
Abstract
We present an approach to the synthesis of fault-tolerant hard
real-time systems for safety-critical applications. We use check-
pointing with rollback recovery and active replication for toler-
ating transient faults. Processes are statically scheduled and
communications are performed using the time-triggered proto-
col. Our synthesis approach decides the assignment of fault-tol-
erance policies to processes, the optimal placement of
checkpoints and the mapping of processes to processors such
that transient faults are tolerated and the timing constraints of
the application are satisfied. We present several synthesis algo-
rithms which are able to find fault-tolerant implementations giv-
en a limited amount of resources. The developed algorithms are
evaluated using extensive experiments, including a real-life ex-
ample.

1. Introduction
Safety-critical applications have to function correctly and meet
their timing constraints even in the presence of faults. Such
faults can be permanent (i.e., damaged microcontrollers or com-
munication links), transient (e.g., caused by electromagnetic in-
terference), or intermittent (appear and disappear repeatedly).
The transient faults are the most common, and their number is
continuously increasing due to the continuously raising level of
integration in semiconductors.

Researchers have proposed several hardware architecture so-
lutions, such as MARS [17], TTA [18] and XBW [4], that rely
on hardware replication to tolerate a single permanent fault in
any of the components of a fault-tolerant unit. Such approaches
can be used for tolerating transient faults as well, but they incur
very large hardware cost, which becomes unacceptable in the
context of a potentially large number of transient faults. An al-
ternative to such purely hardware-based solutions are approach-
es such as checkpointing, replication and re-execution.

For the case of preemptive on-line scheduling, researchers
have shown how the schedulability of an application can be
guaranteed at the same time with appropriate levels of fault-tol-
erance [1, 2, 11]. For processes scheduled using fixed-priority
preemptive scheduling, Punnekkat et al. [23] derive the optimal
number of checkpoints for a given task in isolation, and show
that this does not correspond to the global optima. However, in
many safety-critical applications, static off-line scheduling is the
preferred option for ensuring both the predictability of worst-
case behavior, and high resource utilization [16].

The disadvantage of static scheduling approaches, however, is
their lack of flexibility, which makes it difficult to integrate tol-
erance towards unpredictable fault occurrences. Thus, research-
ers have proposed approaches for integrating fault-tolerance into
the framework of static scheduling. A simple heuristic for com-
bining several static schedules in order to mask fault-patterns
through replication is proposed in [5], without considering the

timing constraints of the application. This approach is used as
the basis for cost and fault-tolerance trade-offs within the Me-
tropolis environment [20]. Graph transformations are used in [3]
in order to introduce replication mechanisms into an application.
Such a graph transformation approach, however, does not work
for checkpointing and re-execution, which have to be considered
during the construction of the static schedules.

Checkpointing in the context of static scheduling has received
limited attention [8, 19]. The process model in [9] supports the
application of checkpoints, while [19] has proposed a high-level
synthesis algorithm for ASICs that introduces low overhead
checkpoints in a static schedule. When re-execution (which can
be equated to a single-checkpoint scheme) is used in a distribut-
ed system, Kandasamy [14] proposes a list-scheduling technique
for building a static schedule that can mask the occurrence of
faults, thus making the re-execution transparent. Slacks are in-
serted into the schedule in order to allow the re-execution of pro-
cesses in case of faults. The faulty process is re-executed, and the
processor switches to a contingency schedule that delays the pro-
cesses on the corresponding processor, making use of the slack
introduced. The authors propose an algorithm for reducing the
necessary slack for re-execution. This algorithm has later been
applied to the fault-tolerant transmission of messages on a time-
division multiple-access bus (TDMA) [15].

Applying such fault-tolerance techniques introduces over-
heads in the schedule and thus can lead to unschedulable sys-
tems. Very few researchers [14, 19, 20] consider the
optimization of implementations to reduce the overheads due to
fault-tolerance and, even if optimization is considered, it is very
limited and does not include the concurrent usage of several
fault-tolerance techniques. Moreover, the application of fault-
tolerance techniques is considered in isolation, and thus is not
considered in relation to other levels of the design process, in-
cluding mapping, scheduling and bus access optimization. In ad-
dition, the communication aspects are not considered or very
much simplified.

In this paper, we consider hard real-time safety-critical appli-
cations mapped on distributed embedded systems. Both the pro-
cesses and the messages are scheduled using non-preemptive
static cyclic scheduling. The communication is performed using
a communication environment based on the time-triggered pro-
tocol [16], thus the communication overheads are taken into ac-
count. We consider two distinct fault-tolerance techniques:
process-level local checkpointing with rollback recovery (with a
constant checkpointing interval) [6], which provides time-redun-
dancy, and active replication [21], which provides space-redun-
dancy. We show how checkpointing and replication can be
combined in an optimized implementation that leads to a sched-

Synthesis of Fault-Tolerant Embedded Systems
with Checkpointing and Replication

Viacheslav Izosimov, Paul Pop, Petru Eles, Zebo Peng
Computer and Information Science Dept., Linköping University, Sweden

{viaiz, paupo, petel, zebpe}@ida.liu.se

ulable fault-tolerant application without increasing the amount
of employed resources.

In [13] we have proposed algorithms for the scheduling and
optimization of fault-tolerant embedded systems using re-execu-
tion and replication. In this paper, we have extended this ap-
proach to take into account checkpointing. Thus, we propose a
synthesis approach in the context of checkpointing and replica-
tion: the optimization of the number of checkpoints, the assign-
ment of fault-tolerance techniques to processes, and the mapping
of processes to processors such that the application is schedula-
ble and no additional hardware resources are necessary.

2. System Architecture
2.1 Hardware Architecture and Fault Model
We consider architectures composed of a set N of nodes which
share a broadcast communication channel. Every node Ni ∈ N
consists, among others, of a communication controller and a
CPU (see Figure 1a).

The communication controllers implement the protocol ser-
vices and run independently of the node’s CPU. We consider the
time-triggered protocol (TTP) [16] as the communication infra-
structure. However, the research presented is also valid for any
other TDMA-based bus protocol that schedules the messages
statically based on a schedule table like, for example, the SAFE-
bus [12] protocol used in the avionics industry.

