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Abstract 

Microfluidic Very Large Scale Integration (mVLSI) is the technology behind the 
creation of continuous flow-based biochips. By combining miniaturized valves 
and channels it is possible to create various components that can be used to 
manipulate fluids, thus creating a microfluidic laboratory on a chip. 

Designers are currently using drawing tools such as AutoCAD to manually place 
components and route channels. With the increase in the complexity of the 
biochips, such manual approaches become infeasible. 

The objective of this thesis is to develop automatic routing tools for the routing 
of the flow and control channels of mVLSI biochips. First, this bachelor thesis 
investigates different grid based routing algorithms previously suggested for the 
Very Large Scale Integration (VLSI) of microelectronic chips. The idea is to 
identify and implement candidates that might solve the related problems of 
microfluidic Very Large Scale Integration. 

For the grid based routing problem we studied Lee’s algorithm and Hadlock’s 
algorithm for routing. These two algorithms had to be extended to accommodate 
the design requirements of flow-based microchips. 

The analysis and implementation of the algorithms revealed some weaknesses 
with regards to Hadlock’s algorithm. Firstly, the Hadlock algorithm requires a 
single specific target in order to calculate its detour values correctly. This means 
that routing to the closest of a collection of several different points is simply not 
possible. Secondly, the Hadlock algorithm does not guarantee to find the shortest 
path between a terminal and several starting points. Therefore, in our opinion, 
these weaknesses made Hadlock’s algorithm inferior to Lee’s algorithm. 

As a result of the above mentioned issues, we have integrated and extended the 
Lee algorithm, as part of our custom Computer Aided Design (CAD) tool that 
helps and guides the user through the process of designing a continuous flow-
based biochip. Furthermore, we have implemented a simulated annealing 
placement algorithm, which is also integrated into the tool. We have evaluated 
the CAD tool on several case studies. 
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1 Introduction 

Different biochips, which are alternatives to the conventional biochemical 
laboratories, have emerged over the past few years; some of them may have the 
potential to revolutionize life sciences. Microfluidic biochips decreases the 
reagent consumption and increases the throughput compared with traditional 
laboratory work [1], and biochips have been applied in many areas [2]. Two of 
the main alternatives are continuous flow-based microfluidic biochips and digital 
microfluidic biochips [3]. 

Digital microfluidic biochips, or droplet-based biochips, use a two dimensional 
array of electrodes to manipulate droplets of different fluids. The droplets are 
moved, mixed and split using electric currents. Afterwards, various properties 
can be detected in the manipulated droplets [2]. 

Continuous flow biochips are custom biochips designed for a given task. This is 
done by manipulating liquid, not as droplets, but as a continuous flow. An 
example of a continuous flow biochip is presented in Figure 1. These kinds of 
biochips consist of different layers, which generally can be divided into two 
categories – A flow layer and a control layer. As one would imagine the liquid 
flows through the flow layer, within small closed channels, and are controlled by 
the control layer using air pressure. The biochips are mostly fabricated using soft 
lithography, which is a cheap rubber-like transparent material. 

 

 
Figure 1: Flow-based microfluidic biochip 

Borrowed from [4] 

At present, the main obstacle that is holding back advancement in the field of 
microfluidic Very Large Scale Integration of continuous flow-based biochips is 
the labor intensive and often error prone manual design process. Although some 
Computer Aided Design (CAD) tools are emerging [2], the design and fabrication 
process is still mostly manual. The design process requires extensive knowledge 
of the application of the chip being designed and the tools being used.  
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mVLSI somewhat resembles the related problem of Very Large Scale Integration 
(VLSI), which is the process of designing large integrated electronic circuits. In 
this paper we will analyze different algorithms, which may support the 
specialized labor-intensive continuous flow-based biochip design process and 
we will look into different grid-based algorithms, which previously have been 
suggested for solving VLSI and other similar problems. 

Furthermore, the aim is to implement a complete custom CAD tool that may aid 
the designer with the entire process from designing to placement and routing. 

2 Motivation 

As already mentioned the process of designing microfluidic flow-based biochips 
is highly labor intensive. It requires extensive knowledge of the application and 
the currently available design tools. The designer currently relies on various 
component templates and a set of design rules. This is currently done using 
drawing tools such as AutoCAD, by manually placing the component templates 
and connecting them by drawing lines representing the liquid flow channels. The 
designer needs to constantly ensure that the different design rules are being met. 
Furthermore, as the size and complexity of the biochips increases then so does 
the difficulty and complexity of the design process. This means that it is both 
expensive and time consuming to create new designs and therefore it is 
desirable to try to automate some if not all of the design process. 

3 Continuous Flow-based Biochip Architecture 

Flow-based biochips are constructed from a single flow layer and one or two 
control layers. 

The flow layer consists of the components, which are used to manipulate fluids, 
and flow channels through which liquids are transported to and from the 
components. The liquids are introduced into the biochip via tubes connected to 
inlet ports that are placed at various points on the biochip. Since the flow 
channels are allowed to intersect each other, the need to control the flow of the 
liquids through the flow channels on the biochip is introduced. 

When a liquid is moving from one component to another it will have to be guided 
through the various intersections, to end up at the right place. This is achieved by 
the use of either one or two control layers that may be configured as either a 
single control layer, as illustrated below on Figure 2a, or as two separate control 
layers, one above and one below the flow layer. These control layers consists of 
either several push-down or push-up valves which are connected to high 
pressure air control channels. The valves are usually connected to external high 
pressure air sources, which may be connected to entry points on the edge of the 
chip. 
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Figure 2: Microfluidic Flow-based valve and switch. 

Borrowed from [2]. 

The valves controls the liquids flowing through the flow layer by applying 
pressure to a membrane between the control layer and the flow layer, thus 
creating a tight seal that stops the liquid from flowing. For example, routing a 
liquid from south to north can be done by applying air pressure to valves 2 and 4 
in the last (right) switch in Figure 2b, thus closing the valves of the east and west 
flow channels. In addition, this 4-direction switch requires up to 4 independent 
control lines, whereas the middle T-cross switch requires a maximum of 3. 

This way of controlling the liquids, by the use of air pressure, creates different 
constraints for the routing of the control channels. Since the high pressure air in 
a particular control channel is distributed uniformly, only valves that are open 
and closed at the same time can share a control channel. 

Furthermore, valves are used inside various components for the operation of 
these components. Two examples that we have included in this paper are the 
Mixer component and the Storage component.  

For the Mixer, the mixing of fluids is performed using valves placed inside the 
component, by activating and de-activating the valves in a certain order, to move 
the fluids within the component around. For the storage unit, liquids are directed 
into specific channels, and stored there until they are needed. The liquids are 
kept in place by activating valves with the use of air pressure. 
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The relative sizes of the valves needed to control the components can be seen 
below on Figure 3. 

 

 
Figure 3: Actual sizes of the components on a biochip. 

Borrowed from [1]. 

4 Problem description 

The process of designing a biochip consists of a number of different steps. These 
steps are: 

• System specification 
• Schematic design 
• Placement 
• Flow channel routing 
• Application mapping 
• Control synthesis 
• Control channel routing 
• Fabrication 

During our work we have concentrated on the steps: Placement, Flow channel 
routing, and Control channel routing. For a detailed description of these steps, 
please see [2]. 

4.1 System specification and Schematic design 

The design process of a flow-based biochip starts with a given system 
specification, upon which an initial schematic design can be based. 
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Figure 4: Simple schematic design. 

Figure 4 above shows an example of some individual components and their 
connections to other components. This schematic design could be described as 
shown in Table 1 and Table 2 in tabular form. 

 

 
Table 1: List of components, as shown on Figure 4. 

 

 
Table 2: List of connections, as shown on Figure 4. 

4.2 Placement 

During the placement part of the design process it is decided where the 
components of the chip are to be placed. The placement has not been the focus of 

ID Name Type Height Width

1 1 Input 3 3

2 2 Output 3 3

3 3 Output 3 3

4 Filter Filter 5 5

5 Heater Heater 5 5

6 Mixer Mixer 7 7

Components

ID From From ID To To ID

1 1 1 Mixer 6

2 1 1 Filter 4

3 Filter 4 2 2

4 Heater 5 Mixer 6

5 Heater 5 Filter 4

6 Mixer 6 Heater 5

7 Mixer 6 3 3

Connections
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our thesis, which is about routing, but we need to know the placement before the 
routing can be done. There are several key elements that should be taken into 
account during the placement process.  

The placement of the components should be done so as to minimize the chip size, 
and the length of the flow and control channels respectively. The placement 
phase should furthermore ensure that the routing of flow and control channels is 
actually possible.  

The optimal approach would be to solve the placement and the routing problems 
simultaneously. However, this approach is not feasible due to the amount of 
required computations. It is therefore necessary to split these two processes. 

The splitting of the two highly dependent processes now introduces a new 
problem, which is that a way to evaluate a given placement is needed. For 
example, summing the Euclidian distances between the connected objects could 
be used as a relative measure when comparing different placements. Then, the 
placement with the smallest summarized Euclidian distance would be the better 
solution. 

 

 
Figure 5: Manually done placement solutions of the design shown on Figure 4. 

The three different placement solutions presented above in Figure 5 are all good 
placement solutions done manually.  They are arranged from left to right based 
on each of their summarized Euclidian distances with the left most being the 
worst. We will later return to the solutions above and create different flow and 
control routings based upon them. 

There are many VLSI placement algorithms proposed in the literature. We have 
selected a Simulated Annealing placement algorithm [5] to produce simple 
placement solutions, needed as an input to our routing problem. The algorithm 
uses the Euclidian distances as a cost function. 

The schematic design shown below on Figure 6 is again based on the schematic 
design shown in Figure 4, but this one is created solely using our simulated 
annealing algorithm in our custom CAD tool. 

 



   11 

 

 
Figure 6: Automated CAD placement of the design shown on Figure 4. 

4.3 Flow Routing 

The flow routing part of the design process is where the flow channels 
connecting the components are drawn. These channels may be allowed to cross 
each other by introducing non-mandatory intersections, if this is considered 
most optimal. As previously mentioned, the aim is to make the flow channels that 
are connecting the components as short as possible while at the same time 
minimizing the number of non-mandatory intersections. Because these two 
parameters affect each other adversely, the goal will be to find a certain balance 
between them for meeting the requirements of the design. 

The components on a biochip all have a single input port and/or a single output 
port. Therefore the first problem that must be solved is to figure out how to 
connect multiple flow lines to single ports. To visualize this, let us consider the 
simple design illustrated in the left part of Figure 7. 

 

 
Figure 7: Simple placement containing mixer with multiple 

inputs (left), and the same design after routing (right). 

As can be seen on the placement, the Mixer is fed from the two Inlet Terminals 1 
and 2. But because the Mixer only has a single input port, the flow lines coming 
from the output ports of each of the two Inlet Terminals must be joined together 
and then connected to the input port of the Mixer. To summarize, what needs to 
be joined together are: 

• Output port of Inlet Terminal 1 
• Output port of Inlet Terminal 2 
• Input port of Mixer 

A dedicated algorithm for solving these kinds of problems will be required, so as 
to convert the defined point-to-point flow channel connections into groups of 
points that must be connected. 
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Another problem that must be addressed is what should be done if a required 
flow line is cut off by another flow line. As an example, let us again consider the 
first (left) simple placement illustrated in Figure 5. 

This design can be routed in numerous ways. Two possible solutions based on 
the design can be seen in Figure 8. Here, for the first (left) routing, the flow 
channel going from the Mixer to the Heater is routed around the flow channel 
going from the Filter to Outlet Terminal 2, whereas for the other (right) routing, 
an intersection has been introduced. This intersection is considered non-
mandatory because it is not defined in the schematic design. In other words, it is 
not meant to be there according to the schematic design. 

 

 
Figure 8: Routing with no non-mandatory intersections (left), and 

with a non-mandatory intersection (right). 

The advantage of having the first solution is that the number of control lines is 
reduced. This is due to the fact that intersections require dedicated control lines 
for closing off the necessary valves inside the intersection, to prevent fluids from 
one channel to flow into the intersecting channel. The valves associated with an 
intersection or switch can be seen on Figure 2b. This means that the additional 
intersection, introduced in the second (right) flow channel routing on Figure 8, 
requires an additional 4 control channels. Also, because the channels do not 
intersect each other, parallel operation of the two flow lines is possible, which 
may also be an advantage. The drawback is that one of the flow lines is very long 
which will increase the time it takes for fluid to move between the components 
connected by this line. Furthermore in some cases the ‘route-around’ solution 
will introduce additional turns to the flow path, which is also not desirable. 

In the other (right) design the advantage is that both flow lines are of optimal 
length, which will facilitate efficient transfer of fluid between components. The 
drawback is that fluid will have to travel through a non-mandatory intersection, 
which will inhibit parallel operation, and also additional control lines for this 
intersection must be included in the design, for the reasons mentioned above. 

The logic that decides which solution should be picked must be incorporated into 
the flow routing algorithm. 
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4.4 Application Mapping 

The next phase of the design process is to do the mapping of the application onto 
the chip, based on the attained flow routing design. As the lengths of the different 
flow channels between the components are now known, the flow latencies of the 
liquids flowing through these channels can be calculated. This means that the 
execution schedule for the given application can be created. 

4.5 Control Synthesis 

Knowing the execution schedule will allow us to identify the valves that must be 
activated at various execution times. This in turn will allow us to minimize the 
number of needed valves since certain valves might be able to share the same air 
pressure inlet port. 

