
Abstract
In this paper we present an approach for scheduling with

preemption for fault-tolerant embedded systems composed of
soft and hard real-time processes. We are interested to
maximize the overall utility for average, most likely to
happen, scenarios and to guarantee the deadlines for the
hard processes in the worst case scenarios. In many
applications, the worst-case execution times of processes can
be much longer than their average execution times. Thus,
designs for the worst-case can be overly pessimistic, i.e.,
result in low overall utility. We propose preemption of process
executions as a method to generate flexible schedules that
maximize the overall utility for the average case while
guarantee timing constraints in the worst case. Our
scheduling algorithms determine off-line when to preempt
and when to resurrect processes. The experimental results
show the superiority of our new scheduling approach
compared to approaches without preemption.

1. Introduction

Fault-tolerant embedded real-time systems have to meet
their deadlines and function correctly in the worst-case and
under presence of faults. Such systems are usually designed
for the worst-case, which often leads to overly pessimistic so-
lutions since the worst-case execution times of processes can
be much longer than their average execution times [1]. De-
sign of fault-tolerant embedded real-time systems for the av-
erage case, addressed in this paper, is a promising alternative
to the purely worst-case-driven design. It is important to em-
phasize that the generated designs have to be safe, i.e. all
deadlines are met, even in the worst-case execution scenarios
and when affected by faults.

Faults can be permanent (i.e. damaged microcontrollers
or communication links), transient, or intermittent. Transient
and intermittent faults (also known as “soft errors”) appear
for a short time and can be caused by electromagnetic inter-
ference, radiation, temperature variations, software “bugs”,
etc. Transient and intermittent faults1, which we will deal
with in this paper, are the most common and their number is
increasing due to greater complexity, higher frequency and
smaller transistor sizes [10].

Real-time systems have been classified as hard real-time
and soft real-time systems. For hard real-time processes, fail-
ing to meet a deadline can potentially have catastrophic con-
sequences, whereas a soft real-time process retains some
diminishing value after its deadline. Traditionally, hard and
soft real-time systems have been scheduled using very differ-
ent techniques [12]. However, many applications have both
hard and soft timing constraints [3], and therefore researchers
have proposed techniques for addressing mixed hard/soft
real-time systems [3, 5, 4]. 

In the context of hard real-time systems, researchers have
shown that schedulability can be guaranteed for online sched-
uling [7, 13, 18]. However, such approaches lack the predict-
ability required in many safety-critical applications, where
static off-line scheduling is the preferred option for ensuring
both the predictability of worst-case behavior, and high re-
source utilization. Thus, researchers have proposed approach-
es for integrating fault tolerance into the framework of static
scheduling. A heuristic for combining together several static
schedules in order to mask fault patterns through replication is
proposed in [15]. The actual static schedules are generated ac-
cording to the approach in [6]. Xie et al. [17] propose a tech-
nique to decide how replicas can be selectively inserted into
the application, based on process criticality. Kandasamy et al.
[11] propose constructive mapping and scheduling algorithms
for transparent re-execution on multiprocessor systems. In [8]
we have shown how re-execution and active replication can be
combined in an optimized implementation that leads to a
schedulable fault-tolerant application without increasing the
amount of employed resources.

Regarding soft real-time systems, researchers have shown
how faults can be tolerated with active replication while max-
imizing the utility of the system [14]. In [2] faults are tolerat-
ed while maximizing the reward in the context of online
scheduling and an imprecise computation model, where pro-
cesses are composed of mandatory and optional parts. In [16]
trade-off between performance and fault-tolerance, based on
active replication, is considered in the context of online
scheduling. This, however, incurs a large overhead during
runtime which seriously affects the quality of results.

In [9], we have considered embedded systems composed
of both hard and soft processes. Process re-execution is used
to provide the required level of fault tolerance. We have pro-
posed a novel quasi-static scheduling strategy, where a set of1. We will refer to both transient and intermittent faults as “transient” faults.
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fault-tolerant schedules is synthesized off-line and, at run
time, the scheduler will select the right schedule based on the
occurrence of faults and the actual execution times of pro-
cesses, such that hard deadlines are guaranteed and the over-
all system utility is maximized. The online overhead of quasi-
static scheduling is very low, compared to traditional online
scheduling approaches [4]. The proposed scheduling strategy
can also handle overload situations with dropping of soft pro-
cesses. Dropping allows to skip execution of a soft process if
such an execution leads to violation of hard deadlines or to
deterioration of the produced overall utility. The dropping
technique, however, only provides two extreme alternatives:
complete execution of a soft process or skipping of its execu-
tion. This can result in a very pessimistic schedule, especial-
ly, if the worst-case execution times of processes are much
longer than their average case execution times.

In this paper, we enhance our fault tolerance scheduling
strategy with preemption, in order to generate flexible sched-
ules that allow to preempt execution of a process and then
resurrect the process if that is needed and profitable. Flexible
schedules with preemption overcome the pessimism of previ-
ous approaches while generating safe schedules even in the
worst-case overloading situations and under presence of
faults. We propose static and quasi-static algorithms that gen-
erate off-line schedule tables, which then, at run time, are
used to safely preempt and resurrect processes when execut-
ing the application.

The next section presents our application model, time/
utility model, and the fault tolerance techniques. In Section 3,
we compare scheduling without and with preemption. Section
4 outlines our problem formulation and Section 5 presents our
heuristics for static and quasi-static scheduling. Experimental
results, which demonstrate advantages of flexible schedules
with preemption, are presented in Section 6.

2. Application Model

We model an application A as a set of directed, acyclic,
polar graphs Gk(Vk, Ek) ∈ A. Each node Pi ∈ Vk represents one
process. An edge eij ∈ Ek from Pi to Pj indicates that the out-
put of Pi is the input of Pj. A process can be activated after all
its inputs, required for the execution, have arrived. The pro-
cess issues its outputs when it terminates. Processes can be
preempted during their execution.