The TTP has a replicated bus and each node Ni can transmit
only during a predetermined time interval, the so called TDMA
slot Si, see Figure 1b. In such a slot, a node can send several mes-
sages packed in a frame. A sequence of slots corresponding to all
the nodes in the TTC is called a TDMA round. A node can have
only one slot in a TDMA round. Several TDMA rounds can be
combined together in a cycle that is repeated periodically. The
TDMA access scheme is imposed by a message descriptor list
(MEDL) that is located in every TTP controller. The MEDL
serves as a schedule table for the TTP controller which has to
know when to send/receive a frame to/from the communication
channel.

In this paper we are interested in fault-tolerance techniques for
tolerating transient faults, which are the most common faults in
today’s embedded systems. If permanent faults occur, we con-
sider that they are handled using a technique such as hardware
replication. Note that an architecture that tolerates n permanent
faults, will also tolerate n transient faults. However, we are inter-
ested in tolerating a much larger number of transient faults than
permanent ones, for which using hardware replication alone is
too costly.

We have generalized the fault-model from [14] that assumes
that one single transient fault may occur on any of the nodes in
the system during the application execution. In our model, we
consider that at most k transient faults1 may occur anywhere in

the system during one operation cycle of the application. Thus,
not only several transient faults may occur simultaneously on
several processors, but also several faults may occur on the same
processor.
2.2 Software Architecture and Fault-Tolerance

Techniques
We have designed a software architecture which runs on the
CPU in each node, and which has a real-time kernel as its main
component. The processes are activated based on the local
schedule tables, and messages are transmitted according to the
MEDL. For more details about the software architecture and the
message passing mechanism the reader is referred to [7]. The er-
ror detection and fault-tolerance mechanisms are part of the soft-
ware architecture. The software architecture, including the real-
time kernel, error detection and fault-tolerance mechanisms are
themselves fault-tolerant. We use two mechanisms for tolerating
faults: equidistant checkpointing with rollback recovery and ac-
tive replication. Rollback recovery uses time redundancy to tol-
erate fault occurrences. Replication provides space redundancy
that allows to distribute the timing overhead among several pro-
cessors.

Let us consider the example in Figure 2, where we have pro-
cess P1 and a fault-scenario consisting of k = 2 transient faults
that can happen during one cycle of operation.
• In Figure 2a we have the worst-case fault scenario for

checkpointing, where we consider a single checkpoint for P1.
The worst-case checkpointing overhead (the time it takes, in
the worst case, to save a checkpoint) for process P1 is χ1 = 5
ms, and is depicted with a black rectangle. There are several
strategies for saving the checkpoint data, such as memory or
shared disc. Depending on the approach used, the designer will
determine for each process Pi the worst-case checkpointing
overhead χi. The first fault happens during the process P1’s
execution, and is detected by the error detection mechanism.
The worst-case error detection overhead for P1 is α1 = 5 ms,
and is depicted with a dark gray rectangle. After the error has
been detected, the task is recovered based on the information
in the saved checkpoint. After a worst-case recovery overhead
of µ1 = 5 ms, depicted with a light gray rectangle, P1 will be
executed again. Its second execution in the worst-case could
also experience a fault, and will be recovered based on the first
checkpoint. Finally, the third execution of P1 will take place
without fault.

• In the case of active replication, depicted in Figure 2b, each
replica is executed on a different processor. Three replicas are
needed to tolerate the two possible faults and, in the worst-case
scenario depicted in Figure 2b, only the execution of the
replica on processor N3 is successful. The error is detected by

1. The number of faults k can be larger than the number of processors in the sys-
tem.

Figure 1. System Architecture Example

N1 N2 N3 N4

TTP bus

S0 S1 S2 S3 S0 S1 S2 S3

TDMA Round Cycle of two roundsSlot

S0 S1 S2 S3 S0 S1 S2 S3

TDMA Round Cycle of two roundsSlot

a) b)

Figure 2. Worst-Case Fault Scenario and Fault-Tolerance
Techniques

a) Checkpointing P1 C1 = 30 ms

µ1 = 5 ms

k = 2

χ1 = 5 ms

α1 = 5 ms

b) Replication

N1

N2

N3

P1

P1

P1

c) Checkpointed replicas

N1

N2

P1

P1 P1N1 P1 P1 P1

the error detection mechanism, and the worst-case error
detection overhead is depicted as a dark grey rectangle in
Figure 2b. With active replication, the input has to be
distributed to all the replicas. Our execution model assumes
that the descendants of replicas can start as soon as they have
received the first valid message from a replica.

• In a third alternative, presented in Figure 2c, checkpointing
and replication are combined for tolerating faults in a process.
In this case, for tolerating the two faults we use two replicas
and a checkpoint: process P1 on node N2, which is a replica of
process P1 on node N1, is recovered using a checkpoint.
Let us consider the example1 in Figure 3 where we have five

processes, P1 to P5 mapped on three nodes, N1 to N3. The worst-
case execution times for each process are given in the table be-
low the application graph. An “X” in the table means that the
particular process cannot be mapped on that node. We consider
that at most two faults can occur, and the overheads of the fault-
tolerance mechanisms (χ, α and µ) are given in the figure. All
processes in the example use checkpointing: P1 to P4 have one
checkpoint, while P5 has two checkpoints. We denote with
that segment of Pi which follows after the jth checkpoint of Pi.
Thus, is the first segment of P5, following the first check-
point, while is the process segment following the second
checkpoint (see Figure 3).

When checkpointing is used for tolerating faults, we have to
introduce in the schedule table recovery slack, which is idle time
on the processor needed to recover (re-execute) the failed pro-
cess segment. For example, for P1 on node N2, we introduce a re-
covery slack of k × (C1 + α + µ) = 80 ms to make sure we can
recover P1 even in the case it experiences the maximum number
of two faults (see Figure 3a). The recovery slack can be shared
by several processes, like is the case of process P2, P3 and P4 on
node N1, Figure 3a. This shared slack has to be large enough to
accommodate the recovery of the largest process (in our case P4)
in the case of two faults. This slack can then handle two faults
also in P2 and P3, which take less to execute than P4. Note that
the recovery slack for P5, which has two checkpoints, is only half
the size of P5, since only one segment of P5 (either or)
has to be recovered from its corresponding checkpoint, and not

the whole process. In general, a process has an optimal number
of checkpoints depending on its particular context in the sched-
ule table, as discussed in Section 4.2.