In this paper we will not go into the details regarding the application mapping 
and control synthesis. But the fact that single control channels may be connected 
to several control valves will be incorporated in the design of our control 
channel routing algorithm. 

4.6 Control Routing 

The control routing part of the design process is where the control channels, 
connecting the microfluidic valves with the high pressure inlets, are drawn. 
Control channels are not allowed to intersect. If they did intersect, then the high 
pressure air from one control channel would propagate into all the intersecting 
channels and then activate all the valves connected to these channels. In the 
example shown on the left side of Figure 9, we have connected four components 
to a single control channel and two of the components to another single control 
channel. Now, if the heater in the middle needs to be connected to its own high 
pressure air source, which would be a third control channel, then a way to 
determine which control line(s) to rip up is needed. 

In our control channel routing algorithm, we have implemented a rip-up and re-
route scheme [7]. The main problem with a rip-up and re-route scheme is 
deciding which nets to rip up, for efficiently solving conflicts between nets. For 
this reason, we have developed a control channel routing algorithm that is able 
to intelligently identify nets that must be ripped up. The algorithm is based on 
the same Lee and back tracking algorithms that we implemented for the flow 
channel routing algorithm, but with a few key changes. These changes will be 
described in the chapter about algorithmic design. 

A possible solution of the problem shown on the left side of Figure 9 is show on 
the right side of the figure.  Here, the routing allows for the heater to connect to 
an inlet port. 
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Figure 9: Heater boxed in by control channel routings (left). The same 

problem solved by rip-up and re-routing (right). 

5 VLSI and possible algorithms 

Several different algorithms have been suggested for routing VLSI chips [6]. In 
this section, we will look into some of the different possibilities that are based 
upon a grid structure. 

Overall there are two different approaches to solving grid based routing 
problems, the sequential and the concurrent approach. 

The sequential approach routes the paths of the various nets, as the name 
suggest, in a sequential way one net after the other. Because of this sequential 
approach previously routed nets might end up blocking the path of other nets. 
This means that the actual routing is highly dependent on the order of which the 
nets are routed. Again, different approaches have been suggested in order to 
solve the problem of nets blocking each other [6]. 

The first approach aims to assign criticality to the different nets that need to be 
routed. This means that the higher the criticality the more likely it is to be 
blocked by other nets. Because of this, nets with higher criticality should be 
routed first. In order to determine the criticality of a net one could look at the 
area on the grid that it covers or the number of terminals to be connected [6]. 

Another approach is based on a rip-up and re-route [7] idea. This means that if 
the routing of a net fails due to it being blocked, then some of the previously 
routed nets are ripped up. This should facilitate the routing of the blocked net 
and afterwards the nets that were ripped up are then re-routed. This rip-up and 
re-routing process has the disadvantage that it increases the running time of the 
routing algorithm, because some nets need to be routed more than once. 

The last solution suggested is to incorporate a shove algorithm [7]. This 
algorithm tries to shove the paths of obstructing nets thus making room for 
other nets to be routed. 

The concurrent approach avoids the problem of routed nets obstructing new 
nets by routing them concurrently. This means that all the nets are routed 
simultaneously thus making sure never to block the paths of other nets.  The 
main problem with this approach is that it is computationally hard. In fact there 
exists no polynomial time grid-based algorithm for solving the problem 
concurrently [6]. In this paper we will not go into further detail with this 
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concurrent approach. Instead we will look into the following three sequential 
grid based algorithms: Lee’s algorithm, Hadlock’s algorithm and Steiner Trees. 

Before going into detail about the different algorithms we will introduce a simple 
graph structure equivalent to the grids used by these algorithms. The graph 
G=(V,E) could represent the grid used by the algorithms. The grid consists of 
square cells of a certain size arranged in an array of height h and length l. Each of 
the cells ci represent a vertex vi in graph G. Furthermore there exits an edge 
between two vertices vi and vj if and only if the two cells ci and cj are adjacent [6]. 
For our different examples, throughout this paper, we will be using the array-
based visualization.  

As a part of the description and the analysis of the different algorithms we will 
be using the example below, shown in Table 3. For the following tables we have 
color coded the cells with regards to what they contain to make it easy to tell 
them apart. Obstacles have been colored blue, previously routed control 
channels grey, and the newly routed control channel has been colored light red. 

 

 
Table 3: Routing grid with three connection points P1, P2, and P3 

and an obstacle marked in blue. 

The example shows the visualization of a chip with a grid size of 10 by 12. The 
blue cells are blocked cells, and the points P1, P2, and P3 are connection points to 
be connected by a single net.  Initially we will consider different algorithms for 
connecting P1 and P2, and then later we will extend the example to connect all of 
the three points. 

5.1 Lee’s algorithm 

The Lee algorithm [6] is quite similar to a breadth-first search. It works by 
continuously applying layers as a propagating wave, filling the search space from 
the source in all directions. Because of this wave-like propagation it guarantees 
to always find the optimal solution if one exists [6]. In practice it works by 

1 10

1

P3

P1

P2

12
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visiting adjacent cells from the previously visited cells or from the source if at the 
start. It always finishes the previous wave before starting a new one. 

The following pseudo code [6] describes the Lee algorithm: 

 
    AlgorithmAlgorithmAlgorithmAlgorithm Lee-Router(B,s,t,P) 
  inputinputinputinput B, s, t 
  outputoutputoutputoutput P 
    beginbeginbeginbegin    
  plist = s; 
  nlist = �; 
  temp = 1; 
  path_exists = FALSE; 
  whilewhilewhilewhile plist ≠ �; 
   forforforforeacheacheacheach vertex vi in plist dodododo 
    forforforforeacheacheacheach vertex vj neighboring vi dodododo 
     ifififif B[vj] = UNBLOCKED thenthenthenthen 
      L[vj] = temp; 
      INSERT(vj,nlist); 
      ifififif vj  = t thenthenthenthen 
       path_exists = TRUE; 
       exitexitexitexit while; 
   temp = temp + 1; 
   plist = nlist; 
   nlist =  � 
  ifififif path_exists = TRUE thenthenthenthen RETRACE(L,P); 
  elseelseelseelse path does not exsist; 
    endendendend    
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For the algorithm in its simplest form without blocked cells, the mode of 
operation is show in Table 4. 

 

 
Table 4: Routing grid based on Table 3 but without the obstacle. The route from 

P1 to P2 has been calculated with Lee’s algorithm. 

Initially the source ‘S’ is assigned the number of the initial wave which is zero. 
During the next iteration, all adjacent cells are visited and assigned the wave 
number one. Then all cells adjacent to cells visited in wave number 1 are visited 
and assigned the wave number 2. This continues until the sink ‘T’ is reached or 
the search space is exhausted. 

When we add obstacles to the grid, then we simply need to check whether the 
adjacent cells are occupied or not before visiting them. An example of this can be 
seen in Table 5.  

 

 
Table 5: Routing grid based on Table 3, with route from P1 to P2 going around 

the obstacle. The route has been calculated with Lee’s algorithm. 

5 4 3 4 5 6 7 8

4 3 2 3 4 5 6 7 8

3 2 1 2 3 4 5 6 7 8

2 1 S/0 1 2 3 4 5 6 7

3 2 1 2 3 4 5 6 7 8

4 3 2 3 4 5 6 7 8

5 4 3 4 5 6 7 8

6 5 4 5 6 7 8

7 6 5 6 7 8

8 7 6 7 T/8

8 7 8

8

5 4 3 4 5 6 7 8 9 10

4 3 2 3 4 5 6 7 8 9

3 2 1 2 6 7 8 9 10

2 1 S/0 1 7 8 9 10

3 2 1 2 8 9 10

4 3 2 3 9 10

5 4 10

6 5 6 7 8 9 10

7 6 7 8 9 10

8 7 8 9 T/10

9 8 9 10

10 9 10
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5.2 Hadlock’s algorithm 

The Hadlock algorithm [6] is based on the idea that the length of the optimal 
path between two vertices is equal to the Manhattan distance M(s,t) plus two 
times the number of cells it moves away from the target on this path d(P). The 
shortest path can then be calculated as having the distance M(s,t) + 2d(P). This 
means that if the detour in the path is minimized then so is the path itself.[6] 

The following pseudo code [6] describes the Hadlock algorithm: 

 
    AlgorithmAlgorithmAlgorithmAlgorithm HADLOCK-ROUTER(B,s,t,P)  
  inputinputinputinput B,s,t 
  outputoutputoutputoutput: P 
    beginbeginbeginbegin    
  plist = s; 
  nlist = �; 
  detour = 0; 
  path_exists = FALSE; 
  whilewhilewhilewhile plist ≠ � dodododo 
   foreachforeachforeachforeach vertex vi in plist dodododo 
    forallforallforallforall vertices vj neighboring vi dodododo 
     ifififif B[vj] = UNBLOCKED then 
      D[vj] = DETOUR-NUMBER(vj); 

     INSERT(vj,nlist); 
     ifififif vj = t thenthenthenthen 
      path_exists = TRUE; 
      exitexitexitexit while; 
  ifififif nlist = � thenthenthenthen  

    path_exist = FALSE; 
    exitexitexitexit while; 
   detour = MINIMUM_DETOUR(nlist); 
   foreachforeachforeachforeach vertex vk in nlist dodododo 
    if D[vk] = detour then INSERT(vk,plist); 
   DELETE(nlist,plist) 
  ifififif path_exists = TRUE thenthenthenthen RETRACE(L,P); 
  elseelseelseelse path does not exist; 
    endendendend;  
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Illustrated below, in Table 6, is the idea using the same example as previously. 

  

 
Table 6: Routing grid based on Table 3, with route from P1 to P2 going around 

the obstacle. The route has been calculated with Hadlock’s algorithm. 

The propagation begins at the source ‘S’ with a detour value of 0. It now looks at 
the adjacent cells and assigns to them a detour value of 0, if the neighboring cells 
are closer to the sink ‘T’. Otherwise the cells are assigned the detour value of 1. It 
then continues with the other cells that have the current minimum detour value 
of 0. When no more cells have the detour value of 0 then it continues with the 
cells that have a detour value of 1, assigning detour values of 1 and 2 
respectively. The algorithm continues this until it reaches the sink ‘T’ or until the 
search space is exhausted. As with the Lee algorithm the Hadlock algorithm 
guarantees to find the shortest path if one exists. 

After running either the Lee algorithm or the Hadlock algorithm, a simple back 
tracking algorithm can now retrace the shortest path from the sink to the source. 
This is done by starting at the sink ‘T’ and then repeatedly moving to the cell that 
holds the smallest value, until reaching the source ‘S’. 

5.3 Comparing the Lee and the Hadlock algorithm 

The main advantage that the Hadlock algorithm has over the Lee algorithm is the 
average running time. The worst case running time for both the Lee and the 
Hadlock algorithm is :(; × =), but the running time of the Hadlock algorithm 
would often be much lower, as it always targets the sink when propagating. 

Hadlock’s algorithm functions by propagating towards a single sink, which 
means that it cannot have multiple different targets, and then simply connect to 
the closest. This is possible with the Lee algorithm as it propagates evenly in all 
directions, whereby it can simply terminate once it reaches the first sink. 

2 2

2 1 1

2 1 S/0 0

2 1 0 0

2 1 0 0

2 1

2 1 1 1 1 2

2 1 1 1 1 2

2 1 1 1 T/1

2 2 2 2
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5.4 Rectilinear Steiner Trees 

The Lee and the Hadlock algorithms guarantee to find the optimal path between 
a source and a sink, but they are both unable to connect more than two points. 
This more complicated problem requires another approach. 

Steiner Tree algorithms [6] aim to connect several points by a single net. A sub-
problem of the Steiner Trees is Rectilinear Steiner Trees, which are trees with 
only rectilinear connections. These are connections with only vertical and/or 
horizontal paths. An example of a rectilinear Steiner Tree can be seen in Table 7. 

Let us start by looking at the problem without blocked cells. Shown below in 
Table 7 is one of several possible rectilinear Steiner Tree solutions to the 
problem. The problem introduces a Steiner point here marked with an ‘S’. Later, 
we will see the significance of these Steiner points for the creation of 
intersections in the flow channel routing algorithm. 

 

 
Table 7: Routing grid based on Table 3, with Rectilinear Steiner Tree 

routes connecting all three points P1, P2, and P3. 

5.5 Extending Lee and Hadlock 

Returning to the path between P1 and P2 created above in Table 5 and Table 6, 
we now need to use the entire path between P1 and P2 as our starting points, in 
order to connect to the third point P3. 

Using all the points of the entire path as starting points we can now do the Lee 
wave-propagation just as we did previously.  This will again guarantee that we 
find the shortest possible path to P3 from the existing path between P1 and P2. 
Doing this Lee wave-propagation yields the solution shown below in Table 8. 

 

P3

P1 S

P2
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Table 8: Routing grid based on Table 3, with route to P3 from a previously calculated 

route from P1 to P2. The route has been calculated with Lee’s algorithm. 

Unfortunately this way we are not guaranteed the overall shortest path between 
all points, since the order of which the points are connected matter. In fact if we 
had routed the other two points P2 and P3 first, then we would have attained a 
solution with a shorter path connecting all three points. This better solution, 
shown in Table 9, yields a path length of only 17 while the solution above in 
Table 8 has a length of 18. 

 

 
Table 9: Routing grid based on Table 3, with route going from a previously calculated 

route to P1. The route has been calculated with the extended Lee algorithm. 

Looking once more at the same problem but this time using the Hadlock 
propagation, we now get a different and non-optimal solution having a length of 
20, as shown in Table 10. The problem here is that the small detour penalty 
introduced in row 2 prevents the algorithm from finding the optimal solution. 