We consider that the application is running on a single com-
putation node. Each process Pi in the application has a best-case
execution time (BCET), ti

b, and a worst-case execution time
(WCET), ti

w. The execution time distribution Ei(t) of process Pi
is given. An average-case execution time (AET) for process Pi,
ti

e, is obtained from the execution time distribution Ei(t). The
communication time between processes is considered to be part
of the process execution time and is not modeled explicitly. In
Fig. 1 we have an application A consisting of the process graph
G1 with three processes, P1, P2 and P3. The execution times for
the processes are shown in the table. µ is a recovery overhead,
which represents the time needed to start re-execution of a pro-

cess in case of faults. ζ is a preemption overhead, which repre-
sents the time needed to preempt a process and store its state (to
“checkpoint”). ρ is a resurrecting overhead, which represents
the time needed to continue execution of a preempted process,
including restoring the process state.

All processes belonging to a process graph G have the
same period T = TG , which is the period of the process graph.
In Fig. 1 process graph G1 has a period T = 300 ms. If process
graphs have different periods, they are combined into a hy-
per-graph capturing all process activations for the hyper-pe-
riod (LCM of all periods).

2.1 Utility Model

The processes of the application are either hard or soft. We
will denote with H the set of hard processes and with S the set
of soft processes. In Fig. 1 processes P1 and P2 are soft, while
process P3 is hard. Each hard process Pi ∈ H is associated with
an individual hard deadline di. Each soft process Pi ∈ S is as-
signed with a utility function Ui(t), which is any non-increasing
monotonic function of the completion time of a process. For
example, in Fig. 2a the soft process Pa is assigned with a utility
function Ua(t) and completes at 60 ms. Thus, its utility would
equal to 20. The overall utility of the application is the sum of
individual utilities produced by soft processes. The utility of
the application depicted in Fig. 2b, which is composed of two
processes, Pb and Pc, is 25, in the case that Pb completes at 50
ms and Pc at 110 ms giving utilities 15 and 10, respectively.
Note that hard processes are not associated with utility func-
tions but it has to be guaranteed that, under any circumstances,
they meet their deadlines.

Both hard and soft processes can be preempted, as illus-
trated in Fig. 2c, where the application A from Fig. 1 is run
with preemption. A hard process Pi, even if preempted, has to
always complete its execution before the deadline and, thus,
has to be always resurrected. We will denote with Pi#j the ex-
ecution of jth part of process Pi. 1 ≤ j ≤  ni + 1, where ni is the
maximum number of preemptions of Pi. Both hard and soft
processes can be preempted several times. In Fig. 2c, process
P3 is preempted at 105 ms, and is resurrected at 135 ms.

A soft process Pi is not required to be resurrected. For ex-
ample, process P1 is preempted at 30 ms and is not resurrect-
ed. However, if the execution of soft process Pi was
preempted, its utility is 0 unless the process is resurrected,
i.e., Ui(t) = 0. In Fig. 2c, processes P1 and P2 produce utility
of 0 after they are preempted at 30 ms and 65 ms. If Pi is res-
urrected and completed at time t, then its utility is calculated
according to its utility function Ui(t). In Fig. 2c, process P2
is resurrected and finally completes at 135 ms, which gives
the utility of 15. Thus, the total utility for this scenario will
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be U = U1(30) + U2(135) = 0 + 15 = 15. Note that we have
accounted for preemption and resurrecting overheads ζ = 5
ms and ρ = 5 ms in this application run. If process Pi com-
pletes before it is preempted, it will produce utility Ui(t). In
the scenario depicted in Fig. 2d, for example, processes P1
and P2 complete at 25 and 60 ms, respectively, which gives
the utility U = U1(25) + U2(60) = 20 + 18 = 38.

For a soft process Pi we have the additional option not to
start it at all, and we say that we “drop” the process, and thus
its utility will be 0, i.e., Ui(−) = 0. In the execution in Fig. 2e
we drop process P2 of application A. Thus, process P1 com-
pletes at 50 ms and process P3 at 110 ms, which gives the total
utility U=U1(50) + U2(−) = 10 + 0 = 10.

Preemption and dropping might be necessary in order to
meet deadlines of hard processes, or to increase the overall
system utility (e.g. by allowing other, potentially higher-val-
ue soft processes to complete).

Moreover, if Pi is preempted or dropped and is supposed
to produce an input for another process Pj, we assume that Pj
will use an input value from a previous execution cycle, i.e.,
a “stale” value. This is typically the case in automotive appli-
cations, where a control loop executes periodically, and will
use values from previous runs if new ones are not available.
To capture the degradation of service that might ensue from
using stale values, we update our utility model of a process Pi
to Ui

*(t) = αi ×  Ui(t), where αi represents the stale value co-
efficient. αi captures the degradation of utility that occurs due
to dropping of processes. Thus, if a soft process Pi is pre-
empted (or dropped), then αi = 0, i.e., its utility Ui

*(t) will be
0. If Pi is executed, but reuses stale inputs from one or more
of its direct predecessors, the stale value coefficient will be
calculated as the sum of the stale value coefficients over the
number of Pi’s direct predecessors:

where DP(Pi) is the set of Pi’s direct predecessors. Note that we
add “1” to the denominator and the dividend to account for Pi it-
self. The intuition behind this formula is that the impact of a stale
value on Pi is in inverse proportion to the number of its inputs.

Suppose that soft process P3 has two predecessors, P1 and
P2. If P1 is preempted while P2 and P3 are completed success-
fully, then, according to the formula, α3 = (1 + 0 + 1) /  (1 +
2) = 2/3. Hence, U3

*(t)= 2/3 ×  U3(t). The use of a stale value
will propagate though the application. For example, if soft
process P4 is the only successor of P3 and is completed, then
α4 = (1 + 2/3) /  (1+1)= 5/6. Hence, U4

*(t) = 5/6 ×  U4(t).