Moreover, in this paper we use for checkpointing a particular
type of recovery, called transparent recovery [14], that hides
fault occurrences on a processor from other processors. On a
processor Ni where a fault occurs, the scheduler has to switch to
a contingency schedule that delays descendants of the faulty pro-
cess running on the same processor Ni. However, a fault happen-
ing on another processor, is not visible on Ni, even if the
descendants of the faulty process are mapped on Ni. For exam-
ple, in Figure 3a, where we assume that no faults occur, in order
to isolate node N1 from the occurrence of a fault in P1 on node
N2, message m1 from P1 to P2 cannot be transmitted at the end of
P1’s execution. Message m1 has to arrive at the destination at a
fixed time, regardless of what happens on node N1, i.e., transpar-
ently. Consequently, m1 can only be transmitted after a time
k × (C1 + α + µ) , at the end of the recovery slack for P1. Simi-
larly, the transmission of m2 also has to be delayed, to mask in
the worst-case two consecutive faults in P2. However, a fault in
P2 will delay processes P3 and P4 which are on the same proces-
sor (see in Figure 3c the time-line for node N1).

Once a fault happens, the scheduler in a node has to switch to
a contingency schedule. For example, once a fault occurs in pro-
cess P1 in the schedule depicted in Figure 3a, the scheduler on
node N2 will have to switch to the contingency schedule in
Figure 3b, where P1 is delayed with C1 + α + µ to account for the
fault. A fault in P2 will result in activating a contingency sched-
ule on N1 which contains a different start time not only for P2,
but also for P3 and P4 (see Figure 3c). There are several contin-
gency schedules, depending on the combination of processes and
faults. For two faults, and the processes in Figure 3, there are 19
contingency schedules, depicted in Figure 3e as a set of trees.
There is one tree for each processor. One node Si in the tree rep-
resents a contingency schedule, and the path from the root node
of a tree to a node Si, represents the sequence of faults (labelled
with the process name in which the fault occurs) that lead to con-
tingency schedule Si. For example, in Figure 3a we assume that
no faults occur, and thus we have the schedules S1 on node N1,
S11 on N2 and S14 on N3. We denote such initial schedules with
the term “root schedule”, since they are the root of the contin-
gency schedules tree. An error in P1 (Figure 3b) will be observed
by the scheduler on node N2 which will switch to the contingen-
cy schedule S12.

The end-to-end worst-case delay of the application is given by
the maximum finishing time of any contingency schedule, since
this is a situation that can happen in the worst-case scenario. For
the application in Figure 3, the largest delay is produced by
schedule S10, which has to be activated when two consecutive
faults happen in P4 (Figure 3d). The end-to-end worst-case delay
is equal to the size of the root schedules, including the recovery
slack, depicted in Figure 3a. This is due to the fact that the root
schedules have to contain enough recovery slack to accommo-
date even the worst-case scenario.

3. Application Model
We model an application A(V, E) as a set of directed, acyclic, po-
lar graphs Gi(Vi, Ei) ∈ A. Each node Pi ∈ V represents one pro-

1. Bus communication is ignored for this example, but is considered later.

Figure 3. Transparent Checkpointing and Contingency
Schedules

P1

N1:S1

N2:S11

N3:S14
Recovery

slack for P1

P2 P4

P1

N1:S1

N2 :S12

N3:S14 P5 P5
1 2

P5P5
1P5
1 2

P3

Recovery
time for P2

Shared recovery
slack for P2, P3 , P4

P2 P4P3

P1

1P5
2, P5

1P5
1P5

2, P5
2, P5

Shared recovery
slack for

a)

b)

µ = 5 ms

k = 2

χ = 5 ms

α = 5 ms

µ = 5 ms

k = 2

χ = 5 ms

α = 5 ms

e)

P1
P2
P3
P4

N1 N2

30 X
X
X
X

X

X
X

P5 X 40

N3

X
30

50
40

X

P1
P2
P3
P4

N1 N2

30 X
X
X
X

X

X
X

P5 X 40

N3

X
30

50
40

X

S11

S12

S13

P1

P1

N2

S11

S12

S13

P1P1

P1P1

N2

S1

S2

S3

P2

P2

S4

P3

S5

S6

S7 S8 S10

S9

P4

P3 P4

P3 P4 P4

N1

S1

S2

S3

P2P2

P2P2

S4

P3P3

S5

S6

S7 S8 S10

S9

P4P4

P3P3 P4P4

P3P3 P4P4 P4P4

N1

S14

S15

S16 S17 S19

S18

P5
1

P5
1 P5

2

P5
2

P5
2

N3

S14

S15

S16 S17 S19

S18

P5
1P5
1

P5
1P5
1 P5

2P5
2

P5
2P5
2

P5
2P5
2

N3

P2

P4

P3 P5

P1m1

m2
P2

P4

P3 P5

P1

P2

P4

P3 P5

P1m1

m2

m1

m2

m1

m2

N1 N2 N3N1 N2 N3

P1

P5 P5
1 2

P2 P4P3P2

P1

N1:S2

N2:S12

N3:S14

c) m1

m2

P1

N1:S10

N2:S11

N3:S14

P2 P4

P5P5
1P5
1 2

P3

m1

m2

d)

m1

P4 P4

Pi
j

P5
1

P5
2

P5
1 P5

2

cess. An edge eij ∈ E from Pi to Pj indicates that the output of Pi

is the input of Pj. A process can be activated after all its inputs1

have arrived and it issues its outputs when it terminates. The
communication time between processes mapped on the same
processor is considered to be part of the process worst-case exe-
cution time and is not modeled explicitly. Communication be-
tween processes mapped to different processors is performed by
message passing over the bus. Such message passing is modeled
as a communication process inserted on the arc connecting the
sender and the receiver process.

