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ABSTRACT: Many safety-critical real-time applications are implemented using distributed architectures,
composed of heterogeneous processing elements (PEs) interconnected in a network. In this paper, we are inter-
ested in the TTEthernet protocol, which is a deterministic, synchronized and congestion-free network protocol
based on the IEEE 802.3 Ethernet standard and compliant with ARINC 664p7. TTEthernet supports three types
of traffic: static time-triggered (TT) traffic and dynamic traffic, which is further subdivided into Rate Constrained
(RC) traffic that has bounded end-to-end latencies, and Best-Effort (BE) traffic, for which no timing guaran-
tees are provided. TTEthernet offers spatial separation through the concept of virtual links (VLs), and temporal
separation, through schedule tables for TT messages and bandwidth allocation for RC messages. Given a set
of PEs, we are interested to determine a fault-tolerant network topology, consisting of redundant physical links
and network switches, such that the architecture cost is minimized, the applications are fault-tolerant to a given
number of permanent faults occurring in the communication network, and the timing constraints of the TT and
RC messages are satisfied. Deciding on a fault-tolerant topology means (i) deciding on the number of network
switches, (ii) the physical links and the network topology, (iii) the routing of VLs on top of the physical network,
(iv) the assignment of frames to VLs and (v) the schedule tables for the TT frames. We propose a Simulated
Annealing meta-heuristic to solve this optimization problem. The proposed approach has been evaluated using
a synthetic benchmark and a space case study, based on the Orion Crew Exploration Vehicle.

1 INTRODUCTION

Many safety-critical real-time applications, following
physical, modularity or safety constraints, are imple-
mented using distributed architectures, composed of
heterogeneous processing elements (PEs), intercon-
nected in a network. A large number of communica-
tion protocols have been proposed for embedded sys-
tems. However, only a few protocols are suitable for
safety-critical real-time applications (Rushby 2001).
In this paper, we are interested in the TTEthernet pro-
tocol (SAE 2011).

Ethernet (IEEE 2012), although it is low cost and
high speed, is known to be unsuitable for real-time
and safety-critical applications (Decotignie 2005).
For example, in half-duplex implementations, frame
collision is unavoidable, leading to unbounded trans-
mission times. Decotignie (2005) presents the re-
quirements for a real-time network and how Ethernet
can be improved to comply with these requirements.
Several real-time communication solutions based on
Ethernet have been proposed. Schneele and Geyer
(2012) and Cummings et al. (2012) describe and com-
pare several of the proposed Ethernet-based real-time
communication protocols.

TTEthernet (SAE 2011) is a deterministic, syn-
chronized and congestion-free network protocol
based on the IEEE 802.3 Ethernet (IEEE 2012) stan-
dard and compliant with the ARINC 664p7 specifi-
cation (ARINC 2009). ARINC 664p7 is a full-duplex
Ethernet network, which emulates point-to-point con-
nectivity over the network by defining virtual links,
tree structures with one sender and one or several re-
ceivers (see Section 2). TTEthernet supports applica-
tions with mixed-criticality requirements in the tem-
poral domain, providing three types of traffic: static
time-triggered (TT) traffic and dynamic traffic, which
is further subdivided into Rate Constrained (RC) traf-
fic that has bounded end-to-end latencies, and Best-
Effort (BE) traffic, for which no timing guarantees are
provided. TT messages are transmitted based on static
schedule tables and have the highest priority. RC mes-
sages are transmitted if there are no TT messages in
transmission, and BE traffic has the lowest priority.
TTEthernet is highly suitable for applications of dif-
ferent safety criticality levels, as it offers spatial sepa-
ration for mixed-criticality messages through the con-
cept of virtual links. A TTEthernet network is com-
posed of a set of clusters. Each cluster consists of End
Systems (ESes) interconnected by physical links and



Network Switches (NSes). The links are full duplex,
allowing thus communication in both directions, and
the networks can be multi-hop.

There is a lot of work on network reliability and
redundancy optimization. An annotated overview of
system reliability optimization, which covers also net-
work reliability is presented in (Kuo & Prasad 2000).
Konak and Smith (2006) present the latest research
results in network reliability optimization. Several
network reliability measures have been proposed in
the literature, such as connectivity, resilience and
performability. Researchers have proposed several
approaches to the optimization problem, including
heuristics, metaheuristics and exact solutions based,
for example, on mathematical programming (Konak
& Smith 2006).