4 3 3 4 5 6 7

3 2 2 3 4 5 6 7

2 1 1 2 6 T/7

1 S/0 S/0 1 7

1 S/0 1 2 6 7

1 S/0 1 2 5 6 7

1 S/0 4 5 6 7

1 S/0 1 2 2 3 4 5 6 7

1 S/0 1 1 1 2 3 4 5 6

1 S/0 S/0 S/0 S/0 1 2 3 4 5

2 1 1 1 1 2 3 4 5 6

3 2 2 2 2 3 4 5 6 7

7 6 5 4 3 2 3 4 5

7 6 5 4 3 2 1 2 3 4

7 6 5 1 S/0 1 2 3

T/7 6 1 S/0 1 2 3

7 1 S/0 1 2 3

7 1 S/0 1 2 3

7 6 1 S/0 1 2 3

6 5 4 3 2 1 S/0 1 2 3

5 4 3 2 1 1 S/0 1 2 3

4 3 2 1 S/0 S/0 S/0 1 2 3

5 4 3 2 1 1 1 2 3 4

6 5 4 3 2 2 2 3 4 5
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Therefore it does not guarantee to find the shortest path when routing from 
several source points.  

 

 
Table 10: Routing grid based on Table 3, with route going from a previously calculated 

route to P3. The route has been calculated with the extended Hadlock algorithm. 

6 Algorithmic design 

At the beginning of the project, we decided to define on a set of design rules and 
constraints, with regards to the algorithms and the data structures. These design 
rules are defined below: 

• The biochip is defined as a 2-dimensional grid of evenly sized quadratic 
cells. 

• The biochip will consist of a single flow layer, and a single control layer. 
• The flow layer will contain both components, and flow channels. 
• The control layer will contain control channels, and valves. 
• Components are defined to be rectangular in shape, with a single input 

terminal and/or a single output terminal. If having two terminals these 
are always positioned on opposing sides of a component. 

• Flow channels are defined to have a width equal to the width of a grid cell. 
• Control channels are defined to have a width equal to one third the width 

of a flow channel. 
• A valve is defined to have a size equal to the width of a control channel, 

which theoretically means that up to 9 valves can be fitted into a grid cell. 
• Intersections are considered as being components, with either 3 or 4 

valves regulating the flow through an equal number of flow lines. 
• Control channels routed to components are only routed to the edge of the 

components. The routing from the edge of a component to the valves 
inside a component is considered a local problem and is therefore not 
considered by our algorithm. 

1 1 1 1 1

1 0 0 0 0 T/0

1 S/0 S/0 0 0 0 1

1 S/0 0 0 0 0 1

1 S/0 0 0 0 0 1

1 S/0 0 0 1

1 S/0 0 0 0 0 0 1

1 S/0 0 0 0 0 0 1

1 S/0 S/0 S/0 S/0 0 0 1

1 1 1 1 1 1 1
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• Control channels are not allowed to be routed over components. The 
reason for this is to avoid interference with the functionality and the 
internal routing of the components. 

• Inlet/outlet ports for liquids entering the flow layer of the biochip may be 
positioned anywhere on the biochip area, and are treated as components. 

• Inlet/outlet ports for high pressure air entering the control layer of the 
biochip are all positioned on the edges of the biochip. 

All our work has been based on these design rules and constraints. 

6.1 Placement 

Since finding the optimal placement of components for a given design is an NP-
complete problem an alternative approach is needed. We have decided to find 
inspiration in the nature inspired process of annealing metal [5]. 

The placement algorithm starts out by creating an initial random solution. This 
solution is limited by two factors being the user specified maximum size of the 
chip and the constraint of not allowing overlapping components. These two 
constraints are always enforced and they will be limiting all possible placements. 

The algorithm relies on the following user defined variables and controls: 

• ‘Start temperature’ – The initial temperature of the simulated annealing 
algorithm. The temperature determines the probability that an inferior 
offspring is selected for the next iteration. 

• ‘Alpha’ – Rate of cooling of the simulated annealing algorithm. 
• ‘Iterations’ – The total number of iterations of the simulated annealing 

algorithm. 
• ‘Rotation probability’ – Allows the user to control the probability of 

whether a component is moved or rotated. 
• ‘Border width’ – Determines the minimum distance between any pair of 

components.  
• ‘Inputs left / Outputs right’ – Forces the components of type “Input” and 

“Output” to be placed in the leftmost quarter and rightmost quarter of the 
chip respectively. 

• ‘Move both directions’ – Allow or disallow a component to be moved 
both vertically and horizontally within the same iteration. 

• ‘Standardized’ – Forces the components to be placed in certain columns 
and rows. These columns and rows are spaced by the user specified 
variable ‘Std. width’. 

Roughly the above described variables can be divided into two different 
categories. The ‘start temperature’, ‘alpha’ and the ‘iterations’ variables are 
related to the overall execution of the simulated annealing algorithm and the 
remaining variables and controls relate to the placement of the components on 
the chip. 
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The following pseudo code describes the algorithm: 

 
 > = ? @ABCDE FGAHIEIBJ DK AGG JℎI HDEFDBIBJ> 
 J = 1 
  M ∈ ]0: 1[ 
  O = PJA@J JIEFI@AJQ@I 
  RSTUV J@QI WX 
   >Y = ZD[I:@\DJAJI:BI]DEFDBIBJ(>) 

   @ = @ABCDE BQE^I@ ^IJ_IIB 0 ABC 1 

   T` K(>′) ≤  K(>) ∨  I
d(e)fdgehi

jk∙m > @ oSVp 
    > = >’ 
   VpW T` 
   J = J + 1 
  VpW RSTUV    

 

As previously mentioned, the algorithm starts out by finding an initial solution 
that is used as an initial benchmark. After setting up the required parameters it 
continues with the first iteration of the algorithm. 

At the beginning of each iteration an offspring >’ is created based on the current 
solution >, by changing it slightly. In the pseudo code this is done by calling the 
function MoveOrRotateOneComponent(S). This function can perform two different 
modifications to the current solution in order to create the offspring. It can either 
rotate the component or it can move the component with respect to the value of 
the ‘rotation probability’ variable. Furthermore the exact execution of the 
function MoveOrRotateOneComponent(S) is highly dependent on several of the other 
variables and controls specified earlier. 

As an extension we have made it possible for the user to lock the movement and 
rotation of selected components, if this is desired. By doing this a user can 
choose to let various components stay at fixed positions, while still letting the 
simulated annealing algorithm position the rest of the components. 

Based on the solutions > and >’, we now decide which of them will be used in the 
next iteration. This is done by using the function f(s), known as the fitness 
function. This fitness function evaluates the solution by calculating the Euclidian 
distances between all the connection points that must be connected. 

Revisiting Figure 4, we can see that each of the lines and arrowheads represent a 
connection between two components. We make a distinction between the 
components’ input and output terminals, with white arrowheads determining 
the direction of the connections. On the figure, component 1 has two outgoing 
connections, which will add to the value calculated by the fitness function. This 
increase will be equal to the sum of the distances from its outgoing terminal to 
the two ingoing terminals of the filter and the mixer. 
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Figure 10: Manually done placement solution of the design shown on Figure 4. 

The calculation of the fitness function for the example shown on Figure 10 would 
look like the following: 

Dist(1.out , Filter.in) + Dist(1.out , Mixer.in) + Dist(Heater.out , Filter.in) + Dist(Heater.out , Mixer.in) 
+ Dist(Mixer.out , Heater.in) + Dist(Mixer.out , 3.in) + Dist(Filter.out , 2.in) 

Here Dist(c1.out , c2.in) calculates the Euclidian distance between c1’s output 
terminal and c2’s input terminal As defined under the rules, a component’s input 
and output terminals are always on opposite sides of each other. Furthermore 
the output terminals are always located at the points pointed to by the solid blue 
arrows, just outside the components. 

Based on the above definition of the fitness function, f(s), we can now determine 
the Boolean value of the if-statement. If f(s’) is smaller than or equal to f(s) then >’ 
is used as the new base placement. Furthermore a small probability to continue 
with >’ is introduced even though >’ is not the better solution compared to >. This 

is done by checking if I
d�e�fdgehi

jk∙m n @,	with @ being a random number between 0 
and 1. If the left hand side is larger than @, then we use the new solution >’ in the 
next iteration. Otherwise it is discarded. 

The final solution > is returned to the user after the specified number of 
iterations. 

6.2 Flow channel routing 

As previously mentioned, we need to identify components that require 
mandatory intersections. We have created a small custom algorithm for this 
specific problem. 

6.2.1 Grouping terminals 

If we again revisit the design from Figure 4, before routing the flow channels we 
need to determine which input and output terminals that must be connected. We 
will refer to these as a ‘Terminal group’. 

The following pseudo code describes the algorithm: 
 
 ]@IAJI	>JAHu	vIwJ	
	 ]@IAJI	Gx>J	OI@ExBAGy@DQF>	
	 zSTUV		BDB	[x>xJIC	HDEFDBIBJ	H	xB	]DEFDBIBJ>	
	 	 ?CC	H	JD	vIwJ	
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   ]@IAJI A BI_ OI@ExBAGyDQF Oy 
  ZA@u H A> [x>xJIC 
  zSTUV vIwJ BDJ IEFJ{ 
   H =  |A>J IGIEIBJ K@DE vIwJ 
            \IED[I GA>J IGIEIBJ K@DE vIwJ 
   ?CC H. DQJ JD Oy xK BDJ xB xJ AGG@IAC{ 
    }X~V��S HDEFDBIBJ HOD xB ]DEFDBIBJ> 

     T`H. DQJ ABC HOD. xB A@I HDBBIHJIC oSVp  
      ?CC HOD. xB JD Oy xK BDJ xB xJ AGG@IAC{  

   }X~V��S BDB [x>xJIC HDEFDBIBJ H�@DE xB ]DEFDBIBJ> 
    T` HOD. �B ABC H�@DE. DQJ A@I HDBBIHJIC oSVp 

       ?CC H�@DE JD vIwJ xK BDJ [x>xJIC 
       ZA@u H�@DE A> [x>xJIC 
       VpW T`    
                    VpW `X~V��S        
                VpW T`    
            VpW `X~V��S    
        VpW RSTUV    
        �` Oy HDBJAxB> ED@I JℎAB DBI FDxBJ oSVp    
            ?CC Oy JD OI@ExBAGy@DQF> 
  VpW T` 
    VpW `X~V��S    

 

To describe the process of finding terminal groups for the initial schematic 
design shown on Figure 4, we have created the table below. We will not go 
through the table step by step but instead define some simple rules. 

• Every row needs to be visited once, which in the table below is equivalent 
to having a light red color. 

• When the row gets a light red color then the outlet for the equivalent 
component row is added to ‘Terminal Group’. 

• For every ‘1’ in the current row the column’s inlet is added to the 
Terminal Group. This is marked with an *. 

• If a column, marked with light blue, contains additional ‘1’s, marked with 
a ‘+’, then these rows are added to the ‘Next’ stack and the ‘1’s are 
removed. 

• A row can only be in the ‘Next’ stack once. 
• Once the current row is done then the next is popped from the ‘Next’ 

stack. 
• When the ‘Next’ stack is empty then the terminal group is defined and the 

next can be created. 

The above steps will be repeated until all rows have been visited. An example of 
this can be seen in Table 11. 
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1 2
TG Next TG Next

From 1 2 3 4 5 6 1.out From 1 2 3 4 5 6 1.out 5
1 0 0 0 1 0 1 1 0 0 0 * 0 1 4.in
2 0 0 0 0 0 0 2 0 0 0 0 0 0
3 0 0 0 0 0 0 3 0 0 0 0 0 0
4 0 1 0 0 0 0 4 0 1 0 0 0 0
5 0 0 0 1 0 1 5 0 0 0 + 0 1
6 0 0 1 0 1 0 6 0 0 1 0 1 0

To To

TGList TGList

3 4
TG Next TG Next

From 1 2 3 4 5 6 1.out 5 From 1 2 3 4 5 6 1.out
1 0 0 0 0 0 * 4.in 1 0 0 0 0 0 0 4.in
2 0 0 0 0 0 0 6.in 2 0 0 0 0 0 0 6.in
3 0 0 0 0 0 0 3 0 0 0 0 0 0 5.out
4 0 1 0 0 0 0 4 0 1 0 0 0 0
5 0 0 0 0 0 + 5 0 0 0 0 0 0
6 0 0 1 0 1 0 6 0 0 1 0 1 0

To To

TGList TGList

5 6
TG Next TG Next

From 1 2 3 4 5 6 2.out From 1 2 3 4 5 6 3.out
1 0 0 0 0 0 0 1 0 0 0 0 0 0
2 0 0 0 0 0 0 2 0 0 0 0 0 0
3 0 0 0 0 0 0 3 0 0 0 0 0 0
4 0 1 0 0 0 0 4 0 1 0 0 0 0
5 0 0 0 1 0 1 5 0 0 0 1 0 1
6 0 0 1 0 1 0 6 0 0 1 0 1 0

TGList TGList
{1.out,4.in,6.in,5.out} {1.out,4.in,6.in,5.out}

To To

7 8
TG Next TG Next

From 1 2 3 4 5 6 4.out From 1 2 3 4 5 6 4.out
1 0 0 0 0 0 0 1 0 0 0 0 0 0 2.in
2 0 0 0 0 0 0 2 0 0 0 0 0 0
3 0 0 0 0 0 0 3 0 0 0 0 0 0
4 0 1 0 0 0 0 4 0 * 0 0 0 0
5 0 0 0 0 0 0 5 0 0 0 0 0 0
6 0 0 1 0 1 0 6 0 0 1 0 1 0

{1.out,4.in,6.in,5.out} {1.out,4.in,6.in,5.out}

To To

TGList TGList

9 10
TG Next TG Next

From 1 2 3 4 5 6 6.out From 1 2 3 4 5 6 6.out
1 0 0 0 0 0 0 1 0 0 0 0 0 0 3.in
2 0 0 0 0 0 0 2 0 0 0 0 0 0
3 0 0 0 0 0 0 3 0 0 0 0 0 0
4 0 0 0 0 0 0 4 0 0 0 0 0 0
5 0 0 0 0 0 0 5 0 0 0 0 0 0
6 0 0 1 0 1 0 6 0 0 * 0 1 0

To To

TGList TGList
{1.out,4.in,6.in,5.out} {1.out,4.in,6.in,5.out}

{4.out , 2.in} {4.out , 2.in}
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Table 11: Progression of the ‘Grouping Terminals’ algorithm. 