2.2 Fault Tolerance

In this paper we are interested in techniques for tolerating
transient faults, which are the most common faults in today’s
embedded systems. In our model, we consider that at most k
transient faults may occur during one operation cycle of the ap-
plication.

The error detection and fault-tolerance mechanisms are
part of the software architecture. The error detection over-
head is considered as part of the process execution time. The
software architecture, including the real-time kernel, error
detection and fault-tolerance mechanisms are themselves
fault-tolerant.

We use re-execution for tolerating faults. Let us consider
the example in Fig. 3, where we have process P1 and k = 2
transient faults that can happen during one cycle of operation.
In the worst-case fault scenario depicted in Fig. 3, the first
fault happens during P1’s first execution, denoted P1/1, and is
detected by the error detection mechanism. After a worst-
case recovery overhead of µ = 5 ms, depicted with a light gray
rectangle, P1 will be executed again. Its second execution P1/

2 in the worst-case could also experience a fault. Finally, the
third execution P1/3 of P1 will take place without fault. In this
paper, we will denote with Pi/j the jth execution of process Pi
in the faulty scenario, where Pi is affected by faults.

Hard processes have to be always re-executed if affected
by a fault. Soft processes, if affected by a fault, are not re-
quired to recover. A soft process will be re-executed only if it
does not impact the deadlines of hard processes, and its re-ex-
ecution is beneficial for the overall utility.

3. Scheduling with Preemption

In this paper, we will use quasi-static scheduling for gener-
ating a tree of schedules with preemption. In [9], we have dem-
onstrated that quasi-static scheduling allows to capture
different execution scenarios of an application with soft and
hard timing constraints. Each individual schedule in a quasi-
static tree is generated with static scheduling.

3.1 Preemption vs. Dropping

In this work, we extend our scheduling strategy from [9]
with preemption that would allow to stop a process and then
resurrect it if needed. In case of dropping we have only two ex-

Figure 2. Utility Functions, Preemption, and Dropping
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treme alternatives, complete execution of a soft process or skip
its execution (drop process), which can result in a pessimistic
schedule, as will be illustrated in the following examples.

In Fig. 4 we show a simple example of two processes P1
and P2. P1 is a soft process with the utility function depicted
at the bottom of the grey area and the uniform completion
time distribution E1(t); P2 is a hard process with a deadline of
200 ms. One fault can happen within a period of 200 ms. If
we apply dropping as in Fig. 4a, we have no other option than
to drop soft process P1. This is because in the worst-case, de-
picted in Fig. 4a1, where processes P1 and P2 are executed
with their worst-case execution times and process P2 is re-ex-
ecuted, P1’s execution will lead to missed deadline of P2. The
average case schedule, depicted in Fig. 4a2, will contain only
process P2 and the overall utility of such schedule is 0.

If we apply preemption, as in the worst-case in Fig. 4b, we
can preempt process P1 at time 85 and process P2 completes
its execution before the deadline even if affected by fault. In
the average case, the schedule will contain both processes P1
and P2 producing the overall utility of 100. Moreover, in 85%
of all the cases, process P1 will complete before we have to
preempt it. This would produce a utility of at least 98 in 85%
of all the cases. The flexible schedule with preemption clear-
ly outperforms the schedule with only dropping.

Let us consider another example to further illustrate that
the safe schedule with dropping and no preemption is pessi-
mistic. In Fig. 5, we consider an application of three process-
es, P1 to P3. P1 and P2 are soft processes with utility functions
depicted at the bottom of the grey area; P3 is a hard process
with a deadline of 280 ms. The application is run with a peri-
od of 330 ms. The execution times are given in the table in
the figure. The distribution of execution times E1(t) and E2(t)
of soft processes P1 and P2, respectively, are also depicted.
The maximum number of faults is k = 1 and the recovery
overhead µ is 10 ms for all processes. The safe static schedule
with dropping is shown in Fig. 5a. Soft process P2 is dropped
and soft process P1 is executed completely. This schedule
will produce a utility of U = U1(30)+U2(−) = 50 + 0 = 50 in

the average case depicted in Fig. 5a1. This schedule is valid
in the worst-case, i.e., all deadlines are met, as shown in Fig.
5a2, where P1 and P3 are executed with their worst-case exe-
cution times and hard process P3 is affected by a fault and is
re-executed. Note that we have chosen to schedule process P1
before P3 because, otherwise, if we schedule P1 after P3, the
utility of such schedule in the average case will be only U =
U1(70) + U2(−) = 10 + 0 = 10.

The static schedule with dropping generated for the aver-
age case can produce higher overall utility. However, such
schedule is not safe. For example, in Fig. 5b1, the schedule
produces a high overall utility of 90 in the average case, but in
the worst-case it will lead to deadline violations, as shown in
Fig. 5b2. Process P2 exceeds the period deadline of 330 ms. A
safety-critical application cannot be run with such a schedule.

In Fig. 5c, we present a flexible schedule that can be ob-
tained with preemption applied on process executions. In the
average case in Fig. 5c1, the schedule produces the utility of
90. The worst-case is shown in Fig. 5c2. All processes are ex-
ecuted with their worst-case execution times and process P3
is re-executed. Processes P1 and P2 are preempted at 30 and
125 ms, respectively. After re-execution of process P3, pro-
cess P2 is resurrected and completed until the end, while pro-
cess P1 is resurrected and again preempted before the end of
the period. We account for preemption and resurrecting over-
heads, ζ and ρ, of 5 ms each. No deadlines are violated and
the schedule is, hence, valid. Thus, the flexible schedule with
preemption is able to produce an overall utility as high as the
unsafe average-case schedule with dropping, while being, at
the same time, safe.