However, these results cannot be applied directly
in our case. One of the basic assumptions of earlier
works on network reliability optimization is that once
a fault is detected, the network will reconfigure itself
to avoid the fault. That is, new routes will be found
for messages. In the case of TTEthernet the routes of
the virtual links for the messages are static: they are
loaded into the end systems and network switches at
design time, and it is not possible to change the rout-
ing dynamically, at runtime. TTEthernet is intended
for real-time applications where message worst-case
latencies have to be guaranteed.

Moreover, we are targeting safety-related systems,
which have to be developed according to certification
standards; for example, IEC 61508 is used in indus-
trial applications, ISO 26262 is for the automotive
area, whereas DO 178B refers to software for airborne
systems. During the engineering of a safety-critical
system, the hazards are identified and their severity
is analyzed, the risks are assessed and the appropriate
risk control measures are introduced to reduce the risk
to an acceptable level. A Safety-Integrity Level (SIL)
captures the required level of risk reduction. SIL al-
location is typically a manual process, which is done
after performing hazard and risk analysis. Depending
on the standard and the SIL of the application, cer-
tain levels of redundancy are mandated for the system
safety functions.

Considering the current certification practice, we
assume that the engineer will specify for each applica-
tion, depending on its SIL, the required Redundancy
Level. At the level of the network topology this trans-
lates into requirements for redundant disjoint chan-
nels for communication between the ESes involved
in the communication. Thus, if a physical link or a
NS will fail, the other channels can still deliver the
messages by their deadlines. The current approach in
such a situation is to use hardware redundancy at the
network level and replicate the complete network, as
discussed by (Annighoefer et al. 2014) for an avion-
ics network. However, such a solution is too costly
for most application areas, which do not require this
level of redundancy for all the safety functions. Re-

searchers have also proposed redundancy optimiza-
tion solutions, e.g., (Kim & Yum 1993), but these
works also assume dynamic routing. In addition, for
TTEthernet, we also have to guarantee the schedula-
bility of the messages, which depends on the config-
uration of the network, e.g., on the VL routes, the TT
schedule tables and RC bandwidth allocation.

In (Tămaş-Selicean et al. 2014) we have consid-
ered that the network topology is given, and we have
proposed a Tabu Search-based metaheuristic that op-
timizes the TTEthernet network configuration, such
that the TT and RC messages are schedulable, and
the end-to-end delay of RC messages is minimized.
The configuration consists of deciding the routing of
virtual links (VLs), the packing and fragmenting of
messages into frames, the assignment of frames to
VLs, the bandwidth of the RC VLs and the sched-
ules for the TT messages. In this paper our focus is on
determining a low-cost fault-tolerant network archi-
tecture, which can guarantee the safety and real-time
requirements of the application. We assume that the
applications and ESes are given and that the designer
has partitioned the messages into TT, RC or BE traffic
classes, depending on the particularities of the appli-
cation. We are interested to determine a fault-tolerant
network topology, consisting of redundant physical
links and NSes, such that the architecture cost is min-
imized, the applications are fault-tolerant to a given
number of permanent faults occurring in the commu-
nication network, and the timing constraints of the TT
and RC messages are satisfied.

2 SYSTEM MODEL

As mentioned, a TTEthernet network is composed of
a set of clusters, consisting of ESes interconnected
by links and NSes. An example cluster is presented
in Fig. 1, where we have 4 ESes, ES1 to ES4, and
3 NSes, NS1 to NS3. The design problem addressed
in this paper is performed at the cluster-level. Each ES
consists of a processing element containing a CPU,
memory, and a network interface card.

We model a TTEthernet cluster as an undirected
graph G(V ,E), where V = ES ∪NS is the set of end
systems (ES) and network switches (NS) and E is
the set of physical links. For Fig. 1, V = ES ∪NS =
{ES1, ES2, ES3, ES4}∪{NS1, NS2, NS3}, and the
physical links E are depicted with thick, black, double
arrows. Both ESes and NSes have a specified maxi-
mum number ni of ports that can be used for connect-
ing physical links. We define the cost of a network
architecture as the total monetary cost of NSes and
physical links Cost(G) =∑

iCostdli +
∑

j CostNSj
.

These costs are specified by the engineer, and may in-
clude not only unit costs, but also costs related to the
installation, for example.