After running the GroupTerminals�� algorithm we now have a collection of nets, with 
each net consisting of a number of terminals/points that must be connected by 
the routing algorithm. This is accomplished by the LeeSteiner�� algorithm, with the 
help of the LeePropagation�� and BackTrack�� algorithms. 

6.2.2 Lee-Steiner algorithm 

Our flow routing algorithm has been designed to take the following control 
variables: 

• T-cross Weight – This variable controls how long a detour the algorithm 
will take to favor a connection to an already existing T-shaped 
intersection. This means that the generation of an intersection with 4 
connections will be favored over two T-shaped intersections if the T-
shaped intersections have a Manhattan distance between them that is 
smaller than the T-cross Weight. It should be noted though that we are 
using a weighted Manhattan distance, calculated with the use of a 2-
dimensional map called ‘CostMap’, where each cell holds an individual 
contribution to the Manhattan distance calculation. The ‘CostMap’ and its 
functionality will be described in detail below. 

• Detour weight – This variable controls how long a detour the algorithm 
will take in favor of creating non-mandatory crossings (see Figure 8). The 
detour cost is calculated with the use of the ‘CostMap’ mentioned in 
connection with the description of the T-cross Weight variable. 

• Buffer space – This variable holds the size of the wanted free space 
around the components. The effect of setting this variable is that the flow 
channel routing algorithm will attempt to lay out the routes with at least a 
grid distance to the components equaling the value of this variable. 

The flow routing algorithm uses three buffers for calculating routes that are all 
defined as 2-dimensional arrays. The first buffer is the ‘RouteMap’ where 
components and routed connections are stored. An example of this can be seen 
on Table 12. 

 

11 12
TG Next TG Next

From 1 2 3 4 5 6 6.out From 1 2 3 4 5 6
1 0 0 0 0 0 0 3.in 1 0 0 0 0 0 0
2 0 0 0 0 0 0 5.in 2 0 0 0 0 0 0
3 0 0 0 0 0 0 3 0 0 0 0 0 0
4 0 0 0 0 0 0 4 0 0 0 0 0 0
5 0 0 0 0 0 0 5 0 0 0 0 0 0
6 0 0 0 0 * 0 6 0 0 0 0 0 0

To

{1.out,4.in,6.in,5.out} {4.out , 2.in}
{4.out , 2.in} {6.out , 3.in , 5.in}

To

TGList
TGList {1.out,4.in,6.in,5.out}
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Table 12: ‘RouteMap’ with three components with ID’s ‘1’, ‘2’, and ‘3’ and 

routed connections between them. 

We have color coded the cells with regards to what they contain to make it easy 
to tell them apart. Components have been colored blue, previously routed 
control channels grey, and the newly routed control channel has been colored 
light red. 

The ‘RouteMap’ buffer is divided into cells, each capable of holding either a 
certain component ID or a route ID. Before routing starts the components will be 
placed on the map at their individual positions and with their individual sizes. 
After routing has been completed the map will still hold the components but now 
also the flow channels connecting them. For the flow channel routing algorithm, 
the cells of the ‘RouteMap’ that contains routing definitions, holds explicit 
information about links to all the neighboring cells, instead of just a Boolean 
‘channel exists here’-variable. The reason for this is to avoid ambiguities with 
parallel channels, as they could be interpreted as being connected if the routing 
connections were not explicit. 

The second buffer is the ‘CostMap’ which holds information about the cost of 
routing through the different cells of the ‘RouteMap’. The ‘CostMap’ can be seen 
on Table 13. 

 

 
Table 13: 'CostMap’ with values calculated on the basis of the components 

defined in the ‘RouteMap’ in Table 12. 

3 T 3 4 4 4
│ ┌ ─ T 4 4

1 1 1 ┌ ┼ ─ ┘ 4 4 4
1 1 T ─ ┘ │
1 1 1 │ 2 2 2

└ ─ ─ T 2 2
2 2 2

2 2 2 3 3 3 3 2
3 3 3 3 3 3 3 3 3 3 2

3 2 2 2 2 3 3 2
3 2 1 2 3 3 3 3 3 3 2
3 2 1 2 3 3 2 2

3 3 3 3 2 1 2 3 3 2 1
2 2 2 2 2 1 2 3 3 2 1
1 1 1 1 1 1 2 3 3 3 3 3 2 1
1 1 1 1 1 1 2 2 2 2 2 2 2 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
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The effect of using the ‘CostMap’ is that routes will try to stay away from 
‘expensive’ cells. Then, if cells close to components are set to be more expensive 
than cells further away, the effect will be that routes will try to keep a certain 
minimum distance to the components. By doing this the risk of obstructing the 
flow channels of other components is reduced. If we take a look at Figure 11 we 
can see an illustration of this. 

 

 
Figure 11: From left: Manually placed simple design1; automated routing2 with Buffer Space=1; 

automated routing3 with Buffer Space=1; automated routing4 with Buffer Space=2. 

Considering the manually placed design (1) in Figure 11, we have calculated 
three possible different routings. 

On the first routing (2) in Figure 11, the order in which the flow channels have 
been routed is from component 3 to component 4 followed by a routing from 
component 2 to component 1 (backwards). This is fine and a good solution has 
been created. 

For the next routing (3) in Figure 11, the order in which the flow channels have 
been routed is from component 1 to component 2 followed by a routing from 
component 3 to component 4. As can be seen, two non-mandatory intersections 
have been created. This is because the channel of the firstly routed net has 
effectively created an obstruction for the channel of the secondly routed net, 
because the first net has been laid out as close as is possible to the output port of 
component 3. Therefore, the only way to create a channel from component 3 to 
component 4 is to start by creating a non-mandatory intersection through the 
existing channel. Then because the Detour Weight variable is low, a second non-
mandatory intersection is also created (the effect of setting the Detour Weight 
variable will be explained later). This is obviously not what we want, and thus it 
should be avoided. 

For the last routing (4) in Figure 11, the order in which the flow channels have 
been routed is first from component 1 to component 2 followed by a routing 
from component 4 to component 3 (backwards). But as the Buffer Space variable 
has been increased to 2 the first routing will retain a minimum distance of 2 from 
component 3. This means that the second routing will have been given room for 
its channel, and the unwanted possibility of getting non-mandatory intersections 
with this design has been eliminated. It should be noted though that in many 
cases this problem should already have been eliminated during the placement 
process. 
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Returning to the description of the ‘CostMap’, the maximum value in each cell is 
determined by the variable named Buffer Space. Each cell effectively holds the 
bigger of either 1 or the Buffer Space minus the maximum distance in either the 
vertical or horizontal direction from itself to the border of the closest 
component, in either the vertical or horizontal direction, as defined in the 
‘RouteMap’ (see Table 13). These values are calculated and stored on the 
‘CostMap’ as components are placed on the ‘RouteMap’, by applying ever 
increasing rings with decreasing values around the placed components. In other 
words, the closest ring around a component gets the value Buffer Space, the next 
ring Buffer Space-1, and so on until applying a ring with the value of 1. However, 
any cell that holds a value that is greater than the ring value about to be set will 
be left unchanged. 

The third buffer is the ‘LeeMap’. This buffer holds the values of the waves that 
are the result of the Lee wave-propagation, as described in the section: Lee’s 
algorithm, from the source points. It is in this buffer where far most of the 
computations are performed. The ‘LeeMap’ buffer can be seen on Table 14. 

 

 
Table 14: ‘LeeMap’ with calculated propagation values from ‘S’ to ‘T’, and 

with back tracking from ‘T’ to ‘S’ in red. 

6.2.3 Lee wave-propagation 

For simplicity, we will begin by looking at a slightly different example in order to 
show the effect of the T-cross weight variable, with regards to the Lee wave-
propagation algorithm. As shown in Table 15, we try to connect 4 different 
components using a single net. The first 3 components have been connected by 
the brown net and we now use this as the base for the Lee wave-propagation. We 
have chosen to simplify this example by letting the cost of each cell be equal to 1. 
Furthermore, we will initially not favor the creation of a full intersection over a 
T-shaped intersection. 

 

19 17 S/5 17 20
20 17 14 11 8 11 14 17

15 12 10 12 14 17
16 13 11 13 16 19
17 14 12 14 17

21 18 15 13 15 18 T
20 18 16 14 16 19

19 18 17 16 15 17 20
19 18 17 16 18 20

19 18 17 18 19
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Table 15: LeeMap’ with calculated propagation values, with T-cross Weight = 1, from the T-cross ‘S’ to ‘T’, 

and with back tracking from ‘T’ to ‘S’ in red.  

By setting the T-cross weight variable to 1, we get the shortest possible route 
between the components and we end up with a solution that contains two 
Steiner points. 

Now, let us look at the same problem again, but this time favor full intersections 
over T-cross intersections. We do this by allowing cells that contain a Steiner 
point to get a head start. The magnitude of the head start is determined by the T-
cross weight. The Steiner point, shown in the example in Table 16 below, is given 
a head start of 4 cells, thus increasing the likelihood that it will be the first to 
reach the sink. The solution found in Table 16 has a slightly longer path that the 
solution found in Table 15, but it contains only one Steiner point. This will 
decrease the total number of required control valves by 2, which for some 
designs may be preferred. 

 

 
Table 16: LeeMap’ with calculated propagation values, with T-cross Weight = 5, from the T-cross ‘S’ to ‘T’, 

and with back tracking from ‘T’ to ‘S’ in red. 

Having described the functionality of the T-cross weight variable, let us now re-
consider the Lee wave-propagation information that is presented in Table 14. 
Here, the costs of the various cells are again defined by the ‘CostMap’. 

The flow channel routing of each connection starts with the generation of Lee 
wave-propagation data, starting from a collection of source points. In this 
example we will consider the single source point ‘S’. Since this point is not a T-

4 4
4 3 2 S/1 2 3 4

2 2 S/1 2 3 4
S/1 S/1 S/1 2 3 4

2 2 S/1 2 3
4 3 2 S/1 2 3 T

4 2 S/1 2 3
4 2 S/1 2 3 4

4

6
6 S/5 4 5 6

6 6 S/5 3 4 5 6
S/5 S/5 S/1 2 3 4 5 6

6 6 S/5 3 4
6 S/5 4 5 T
6 S/5 5 6
6 S/5 6
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shaped intersection it is assigned the value contained in the T-cross Weight 
variable which in this example is set to 5. If it happened to be a T-shaped 
intersection it would have been assigned the value 1. 

As waves are fully propagated in increasing order, starting with the smallest 
numbered wave the one to consider first is wave #5. From this cell it is only 
possible to propagate south, as the other three directions are blocked by 
component definitions. Adding the value 3, acquired from the equivalent 
southern cell in the ‘CostMap’, gives a ‘LeeMap’ cell value of 8. This value is 
stored in the southern cell in the ‘LeeMap’, since at the moment this is the first 
or, if not the first then the smallest, value in the cell. Also, this point is stored in a 
wave-buffer under the index for wave #8. 

Having calculated new wave points (in this case just a single new point) from all 
the points in wave #5, the next and now the smallest wave #8 is considered. 
After Lee wave-propagation from wave #8 has been calculated the next wave 
#10 is considered, and so forth until the sink ‘T’ is reached. At this point the Lee 
wave-propagation algorithm stops and the back tracking algorithm takes over. 

A specialized feature of our algorithm is its ability to create non-mandatory 
intersections. This feature is implemented by allowing the Lee wave-propagation 
algorithm to propagate into cells occupied by routes. When doing this the value 
to be added to the ‘LeeMap’ cell is not only the weight from the equivalent cell in 
the ‘CostMap’ but also the weight contained in the Detour Weight variable. As an 
example let us consider Table 17, where the propagation has been calculated 
with the Detour Weight variable set to 10: 

 

 
Table 17: ‘LeeMap’ containing obstructing flow channel in grey, with calculated propagation values 

from ‘S’ to ‘T’ using Detour Weight=10, and with back tracking from ‘T’ to ‘S’ in red. 

As can be seen in Table 17, the propagation waves have been forced through the 
obstructing flow channel, shown in grey, using the weight of both the cell in the 
‘CostMap’ and the Detour Weight variable, instead of just the weight from the 
‘CostMap’. It is worth noting that by doing this the propagation speed through 
the obstructing flow channel is effectively slowed down and controlled by the 
Detour Weight variable, thus facilitating the possibility of reaching the 
destination point ‘T’ via a detour instead. 