The combination of fault-tolerance policies to be applied to
each process is given by two functions.
• F: V → {Replication, Checkpointing} determines whether a

process is replicated or checkpointed. When active replication
is used for a process Pi, we introduce several replicas into the
application A, and connect them to the predecessors and
successors of Pi. Let VR be the set of replica processes
introduced into the application.

• The second function X: V ∪ VR → ℵ decides the number of
checkpoints to be applied to a process in the application,
including to the replicas in VR, if necessary, see Figure 2c. We
consider equidistant checkpointing, thus the checkpoints are
equally distributed throughout the execution time of the
process. If for a process Pi ∈ V ∪ VR we have X(Pi) = 0, then
it means that process Pi is not checkpointed.
Moreover, each process Pi ∈ V is characterized by an error de-

tection overhead αi and a recovery overhead µi. Each process Pi
considered for checkpointing is also characterized by the check-
pointing overhead χi.

The mapping of a process in the application is given by a func-
tion M: V ∪ VR → N, where N is the set of nodes in the architec-
ture. For a process Pi ∈ V ∪ VR, M(Pi) is the node to which Pi
is assigned for execution. Each process can potentially be
mapped on several nodes. Let NPi

 ⊆ N be the set of nodes to
which Pi can potentially be mapped. We consider that for each
Nk ∈ NPi

, we know the worst-case execution time of process
Pi, when executed on Nk. We also consider that the size of the
messages is given.

4. Fault-Tolerant System Design
In this paper, by policy assignment we denote the decision
whether a certain process should be checkpointed or replicated.

Mapping a process means placing it on a particular node in the
architecture.

There could be cases where the policy assignment decision is
taken based on the experience and preferences of the designer,
considering aspects like the functionality implemented by the
process, the required level of reliability, hardness of the con-
straints, legacy constraints, etc. We denote with PR the subset of
processes which the designer has assigned replication, while
PC contains processes which are to be checkpointed.

Most processes, however, do not exhibit certain particular fea-
tures or requirements which obviously lead to checkpointing or
replication. Let P be the set of processes in the application A. The
subset P+ = P \ (PC ∪ PR) of processes could use any of the two
techniques for tolerating faults. Decisions concerning the policy
assignment to this set of processes can lead to various trade-offs
concerning, for example, the schedulability properties of the sys-
tem, the amount of communication exchanged, the size of the
schedule tables, etc.

For part of the processes in the application, the designer might
have already decided their mapping. For example, certain pro-
cesses, due to constraints like having to be close to sensors/actu-
ators, have to be physically located in a particular hardware unit.
They represent the set PM of already mapped processes. Conse-
quently, we denote with P* = P \ PM the processes for which the
mapping has not yet been decided.

Our problem formulation is as follows:
• As an input we have an application A given as a set of process

graphs (Section 3) and a system consisting of a set of nodes N
connected using the TTP communication protocol.

• The fault model is given by the parameter k, which denotes the
total number of transient faults that can appear in the system
during one cycle of execution.

• As introduced previously, PC and PR are the sets of processes
for which the fault-tolerance policy has already been decided.
Also, PM denotes the set of already mapped processes.
We are interested to find a system configuration ψ such that the

k transient faults are tolerated and the imposed deadlines are
guaranteed to be satisfied, within the constraints of the given ar-
chitecture N.

Determining a system configuration ψ = <F, X, M, S> means:
1.finding a combination of fault-tolerance policies, given by F

and X, for each processes in P+ = P \ (PC ∪ PR),
2.deciding on a mapping M for each process in P* = P \ PM;
3.deciding on a mapping M for each replica in VR;
4.deriving the set S of root schedule tables on each processor and

the MEDL for the TTP.
4.1 Fault-Tolerance Policy Assignment
Let us illustrate some of the issues related to policy assignment.
In the example presented in Figure 4 we have the application A1
with three processes, P1 to P3, and an architecture with two
nodes, N1 and N2. The worst-case execution times on each node
are given in a table to the right of the architecture, and processes
can be mapped to any node. The fault model assumes a single
fault, thus k = 1, and the fault-tolerance overheads are presented
in the figure. The application A1 has a deadline of 140 ms depict-
ed with a thick vertical line. We have to decide which fault-tol-
erance technique to use.1. The first valid message from the replicas (identified by a “valid bit”, part of

the message format) is considered as the input.

CPi

Nk

Figure 4. Comparison of Checkpointing and Replication

µ = 5 msµ = 5 ms

α = 5 msα = 5 ms

S1

N1

N2

TTP S2

N1

N2

TTP

a2)

b2)

S1S2 m
2

P1 P1 P3 P3

P1

P1

P2

P2

P3

P3

m
1

m
1

m
2

P2 P2
1 2 1 2 1 2

Deadline

Missed

Met

a1)

b1)

P1

S1

N1

N2

TTP

P1

S2

P2

P2

P3

P3

N1

N2

TTP

m
1

m
1

S1S2

Deadline

Missed

MetP1 P1 P2 P2
1 2 1 2

P3 P3
1 2

P1

P3

P2

m1

P1

P3

P2

m1 P1 P3P2

m1 m2
P1 P3P2

m1 m2

A2A1

P1
P2
P3

N1 N2

30 30
40
40

40
40

P1
P2
P3

N1 N2

30 30
40
40

40
40

N1 N2N1 N2
k = 1k = 1

χ = 5 msχ = 5 ms

In Figure 4 we depict the root schedules1 for each node, and
for the TTP bus. Node N1 is allowed to transmit in slot S1, while
node N2 can use slot S2. A TDMA round is formed of slot S1 fol-
lowed by slot S2, each of 10 ms length. Comparing the schedules
in Figure 4a1 and 4b1, we can observe that using active replica-
tion (a1) the deadline is missed. However, using checkpointing
(b1) we are able to meet the deadline. Each process has an opti-
mal number of two checkpoints in Figure 4b1. If we consider ap-
plication A2, similar to A1 but with process P3 data dependent on
P2, the deadline of 180 ms is missed in Figure 4a2 if checkpoint-
ing is used, and it is met when replication is used as in
Figure 4b2.