A dataflow path dpi ∈ DP is an ordered sequence
of dataflow links connecting one sender to one re-



Figure 1: TTEthernet cluster example

ceiver. For example, in Fig. 1, dp1 connects ES1 to
ES3, while dp2 connects ES1 to ES4 (the dataflow
paths are depicted with green arrows). A dataflow link
li = [νj, νk] ∈ L, where L is the set of dataflow links
in a cluster, is a directed communication connection
from νj to νk, where νj and νk ∈ V can be ESes or
NSes. Using this notation, a dataflow path such as dp1
in Fig. 1 can be denoted as [[ES1, NS1], [NS1, NS2],
[NS2, ES3]].

The set of all messages in the system is denoted
with M. For each message we know its source ES
and destination ESes. For example, let us assume that
in Fig. 1 we have message m1 transmitted from the
source ES1 to the destinations ES3 and ES4. The
space partitioning between messages of different crit-
icality transmitted over physical links and network
switches is achieved through the concept of virtual
link. Thus, each message mi ∈M is transmitted using
a virtual link. The assignment of messages to virtual
links is captured by the function MF .

We denote the set of virtual links in a cluster with
VL. A virtual link vli ∈ VL is a directed tree, with the
sender as the root and the receivers as leafs. In our ex-
ample, message m1 is transmitted using vl1, depicted
in Fig. 1 using dot-dash red arrows, which is a tree
with the root ES1 and the leafs ES3 and ES4. Each
virtual link is composed of a set of dataflow paths,
one such dataflow path for each root-leaf connection.
More formally, we denote with RV L(vli) = {∀dpj ∈
DP|dpj ∈ vli} the routing of virtual link vli. For ex-
ample, in Fig. 1, RV L(vl1) = {dp1, dp2}.

TTEthernet transmits data using frames. The
TTEthernet frame format fully complies with the AR-
INC 664p7 Ṁessages are transmitted in the payload
of frames. We know the size mi.size for each mes-
sage mi ∈M. Regarding real-time properties, for the
TT and RC messages we know their periods and dead-
lines, mi.period and mi.deadline, respectively. RC
messages are not necessarily periodic, but have a min-
imum inter-arrival time. We define the rate of an RC
message mi as mi.rate = 1/mi.period. Regarding
safety related properties, we assume that the engineer
specifies for each critical message mi a redundancy
level RLi. Thus each critical message requires that

there are RLi virtual links V Lj
i , j ∈ 1..RLi, which

have alternative paths through the topology, i.e., they
do not share physical links and switches. In case of
permanent failure of physical links or switches, the

critical message can still be transmitted successfully,
as long as no more than RLi − 1 VLs are affected.

We define the sets FTT and FRC of TT and RC
frames, respectively, and F = FTT ∪FRC represents
all the frames in the system. In this paper we ig-
nore the BE traffic, as it does not have any real-time
or safety related properties. However, we have dis-
cussed how to take BE traffic into account during
the design, such that its quality-of-service is maxi-
mized (Tamas-Selicean & Pop 2014). We explained
in (Tămaş-Selicean, Pop, & Steiner 2014) how the
TTEthernet protocol works, and for space reasons we
will not reproduce here the details. TTEthernet has
three traffic integration policies: shuffling, preemp-
tion and timely block. In this paper we consider the
timely block policy: a low priority frame cannot be
transmitted if it interferes with the transmission of a
scheduled TT frame.

3 PROBLEM FORMULATION

We assume that the applications and ESes are given
and that the engineer has partitioned the messages
into TT, RC or BE traffic classes, depending on the
particularities of the application. We also assume
that each message is packed in a frame, i.e., we are
not concerned in this paper with frame packing and
fragmenting, which we have discussed in (Tămaş-
Selicean, Pop, & Steiner 2014).

The problem we are addressing in this paper can
be formulated as follows: given (1) the set of ESes
in the system and the cost and the maximum number
ni of ports for both ESes and NSes, (2) the set of TT
and RC frames FTT ∪FRC and (3) for each message
mi the source and destination ESes, the size mi.size,
deadline mi.deadline, period mi.period and redun-
dancy level RLi, we are interested to determine an
optimized implementation Υ such that the architec-
ture cost Cost(Υ) is minimized, the applications are
fault-tolerant, considering the specified redundancy
levels, and the timing constraints of all frames, both
TT and RC are satisfied. Determining an implemen-
tation means deciding on the (i) network topology G,
i.e., the number of NSes, the physical links and how
the ESes and NSes are interconnected, and the net-
work configuration, which consists of (ii) the assign-
ment MF of frames to virtual links, (iii) the routing
RV L of virtual links, (iv) the bandwidth for each RC
virtual link and (v) the set of TT schedule tables S .