The decision whether and where to preempt a process is the
most crucial. In Fig. 6a, we present a reasoning of where to pre-Figure 4. Example 1: Preemption vs. Dropping
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empt process P1. For example, in case in Fig. 6a1, process P1 is
preempted at 20 ms, which corresponds to 25% of all its com-
pletion times (taking into account distribution of process P1 ex-
ecution time, see it on the right side of Fig. 6a1). Thus, the
utility of 50 will be produced in 25% of all the cases, which
will contribute with the utility of 12.5 (i.e., 50× 0.25). The
overall utility of remaining soft processes, P2 in our case,
should be also taken into account because their utility will de-
viate with the different preemption. We consider the average-
case execution times of the remaining processes in order to op-
timize the system for the average case. If process P1 is pre-
empted at 20 ms, process P2 will complete in the average case
at 65 ms, which contributes with the utility of 40. The total util-
ity in this case will be U = U1(20) ×  0.25 + U2(65) = 12.5 + 40
= 52.5. If we preempt process P1 at 30 ms, at its average exe-
cution time, as shown in Fig. 6a2, it will contribute with the
utility of 25 (50× 0.5). Process P2 will complete on average at
75 ms, which will again contribute with the utility of 40. The
total utility is, hence, U = U1(30) ×  0.5 + U2(75) = 25 + 40 =
65. If we continue increasing preemption time for process P1
with a step of 10 ms, we will obtain utility values of U = U1(40)
×  0.55 + U2(85) = 22 + 40 = 62 and U = U1(50) ×  0.6 + U2(95)
= 18 + 40 = 58, respectively, as depicted in Fig. 6a3 and Fig.
6a4. Thus, the best preemption time for P1 is 30 ms.

Process P2 is also preempted in our schedule. However,
the decision that process P2 should be preempted at 125 ms
was taken in order to guarantee the hard deadline of process
P3. As can be seen in Fig. 6b, re-execution of process P3 com-
pletes directly before the deadline of 280 ms in the case that
P2 is preempted latest at 125 ms.

In the discussion so far we have ignored the value produced
by the resurrected parts of the processes. For example, process-
es P1 and P2 will be resurrected after execution of process P3
in Fig. 5c3. Even though all processes are executed with their
worst-case execution times, the overall utility is 50, which is as
high as the utility in the best scenario of the pessimistic sched-
ule with dropping. In Fig. 6c, we present a reasoning about res-
urrecting of processes P1 and P2. At first, we consider that
process P3 is executed with average execution time (since we
optimize the schedule for the average case), while processes P1
and P2 are executed with their worst-case execution times be-
cause we want to know how much we can resurrect at maxi-
mum. There are two choices, depicted in Fig. 6c1 and Fig. 6c2.
100 ms of execution time of process P1 and 10 ms of execution
time of process P2 are left, which correspond to 50% and 8%
of process worst-case execution times, respectively, as depict-
ed below Fig. 6c1, where we consider execution time distribu-
tions for processes P1 and P2. The utility contribution with
resurrected parts is 8.2 in Fig. 6c1, where P2#2 is scheduled be-
fore P1#2, and is 5.8 in Fig. 6c2, where P1#2 is scheduled before
P2#2. Hence, we choose to schedule P2#2 before P1#2. Note that
in the worst-case in Fig. 5c2, we will have to preempt P1#2 at
325 ms to meet the period deadline of 330 ms (5 ms are ac-
counted for the preemption overhead).

Any process, including its resurrected parts, can poten-
tially be preempted at any time if this leads to a valid sched-
ule with an increased utility. Any preempted process can be
resurrected for increasing the overall utility if this does not
lead to deadline violations. All preempted hard processes
have to be always resurrected and have to complete before
their deadlines even in case of faults. Our scheduling strategy,
presented in Section 4, and the scheduling heuristics, present-
ed in Section 5, are designed to explore preemption and res-
urrecting alternatives.

3.2 Static Scheduling vs. Quasi-Static Scheduling

Although the flexible single schedule with preemption can
adapt to a particular situation, as was illustrated in Section 3.1,
a quasi-static scheduling solution can further improve the pro-
duced overall utility. In [9] we have proposed a quasi-static
scheduling for fault-tolerant embedded systems with soft and
hard timing constraints. The main idea of quasi-static schedul-
ing is to generate off-line a set of schedules, each explicitly
generated for a particular situation that can happen online.
These schedules will be available to an online scheduler, which
will switch to the best one (the one that maximizes utility and
guarantees the hard deadlines) depending on the occurrence of
faults and the actual execution times of processes.

4. Problem Formulation

As an input we get an application A, represented as a set of
acyclic directed polar graphs Gk ∈ A, with a set Sk of soft pro-
cesses and set Hk of hard processes. Soft processes are assigned
with utility functions Ui(t) and hard processes with hard dead-
lines di. Application A runs with a period T on a single compu-

Figure 6. Reasoning for Preemption and Resurrecting
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tation node. The maximum number k of transient faults and the
recovery overhead µ are given. The preemption overhead ζ and
resurrecting overhead ρ are also given for each process (in-
cluding hard processes). We know the best and worst-case ex-
ecution times for each process, as presented in Section 2. The
execution time distributions for all processes are given.

As an output, we have to obtain a quasi-static tree of
schedules that maximizes the overall utility U of the applica-
tion in the no-fault scenarios, maximizes the overall utility Uf

in faulty scenarios, and satisfies all hard deadlines in all sce-
narios. The schedules are generated such that the utility (U
and Uf, respectively) is maximized in the case that processes
execute with the average-case execution times. We have to
obtain the preemption time for each process. Resurrected
parts of preempted processes have to be scheduled as well. It
is important that the overall utility U of a no-fault scenario
must not be compromised due to optimizing schedules for
faulty scenarios. This is due to the fact that the no-fault sce-
nario is the most likely to happen.