This example shows that the particular technique to use, has to
be carefully adapted to the characteristics of the application.
Moreover, the best result is most likely to be obtained when both
techniques are used together, some processes being checkpoint-
ed, while others replicated.

Let us now consider the example in Figure 5, where we have
an application with three processes, P1 to P3, mapped on an ar-
chitecture of two nodes, N1 and N2. Node N1 transmits in slot S1,
while node N2 in S2. Processes can be mapped to any node, and
the worst-case execution times on each node are given in a table.
In Figure 5a all processes are using checkpointing, and the de-
picted root schedule is optimal for this case. Note that m2 can be
transmitted only in the bus slot S1 corresponding to node N1, and
has to be delayed to mask a potential failure of P1 to node N2.
With this setting, using checkpointing will miss the deadline.
However, combining checkpointing with replication, as in
Figure 5b where process P1 is replicated, will meet the deadline.
In this case, message m2 does not have to be delayed to mask the
failure of process P1. Instead, P3 will receive m2 from either P1
or its replica.
4.2 Optimizing the Number of Checkpoints
Another optimization issue is related to the optimal number of
checkpoints. Let us consider Figure 7a where we have process
P1 with a worst-case execution time of C1 = 50 ms, and the fault
scenario with k = 2 and all worst-case overheads equal to 5 ms.
In Figure 7a we depict the execution time needed for P1 to toler-
ate two faults, considering from one to five checkpoints. Since

P1 has to tolerate two faults, the recovery slack has to be double
of the size of a P1 execution segment. Thus, for one checkpoint,
the recovery slack is (50 + 5) × 2 = 110 ms. If two checkpoints
are introduced, in the case of an error only the segments or

 have to be recovered, not the whole process, thus the recov-
ery slack is reduced to 60 ms. By introducing more checkpoints,
the recovery slack can be thus reduced. However, there is a point
over which the reduction in the recovery slack is offset by the in-
crease in the overhead related to setting each checkpoint. For
process P1 in Figure 7a, going beyond three checkpoints will en-
large the total execution time. Let be the optimal number of
checkpoints for Pi, when Pi is considered in isolation. Punnekkat
et al. [23] derive a formula for in the context of preemptive
scheduling, single fault assumption. We have updated this for-
mula to consider that several faults can occur, and to consider
our detailed checkpointing overheads (see Figure 7b). For the
example, in Figure 7a, = 3.

The equation in Figure 7b allows us to calculate the optimal
number of checkpoints for a certain process considered in isola-
tion. However, calculating the number of checkpoints for each
individual process will not produce a solution which is optimal
for the whole application.

Let us consider the example in Figure 6, where we have three
processes, P1 to P3 on a single processor system. We consider
two transient faults, and the process worst-case execution times
and the fault-tolerance overheads are depicted in the figure. The
locally optimal checkpoints for P1, P2 ad P3 are = 1, = 3
and = 3, respectively. Using these checkpoints will lead to a
deadline miss, as shown in Figure 6a. However, the globally op-

1. The schedules depicted are optimal.

Figure 5. Combining Checkpointing and Replication

P2 P3

P1m1 m2

P2 P3

P1m1 m2 P1
P2
P3

N1

60 60
60
60

60
60

N2

P1
P2
P3

N1

60 60
60
60

60
60

N2

S1S2

S1S2

N1

N2

TTP

N1

N2

TTP

a)

b)

Deadline

Met

MissedP1 P1 P1
1 2 3

P2 P2 P2
1 2 3

P3 P3 P3
1 2 3

P1

P1 P1
1 2

P3 P3 P3
1 2 3

P2 P2 P2
1 2 3

m
2

N1 N2N1 N2

S2S1

S2m
2

µ = 5 msµ = 5 ms

α = 5 msα = 5 msk = 2k = 2

χ = 5 msχ = 5 ms

P1
1

P1
2

ni
0

ni
0

n1
0

Figure 6. Optimizing the Number of Checkpoints

P1 P2 P2 P2
1 2 3 P3 P3 P3

P1 P2 P3 P3P2

1 2 3

1 2 1 2

a)

b)

P1 P3P2

m1 m2
P1 P3P2

m1 m2
χ α µ
10 25 10
5 5 10

10 5 10

P1
P2
P3

χ α µ
10 25 10
5 5 10

10 5 10

P1
P2
P3

P2 C2 = 50 ms

P1 C1 = 35 ms

P3 C3 = 60 ms

P2 C2 = 50 ms

P1 C1 = 35 ms

P3 C3 = 60 ms

k = 2

Deadline

Figure 7. Locally Optimal Number of Checkpoints

, if

, if

ni
+

kCi

χi αi+
---------------=

ni
–

kCi

χi αi+
---------------= Ci ni

– ni
– 1+()

χi αi+

k
---------------≤

Ci ni
– ni

– 1+()
χi αi+

k
--------------->

ni
0=

a)

b)

µ = 5 ms

k = 2

χ = 5 ms

α = 5 ms

P1 C1 = 50 ms

µ = 5 ms

k = 2

χ = 5 ms

α = 5 ms

µ = 5 ms

k = 2

χ = 5 ms

α = 5 ms

P1 C1 = 50 ms

P1

P1 P1

P1 P1 P1

P1 P1 P1 P1

P1 P1 P1 P1 P1

N
o.

 o
f

ch
ec

kp
oi

nt
s

1

2

3

4

5

1 2

1 2

1 2 3 4

1 2 3 4 5

3

n1
0 n2

0

n3
0

timal number of checkpoints is = 1, = 2 and = 2 (i.e.,
P2 and P3 should have two checkpoints instead of three). In this
case, presented in Figure 6b, the deadline will be met.