This paper focuses on determining (i) the network
topology G, which is motivated in the next subsec-
tion. Section 3.2 discusses how a network configura-
tion, i.e., deciding on (ii) to (v), is determined. In Sec-
tion 4 we discuss our proposed metaheuristic solution
to determining the topology, further referred as Re-
dundant Architecture Selection (RAS); to determine
a network configuration within RAS, we have mod-
ified and extended the approach we have presented
in (Tămaş-Selicean et al. 2014).



3.1 Motivational Example

Let us consider the example in Fig. 2, where we have
four ESes, ES1 to ES4 and three messages, m1 from
ES1 to ES4, m2 from ES1 to ES3 and m3 from ES2

to ES4. We specify a redundancy level RL1 = 2 for
m1; the rest of messages are not safety relevant.

As mentioned, the redundancy levels of the mes-
sages impose redundant channels between the ESes
involved in the communication. For example, if mes-
sage m1 is sent from ES1 to ES4, then we need two
redundant channels between ES1 and ES4, such that
if one of the channels fails (a physical link or a switch
has a permanent failure), the other channel can de-
liver the message to the destination. Thus, a first pos-
sible fault-tolerant network topology for our system
is depicted in Fig. 2(a), where we have a topology Ga

consisting of a cascaded cluster with two redundant
channels; there are four NSes, each connected to two
ESes. Let us assume that m1 and m3 are RC and m2

is TT and that their timing properties (size, which de-
termines the transmission time, period, deadline) are
such that the messages are schedulable on Ga. Al-
though the example is fault-tolerant and schedulable,

ES1

ES2

ES3

ES4

NS1

NS2

NS3

NS4

(a) Fault-tolerant; sched.; Cost = 180

ES1

ES2

ES3

ES4

NS1

NS2

(b) Fault-tolerant; not sched.; Cost= 110

ES1

ES2

ES3

ES4

NS1

NS2

(c) Fault-tolerant; sched.; Cost = 110

Figure 2: Motivational Example

the cost is high. Considering a cost of 20 units for each
NS and of 10 units for each physical link, we have a
total cost of Cost(Ga) = 4 · 20 + 10 · 10 = 180 units.

By optimizing the cost of the topology, we are able
to obtain the solution Gb depicted in Fig. 2(b), which
has a cost of 110 units. This solution is fault-tolerant
because critical message m1 has two alternative non-
overlapping VLs for its transmission, that can toler-
ate 1 permanent failure (i.e., RL1 − 1) in any of the
physical links or NSes involved in the VLs. m1 has
two channels between ES1 and ES3 and two chan-
nels in between ES1 and ES4. However, the solution
is not schedulable. The problem is that all messages,
m1 to m3 have to pass through NS1. Let us assume
that their timing properties are such that they create
a worst-case situation where m3 has to wait for m1

and m2 such that it misses its deadline (we discuss
how the end-to-end worst-case delays are determined
in the next subsection).

However, by carefully deciding both the topology
and the configuration of the network, we are able to
obtain the solution in Fig. 2(c) which has the same
low cost as the topology Gb (110 units), and it is both
fault-tolerant and schedulable. In this solution, mes-
sage m3 reaches ES4 via NS2 and not the congested
NS1, thus it is able to meet its deadline. This shows
that it is very important to optimize the network topol-
ogy and its configuration in order to obtain low-cost
fault-tolerant schedulable solutions.

3.2 TTEthernet Configuration Example

For a given network architecture, we need to deter-
mine a network configuration, which consists of the
assignment of frames to VLs and their routing on top
of the physical network, the schedule tables for the
TT frames and the bandwidth for the RC frames. The
configuration has to be determined such that the re-
dundant physical channels for the critical messages
are disjoint, and the frames are schedulable.