5. Scheduling Strategy and Algorithms

The goal of our scheduling strategy is to guarantee meeting
the deadlines for hard processes, even in the case of faults, and
to maximize the overall utility for soft processes. In addition,
the utility of the no-fault scenario must not be compromised
when building the fault-tolerant schedule because the no-fault
scenario is the most likely to happen.

In this paper we will adapt a static scheduling strategy for
hard processes, which we have proposed in [8] and which we
have applied in [9] to generate fault-tolerant schedules for
mixed soft and hard real-time systems. This strategy uses “re-
covery slack” in the schedule in order to accommodate time
needed for re-executions in case of faults. After each process
Pi we assign a slack equal to (ti

* + µ) ×  f, where f is the num-
ber of faults to tolerate and ti

* is the time allowed for the pro-
cess to execute. ti

* = ti
w if the process is not preempted. ti

* =
ti

int + ζ if process Pi is preempted, where ti
int is the execution

time of Pi before the preemption. ti
* = ρ + ti

res for resurrected
parts of process Pi, where ti

res is the execution time of the res-
urrected part. ti

* = ρ + ti
int_res + ζ for resurrected parts being

preempted, where ti
int_res is the execution time of the resur-

rected part of process Pi before it is preempted. Note that both
hard and soft processes can be preempted several times. The
slack is shared between processes in order to reduce the time
allocated for recovering from faults. In this paper, we will re-
fer to such a fault-tolerant schedule with recovery slacks and
preemption as an if-schedule.

5.1 Scheduling Strategy

In our scheduling strategy, outlined in Fig. 7, we start by
generating the if-schedule Sroot , using the static scheduling al-
gorithm for fault tolerance with preemption (FTSSP) present-
ed in Section 5.2. The schedule is explicitly generated for the
average case. The validity of the schedule, however, is investi-
gated for the worst case, which guarantees that the schedule is
safe. Sroot contains the recovery slacks to tolerate k faults for
hard processes and as many as possible faults for soft process-
es. The recovery slacks will be used by an online scheduler to
re-execute processes online, without changing the order of pro-
cess execution.

If the if-schedule Sroot is not schedulable, i.e., one or more
hard processes miss their deadlines, we conclude that the ap-
plication is not schedulable and terminate. If the if-schedule
Sroot is schedulable, we generate the quasi-static tree Φ start-
ing from schedule Sroot by calling the FTQSP heuristic pre-
sented in Section 5.3, which uses FTSSP to generate safe if-
schedules that maximize utility.

5.2 Static Scheduling Heuristics

Our static scheduling for fault tolerance and utility maximi-
zation with preemption (FTSSP), outlined in Fig. 8, is a list
scheduling-based heuristic, which uses the concept of ready
processes and ready list. By a “ready” process Pi we mean that
all Pi’s predecessors, required for starting process Pi, have been
scheduled. The heuristic initializes the ready list R with pro-
cesses ready at the beginning (line 2) and is looping while there
is at least one process in the list (line 6).

In the case of synthesis of the root schedule S = Sroot (if
Sparent = ∅), the algorithm sets the process time counter (CRT)
to 0 and puts all the processes into the list U of unscheduled
processes such that they can be executed with the worst-case
execution times unless preempted.1

FTSSP addresses the problem of preempting and resur-
recting of processes. All processes in the ready list R (both
hard and soft) are evaluated if they need to be preempted (line
8) in order to satisfy deadlines. In the GetSafeIntr function,
the evaluation where to preempt process Pi is done with
schedule Sx composed of process Pi preempted at τ  and only
unscheduled hard processes. We evaluate each process Pi
with evaluation step ∆ from its earliest possible start time
τ s,Pi

b to its latest completion time τ c,Pi
w. 2 If the execution of

Pi until time τ  leads to a deadline violation of any hard pro-
cess or the schedule exceeds the system period, we conclude
that Pi should be preempted at τ  − ∆ time to meet the dead-
lines. We call this time moment a forced preemption. If the
execution of entire or a certain part of process Pi leads to a
schedulable solution, then process Pi is put into the list L of
schedulable processes. Otherwise, it is removed from the

Figure 7. General Scheduling Strategy

SchedulingStrategy(G, k, M)
1 Sroot = FTSSP(∅, ∅, 0, G, k)
2 if Sroot = ∅ then return unschedulable
3 else
4 set Sroot as the root of fault-tolerant quasi-static tree Φ
5 Φ = FTQSP(G, Φ, Sroot, k, M)
6 return Φ
7 end if
end SchedulingStrategy

1. The initialization for synthesis of a schedule S inside the quasi-static tree
(lines 1-4) will be discussed at the end of this section.

2. The evaluation step ∆ is calculated as the average of average execution
times of soft processes. The heuristic has been chosen based on the
extensive experiments.



ready list R and is put into the stand-by list D (lines 10-13),
which is initially set to ∅ (line 4).

After the list L of schedulable processes is created, the
next step is to find which process out of the schedulable pro-
cesses is the best to schedule first. We calculate priorities for
all unscheduled soft processes using the MU priority function
presented in [4] (line 16). The MU priority function computes
for each soft process Pi the value, which constitutes of the util-
ity produced by Pi, scheduled as early as possible, and the sum
of utility contributions of the other soft processes delayed be-
cause of Pi. The utility contribution of the delayed soft process
Pj is obtained as if process Pj would complete at time tj = (tj

E

+ tj
L) / 2. tj

E and tj
L are the completion times of process Pj in

the case that Pj is scheduled after Pi as early as possible and as

late as possible, respectively. The GetBestProcess function
(line 17) selects either the soft process Pbest with the highest
MU priority or, if there are no soft processes in the ready list,
the hard process Pbest with the earliest deadline.