5. Design Optimization Strategy
The design problem formulated in the previous section is NP-
complete (both the scheduling and the mapping problems, con-
sidered separately, are already NP-complete [10]). Therefore,
our strategy is to elaborate a heuristic and divide the problem
into several, more manageable, subproblems. Our optimization
strategy which produces the configuration ψ leading to a sched-
ulable fault-tolerant application is outlined in Figure 8 and has
three steps:
1. In the first step (lines 1–3) we quickly decide on an initial bus

access configuration B0, an initial fault-tolerance policy
assignment given by F0 and X0, and an initial mapping M0. The
initial bus access configuration (line 1) is determined by
assigning nodes to the slots (Si = Ni) and fixing the slot length
to the minimal allowed value, which is equal to the length of
the largest message in the application. The initial mapping and
fault-tolerance policy assignment algorithm (InitialMPA line 2 in
Figure 8) assigns a checkpointing policy with a locally
optimal number of checkpoints (using the equation in
Figure 7b) to each process in P+ and produces a mapping for
the processes in P* that tries to balance the utilization among
nodes and buses. The application is then scheduled using the
ListScheduling algorithm (see Section 5.1). If the application is
schedulable the optimization strategy stops.

2. If the application is not schedulable, we use, in the second step,
a tabu search-based algorithm discussed in Section 5.2.

3.Finally, in step three, the bus access optimization is performed
[7].
If after these two steps the application is unschedulable, we

conclude that no satisfactory implementation could be found
with the available amount of resources.
5.1 Static Scheduling
Once a fault-tolerance policy and a mapping are decided, as well
as a communication configuration is fixed, the processes and
messages have to be scheduled. We use a static scheduling algo-
rithm for building the schedule tables for the processes and de-
riving the MEDL for messages.

We have adapted the list-scheduling based algorithm from
[13], where we used re-execution and replication for tolerating
faults. The scheduling algorithm is responsible for deriving of-
fline the root schedules. The contingency schedules are deter-
mined online, by the scheduler in each node, starting from a
current schedule, based on the occurrences of faults, is able to
derive online, in linear time, the necessary contingency sched-
ule. Given a current schedule Si on a node Nj, and an error detect-
ed in a process Pk, the scheduler on node Nj traverses Si and
increments the start time of Pk and of the following processes
running on the same node. The start time of Pk is incremented
with Ck + α + µ. The start time of a process Pl following Pk in the
schedule table Si will be incremented with Ck + α + µ – slack(Pk,
Pl), where slack(Pk, Pl) is the idle time (including idle time, e.g.
waiting for an incoming message, and recovery slack) in Si be-
tween Pk and Pl. The overhead due to obtaining the new start
times is considered in the schedule table construction.

5.2 Mapping and Fault-Policy Assignment
For deciding the mapping and fault-policy assignment we use a
tabu search based heuristic approach, TabuSearchMPA.
TabuSearchMPA uses design transformations (moves) to change a
design such that the end-to-end delay of the root schedule is re-
duced. In order to generate neighboring solutions, we perform
the following types of transformations:
• changing the mapping of a process;
• changing the combination of fault-tolerance policies for a

process;
• changing the number of checkpoints used for a process.

The tabu search takes as an input the merged application graph
Γ (obtained by merging the application graphs as detailed in
[22], with a period equal to the LCM of all constituent graphs),
the architecture N and the current implementation ψ, and produc-
es a schedulable and fault-tolerant implementation xbest. The tabu
search is based on a neighborhood search technique, and thus in
each iteration it generates the set of moves Nnow that can be per-
formed from the current solution xnow. The cost function to be
minimized by the tabu search is the end-to-end delay of the root
schedule produced by the list scheduling algorithm. In order to
reduce the huge design space, in our implementation, we only
consider changing the mapping or fault-tolerance policy of the
processes on the critical path. We define the critical path as the
path through the merged graph Γ which corresponds to the long-
est delay in the schedule table.

Moreover, we also try to eliminate moves that change the
number of checkpoints if it is clear that they do not lead to better
results. Consider the example in Figure 9 where we have four
processes, P1 to P4 mapped on two nodes, N1 and N2. The worst-
case execution times of processes and their fault-tolerance over-
heads are also given in the figure, and we can have at most two
faults. The number of checkpoints calculated using the formula
in Figure 7b are: = 2, = 2, = 1 and = 3. Let us as-
sume that our current solution is the one depicted in Figure 9a,
where we have X(P1) = 2, X(P2) = 1, X(P3) = 1 and X(P4) = 2. Giv-
en a process Pi, with a current number of checkpoints X(Pi), our
tabu search approach will generate moves with all possible
checkpoints starting from 1, up to . Thus, starting from the so-
lution Figure 9a, we can have the following moves that modify
the number of checkpoints: (1) decrease the number of check-
points for P1 to 1; (2) increase the number of checkpoints for P2
to 2; (3) increase the number of checkpoints for P4 to 3; (4) de-
crease the number of checkpoints for P4 to 1. Moves (1) and (3)
will lead to the optimal checkpoints depicted in Figure 9b.

In order to reduce optimization time, our heuristic will not try
moves (2) and (4), since they cannot lead to a shorter critical

n1
0 n2

0 n3
0

Figure 8. The General Optimization Strategy

OptimizationStrategy(A, N)
1 Step 1: B0 = InitialBusAccess(A, N)
2 <M0, F0, X0> = InitialMPA(A, N, B0)
3 S0 = ListScheduling(A, N, M0, F0, X0)
4 if S0 is schedulable then return ψ0 end if
5 Step 2: ψ = TabuSearchMPA(A, N, ψ0)
6 if S is schedulable then return ψ end if
7 Step 3: B = BusAccessOptimization(A, N, ψ)
8 S = ListScheduling(A, N, M, F, X)
9 return ψ
end OptimizationStrategy

n1
0 n2

0 n3
0 n4

0

ni
0

path, and, thus, a better root schedule. Regarding move (2), by
increasing the number of checkpoints for P2 we can reduce its re-
covery slack. However, P2 shares its recovery slack with P1 and
segments of P4, which have a larger execution time, and thus
even if the necessary recovery slack for P2 is reduced, it will not
affect the size of the shared slack (and implicitly, of the root
schedule) which is given by the largest process (or process seg-
ment) that shares the slack. Regarding move (4), we notice that
by decreasing for P4 the number of checkpoints to 1, we increase
the recovery slack, which, in turn, increases the length of the root
schedule.