Let us consider the example in Fig. 1 where we
have frame f1 transmitted from the source ES1 to
the destinations ES3 and ES4. One possible assign-
ment for f1 to VLs is MF (f1) = vl1, with the rout-
ing RV L(vl1) as depicted in the figure. Note that the
shortest route is not necessarily the best: it may cre-
ate congestion, as discussed in the motivational exam-
ple, or it may intersect with another redundant route,
which is not allowed. If we assume a redundancy level
RL1 = 2 for f1, the configuration in Fig. 1 is invalid,
since it is not possible to have two disjoint redundant
VLs for f1.

Given a network topology G, an assignment of
frames MF and their routing RV L, let us illustrate the
derivation of the TT schedule tables S , and the calcu-
lation of the worst-case end-to-end frame delays. We
use the setup from Fig. 3, where we have an architec-
ture model for a cluster composed of three ESes, ES1

to ES3 and a network switch NS1 (see Fig. 3a) and



an application model with three frames, see the table
in Fig. 3b. We have three virtual links, vl1, vl2 and
vl3 one for each frame, f1, f2 and f3, respectively, as
captured by the function MF in the table. The peri-
ods fi.period, deadlines fi.deadline and transmission
times Ci on a dataflow link are given in the table for
each frame. The dataflow links have the same speed,
hence the Ci of a frame fi is the same for each link.

We are interested to determine the TT schedules S
such that all the TT and RC frames are schedulable.
The schedulability of a TT frame fi is easy to deter-
mine: we just have to check the schedules S to see if
the times are synthesized such that the TT frame fi
is received before its deadline fi.deadline. To deter-
mine the schedulability of an RC frame fj we have
to compute its worst-case end-to-end delay, from the
moment it is sent to the moment it is received, which
can then be compared to the deadline fj.deadline to
determine if the RC frame fj is schedulable. We de-
note this worst-case delay with Rfj .

The worst-case end-to-end delay Rfi of an RC

frame fi ∈ FRC sent on a virtual link vli = MF (fi)

is the sum of the worst-case queueing delays Q
[νj ,νk]
fi

on each network node (ES or NS) νj ∈ V (which is
the source of a dataflow link [νj, νk] ∈ vli) and the

transmission duration C
[νj ,νk]
fi

for each dataflow link

[νj, νk] ∈ vli the frame transits:

Rfi =
∑

νj ,νk∈V
[νj ,νk]∈vli

(Q
[νj ,νk]
fi

+C
[νj ,νk]
f1

) (1)

The worst-case queueing delay Q
[νj ,νk]
fi

of frame fi ∈
FRC transmitted on dataflow link ll = [νj, νk] is given
by the following equation:

Q
[νj ,νk]
fi

= QTT
fi,[νj ,νk]

+QRC
fi,[νj ,νk]

+QTL
νj

(2)

where QTT
fi,[νj ,νk]

is the queueing delay due to the trans-

mission of TT frames scheduled to be sent between
the moment fi arrives at the network node νj and the

moment the frame instance is sent, QRC
fi,[νj ,νk]

is the

delay caused by the RC frames that can arrive, in the

(a) Example architecture model

period (μs) deadline (μs) Ci (μs) MF

f1 ∈ FRC 300 300 75 vl1
f2 ∈ FTT 200 200 50 vl2
f3 ∈ FTT 300 300 50 vl3

(b) Example application model

Figure 3: Example system model

Figure 4: Worst-case scenario for RC frame f1

worst-case, before fi at the node and thus are placed
before fi into the outgoing queue. QTL

νj
is the technical

latency introduced by the network node for frame fi,
due to the hardware tasks implementing the TTEth-
ernet protocol functionality, other than the latency re-
sulting from queueing effects.

In (Tamas-Selicean et al. 2015) we have proposed
a timing analysis for TTEthernet RC frames. How-
ever, the analysis was to slow to be integrated in our
proposed network topology optimization. Hence, we
have extended this analysis such that many situations
that cannot occur in the worst-case are eliminated,
speeding up the analysis. Since the focus of this paper
is on the optimization work and for space reasons, we
have decided to report this result in a future publica-
tion.

Fig. 4 presents a possible solution for synthesiz-
ing the TT schedules S . Instead of presenting the ac-
tual schedule tables, we show a Gantt chart, which
shows on a timeline from 0 to 600 μs what happens on
the three dataflow links, [ES1,NS1], [ES2,NS1] and
[NS1,ES3]. For the TT frames f2 and f3 the Gantt
chart captures their sending times (the left edge of the
rectangle) and transmission duration (the length of the
rectangle).