23 21 19 17 33 36
23 20 17 14 15 28 28 30 33 T

11 12 24 25 27 30
S/5 8 10 21 23 26 29 32 35

11 12 23 25 28 34
23 20 17 14 14 25 31 35 34 32
22 20 18 16 16 17 19 22 34 33 31
20 19 18 17 17 18 20 23 26 29 30 31 31 30
21 20 19 18 18 19 21 23 25 26 27 28 29 29
22 21 20 19 19 20 21 22 23 24 25 26 27 28
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In the example shown on Table 18, the Lee wave-propagation of the scenario of a 
detour beating the generation of a non-mandatory crossing is shown, as the 
Detour Weight variable is set to 40. 

 

 
Table 18: ‘LeeMap’ containing obstructing flow channel in grey, with calculated propagation values 

from ‘S’ to ‘T’ using Detour Weight=40, and with back tracking from ‘T’ to ‘S’ in red. 

Note also the single empty cell on the top of the map. This is actually left empty 
by the algorithm, because the sink ‘T’ is reached while Lee wave-propagating 
from the points in wave #57, after which the Lee Wave-propagation algorithm 
stops. Yet another thing worth noting is the way that the light red flow route is 
laid out with a distance of three to the bottom right component. This is a result of 
using the weights of the ‘CostMap’, which in turn has been calculated on the basis 
of the Buffer Space variable. 

The following pseudo code describes the Lee wave-propagation algorithm: 

 
 WaveNumber = 0 
 CurrentWave = list of points 
 dodododo    
  WaveNumber++ 
  CurrentWave = SourcePointsPool at WaveNumber 
  forforforforeacheacheacheach point p in CurrentWave 
   Propagate north of p 
   Propagate east of  p 
   Propagate south of p 
   Propagate west of p 
  end foreachend foreachend foreachend foreach    

whilewhilewhilewhile destination not reached 
 

The following pseudo code describes propagation to the north: 

 
 pn = point north of p 
 CMval = value of CostMap at position pn 
 ifififif pn is within routing grid thenthenthenthen 

23 21 19 17 60 45 42
23 20 17 14 15 58 58 59 57 T 43 40

11 12 54 55 56 54 41 38
S/5 8 10 51 53 54 51 48 45 42 39 36

11 12 53 55 57 39 36 34
23 20 17 14 14 55 61 65 37 34 32
22 20 18 16 16 17 19 22 34 33 31
20 19 18 17 17 18 20 23 26 29 30 31 31 30
21 20 19 18 18 19 21 23 25 26 27 28 29 29
22 21 20 19 19 20 21 22 23 24 25 26 27 28



   35 

 

  ifififif pn is destination point thenthenthenthen 
   signal destination reached 
   returnreturnreturnreturn    
  iiiiffff no object placed at RouteMap at position pn thenthenthenthen 
   ifififif no route placed at RouteMap at position pn thenthenthenthen 
    ifififif LeeMap at position pn > LeeMap at position p + CMval OR unvisited    thenthenthenthen 
     LeeMap at position pn = LeeMap at position p + CMval 
     add point to SourcePointsPool at wave number = LeeMap at position pn 

   else ifelse ifelse ifelse if    LeeMap at position pn > LeeMap at position p + CMval + DETOURWEIGHT thenthenthenthen 
     LeeMap at position pn = LeeMap at position p + CMval + DETOURWEIGHT 
     add point to SourcePointsPool at wave number = LeeMap at position pn 
    end ifend ifend ifend if    
   end ifend ifend ifend if    
  end ifend ifend ifend if    
 end ifend ifend ifend if    
    

6.2.4  Wave buffer records 

The ‘SourcePointsPool’ data structure, mentioned in the pseudo code, is a record 
of the waves that are to follow the current active wave, kept as an array of 
collections of points, where the collections of points of each wave is inserted in 
the array, at a position equivalent with the wave number. The data structure is 
shown in Table 19. 

 

 
Table 19: Visualization of the ‘SourcePointsPool’ data structure containing 

Lee wave-propagation data from Table 14, Empty lines have been omitted. 

After the Lee wave-propagation has been completed, a back tracking is 
performed. The actual route of the channel that is being routed is extracted at 
this point. 

Wave number Points

5 P51

8 P81

10 P100

11 P111, P112, P113

12 P121, P122, P123

13 P131, P132, P133

14 P141, P142, P143, P144, P145, P146
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6.2.5 Back tracking algorithm 

The back tracking algorithm works by initially evaluating the points adjacent to 
the sink ‘T’. It then looks in all the four possible directions relative to ‘T’, to find 
the smallest neighboring ‘LeeMap’ cell value. The cell with the smallest value is 
then chosen and an initial direction pointing towards this cell is then calculated 
for the back tracking process to move in. If more than one ‘LeeMap’ cell holds a 
smallest value, one of these cells is chosen randomly. 

The algorithm now runs until reaching the source point ‘S’, whilst continuously 
looking ahead, left, and right, respectively, relative to the current direction for 
the smallest ‘LeeMap’ cell value. This way the algorithm will create routes with 
as few bends as possible because the cell in the direction of movement will be 
favored. Examples of this are shown on the Table 14, Table 17, and Table 18, 
with the extracted routes shown in light red. 

The back tracking algorithm creates a route as a coherent string of points, which 
is then returned to the main routing algorithm. 

6.2.6 Flow channel routing main algorithm 

The Lee wave-propagation algorithm and the back tracking algorithm are tied 
together to complete the flow channel routing algorithm. The main algorithm 
implements randomization in the order that the nets are routed, so as to 
introduce random variation in the solutions. 

The following pseudo code describes the algorithm: 

 
initiate RouteMap 
initiate CostMap 
    forforforforeacheacheacheach component c in components 

  place c on RouteMap 
  set cell cost values on CostMap relative to c 
 end forend forend forend for    
 TerminalGroups = GroupTerminals(connections) 
 ffffororororeacheacheacheach TerminalGroup net in TerminalGroups 
  PropagationPoints = empty list of points 
  move a random point from net to PropagationPoints 
  forforforforeacheacheacheach point T in net 
   SourcePointsPool = Collection of empty lists of points 
   foreachforeachforeachforeach point p in PropagationPoints 
    ifififif RouteMap at position p is a T-cross channel thenthenthenthen 
     add p to SourcePointsPool at wave number = 1 
    elseelseelseelse    
     add p to SourcePointsPool at wave number = T-cross Weight 
    endifendifendifendif    
   end foreachend foreachend foreachend foreach    
   LeePropagation(SourcePointsPool) 
   Add BackTrack(T) points to PropagationPoints 
  end foreachend foreachend foreachend foreach    
 end foreachend foreachend foreachend foreach    
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Having completed all of the above, all the flow channels have now been routed, 
and all intersections, both mandatory and non-mandatory, have been defined. 
The chip is now ready for the next design steps. 

6.3 Control channel routing 

As mentioned in the problem description for the control channel routing, the 
problem of routing the control channels is very similar to the problem of routing 
nets on electronic circuit boards. Still, for routing the control channels we have 
re-used some of the techniques that we developed for routing the flow channels. 
We still make use of the ‘RouteMap’ and the ‘LeeMap’ buffers, but because the 
control channel routing algorithm implements rip-up of nets, instead of trying to 
make room around components for routing, the ‘CostMap’ is no longer relevant 
and therefore it has been removed. Also, the resolution of the buffers has been 
increased by a factor 3 in both the vertical and horizontal direction, because we 
defined the width of the control channels to be 1/3 the width of the flow 
channels. 

The things that make control channel routing different from flow channel routing 
is that unrelated nets must not intersect each other; the number of nets to be 
routed is usually higher; and the combined length of the control channels is far 
greater than the combined length of the flow channels. Also, as a result of our 
design, the control channels must all be routed from the valves to the edge of the 
chip, because this is where we have placed all the high pressure inlet ports. 

Our control channel routing algorithm has been designed to take a single control 
variable: 

• ‘PORT_SPACING’ – This variable controls the spacing between the 
connection points allocated on the edge of the chip area. 

The connection points that are distributed evenly around the edge of the chip, 
have collectively been defined as a specialized single net, and stored in the 
‘RouteMap’ buffer. It is special in the sense that the net is a collection of 
independent points, meaning not forming a line. An illustration of the connection 
points net can be seen in Table 20, where the points of the net are marked with 
the letter ‘C’. 
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Table 20: Top left corner of ‘RouteMap’, with connection points denoted ‘C’, components 

with ID’s 1, 2, and 3 and a control channel routing denoted ‘a’. 

6.3.1 Lee wave-propagation 

The process of routing the control channels is quite similar to routing the flow 
channels, but with a few important changes to the Lee wave-propagation 
algorithm and the back tracking algorithm. As we have already described these 
two algorithms in detail, we will only highlight the differences. 

One difference is that we now must be able to route from net to net and not just 
from net to point. This is easily done, as the Lee wave-propagation is already 
working with lists of points. The first thing to do is simply to initialize the 
‘SourcePointsPool’ data structure with the starting points illustrated in Table 21, 
where the source points have been denoted ‘S’. This is because we only route 
control lines to the edges of components, as previously described. 

 

 
Table 21: Top left corner of ‘LeeMap’, with Lee wave-propagation data 

from points on the edge of a component denoted ‘S’. 

In Table 21, and in all the following illustrated ‘LeeMap’ tables, we have 
embedded the information from the ‘RouteMap’ by color coding the different 
cells of the ‘LeeMap’. Components have been colored blue, connection ports 
orange, previously routed control channels have been colored different shades of 
grey and blue, and the newly routed control channel has been colored light red. 

C C C C C
1 1 1
1 1 1

C 1 1 1 3 3 3
a 3 3 3
a 3 3 3

C a a a a
a a a a a a 2 2 2

2 2 2
C 2 2 2

7 7 T
7 6 6 6 7

7 6 5 5 5 6
4 4 4 5

7 3 3 3 4
7 6 2 2 2 3

7 6 5 4 3 2 1 1 1 2
7 6 5 4 3 2 1 S S S 1
7 6 5 4 3 2 1 S S 1
7 6 5 4 3 2 1 S S S 1
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From the source points denoted ‘S’ the first wave number 1 is propagated and 
the points have been stored in the ‘LeeMap’ buffer. From wave number 1 the 
next wave number 2 is propagated, then wave number 3, and so on, until at least 
1 point of the destination net (denoted ‘T’ in Table 21) is reached. During the 
propagation process equivalent cells from the ‘RouteMap’ with component 
definitions are avoided. After reaching a destination point, the back tracking 
algorithm takes over and creates the new channel. 

Illustrated on Table 22 is a newly created control channel routing, from one of 
the previously created control channels to component number 1. It should be 
noted that component number 2, as defined in Table 20, is now boxed in by other 
nets, and rip-up of one of these nets is now the only possibility for component 
number 2 to connect to an inlet port. 

 

 
Table 22: Top left corner of ‘LeeMap’, with Lee wave-propagation data 

from points on a route denoted ‘S’. 

To intelligently decide what net to rip-up, we have made an alteration to the Lee 
wave-propagation algorithm. Like for the flow channel routing algorithm, we 
allow propagation into cells holding routes as defined in the equivalent cells on 
the ‘RouteMap’ buffer. However, instead of just slowing down propagation 
through these cells, we effectively pause the propagation, by storing these halted 
propagation points in a buffer. This buffer holds only points that are blocked by 
other channels, until the Lee wave-propagation stops. This is illustrated in Table 
23, where the stored points are the ones that have Lee wave-propagation values 
written on top of the obstructing nets. 

8 6 5 2 1 S 1
T T T 7 6 5 4 3 2 1 S 1
T T 7 6 5 4 3 2 1 S 1
T T T 8 7 2 1 S 1

8 2 1 S 1
8 7 2 1 S 1

8 7 6 5 4 3 2 1 S 1
8 7 6 5 4 2

8 7 6 5 3
8 7 6 4
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Table 23: Top left corner of ‘LeeMap’, with Lee wave-propagation data 

from points on the edge of a component denoted ‘S’. 

If the Lee wave-propagation stopped without reaching a destination point 
(which happened on Table 23), the halted points are then used for further 
propagation, until the algorithm stops again. This is done by re-numbering the 
stored waves, so as to match the current propagation wave number after which 
the Lee wave-propagation continues. If the Lee wave-propagation again stops 
without reaching a destination point, the new halted points are then used for 
further propagation, and so on, until a destination point is reached, which is 
what has happened in Table 24. 

 

 
Table 24: Top left corner of ‘LeeMap’, with Lee wave-propagation data after 

invoking and re-numbering the buffer containing halted points.  

It should be noted that, like for the flow channel routing, we route nets in a 
randomized order. 

6.3.2 Back tracking algorithm with rip-up 

Since a destination point has now been reached the back tracking algorithm 
starts back tracking from the destination point ‘T’, or if more than one 
destination point has been reached, one is chosen at random, from where the 
back tracking starts. The difference in the back tracking algorithm for the control 
channel routing algorithm, compared to the back tracking algorithm for the flow 

3 2 1 1 1 2 3
2 1 S S S 1 2 3

3 2 1 S S 1 2 3
3 2 1 S S S 1 2 3
4 3 2 1 1 1 2 3 4

4 3 2 2 2

T T T 6 6 T T
6 5 5 5 6

3 2 1 1 1 2 3
T 2 1 S S S 1 2 3

3 2 1 S S 1 2 3
3 2 1 S S S 1 2 3

T 4 3 2 1 1 1 2 3 4
4 3 2 2 2

6 6 6
T
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channel routing algorithm, is that no non-mandatory intersections are created, 
as this is not allowed. Instead, when the back tracking algorithm crosses over an 
obstructing control channel, the complete net that the obstructing control 
channel is a part of, is ripped up and put back in the collection of unrouted nets 
for re-routing at a later point. After ripping up the obstructing net the back 
tracking algorithm continues towards a source point, ripping up obstructing nets 
as they are encountered. The result of this back tracking can be seen on Table 25. 