Once the process Pbest is selected, the algorithm evaluates
with the GetBestIntr heuristic (line 18) if it should be preempt-
ed in order to increase the overall utility value. We check all
the valid execution times, e.g. from the earliest possible start
time τ s

b until the forced preemption, with the evaluation step
∆. However, to determine exactly whether process Pbest
should be preempted at τ , we should consider all possible
combinations of preemption for the remaining unscheduled
processes and choose the best-possible combination. This is
infeasible for large applications. Instead, we use a preemp-
tion evaluation heuristic, where we generate a schedule Sy,
which is composed of process Pbest preempted at τ  and only
unscheduled soft processes. The selection of process order in
the schedule is done based on the MU priority function as in
the main algorithm. If Pbest is a soft process, its remaining part
will be also placed into the schedule Sy. However, at least one
process has to be placed into the schedule between the pre-
empted part and the remaining part of Pbest. The obtained
overall utility of the schedule Sy will indicate the contribution
of preempting process Pbest at time τ . We choose the preemp-
tion time τ best that produces the best utility.

Depending on the value of τ best, two other options are pos-
sible besides preempting of a process: postponing the process
if τ best = τ s

b or full execution if τ best = τ c
w, where τ s

b is earli-
est possible start time and τ c

w is latest completion time of
process Pbest.

If process Pbest is postponed (lines 19-20), it is put into the
stand-by list D and will be allowed to be selected only if at
least one process has been scheduled. If process Pbest is pre-
empted (lines 21-25), its remaining part is also placed into the
stand-by list D under the same condition as a postponed pro-
cess. Then the process is scheduled until best time to preempt
τ best. Its execution time is subtracted to account for scheduled
preempted part (line 24). In case of τ best = τ c

w (lines 27-31),
process Pbest will be completely scheduled with its full execu-
tion time and its successors will be put into the ready list R.

In the case that the process Pbest is fully scheduled or in the
case that a part of process Pbest is scheduled, the heuristic cop-
ies the processes from the stand-by list D to the ready list R
and empties the stand-by list D (lines 25 and 29). If Pbest has
been preempted, then the stand-by list D will contain only the
remaining part of process Pbest (line 25).

Once process Pbest is scheduled (lines 22 or 27), the recov-
ery slack with the number of re-execution is assigned to it
with the AddRecoverySlack heuristic (lines 23 or 28). For a
hard process, we always assign k re-executions. If Pbest is a
soft process, then the number of re-executions has to be cal-
culated. First, we compute how many times Pbest can be re-
executed without violating deadlines. We schedule Pbest’s re-
executions one-by-one directly after Pbest and check schedu-
lability (by generating Sx-schedules). If the re-execution is
schedulable, we evaluate if it is better to drop the re-execu-Figure 8. Static Scheduling with Preemption

 FTSSP(Ps, Sparent, Τ, k, G)
 1 S→ parent = Sparent
 2 R = GetReadyNodes(Ps, Sparent, G); CRT = Τ
 3 U = GetUnschedulable(Ps, Sparent, G)
 4 D = ∅;  CalculateExecTimes(Sparent, U);
 5 ∆ = ObtainEvaluationStep(U)
 6 while R ≠ ∅ do
 7 for all Pi ∈ R do
 8 τ forced = GetSafeIntr(Pi, U, ∆)
 9 if τ forced > τ s

b then L = L ∪ Pi
 10 else
 11 Remove(R, Pi)
 12 D = D ∪ Pi
 13 end if
 14 end for
 15 if L ≠ ∅ then
 16 CalculatePriorities(U)
 17 Pbest = GetBestProcess(L)
 18 τ best = GetBestIntr(Pbest, U, ∆)
 19 if τ best = τ s

b then
 20 D = D ∪ Pbest
 21 else if τ best < τ c

w then
 22 Schedule(S, CRT, Pbest, τ best)
 23 AddRecoverySlack(Pbest, τ best, U)
 24 SubstractExecTime(Pbest, τ best)
 25 R = R ∪ D;D = ∅; D = D ∪ Pbest
 26 else
 27 Schedule(S, CRT, Pbest, τ c,Pbest

w)
 28 AddRecoverySlack(Pbest, τ c,Pbest

w, U)
 29 R = R ∪ D; D = ∅
 30 Remove(U, Pbest)
 31 AddSuccessors(R, Pbest)
 32 end if
 33 Remove(R, Pbest)
 34 end if
 35 while R = ∅ and D ≠ ∅ do
 36 H = GetSchedulableHardProcesses(D)
 37 if H ≠ 0 then
 38 PH = GetBestProcess(H)
 39 Schedule(S, CRT, PH, τ c,PH

w)
 40 AddRecoverySlack(Pbest, τ c,PH

w, U)
 41 Remove(D, PH);Remove(U, PH)
 42 R = R ∪ D; D = ∅
 43 AddSuccessors(R, PH)
 44 else
 45 PS = GetBestToDrop(D)
 46 if PS = ∅ and H = ∅ then return unschedulable
 47 Remove(D, PS);Remove(U, PS)
 48 AddSuccessors(R, PS)
 49 end if
 50 end while
 51 end while
 52 return S
 end FTSSP



tion for maximizing the overall utility Uf of this particular
fault scenario (by generating Sy-schedules).

Process Pbest is removed from the ready list R after being
scheduled or postponed (line 33) and the algorithm continues
from the beginning except the case that all processes are in
the stand-by list D, while the ready list R is empty (line 35).
This can happen after several iterations of extensive postpon-
ing. To handle this situation, we first create a list H of sched-
ulable hard processes from D (line 36). If there exists at least
one (schedulable) hard process in H, the GetBestProcess
function selects from H the hard process PH with the closest
deadline (line 38). The hard process PH is then scheduled
with its full execution time, assigned with recovery slack, it
is removed from the ready list R and the list U of unschedu-
lable processes, and its successors are put into the ready list
(lines 39-43). If the list H of schedulable hard processes is
empty, then we look for a soft process PS in the stand-by list
D, which can be removed from the system with the lowest
degradation of the overall utility (line 45). If no soft process
PS is found and the list H is empty, we conclude that the sys-
tem is unschedulable (line 46). Otherwise, we drop the soft
process PS by removing it from the stand-by list D and the list
U of unschedulable processes, and add its successors into the
ready list R (lines 47-48). In such case, process PS will not
have a chance to be scheduled and is actually dropped.