6. Experimental Results
For the evaluation of our algorithms we used applications of 20,
40, 60, 80, and 100 processes (all unmapped and with no fault-
tolerance policy assigned) implemented on architectures consist-
ing of 3, 4, 5, 6, and 7 nodes, respectively. We have varied the
number of faults depending on the architecture size, considering
4, 5, 6, 7, and 8 faults for each architecture dimension, respec-
tively. We have also varied the fault-tolerance overheads for
each process, from 1% of its worst-case execution time up to
30%. Fifteen examples were randomly generated for each appli-
cation dimension, thus a total of 75 applications were used for
experimental evaluation. The experiments were performed on
Sun Fire V250 computers.

We were first interested to evaluate the proposed optimization
strategy in terms of overheads introduced due to fault-tolerance.
For this, we have implemented each application without any
fault-tolerance concerns. This non-fault-tolerant implementa-
tion, NFT, has been obtained using an approach similar to the al-
gorithm in Figure 8 but without fault-tolerance techniques. The
same applications have been implemented on the same amount
of resources, using the optimization strategy in Figure 8, with
multiple checkpoints and replication (MCR). Together with the

MCR approach we have also evaluated two extreme approaches:
MC that considers only checkpointing, and MR which relies
only on replication for tolerating faults. MC and MR use the
same optimization approach as MCR, but besides the mapping
moves, they consider assigning only checkpointing (including
the optimization of the number of checkpoints) or only replica-
tion, respectively. In addition, we have also implemented a
checkpointing-only strategy, namely MC0, similar to MC, but
where the number of checkpoints are fixed based on the formula
in Figure 7b, updated from [23]. For these experiments, we have
derived the shortest schedule within an imposed time limit for
optimization: 1 minute for 20 processes, 10 for 40, 30 for 60, 2
hours and 30 min. for 80 and 6 hours for 100 processes.

Let δMCR and δNFT be the lengths of the root schedules obtained
using MCR and NFT, respectively. The overhead is defined as
100 × (δMCR – δNFT) / δNFT. The fault-tolerance overheads of
MCR compared to NFT are presented in Table 1. The MCR ap-
proach can offer fault-tolerance within the constraints of the ar-
chitecture at an average overhead of 88.49%. In the case only
replication is used (MR), the overheads compared to NFT are
very large (e.g., 306.51% on average for applications 100 pro-
cesses).

We were interested to compare the quality of MCR to MC0,
MC and MR. In Figure 10a-c we show the average percentage
deviation of overheads obtained with MCR and MC from the
baseline represented by MC0 (larger deviation means smaller
overhead). From Figure 10 we can see that by optimizing the
combination of checkpointing and replication MCR performs
much better compared to MC and MC0. This shows that consid-
ering checkpointing at the same time with replication can lead to
significant improvements. Moreover, by considering the global
optimization of the number of checkpoints, with MC, improve-
ments can be gained over MC0 which computes the optimal
number of checkpoints for each process in isolation.

In Figure 10a we consider 4 processors, 3 faults, and vary the
application size from 40 to 100 processes. As the amount of
available resources per application decreases, the improvement
due to replication (part of MCR) will diminish, leading to a result
comparable to MC.

In Figure 10b, we were interested to evaluate our MCR ap-
proach in the case the checkpointing overheads (i.e., χ + α, see
Figure 2) are varied. We have considered applications with 40
processes mapped on four processors, and we have varied the
checkpointing overheads from 2% of the worst-case execution
time of a process up to 60%. We can see that as the amount of
checkpointing overheads increases, our optimization approaches
are able to find increasingly better quality solutions compared to
MC0.

We have also evaluated the MCR and MC approaches in the
case the number of transient faults increase. We have considered
applications with 40 processes mapped on 4 processors, and var-
ied k from 2 to 6, see Figure 10c. As the number of faults in-
crease, it is more difficult for our optimization heuristics to
improve compared to MC0, and the improvement achieved over
MC0 will stabilize to about 10% improvement (e.g., for k = 10,
not shown in the figure, the improvement due to MC is 8.30%,
while MCR improves with 10.29%).

Figure 9. Restricting the Moves for
Setting the Number of Checkpoints

S1S2

S1 S2

N1

N2

TTP

N1

N2

TTP

a)

b)

Met

Missed

P1 P1 P4 P4P2

P3

S2

P1

S2 m
2

P3

P2 P4 P4 P4

1 2 21

1 2 3

P1

P4

P2 P3

m1 m2

m3

P1

P4

P2 P3

m1 m2

m3

P1
P2
P3

N1 N2

50 50
30
X

30
40

P4 120 X

P1
P2
P3

N1 N2

50 50
30
X

30
40

P4 120 X

Deadline

χ α µ
10 10 10
5 5 5

15 15 20
10 30 10

P1
P2
P3
P4

χ α µ
10 10 10
5 5 5

15 15 20
10 30 10

P1
P2
P3
P4

k = 2

N1 N2

k = 2

N1 N2

m
2

 Table 1. Fault-Tolerance Overheads

Number of
processes

Maximum
overhead

Average
overhead

Minimum
Overhead

20 150.00% 102.59% 74.90%
40 130.23% 111.66% 99.43%
60 110.62% 90.85% 75.41%
80 91.52% 73.08% 59.83%
100 73.50% 64.27% 56.39%

Finally, we considered a real-life example implementing a ve-
hicle cruise controller (CC). The process graph that models the
CC has 32 processes, and is described in [22]. The CC was
mapped on an architecture consisting of three nodes: Electronic
Throttle Module (ETM), Anti-lock Breaking System (ABS) and
Transmission Control Module (TCM). We have considered a
deadline of 260 ms, k = 2 faults and the checkpointing overheads
are 10% of the worst-case execution time of the processes.

In this setting, the MCR produced a schedulable fault-tolerant
implementation with a worst-case system delay of 230 ms, and
with an overhead compared to NFT (which produces a non-fault-
tolerant schedule of length 136 ms) of 69%. If we globally opti-
mize the number of checkpoints using MC we obtain a schedu-
lable implementation with a delay of 256 ms, compared to 276
ms produced by MC0 which is larger than the deadline. If repli-
cation only is used, as in the case of MR, the delay is 320 ms,
which is greater than the deadline.