 

 
Table 25: Top left corner of ‘LeeMap’, with Lee wave-propagation data after 

back tracking and rip-up of obstructing net. 

The algorithm will continue routing and ripping up nets until all nets have been 
successfully connected to an inlet port. 

6.3.3 Poisson distributed random rip-up 

The effect of using our intelligent rip-up scheme is that the nets that are chosen 
to be ripped up are the ones that are actually blocking other nets. However, this 
strategy may sometimes result in a ‘ping pong’ situation where nets are ripping 
each other up repeatedly, resulting in a deadlock situation. For making it 
possible for the algorithm to get out of these kinds of circular deadlocks we have, 
in addition to the intelligent rip-up chosen to add a random Poisson distributed 
rip-up scheme. This means that whenever an intelligent rip-up occur we 
additionally rip up a random number of nets determined by the Poisson 
distribution. The Poisson distribution is chosen due to its exponential decline 
with regards to point probabilities. We have chosen to implement it with an 
expected additional rip-up of 1 net using the following formula: 

��u� =
�� I��

u!
, _ℎI@I � = 1 

Using the Poisson distribution of the formula above, the most likely number of 
additional nets to be randomly ripped up is 0 or 1 nets, which have an equal 
probability. The next most likely number is 2 nets, then 3 nets, and so forth. 

Three examples of control channel routings can be seen on Figure 12, where the 
control channels have been drawn in red. All three control channel routings have 
been created on the basis of the second (right) flow channel routing in Figure 8. 

6 6
6 5 5 5 6

3 2 1 1 1 2 3
2 1 1 2 3

3 2 1 1 2 3
3 2 1 1 2 3
4 3 2 1 1 1 2 3 4

4 3 2 2 2
6 6 6
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Figure 12: From Left: Control routing1 with ‘PORT_SPACING’=1, Control routing2 with ‘PORT_SPACING’=5, 

Control routing3 with ‘PORT_SPACING’=1 and manually defined control channel sharing. 

As can be seen on the first control routing (1) on Figure 12, the valves controlling 
the flow through the intersections have all been routed to one of the high 
pressure inlet ports positioned on the edge of the biochip. As previously 
mentioned the spacing between these possible connection points is controlled by 
the ‘PORT_SPACING’ variable, which has been set to 1. For the second control 
routing (2) on Figure 12, the ‘PORT_SPACING’ variable has been set to 5, which 
causes the inlet ports to be much more evenly spaced. 

The control synthesis process would normally have been done in between the 
flow channel routing and the control channel routing processes. But as we do not 
have an implementation of this, we have created a small example of control line 
sharing between valves, by manually altering the XML input file that is loaded by 
the control channel routing algorithm. The result of running the control channel 
routing algorithm on the basis of this manually altered XML input file, can be 
seen on the third control channel routing (3) on Figure 12. 

7 Tool 

The developed algorithms were integrated into a CAD tool which also provides 
the user with an intuitive way to create and modify schematic biochip 
architecture designs. 

Based on an initial schematic design, the user can get support with the placement 
of various components, the routing of the flow channels and the routing of the 
control channels. We have divided the design process up into 4 different 
sequential steps that the user needs to go through, in order to create the final 
routing design of both layers of a continuous flow biochip. The 4 different 
sequential steps are: 

• Schematic design (section 4.1) 
• Placement (section 4.2) 
• Flow channel routing (section 4.3) 
• Control channel routing (section 4.6) 
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7.1 General 

The Graphical User Interface (GUI) design for the tool, as can be seen on Figure 
13, has been kept as clean as possible, and roughly, it can be divided into three 
different parts. 

The first part is the controls on the left hand side. Here, we have implemented all 
the controls relating to the execution of the different algorithms. Here also are 
the controls for adding and removing components and connections to the 
schematic design and the placement. 

The second part consists of six different tabs that contain either visual or tabular 
information about the different stages of the design process. These tabs will be 
discussed in the following sections. 

The last part is the menu that the user can use to load and save files relevant for 
the steps in the design process. Also, it is possible to edit the component 
template library provided with the program. 

We have incorporated an undo/redo design pattern, to enable the user to easily 
undo or redo any mistakes or changes done within the design and placement tab. 

Furthermore, the user can easily navigate between previously routed flow and 
control solutions using either the menu or the left and right arrow keys, when in 
either the flow or control tab.  

7.2 Design 

The initial phase of the design process is to define the different components that 
are needed for the biochip application. After defining the relevant components 
the user should define the connections that are required between them. A 
screenshot of the design step can be seen on Figure 13. 

Whenever a component is selected, all of its ingoing and outgoing connections 
are highlighted with a red color. 
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Figure 13: Design view of the custom biochip CAD tool. 

The solid blue arrow inside the components always indicates the orientation of a 
component. The arrow points to the port, from which the liquid flows out of the 
component. 

As part of the design process the user can choose to define new custom 
components, or change the definition of the component collection provided by 
the program. This is done through an XML-file containing the definitions. The 
user is free to add or modify components in the file. However, a restart of the 
program is required in order for the changes to take effect. The changes to the 
file only affect components added via the program and do not affect the files that 
are loaded. 

As default the input data is defined as follows: 

 
 <Component> 
  <Type>Input</Type> 
  <StandardName>Input</StanddardName> 
  <Size> 
   <Height>3</Height> 
   <Width>3</Width> 
  </Size> 
  <Valves>0</Valves> 
 </Component> 
 

The user is provided with the following 5 components as standard components. 
They may be overwritten, but will otherwise remain as specified. The 
components are the following: 

• Input 
• Mixer 
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• Heater 
• Filter 
• Output 

We have tried to make their sizes correct, in relation to each other, but with 
some degree of freedom for testing purposes. Inspiration related to size have 
been found in the literature [1]. 

7.3 Placement 

The user may choose to manually place the different components or have our 
CAD tool aid the user with the placement process, using the Simulated Annealing 
algorithm presented earlier. The user can even specify placements of certain 
components and let the CAD tool find a suitable placement for the remaining 
components not locked in place by the user. Any locked components appear as 
grey instead of blue. 

A screenshot of the placement step can be seen on Figure 14. 

 

 
Figure 14: Placement view of the custom biochip CAD tool. 

Once the user is satisfied with the placement of the components, the next step, 
which is routing of the flow layer, can commence. However, before this, the user 
is provided with information regarding the fitness function of the current 
solution. The fitness function is a cost-function based on the Euclidian distances 
between the input/output ports of the components that need to be connected. 
Also, a list view regarding the components and connections currently defined as 
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part of the design can be seen in the List view tab, next to the placement tab, as 
shown on Figure 15. 

 

 
Figure 15: List view of the placement of the custom biochip CAD tool. 

7.4 Flow Channel Routing 

Firstly, it should be noted that the flow channel and the control channel routing 
algorithms have been developed and implemented as separate C++ programs. 
This was done in order to produce separate stand-alone programs, for each of 
the routers, which was a requirement for the project. 

During the process of flow channel routing, the first of the external executable 
C++ programs is called to create the flow channels required. This routing step is 
done based on the actual placement, at the time of routing. 

Communication between the design tool and the external routing programs is 
done by reading and writing XML-files. These files contain the relevant 
information about the components and connections. Additionally, user specified 
variables are passed on to the external program as runtime arguments. 

The user is presented with the result of the flow channel routing once it is 
completed. The user cannot directly change this routing with the help of our 
program. That the components are locked are indicated by the grey color. 
Instead it is possible for the user to either manually alter the placement, or run 
the automated placement algorithm again, and then re-run the routing program. 
It is also possible to just re-run the routing program, and get a different flow 
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channel routing solution. This can be done using either the same seed or a new 
seed for the randomization function. 

 

 
Figure 16: Flow channel routing view of the custom biochip CAD tool. 

Once the user is content with the placement and the routing of the flow layer the 
control routing can commence, directly within the program. 

In connection with the flow channel routing process, we provide some basic 
statistical information relating to the flow layer. The presented information 
shows the number of flow channel intersections, the number of control valves 
and the total length of the flow channels. 

7.5 Application Mapping and Control Synthesis 

The tool does not have application mapping and control synthesis as an 
integrated part. This means that if the user wishes to take advantage of the valve 
sharing in the control routing, then this should be done by saving the flow XML-
file locally. This file should then be run through a third party application 
mapping and control synthesis application, such as the ones developed in [2], 
then through our control channel routing software, and then finally be loaded 
into our tool for visualization. 

7.6 Control Channel Routing 

The control channel routing part is the last part of the design process of the 
biochip that is covered by our program. A screenshot of this can be seen on 
Figure 17. 
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The control channel routing process is always based on the design shown in the 
Routing tab. This means that changes made in the placement tab do not affect the 
control channel routing, unless a new flow channel routing is done. 

 

 
Figure 17: Control channel routing view of the custom biochip CAD tool. 

It is not possible for the user to edit the placement of the components, or the 
connections between the components, at this point. 

Also, for the control channel routing process, we provide some basic statistical 
information in relation to the control layer, like we do for the routing of the flow 
layer. The presented information shows the number of flow channel 
intersections, the number of control valves, the total length of the flow channels, 
and the total length of the control channels. 

7.7 XML-Files 

The XML-files are used to store schematic designs, placements, flow channel 
routings and control channel routings. We have used the same structure for all 
the four file-types, and the overall structure of our XML-files is discussed in the 
remainder of this section. 

First, the XML-files specify the ID and the size of the biochip. Following this are 
the definitions of the components, the connections and the valves. This is the 
case of all the files, even when, for example, the paths of the connections are still 
unknown.  In this case we simply leave the specific tags empty. 
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The overall schema is defined as follows: 

 
 </Architecture> 
  <ID>”Integer”</ID>  
  <Size> 
   <Height>”Integer”</Height>  
   <Width>”Integer”</Width> 
  </Size>  
  <ListOfArcComponents> 
   //A number of components are defined 
  </ListOfArcComponents> 
  <ListOfArcConnectors> 
   //A number of connections are defined 
  </ListOfArcConnectors> 
  <ListOfArcConnectedValves> 
   //A number of Valves and their connections are defined 
  </ListOfArcConnectedValves> 
 </Architecture> 
 

The ‘ListOfArcComponents’-tag signals the beginning of the definition of the 
components. Each Component is contained within an ‘ArcComponentProperties’-
tag and is defined by the following information: 

• ID – The ID is used as an architecture-wide unique identification code of 
each of the components. 

• Name – The name of a component is a user-defined string. 
• Type – The type is a string defining the components intended use. 
• Orientation – The orientation is an integer between 0-3 defining the 

orientation of the component. 
o A value of 0 indicates that the outgoing terminal points east.  
o A value of 1 indicates that the outgoing terminal points south.  
o A value of 2 indicates that the outgoing terminal points west.  
o A value of 3 indicates that the outgoing terminal points north.  

• Number of valves – Defines the number of control valves needed to 
operate the component. 

• Size – Information about the height and the width of the component. 
• Position – The position of the upper left corner of the component on the 

biochip. 

The ‘ListOfArcComponents’ structure is defined as follows: 

 
 <ListOfArcComponents> 
  <ArcComponentProperties>     
   <ID>”Integer”</ID>       
   <Name>”String”</Name>     
   <ArcComponentType>”String”</ArcComponentType>  
   <Orientation>”Integer”</Orientation>    
   <NumberOfValves>”Integer”</NumberOfValves> 
   <Size>       
    <Height>”Integer”</Height>     
    <Width>”Integer”</Width>     
   </Size> 
   <Position>       
    <X>”Integer”</X>      
    <Y>”Integer”</Y>      
   </Position> 
  </ArcComponentProperties> 
  ... 
 </ListOfArcComponents> 



   50 

 

The next part of the XML-file, which is the ‘ListOfArcConnectors’, describes the 
connections defined during the design face by the user. Furthermore the specific 
paths between components will be show here if the flow channel routing has 
been done. 

The ‘ListOfArcConnectors’ part, holds a number of ‘ArcConnectorProperties’ 
which in turn are defined by the following information: 

• Component – Contains the definition of two different components. The 
first component specified is a ‘from’ component and the second is a ‘to’ 
component.  

o ID – The ID is the same unique identification code that is described 
above. 

o Name – This is the name of the component with the ID above. 
o ConnectionPoint – Contains information about the position of the 

relevant connection point, either an input or an output point. 
• LinePoints – Corner points of the channel connecting the two connection 

points. A point is defined for each 90° turn that the path makes. The 
points are only defined once the flow routing has been done. 

The ‘ListOfArcConnectors’ structure is defined as follows: 

 
 <ListOfArcConnectors> 
  <ArcConnectorProperties> 
   <Component> 
    <ID>”Integer”</ID> 
    <Name>”String”</Name> 
    <ConnectionPoint> 
     <X>”Integer”</X> 
     <Y>”Integer”</Y> 
    </ConnectionPoint> 
   </Component> 
   <Component> 
    <ID>”Integer”</ID> 
    <Name>”String”</Name> 
    <ConnectionPoint> 
     <X>”Integer”</X> 
     <Y>”Integer”</Y> 
    </ConnectionPoint> 
   </Component> 
   <LinePoints> 
    </Point> 
     <X>”Integer”</X> 
     <Y>”Integer”</Y>  
    </Point> 
    ... 
   </LinePoints> 
  </ArcConnectorProperties> 
  ... 
 </ListOfArcConnectors> 
 

The next section, which is the ‘ListOfArcConnectedValves’, defines the valves that 
are required by a given application. These are defined as a number of connected 
valves that shares a control line. 