FTSSP returns an if-schedule S explicitly generated for
the average case providing a high overall utility (line 53). The
return schedule is also guaranteed to satisfy hard deadlines in
the worst case, i.e., the schedule is safe.

In the case of synthesis of a schedule S inside the quasi-stat-
ic tree, the FTSSP heuristic will be called from the quasi-static
scheduling (FTQSP) algorithm discussed in the next section.
An online scheduler will switch on such schedule S upon com-
pletion time Τ  of process Ps from the schedule Sparent. FTSSP
will initially set Sparent as a parent for S (line 1), set the CRT
counter to Τ  (line 2), and the list U of unscheduled processes
will contain all not completed processes in schedule Sparent
(line 3). The processes, which have not started, can be executed
in schedule S with their worst-case execution times. The pro-

cesses, which have been preempted in Sparent, can complete
their execution in S and can be executed with their remaining
execution times (line 4). These constraints are captured in all
our scheduling steps in FTSSP and the synthesis of schedule S
inside the quasi-static tree is then performed exactly as dis-
cussed above for the root schedule.

5.3 Quasi-Static Scheduling Heuristic

In general, quasi-static scheduling should generate a tree of
schedules that will adapt to different execution situations.
However, tracing all execution scenarios is infeasible. There-
fore, we reduce the number of schedules in the quasi-static tree
Φ by considering only the best-case and the worst-case com-
pletion times of processes in each particular schedule. We have
adapted our quasi-static scheduling algorithm from [9] to ex-
plore different schedules with preemption and resurrected pro-
cesses. The if-schedules are generated with the static
scheduling heuristic FTSSP discussed above.

The quasi-static scheduling algorithm is outlined in Fig.
9. The algorithm takes as an input the process graph G, the ini-
tial quasi-static tree Φ, which contains only the root if-sched-
ule, the root if-schedule Sroot, the maximum number k of
faults, and the maximum number M of schedules in the tree.
The current if-schedule S is initialized with the root if-sched-
ule Sroot (line 1). The heuristic is looping until M if-schedules
have been generated (line 2).

For each process Pi in the schedule S we generate optimis-
tic and pessimistic if-schedules with FTSSP (lines 5-8), where
the first one corresponds to the best-case completion time τ c,Pi

b

of process Pi and the second one to the worst-case completion
time τ c,Pi

w of process Pi. Note that completion times τ c,Pi
b and

τ c,Pi
w correspond to the no faulty scenario in if-schedule S. If

both schedules are valid (line 9), the interval between τ c,Pi
b and

τ c,Pi
w is traced on the interval-partitioning step (line 10). For

completion time τ c,Pi
j either the pessimistic schedule or the op-

timistic schedule is assigned according to the overall utility
produced by the schedule, i.e., if the utility of the optimistic
schedule is better than the utility of the pessimistic schedule at
completion τ c,Pi

j, then if process Pi completes at time τ c,Pi
j, the

optimistic schedule will be chosen. The optimistic schedule is
not always safe, therefore, if there exists a risk of violating
deadlines, the pessimistic schedule, which is always safe, will
be chosen. For example, if the optimistic schedule may lead to
deadline violations at completion time τ c,Pi

j, the pessimistic
schedule will be executed if process Pi completes at τ c,Pi

j. The
completion times of process Pi, at which switching between
schedules should be done, are assigned to the process Pi in the
schedule S. The optimistic and pessimistic schedules are stored
in the temporary set of schedules Φ0 (lines 11-12).

Out of the pessimistic and optimistic if-schedules in Φ0, we
store in the quasi-static tree Φ only such if-schedules that, if
switched to, lead to the most significant improvement in terms
of the overall utility (line 15). Afterwards, the new best if-
schedule S is selected in the tree Φ (line 16). For all processes in
S we will perform the same procedure as described above on the

FTQSP(G, Φ, Sroot, k, M)
1 S = Sroot
2 while size(Φ) < M do
3 Φ0 = ∅
4 for all Pi ∈ S do
5 τ c,Pi

b = GetBestCompTime(S, Pi)
6 τ c,Pi

w = GetWorstCompTime(S, Pi)
7 Sopt = FTSSP(S, Pi, τ c,Pi

b, k, G )
8 Spess = FTSSP(S, Pi, τ c,Pi

w, k, G )
9 if Sopt ≠ ∅ and Spess ≠ ∅ then 
10 S{Pi}→ switch_pts = IntervalPartitioning(Sopt, Spess, τ c,Pi

b, τ c,Pi
w)

11 Φ0 = Φ0 ∪ Sopt
12 Φ0 = Φ0 ∪ Spess
13 end if
14 end for
15 Φ = Φ ∪ GetBestSchedules(Φ0, M)
16 S = SelectNextSchedule(Φ)
17 end while
18 return Φ
end FTQSP

Figure 9. Quasi-Static Scheduling



next loop iteration, i.e., generate optimistic and pessimistic if-
schedules and select the ones that, eventually, will contribute to
the most significant improvement if switched to.

6. Experimental Results

For the experiments, we have generated 100 applications
with 10, 20, 30, 40, and 50 processes, where we have varied
average case execution times (AETs) between 1 and 100 ms,
the best-case execution time (BCETs) between 0 ms and the
average case execution times. The worst-case execution
times (WCETs) have been assigned to capture the effect of
“much larger execution times in the worst-case”, e.g. the ef-
fect of tails. We have associated with each process Pi at every
application a tail factor TFi = AETi ×  2 / WCETi. The tail fac-
tor has been randomly generated between 1 and 10. Thus, we
have calculated the worst-case execution times as WCETi =
TFi ×  AETi ×  2. We have set 75% of all processes as soft and
have associated pre-generated step utility functions to them.
The other 25% of processes have been associated with the lo-
cal hard deadlines. The number of transient faults have been
set to k = 3. The recovery overhead µ, the resurrecting over-
head ρ and the preemption overhead ζ have been randomly
generated for every process Pi at every application between 1
and 30 per cent of Pi’s average-case execution time, rounded
to the greatest integer value. The experiments have been run
on a Pentium 4 2.8 GHz processor with 1Gb memory.

