 Introduction
	2 System architecture
	2.1 Application model
	2.2 Hardware architecture

	3 Security model
	3.1 Security overhead of messages
	3.2 Security quantification and constraints
	3.2.1 Short discussion

	4 Energy/reliability model
	5 Design problem and motivational example
	5.1 Problem formulation
	5.2 Motivational example

	6 Design optimization strategy
	6.1 Design optimization strategy overview
	6.2 Tabu search
	6.3 Extended list scheduling

	7 Experimental evaluation
	7.1 Impact of application size
	7.2 Impact of system vulnerability constraint
	7.3 Impact of deadline constraint
	7.4 Discussion about the efficiency of algorithms
	7.5 A real-life application simulation

	8 Conclusion and future work
	 Acknowledgement
	 References