• ID – The ID is a unique identifier for the group of valves sharing a control 
line. 

• Valve – Information about a single valve within the valve group. There 
can be any number of valves defined here. 
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o ValveID – A unique identifier for the given valve. 
o Object – The name of the component for which this valve is 

needed. 
o ObjectID – The unique identifier for the specific component 

defined previously. 
• LineSegments – Information about the path that connects the valves and 

an high pressure air inlet port.  
o LineSegment – Two points that define a section of the control 

channel needed to connect the valves with an inlet port. The size of 
these number should be divided by three when used. 

The ‘ListOfArcConnectedValves’ structure is defined as follows: 

 
 <ListOfArcConnectedValves> 
  <ConnectedValves> 
   <ID>”Integer”</ID> 
   <Valve> 
    <ValveID>”Integer”</ValveID> 
    <Object>”String”</Object>  
    <ObjectID>”Integer”</ObjectID>  
   </Valve> 
   ... 
   <Valve> 
    <LineSegments> 
     <LineSegment> 
      <Point> 
       <X>”Integer”</X> 
       <Y>”Integer”</Y> 
      </Point> 
      <Point> 
       <X>”Integer”</X> 
       <Y>”Integer”</Y> 
      </Point> 
     </LineSegment> 
     ... 
    </LineSegments> 
   </Valve> 
  </ConnectedValves> 
  ... 
 </ListOfArcConnectedValves> 

7.8 Test 

We have been using several different test and validation techniques in order to 
ensure the correctness of our algorithms. 

During the implementation of the algorithms we have been using the debugger 
within visual studio, in order to ensure that the various maps/buffers have been 
used correctly. 

Furthermore we have developed an integrated design and visualization tool, in 
order to enhance the inspection quality and speed of both designing and 
checking the placement and routing processes. We did this because checking the 
XML-files manually, very quickly became impossible, as the designs grew larger.  

Also, as we wanted to create even larger designs with even more components 
and connections, we absolutely needed a streamlined tool for creating errorless 
XML-files. We therefore took the decision to include the design process into the 
tool. 
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We have created a debug mode, shown on Figure 18, in the flow part of the 
program. This allows us to see the connections between components directly 
instead of their paths. During the design and implementation phase we have 
enabled movement of the already routed components, to visually inspect and 
ensure correctness of the automated routing and intersection creation. 

 

 
  Figure 18: Debug mode of the flow channel routing phase of the custom biochip CAD tool. 

For testing the algorithms, we have produced and verified several designs, of 
which a few of them are shown on the front page and in the figures in this thesis. 
During this process, the setting of the variables has been tested and also a great 
amount of different designs have been placed, and routed. 

7.9 Performance 

Our placement algorithm is highly dependent on the size of the various 
components used. This is due to the fact that whenever a component is placed, 
the algorithm needs to check if the placement is valid and non-overlapping. 
Furthermore, the size of the chip influences the running time. This is due to the 
fact that for too small a chip the number of failed placement attempts will 
increase. On the other hand if the chip becomes too large, then more component 
moves will end up being bad placements, which will be rejected.  This means that 
the user needs to experiment with the different controls and variables and the 
number of components to chip size ratio. Naturally the number of iterations 
requested by the user directly influences the running time of the algorithm. 
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The flow routing algorithm is highly dependent on the placement of the 
components and the chip size. As the chip size increases then so does the worst 
case running time. The running time is furthermore dependent on the number of 
points that needs to be connected.  

We have experimented with several different biochip sizes ranging from 5 – 25 
components and about 50 connections. These designs have all resulted in 
running times of less than a few seconds. 

The routing of the control layer is dependent on the number of valves to be 
connected to high pressure air inlet ports. Also, the density of the valves in 
specific areas and the number of available inlet ports is very important. Lastly, 
because we do not allow control channels to pass over components, the running 
time can increase significantly. Therefore, the average running time of the 
algorithm is highly dependent on the placement and the routing of the flow layer 
previously created. 

Again, we have experimented with several different biochip sizes. But because of 
the above mentioned factors, the running time may vary from a few seconds up 
to indefinitely, because some of the designs may be impossible to complete. In 
these situations it is up to the designer to change the placement or the routing of 
the flow channels, in order to successfully route the control channels. As a 
pointer, for the solution on the front page, the routing of the control channels 
took around 2 seconds. 

8 Possible extensions 

The process of creating this application has inspired us to come up with a few 
extensions to the algorithms and the data structures that could have been 
implemented. 

One possible extension that might be worth considering is to allow the control 
routing algorithm to create routes using two layers. This could be done using a 
specialized algorithm that determines with control layer the valves should be 
placed, i.e. if it is a push-up or push-down valve. A naïve approach could be to 
simply route all nets that are ripped-up on the control layer on the opposite side, 
thus leaving room where needed. 

Another possible extension that could have been considered, for the flow 
channel routing algorithm, is the rip-up or the shove functionality. 

Yet another possible, but rather more radical, extension or alteration is to define 
a biochip grid consisting of homogenous hexagonal cells, instead of square cells. 
The advantage of defining a grid like this would be that more direct routings 
could be made. Also, to accomplish this, our currently implemented algorithms 
would only require minor changes to function with a hexagonal grid. The 
disadvantage of implementing a hexagonal grid would be a slight increase in 
algorithmic complexity. 
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9 Conclusion 

The overall goal of this project has been to identify and implement different 
algorithms, for aiding the process of designing continuous flow-based biochips. 
As part of this process we have looked at the Lee and the Hadlock algorithms, as 
possible candidates for the solution of the routing problem of microfluidic Very 
Large Scale Integration. Our study and initial implementation lead to important 
insights into the problem. 

As a result of these new insights we chose to extend the algorithms, so as to 
make it possible to create Rectilinear Steiner Trees. 

Our study also revealed two weaknesses related to extending the Hadlock 
algorithm. Firstly, the Hadlock algorithm requires a single specific target in order 
to determine the detour values. This means that routing to the closest point out 
of several points is simply not possible. Secondly, the Hadlock algorithm does not 
guarantee to find the shortest path between a terminal and several starting 
points. Therefore, in our opinion, these two weaknesses make Hadlock inferior 
to the Lee algorithm. 

Besides the routing algorithms, we have created an algorithm for identifying and 
grouping input and output terminals, that needs to be connected as a result of 
the design. This algorithm creates so called mandatory intersections between 
flow channels that must be merged, when two or more flow channels connect to 
a single terminal. 

As we have seen, routed nets may end up blocking the channels of other nets that 
must also be routed. In the literature that we have read, we have not found any 
specific descriptions of how obstructing nets should be identified for rip-up and 
re-routing, apart from a simple strategy of randomly selecting nets. Because of 
this we have come up with and developed an intelligent rip-up algorithm. 
Furthermore, in order to prevent possible deadlocks, we implemented a Poisson 
distributed random rip-up scheme that works alongside our intelligent rip-up 
algorithm. This enables the algorithm to get out of situations where it might 
otherwise end up being stuck. 

Additionally we have implemented a CAD tool that aims to support the user 
through the entire design process, from the initial schematic design through 
placement of components, routing of flow channels, and routing of control 
channels. 

Lastly, we have implemented a simple solution to the placement problem, and 
we have integrated it into the CAD tool. The Simulated Annealing-based heuristic 
is inspired by the process of annealing metal and solves the placement problem 
through randomization, which has proven to be quite effective. 
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11 Appendix A 