Since the transmission of RC frames is not syn-
chronized with the TT frames, there are many sce-
narios that can be depicted for f1, depending on when
f1 is sent in relation to the schedule tables. Because
we are interested in the schedulability of RC frames,
for the RC frame f1 we show in Fig. 4 the worst-
case scenario, i.e., the situation which has generated
the largest (worst-case) end-to-end delay. The two
TT frames are schedulable. In Fig. 4 the TT sched-
ules are constructed such that the end-to-end delay
of TT frames is minimized, i.e., the TT frames ar-
rive at their destination as soon as possible. In this
case, the worst-case end-to-end delay of the RC frame
f1, namely Rf1 , is 470 μs, which is greater than its
deadline of 300 μs, hence f1 is not schedulable. This
worst-case for f1 happens for the first frame instance
f1,1, see Fig. 4, when f1,1 happens to be sent by ES1

at 105 μs. In this case, as the network implements
the timely block integration algorithm, the frame can-
not be forwarded by NS1 to ES3 until there is a big
enough time interval to transmit the frame without



disturbing the scheduled TT frames. We denote these
“blocked” time intervals with hatched boxes. The first
big enough interval starts only at time 500, right after
f2,3 is received by ES3, which is too late. However, if
we instead schedule the TT frame f3 such that its sec-
ond instance f3,2 will be sent by ES2 to NS1 at 350
μs, the worst case end-to-end delay for f1 is reduced
to 275, hence f1 is schedulable. This example shows
that by considering the RC traffic when scheduling
the TT frames, the impact of the TT schedule on the
latency of the RC frames can be greatly reduced.

4 OPTIMIZATION STRATEGY

To solve the optimization problem presented in the
previous section we propose a Redundant Architec-
ture Selection (RAS) algorithm, based on Simulated
Annealing (SA) metaheuristic (Reeves 1993). SA is
searching for that solution which minimizes the ob-
jective function. Thus, each potential solution Υ vis-
ited is evaluated using the following function:

Objective(Υ) = WPδ · δ +Cost(Υ) (3)

where the second term is the cost of the architec-
ture, and the first term is a schedulability constraint.
δ is a “degree of schedulability” defined as sum,

for all frames, of positive delays between the worst-
case frame response times Ri and their deadlines
fi.deadline, δ =

∑
max(0,Ri − fi.deadline). Ri is

calculated as discussed in Section 3.2. When all the
frames are schedulable, δ is zero, and the first term is
ignored. However, when one or more frames are not
schedulable, δ is a positive number that is multiplied
with the penalty weight WPδ, which is a large num-
ber. Thus, we allow the search to visit unschedulable
solutions, but we penalize them in the hope of pushing
the search towards schedulable implementation.

The SA algorithm is a variant of the neighborhood
search technique, where the local search space is ex-
plored by moving from the current solution to a neigh-
bor solution. The neighbor solution is determined us-
ing design transformations, or moves, which are ap-
plied to the current solution, see the next subsection.
Each neighbor solution thus generated is evaluated us-
ing the objective function. Before evaluating a topol-
ogy solution G, we have to derive the correspond-
ing network configuration. As mentioned, we have
modified and extended the approach we have pre-
sented in (Tămaş-Selicean et al. 2014) for the con-
figuration synthesis and we have improved the run-
time of the RC schedulability analysis from (Tamas-
Selicean et al. 2015). For example, we have used a
List Scheduling heuristic to a quickly produce the TT
schedule tables, instead of relying on design transfor-
mations.

In general, the new solution is accepted if it is an
improved one. However, in the case of SA, a worse

solution can also be accepted with a certain probabil-
ity that depends on the deterioration of the objective
function and on a control parameter called tempera-
ture, which is analog to the temperature concept of
the physical annealing process.

4.1 Design Transformations

The design transformations are applied by RAS us-
ing the Tweak function presented in Algorithm 1. We
have designed the moves such that the resulted neigh-
bor solutions are valid. A valid network topology is
one where there exists a path between any two ESes
involved in a communication and the number of ports
of NSes and ESes are not exceeded, and a valid rout-
ing is considered one in which there exists a number
of disjoint channels that connect the source and desti-
nations of each message such that its RL is satisfied.