7. Conclusions
In this paper we have addressed the synthesis of distributed em-
bedded systems for fault-tolerant hard real-time applications.
The processes are scheduled with static cyclic scheduling, while
for the message transmission we use the TTP. We have extended
our previous work to handle checkpointing, which provides
time-redundancy, at the same time with replication, which pro-
vides space-redundancy. We have shown that by globally opti-
mizing the number of checkpoints significant improvements can
be gained.

We have proposed a synthesis algorithm based on tabu-search,
which derives schedulable fault-tolerant implementations. The
proposed approach has been evaluated using extensive experi-
mental data, including a real-life example.
References
[1] A. Bertossi, L. Mancini, “Scheduling Algorithms for Fault-

Tolerance in Hard-Real Time Systems”, Real Time Systems, 7(3),
229–256, 1994.

[2] A. Burns, R. I. Davis, S. Punnekkat, “Feasibility Analysis for Fault-
Tolerant Real-Time Task Sets”, Proc. of Euromicro Workshop on R-
T Systems, 29–33, 1996.

[3] P. Chevochot, I. Puaut, “Scheduling Fault-Tolerant Distributed
Hard-Real Time Tasks Independently of the Replication Strategies”,
Proc. of the Real-Time Computing Systems and Applications
Conference, 356–363, 1999.

[4] V. Claeson, S. Poldena, J. Söderberg, “The XBW Model for
Dependable Real-Time Systems”, Proc. Parallel and Distributed
Systems Conf., 1998.

[5] C. Dima et al, “Off-line Real-Time Fault-Tolerant Scheduling”,
Proc.of the Euromicro Parallel and Distributed Processing
Workshop, 410–417, 2001.

[6] E. N. Elnozahy et al., “A survey of rollback-recovery protocols in
message-passing systems”, ACM Computing Surveys, 34(3), 375–
408, 2002.

[7] P. Eles, A. Doboli, P. Pop, Z. Peng, “Scheduling with Bus Access
Optimization for Distributed Embedded Systems”, IEEE
Transactions on VLSI Systems, 8(5), 472–491, 2000.

[8] G. Fohler, “Joint Scheduling of Distributed Complex Periodic and
Hard Aperiodic Tasks in Statically Scheduled Systems”,
Proceedings of the Real-Time Systems Symposium, 152–161, 1995.

[9] G. Fohler, “Adaptive Fault-Tolerance with Statically Scheduled
Real-Time Systems”, Proc. Euromicro Real-Time Systems
Workshop, 161–167, 1997.

[10]M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness, W. H. Freeman and Company,
2003.

[11]C. C. Han, K. G. Shin, J. Wu, “A Fault-Tolerant Scheduling
Algorithm for Real-Time Periodic Tasks with Possible Software
Faults”, IEEE Transactions on Computers, 52(3), 362–372, 2003.

[12]K. Hoyme, K. Driscoll, “SAFEbus”, IEEE Aerospace and
Electronic Systems Magazine, 8(3), 34–39, 1992.

[13]V. Izosimov, P. Pop, P. Eles, Z. Peng, “Design Optimization of
Time- and Cost-Constrained Fault-Tolerant Distributed Embedded
Systems”, Proc. Design Automation and Test in Europe Conference,
864-869, 2005.

[14]N. Kandasamy, J. P. Hayes, B. T. Murray, “Transparent Recovery
from Intermittent Faults in Time-Triggered Distributed Systems”,
IEEE Transactions on Computers, 52(2), 113–125, 2003.

[15]N. Kandasamy, J. P. Hayes, B.T. Murray “Dependable
Communication Synthesis for Distributed Embedded Systems,”
Proceedings of the Computer Safety, Reliability and Security
Conference, 275–288, 2003.

[16]H. Kopetz, Real-Time Systems–Design Principles for Distributed
Embedded Applications, Kluwer Academic Publishers, 1997.

[17]H. Kopetz, A. Damm, C. Koza, M. Mulazzani, W. Schwabl, C.
Senft, R. Zainlinger, “Distributed Fault-Tolerant Real-Time
Systems: The Mars Approach”, IEEE Micro, 9(1), 25–40, 1989.

[18]H. Kopetz, G. Bauer, “The Time-Triggered Architecture”,
Proceedings of the IEEE, 91(1), 112–126, 2003.

[19]A. Orailoglu, R. Karri, “Coactive scheduling and checkpoint
determination during high level synthesis of self-recovering
microarchitectures”, IEEE Transactions on VLSI Systems, 2/3, 304–
311, September 1994.

[20]C. Pinello, L. P. Carloni, A. L. Sangiovanni-Vincentelli, “Fault-
Tolerant Deployment of Embedded Software for Cost-Sensitive
Real-Time Feedback-Control Applications”, Proceedings of the
Design Automation and Test in Europe Conference, 1164–1169,
2004.

[21]S. Poldena, Fault Tolerant Systems—The Problem of Replica
Determinism, Kluwer Academic Publishers, 1996.

[22]P. Pop, P. Eles, Z. Peng, Analysis and Synthesis of Distributed Real-
Time Embedded Systems, Kluwer Academic Publishers, 2004.

[23]S. Punnekkat, A. Burns, “Analysis of Checkpointing for
Schedulability of Real-time Systems”, Proc. Real-Time Systems
Symposium, 198–205, 1997.

0

5

10

15

20

25

30

35

40

45

40 60 80 100

MC

MCR

0

5

10

15

20

25

2 3 4 5 6

MC

MCR

Figure 10. MCR and MC compared to MC0
b) Checkpointing overheads

A
vg

.%
 d

ev
ia

ti
on

 f
ro

m
 M

C
0

A
vg

.%
 d

ev
ia

ti
on

 f
ro

m
 M

C
0

a) Number of processes

A
vg

.%
 d

ev
ia

tio
n

fr
om

 M
C

0

c) Number of transient faults

0

5

10

15

20

25

2 10 20 30 40 50 60

MC

MCR