In the first set of experiments, we have evaluated the im-
provement that can be obtained with our novel fault tolerance
static and quasi-static scheduling with preemption compared
to the fault tolerance static and quasi-static scheduling with-
out preemption, which we have proposed in [9]. Thus, we
have evaluated four algorithms:

• the static scheduling algorithm with preemption, dropping
and fault tolerance (FTSSP), proposed in Section 5.2;

• the quasi-static scheduling algorithm with preemption,
dropping and fault tolerance (FTQSP), proposed in Section
5.3, which uses FTSSP to generate the schedules in the
quasi-static tree;

• the static scheduling algorithm with dropping and fault
tolerance but without preemption (FTSS) from [9];

• the quasi-static scheduling algorithm with dropping and fault
tolerance but without preemption (FTQS) from [9], which
uses FTSS to generate the schedules in the quasi-static tree.

In Fig. 10a, we depict the utilities produced in the case of no
faults with the schedules generated with four algorithms for the
applications composed of 10, 20, 30, 40 and 50 processes. The
utilities are normalized to the utility produced in case of no
faults by the schedules generated with FTQSP. As can be seen
in Fig. 10a, FTQSP generates the best schedules and the sched-
uling algorithms with preemption outperform the scheduling al-
gorithms without preemption. FTQSP is better than FTQS by
10-15%. FTSSP is better than FTSS by 15-20%. Thus, pre-
emption plays an important role during generation of schedules.

In Fig. 10b, we present the reduction of quality of sched-
ules produced with FTQSP with the number of faults. The
quality of the FTQSP schedules in case of 1 fault degrades
with 7% for 10 processes and with 2% for 50 processes. In
case of 3 faults, the quality degrades with 22% for 10 pro-
cesses while with only 6% for 50 processes. However, in case
of 3 faults, the FTQSP schedules are better than the FTQS
schedules by 15%. FTSSP is better than FTQS by more than
10% and is better than FTSS by approximately 20%. Thus,
even in the case of faults, preemption is important.

As can be seen in Fig. 10a and Fig. 10b, the quasi-static
scheduling algorithm with preemption, FTQSP, is better than
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the static scheduling algorithm with preemption, FTSSP,
only by 3-5%. However, if we reduce the tail factor from 10
to 2, as illustrated in Fig. 10c, FTQSP becomes better than
FTSSP with already 10%, and, if we reduce the tail factor to
1, FTQSP is better than FTSSP with 15%.

As the tail factor increases, the efficiency of the schedul-
ing heuristics with preemption, as such, increases. In the case
of tail factor 1, FTQSP is better than FTQS by only 1% and
FTSSP is better than FTSS by only 2%. However, in the case
of tail factor 10, FTQSP outperforms FTQS with 36% and
FTSSP outperforms FTSS with 42%.

In the other set of experiments, presented in Fig. 10d, we
evaluate how many schedules need to be generated in order to
obtain a substantial improvement of FTQSP over FTSSP. The
experiments have been run in the case of tail factor 2 for appli-
cations composed of 20 processes. The utility produced with
the schedule generated with FTSSP in the case of no faults has
been chosen as a baseline. We depict the normalized utilities of
schedules produced with FTQSP in the case of no faults, 1
fault, 2 faults, and 3 faults. The saturation point is in 21 sched-
ules, where the improvement is 11%. However, with only 4
schedules the improvement of FTQSP is already 8%. In other
words, there is no need to generate many schedules with
FTQSP in order to improve a one-schedule FTSSP solution.
The execution times of the quasi-static heuristics for 2, 4 and
21 schedules are shown in Fig. 10e. FTQSP is approximately
three times slower than FTQS. We also show, for reference, the
execution times of the FTSSP and FTSS heuristics, which gen-
erate a single schedule. FTSSP is two times slower than FTSS.

We have also run our experiments on a real-life example, a
vehicle cruise controller (CC) composed of 32 processes [10],
which is implemented on a single microcontroller with a mem-
ory unit and communication interface. 16 processes, which are
critically involved with the actuators, have been considered
hard. We have set k = 3 and have considered µ, ζ, and ρ be-
tween 1 and 30% of process average-case execution times. The
tail factor has been set to 10. The quasi-static scheduling algo-
rithm with preemption, FTQSP, generates schedules that out-
perform the schedules produced with the quasi-static
scheduling algorithm without preemption, FTQS, with 18% in
case of no faults, 1 fault, and 2 faults, and with 17% in case of
3 faults (in terms of utility).

The scheduling approaches with preemption are able to
produce schedules with substantially better quality than the
approaches without preemption. A quasi-static tree of sched-
ules should be generated, not a single schedule, in order to
satisfy timing constraints and generate the high utility inde-
pendent of distribution of process execution times.

7. Conclusions

In this paper we have presented the quasi-static schedul-
ing approach for generation of fault-tolerant schedules with
preemption of process executions. Schedules with preemp-
tion are generated off-line and are adaptable to the situations
that can happen on-line during execution of the application

such as fault occurrences, overloading, long process execu-
tions. The schedules maximize the overall utility of applica-
tion in the average-case execution scenarios while preserving
hard timing constraints in all possible scenarios.

Our experimental results have shown the advantage of us-
ing preemption for fault-tolerant embedded systems with hard
and soft timing constraints compared to the previous schedul-
ing approaches. Preemption is essential for generating schedu-
lable and fault-tolerant solutions with the high overall utility.
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