Algorithm 1 Tweak(Υ)

1: if a random probability < PRR then
2: return Reroute(Υ)
3: else if a random probability < PNS then
4: return InDelNS(Υ)
5: else
6: return InDelL(Υ)
7: end if

To present our moves, let us use the setup presented
in Section 3.1. The initial solution from which SA
starts is presented in Fig. 2(a). Frames f1 and f2 are
redundant frames for m1, and f3 and f4 are used for
m2 and m3, respectively. The four frames are assigned
to their own VLs; fi to vli, with i = 1..4. Thus, the
initial set of VLs is the following: vl1=[[ES1, NS1],
[NS1, NS3], [NS3, ES4]], vl2=[[ES1, NS2], [NS2,
NS4], [NS4, ES4]], vl3=[[ES1, NS1], [NS1, NS3],
[NS3, ES3]] and vl4=[[ES2, NS1], [NS1, NS3],
[NS3, NS4]]. Let us assume that the current solution
is the one presented in Fig. 5(a) where f2 is routed on
vl2=[[ES1, NS2], [NS2, ES4]], the other VLs rout-
ings remain unchanged.

The first group of moves is related to NSes, i.e.,
insertion and deletion of an NS (InDelNS in Algo-
rithm 1). The insertion move implies that a new NS
is created and added to the current solution. With
a certain probability all old components are consid-
ered to be connected with the new inserted NS un-
til at most half of its ports are occupied. After that,
the frames routed over the components connected
with the new NS are rerouted following the general
rerouting strategy, the new candidate being consid-
ered for acceptance. For the deletion move, an NS
is randomly picked and it and its direct connections
are removed. Furthermore, if the new solution is in-
valid regarding the redundancy criteria, it will be “re-
paired”. After the elements are deleted all VLs which
involved these components are considered. For each
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Figure 5: Design transformation examples

interrupted path, an incidence-constrained backtrack-
ing is applied in order to find an alternative continuous
path which is also disjoint regarding the other redun-
dant paths. Starting with the source, and following the
old path as furthest as possible, a partial path is cre-
ated. Then, from the its end point, exploring its neigh-
bors, another path to the destination is searched. If no
alternative paths are found, a stepping back move is
applied and the last physical link is removed from the
partial path. The alternative paths are explored until
one which satisfies the conditions of continuity and
disjointedness is found or until the partial path be-
come empty. If there are no such alternative paths
from the set of NSes of the initial partial path, one
with available ports is picked. A new connection be-
tween this NS and the destination is created such that
the path becomes continuous. If the solution gener-
ated cannot be thus “repaired”, it is rejected.

For example, if from the architecture presented in
Fig 5(a) the NS3 is deleted, after its deletion a phys-
ical link should be added to assure the RL of m1,
e.g., [NS1, ES4]. After the architecture is “repaired”
the frames passing through deleted components are
rerouted. Thus, applying the mentioned deletion move
to the current solution, we get the topology in
Fig. 5(b) and the routings: f1 on vl1=[[ES1, NS1],
[NS1, ES4]], f3 on vl3=[[ES1, NS1], [NS1, ES3]]
and f4 on vl4=[[ES2, NS1], [NS1, ES4]], the second
frame being further assigned to vl2. If a successive NS
deletion is applied there will be no alternative paths
for f1 or f2 and the new created solution is rejected.

Let us now present the Reroute move, which
reroutes VLs. The Reroute move is applied to a vir-
tual link vli carrying a frame fi. This move returns a
new tree for the virtual link vli, which has the same
source and destinations, but goes through different
dataflow links and network switches. The new tree is
randomly selected, but we encourage the selection of
routes which are less congested. Applying this move
to the solution in Fig 5(b), we obtain the solution
from Fig 5(c). Let us assume that the move randomly
picks first to reroute the VL of f1; it will find that it
passes through the congested NS1 (vl1, vl3 and vl4
passing through). However, because another uncon-
gested path which does not intersect the route of f2

cannot be found, the first frame is not rerouted. If the
moves picks f2, which does not follow a congested
path, it will be ignored. If f3 is randomly considered
by the Reroute move, an alternative uncongested path
is found, namely [[ES1, NS2], [NS2, NS3]], thus the
vl3 will be rerouted over this path. In Fig.5(c), the
routings of f3 are depicted with dot-dash arrows; the
old one with red and the newest one with blue.