Below is a sample XML-file of the design shown on Figure 4. 
<Architecture> 
 <ID>1</ID> 
 <Size> 
  <Height>21</Height> 
  <Width>33</Width> 
 </Size> 
 <ListOfArcComponents> 
  <ArcComponentProperties> 
   <ID>1</ID> 
   <Name>1</Name> 
   <ArcComponentType>Input</ArcComponentType> 
   <Orientation>2</Orientation> 
   <NumberOfValves>0</NumberOfValves> 
   <Size> 
    <Height>3</Height> 
    <Width>3</Width> 
   </Size> 
   <Position> 
    <X>19</X> 
    <Y>5</Y> 
   </Position> 
  </ArcComponentProperties> 
  <ArcComponentProperties> 
   <ID>2</ID> 
   <Name>2</Name> 
   <ArcComponentType>Output</ArcComponentType> 
   <Orientation>0</Orientation> 
   <NumberOfValves>0</NumberOfValves> 
   <Size> 
    <Height>3</Height> 
    <Width>3</Width> 
   </Size> 
   <Position> 
    <X>27</X> 
    <Y>12</Y> 
   </Position> 
  </ArcComponentProperties> 
  <ArcComponentProperties> 
   <ID>3</ID> 
   <Name>3</Name> 
   <ArcComponentType>Output</ArcComponentType> 
   <Orientation>2</Orientation> 
   <NumberOfValves>0</NumberOfValves> 
   <Size> 
    <Height>3</Height> 
    <Width>3</Width> 
   </Size> 
   <Position> 
    <X>3</X> 
    <Y>5</Y> 
   </Position> 
  </ArcComponentProperties> 
  <ArcComponentProperties> 
   <ID>4</ID> 
   <Name>Mixer</Name> 
   <ArcComponentType>Mixer</ArcComponentType> 
   <Orientation>2</Orientation> 
   <NumberOfValves>7</NumberOfValves> 
   <Size> 
    <Height>7</Height> 
    <Width>7</Width> 
   </Size> 
   <Position> 
    <X>9</X> 
    <Y>3</Y> 
   </Position> 
  </ArcComponentProperties> 
  <ArcComponentProperties> 
   <ID>5</ID> 
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   <Name>Heater</Name> 
   <ArcComponentType>Heater</ArcComponentType> 
   <Orientation>0</Orientation> 
   <NumberOfValves>0</NumberOfValves> 
   <Size> 
    <Height>5</Height> 
    <Width>5</Width> 
   </Size> 
   <Position> 
    <X>11</X> 
    <Y>13</Y> 
   </Position> 
  </ArcComponentProperties> 
  <ArcComponentProperties> 
   <ID>6</ID> 
   <Name>Filter</Name> 
   <ArcComponentType>Filter</ArcComponentType> 
   <Orientation>0</Orientation> 
   <NumberOfValves>0</NumberOfValves> 
   <Size> 
    <Height>5</Height> 
    <Width>5</Width> 
   </Size> 
   <Position> 
    <X>19</X> 
    <Y>11</Y> 
   </Position> 
  </ArcComponentProperties> 
  <ArcComponentProperties> 
   <ID>7</ID> 
   <Name>S7</Name> 
   <ArcComponentType>switchESW</ArcComponentType> 
   <Orientation>1</Orientation> 
   <NumberOfValves>3</NumberOfValves> 
   <Size> 
    <Height>1</Height> 
    <Width>1</Width> 
   </Size> 
   <Position> 
    <X>7</X> 
    <Y>6</Y> 
   </Position> 
  </ArcComponentProperties> 
  <ArcComponentProperties> 
   <ID>8</ID> 
   <Name>S8</Name> 
   <ArcComponentType>switchESW</ArcComponentType> 
   <Orientation>1</Orientation> 
   <NumberOfValves>3</NumberOfValves> 
   <Size> 
    <Height>1</Height> 
    <Width>1</Width> 
   </Size> 
   <Position> 
    <X>17</X> 
    <Y>6</Y> 
   </Position> 
  </ArcComponentProperties> 
  <ArcComponentProperties> 
   <ID>9</ID> 
   <Name>S9</Name> 
   <ArcComponentType>switchNES</ArcComponentType> 
   <Orientation>1</Orientation> 
   <NumberOfValves>3</NumberOfValves> 
   <Size> 
    <Height>1</Height> 
    <Width>1</Width> 
   </Size> 
   <Position> 
    <X>17</X> 
    <Y>13</Y> 
   </Position> 
  </ArcComponentProperties> 
 </ListOfArcComponents> 
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 <ListOfArcConnectors> 
  <ArcConnectorProperties> 
   <Component> 
    <ID>1</ID> 
    <Name>1</Name> 
    <ConnectionPoint> 
     <X>19</X> 
     <Y>6</Y> 
    </ConnectionPoint> 
   </Component> 
   <Component> 
    <ID>8</ID> 
    <Name>S8</Name> 
    <ConnectionPoint> 
     <X>17</X> 
     <Y>6</Y> 
    </ConnectionPoint> 
   </Component> 
   <LinePoints> 
   </LinePoints> 
  </ArcConnectorProperties> 
  <ArcConnectorProperties> 
   <Component> 
    <ID>4</ID> 
    <Name>Mixer</Name> 
    <ConnectionPoint> 
     <X>9</X> 
     <Y>6</Y> 
    </ConnectionPoint> 
   </Component> 
   <Component> 
    <ID>7</ID> 
    <Name>S7</Name> 
    <ConnectionPoint> 
     <X>7</X> 
     <Y>6</Y> 
    </ConnectionPoint> 
   </Component> 
   <LinePoints> 
   </LinePoints> 
  </ArcConnectorProperties> 
  <ArcConnectorProperties> 
   <Component> 
    <ID>5</ID> 
    <Name>Heater</Name> 
    <ConnectionPoint> 
     <X>15</X> 
     <Y>15</Y> 
    </ConnectionPoint> 
   </Component> 
   <Component> 
    <ID>9</ID> 
    <Name>S9</Name> 
    <ConnectionPoint> 
     <X>17</X> 
     <Y>13</Y> 
    </ConnectionPoint> 
   </Component> 
   <LinePoints> 
    <Point> 
     <X>17</X> 
     <Y>15</Y> 
    </Point> 
   </LinePoints> 
  </ArcConnectorProperties> 
  <ArcConnectorProperties> 
   <Component> 
    <ID>6</ID> 
    <Name>Filter</Name> 
    <ConnectionPoint> 
     <X>23</X> 
     <Y>13</Y> 
    </ConnectionPoint> 
   </Component> 
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   <Component> 
    <ID>2</ID> 
    <Name>2</Name> 
    <ConnectionPoint> 
     <X>27</X> 
     <Y>13</Y> 
    </ConnectionPoint> 
   </Component> 
   <LinePoints> 
   </LinePoints> 
  </ArcConnectorProperties> 
  <ArcConnectorProperties> 
   <Component> 
    <ID>8</ID> 
    <Name>S8</Name> 
    <ConnectionPoint> 
     <X>17</X> 
     <Y>6</Y> 
    </ConnectionPoint> 
   </Component> 
   <Component> 
    <ID>9</ID> 
    <Name>S9</Name> 
    <ConnectionPoint> 
     <X>17</X> 
     <Y>13</Y> 
    </ConnectionPoint> 
   </Component> 
   <LinePoints> 
   </LinePoints> 
  </ArcConnectorProperties> 
  <ArcConnectorProperties> 
   <Component> 
    <ID>8</ID> 
    <Name>S8</Name> 
    <ConnectionPoint> 
     <X>17</X> 
     <Y>6</Y> 
    </ConnectionPoint> 
   </Component> 
   <Component> 
    <ID>4</ID> 
    <Name>Mixer</Name> 
    <ConnectionPoint> 
     <X>15</X> 
     <Y>6</Y> 
    </ConnectionPoint> 
   </Component> 
   <LinePoints> 
   </LinePoints> 
  </ArcConnectorProperties> 
  <ArcConnectorProperties> 
   <Component> 
    <ID>7</ID> 
    <Name>S7</Name> 
    <ConnectionPoint> 
     <X>7</X> 
     <Y>6</Y> 
    </ConnectionPoint> 
   </Component> 
   <Component> 
    <ID>5</ID> 
    <Name>Heater</Name> 
    <ConnectionPoint> 
     <X>11</X> 
     <Y>15</Y> 
    </ConnectionPoint> 
   </Component> 
   <LinePoints> 
    <Point> 
     <X>7</X> 
     <Y>15</Y> 
    </Point> 
   </LinePoints> 
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  </ArcConnectorProperties> 
  <ArcConnectorProperties> 
   <Component> 
    <ID>7</ID> 
    <Name>S7</Name> 
    <ConnectionPoint> 
     <X>7</X> 
     <Y>6</Y> 
    </ConnectionPoint> 
   </Component> 
   <Component> 
    <ID>3</ID> 
    <Name>3</Name> 
    <ConnectionPoint> 
     <X>5</X> 
     <Y>6</Y> 
    </ConnectionPoint> 
   </Component> 
   <LinePoints> 
   </LinePoints> 
  </ArcConnectorProperties> 
  <ArcConnectorProperties> 
   <Component> 
    <ID>9</ID> 
    <Name>S9</Name> 
    <ConnectionPoint> 
     <X>17</X> 
     <Y>13</Y> 
    </ConnectionPoint> 
   </Component> 
   <Component> 
    <ID>6</ID> 
    <Name>Filter</Name> 
    <ConnectionPoint> 
     <X>19</X> 
     <Y>13</Y> 
    </ConnectionPoint> 
   </Component> 
   <LinePoints> 
   </LinePoints> 
  </ArcConnectorProperties> 
 </ListOfArcConnectors> 
 <ListOfArcConnectedValves> 
  <ConnectedValves> 
   <ID>1</ID> 
   <Valve> 
    <ValveID>1</ValveID> 
    <Object>Mixer</Object> 
    <ObjectID>4</ObjectID> 
   </Valve> 
   <LineSegments> 
    <LineSegment> 
    <Point> 
     <X>33</X> 
     <Y>0</Y> 
    </Point> 
    <Point> 
     <X>33</X> 
     <Y>9</Y> 
    </Point> 
    </LineSegment> 
   </LineSegments> 
  </ConnectedValves> 
  <ConnectedValves> 
   <ID>2</ID> 
   <Valve> 
    <ValveID>2</ValveID> 
    <Object>Mixer</Object> 
    <ObjectID>4</ObjectID> 
   </Valve> 
   <LineSegments> 
    <LineSegment> 
    <Point> 
     <X>36</X> 
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     <Y>0</Y> 
    </Point> 
    <Point> 
     <X>36</X> 
     <Y>9</Y> 
    </Point> 
    </LineSegment> 
   </LineSegments> 
  </ConnectedValves> 
  <ConnectedValves> 
   <ID>3</ID> 
   <Valve> 
    <ValveID>3</ValveID> 
    <Object>Mixer</Object> 
    <ObjectID>4</ObjectID> 
   </Valve> 
   <LineSegments> 
    <LineSegment> 
    <Point> 
     <X>39</X> 
     <Y>0</Y> 
    </Point> 
    <Point> 
     <X>39</X> 
     <Y>9</Y> 
    </Point> 
    </LineSegment> 
   </LineSegments> 
  </ConnectedValves> 
  <ConnectedValves> 
   <ID>4</ID> 
   <Valve> 
    <ValveID>4</ValveID> 
    <Object>Mixer</Object> 
    <ObjectID>4</ObjectID> 
   </Valve> 
   <LineSegments> 
    <LineSegment> 
    <Point> 
     <X>42</X> 
     <Y>0</Y> 
    </Point> 
    <Point> 
     <X>42</X> 
     <Y>9</Y> 
    </Point> 
    </LineSegment> 
   </LineSegments> 
  </ConnectedValves> 
  <ConnectedValves> 
   <ID>5</ID> 
   <Valve> 
    <ValveID>5</ValveID> 
    <Object>Mixer</Object> 
    <ObjectID>4</ObjectID> 
   </Valve> 
   <LineSegments> 
    <LineSegment> 
    <Point> 
     <X>30</X> 
     <Y>0</Y> 
    </Point> 
    <Point> 
     <X>30</X> 
     <Y>9</Y> 
    </Point> 
    </LineSegment> 
   </LineSegments> 
  </ConnectedValves> 
  <ConnectedValves> 
   <ID>6</ID> 
   <Valve> 
    <ValveID>6</ValveID> 
    <Object>Mixer</Object> 
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    <ObjectID>4</ObjectID> 
   </Valve> 
   <LineSegments> 
    <LineSegment> 
    <Point> 
     <X>27</X> 
     <Y>0</Y> 
    </Point> 
    <Point> 
     <X>27</X> 
     <Y>9</Y> 
    </Point> 
    </LineSegment> 
   </LineSegments> 
  </ConnectedValves> 
  <ConnectedValves> 
   <ID>7</ID> 
   <Valve> 
    <ValveID>7</ValveID> 
    <Object>Mixer</Object> 
    <ObjectID>4</ObjectID> 
   </Valve> 
   <LineSegments> 
    <LineSegment> 
    <Point> 
     <X>45</X> 
     <Y>0</Y> 
    </Point> 
    <Point> 
     <X>45</X> 
     <Y>9</Y> 
    </Point> 
    </LineSegment> 
   </LineSegments> 
  </ConnectedValves> 
  <ConnectedValves> 
   <ID>8</ID> 
   <Valve> 
    <ValveID>8</ValveID> 
    <Object>S7</Object> 
    <ObjectID>7</ObjectID> 
   </Valve> 
   <LineSegments> 
    <LineSegment> 
    <Point> 
     <X>24</X> 
     <Y>0</Y> 
    </Point> 
    <Point> 
     <X>24</X> 
     <Y>18</Y> 
    </Point> 
    </LineSegment> 
    <LineSegment> 
    <Point> 
     <X>24</X> 
     <Y>18</Y> 
    </Point> 
    <Point> 
     <X>23</X> 
     <Y>18</Y> 
    </Point> 
    </LineSegment> 
   </LineSegments> 
  </ConnectedValves> 
  <ConnectedValves> 
   <ID>9</ID> 
   <Valve> 
    <ValveID>9</ValveID> 
    <Object>S7</Object> 
    <ObjectID>7</ObjectID> 
   </Valve> 
   <LineSegments> 
    <LineSegment> 
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    <Point> 
     <X>18</X> 
     <Y>0</Y> 
    </Point> 
    <Point> 
     <X>18</X> 
     <Y>18</Y> 
    </Point> 
    </LineSegment> 
    <LineSegment> 
    <Point> 
     <X>18</X> 
     <Y>18</Y> 
    </Point> 
    <Point> 
     <X>21</X> 
     <Y>18</Y> 
    </Point> 
    </LineSegment> 
   </LineSegments> 
  </ConnectedValves> 
  <ConnectedValves> 
   <ID>10</ID> 
   <Valve> 
    <ValveID>10</ValveID> 
    <Object>S7</Object> 
    <ObjectID>7</ObjectID> 
   </Valve> 
   <LineSegments> 
    <LineSegment> 
    <Point> 
     <X>21</X> 
     <Y>0</Y> 
    </Point> 
    <Point> 
     <X>21</X> 
     <Y>18</Y> 
    </Point> 
    </LineSegment> 
   </LineSegments> 
  </ConnectedValves> 
  <ConnectedValves> 
   <ID>11</ID> 
   <Valve> 
    <ValveID>11</ValveID> 
    <Object>S8</Object> 
    <ObjectID>8</ObjectID> 
   </Valve> 
   <LineSegments> 
    <LineSegment> 
    <Point> 
     <X>48</X> 
     <Y>0</Y> 
    </Point> 
    <Point> 
     <X>48</X> 
     <Y>18</Y> 
    </Point> 
    </LineSegment> 
    <LineSegment> 
    <Point> 
     <X>48</X> 
     <Y>18</Y> 
    </Point> 
    <Point> 
     <X>51</X> 
     <Y>18</Y> 
    </Point> 
    </LineSegment> 
   </LineSegments> 
  </ConnectedValves> 
  <ConnectedValves> 
   <ID>12</ID> 
   <Valve> 
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    <ValveID>12</ValveID> 
    <Object>S8</Object> 
    <ObjectID>8</ObjectID> 
   </Valve> 
   <LineSegments> 
    <LineSegment> 
    <Point> 
     <X>54</X> 
     <Y>0</Y> 
    </Point> 
    <Point> 
     <X>54</X> 
     <Y>18</Y> 
    </Point> 
    </LineSegment> 
    <LineSegment> 
    <Point> 
     <X>54</X> 
     <Y>18</Y> 
    </Point> 
    <Point> 
     <X>53</X> 
     <Y>18</Y> 
    </Point> 
    </LineSegment> 
   </LineSegments> 
  </ConnectedValves> 
  <ConnectedValves> 
   <ID>13</ID> 
   <Valve> 
    <ValveID>13</ValveID> 
    <Object>S8</Object> 
    <ObjectID>8</ObjectID> 
   </Valve> 
   <LineSegments> 
    <LineSegment> 
    <Point> 
     <X>51</X> 
     <Y>0</Y> 
    </Point> 
    <Point> 
     <X>51</X> 
     <Y>18</Y> 
    </Point> 
    </LineSegment> 
   </LineSegments> 
  </ConnectedValves> 
  <ConnectedValves> 
   <ID>14</ID> 
   <Valve> 
    <ValveID>14</ValveID> 
    <Object>S9</Object> 
    <ObjectID>9</ObjectID> 
   </Valve> 
   <LineSegments> 
    <LineSegment> 
    <Point> 
     <X>53</X> 
     <Y>62</Y> 
    </Point> 
    <Point> 
     <X>53</X> 
     <Y>41</Y> 
    </Point> 
    </LineSegment> 
   </LineSegments> 
  </ConnectedValves> 
  <ConnectedValves> 
   <ID>15</ID> 
   <Valve> 
    <ValveID>15</ValveID> 
    <Object>S9</Object> 
    <ObjectID>9</ObjectID> 
   </Valve> 
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   <LineSegments> 
    <LineSegment> 
    <Point> 
     <X>50</X> 
     <Y>62</Y> 
    </Point> 
    <Point> 
     <X>51</X> 
     <Y>62</Y> 
    </Point> 
    </LineSegment> 
    <LineSegment> 
    <Point> 
     <X>51</X> 
     <Y>62</Y> 
    </Point> 
    <Point> 
     <X>51</X> 
     <Y>41</Y> 
    </Point> 
    </LineSegment> 
   </LineSegments> 
  </ConnectedValves> 
  <ConnectedValves> 
   <ID>16</ID> 
   <Valve> 
    <ValveID>16</ValveID> 
    <Object>S9</Object> 
    <ObjectID>9</ObjectID> 
   </Valve> 
   <LineSegments> 
    <LineSegment> 
    <Point> 
     <X>56</X> 
     <Y>62</Y> 
    </Point> 
    <Point> 
     <X>54</X> 
     <Y>62</Y> 
    </Point> 
    </LineSegment> 
    <LineSegment> 
    <Point> 
     <X>54</X> 
     <Y>62</Y> 
    </Point> 
    <Point> 
     <X>54</X> 
     <Y>41</Y> 
    </Point> 
    </LineSegment> 
    <LineSegment> 
    <Point> 
     <X>54</X> 
     <Y>41</Y> 
    </Point> 
    <Point> 
     <X>53</X> 
     <Y>41</Y> 
    </Point> 
    </LineSegment> 
   </LineSegments> 
  </ConnectedValves> 
 </ListOfArcConnectedValves> 
</Architecture> 
 