The last set of design transformations used in RAS
is the one related to physical links InDelL. Similarly
to the previous moves a physical link can be either in-
serted or deleted from the current solution. A new link
is inserted such that it will join two randomly chosen
components of which at most one can be an ES. Af-
ter that, a rerouting strategy is applied. The deletion
move will choose a connection such that the resulted
solution is not invalid. For example, if the insertion
move is firstly applied to the solution in Fig 5(b), a
possible connection is the one between ES2 and NS2.
Furthermore, considering that the solution is accepted
and that the deletion is applied, a possible removal is
of the link [ES2, NS1]. In this sequence of moves,
the deletion is not rejected because the ES2 is not
disconnected. After such moves, f4 is rerouted via
vl4=[[ES2, NS2], [NS2, ES4]], resulting the solution
in Fig. 2(c).

5 EXPERIMENTAL EVALUATION

For the evaluation of our proposed optimization ap-
proach, “Redundant Architecture Selection” (RAS),
we used a synthetic test case and a real-life case study,
based on the Orion Crew Exploration Vehicle (CEV),
606E baseline (Paulitsch et al. 2011). The details of
the two test cases are presented in Table 1, where we
have listed the number of ESes and the number of
messages in columns 2 and 3, respectively. We have
considered a switch capacity of 12 ports. The algo-
rithm was implemented in Java (JDK 1.6), running on
Sun-Fire v440 computers with UltraSPARC IIIi CPUs
at 1.062 GHz and 8 GB of RAM.

In the table we compare two algorithms, our opti-
mization approach RAS and a “Straightforward Solu-
tion” (SS), which derives a fault-tolerant solution by
adding the required redundancy, as follows. The con-



Name ESes RC msgs.
No. NSes No. links

Running Time
Cost(Υ) Schedulable

SS RAS SS RAS SS RAS SS RAS

Synthetic test case 8 20 6 5 58 49 8 min 30 s 700 590 no yes
Orion CEV 30 30 24 19 232 86 9 h 25 min 80 s 2,800 1,240 no yes

Table 1: Experimental results: comparison of SS and RAS

struction of SS starts with the set of messages M and
the graph G(V ,E) having as vertices V the ES and
an empty set E of edges. It assumes that, for all mes-
sages, the source ES, destination ES and the RL are
known. The method creates an inverted index of re-
dundancies and then fetches the messages mapped on
each RL. For each message mi, a set of disjoint paths,
which is initially empty, is stored. Regarding the al-
ready constructed G, the source and the destination of
mi and the stored set of paths, a new disjoint path is
searched. If such a path is found, it is added to the set
of disjoint paths and a map of the frame and of a VL
consisting of this path is added to the system. Other-
wise, we add to the network G a new NS and connect
it in order to help the creation of the path regarding
the previously mentioned conditions. The search for
disjoint paths is repeated until the size of the set of
disjoint paths is equal to RLi. We consider that SS is
a solution which can be obtained by a good engineer
without the help of our optimization tool. In the RAS
implementation we enforce the number of links going
our from an ES to be the maximum over the Redun-
dancy Level of messages sent from the respective ES.
In addition, we do not consider the lack of disjoint re-
dundant paths in a solution visited during search to be
an invalid solution.

As we can see from the table, by carefully opti-
mizing the introduction of redundancy using RAS,
we are able to significantly reduce the cost com-
pared to SS. For example, for the Orion test case, we
have reduced the cost from 2,800 units to 1,240, us-
ing only 19 NSes and 86 physical links, compared
to SS, which used 24 NSes and 232 physical links.
In addition, because the optimization considers the
schedulability of the frames, the solutions obtained by
RAS are schedulable, compared to the SS solutions
which are not schedulable (see the last two columns
of the table). Although SS introduces a lot of redun-
dant links and NSes, because it does not take into ac-
count the schedulability of messages, there are situa-
tions in which certain messages are delayed such that
they miss their deadlines. The runtime of RAS is pre-
sented in column 8; the runtime of SS is under one
second.

6 CONCLUSIONS

In this paper we have considered safety-critical real-
time applications implemented using distributed ar-
chitectures using the TTEthernet protocol. Our fo-
cus was on the synthesis of the network topology
such that the real-time and safety properties of the
applications are satisfied, and the cost of the archi-

tecture is minimized. We have proposed a Simulated
Annealing-based optimization approach. The exper-
imental results show that by using our optimization
approach we are able to significantly reduce the cost
of an architecture, obtaining architectures which are
at the same time fault-tolerant and meet the deadlines
of the messages.
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