

Fault-Tolerant Topology Selection for TTEthernet Networks

Voica Gavriluț, Domițian Tămaș-Selicean, Paul Pop Presenter: Sune Mølgaard Laursen

DTU Compute Department of Applied Mathematics and Computer Science

Real time applications implemented using distributed systems

Point-to-point connection

Bus connection

Application $\mathcal{A}_{\rm 2}$ -- critical

Application \mathcal{A}_3 -- non-critical

- Reduces wiring and weight
- Mixed-criticality applications share the same network

TTEthernet

- ARINC 664p7 compliant
- Traffic classes:
 - synchronized communication
 - Time Triggered (TT)
 - unsynchronized communication
 - Rate Constrained (RC) ARINC 664p7 traffic class
 - Best Effort (BE) no timing guarantees
- Standardized as SAE AS 6802
- Marketed by TTTech Computertechnik AG
- Implemented by Honeywell on the NASA Orion Constellation

TTEthernet

Motivation

Motivation

Fault-Tolerancy is costly!

Problem formulation

Given

- Architecture model
 - The set of End Systems (ESes)
 - Cost and maximum number of ports for ESes and Network Switches
- Application model
 - Set of TT and RC messages
 - Size, deadline, period and "redundancy level" RL for each message

Determine

- The network topology: Number of NSes, the physical links and interconnections
- Network configuration
 - Assignment of frames to virtual links; routing of virtual links
 - Bandwidth for each RC virtual link
 - Set of TT schedule tables S
- Such that
 - Architecture cost is minimized, applications are fault-tolerant, considering the specified redundancy levels, and the timing constraints of all frames, both TT and RC are satisfied.

Optimization strategy

- Redundant Architecture Selection (RAS)
 - Based on a Simulated Annealing metaheuristic
 - Searches the solution space to minimize the cost function
 - Penalty Weight × Degree of Schedulability + Architecture cost
 - The "Degree of Schedulability" is positive if there are messages which are not schedulable, otherwise it is 0
 - The Penalty Weight is a large value, which "penalizes" the cost function in case the messages are not schedulable
 - The schedulability of RC messages is determined with the techniques from: Tamas-Selicean, D., P. Pop, & W. Steiner (2015). Timing analysis of rate constrained traffic for the TTethernet communication protocol. In International Symposium On Real-time Computing (ISORC)
 - Uses "design transformations" to modify the current solution during the search, e.g., insert/delete NS, insert/delete a physical link, or reroute a VL

Example

Cost = 180

Example

Intermediate Solution

Solution

Experimental evaluation

- Our method: Redundant Architecture Selection (RAS)
- Baseline solution: Straightforward Solution (SS)
 - Introduces redundancy naively, where needed
 - SS is a solution which can be obtained by a good engineer without the help of our optimization tool
- Two test cases:
 - A synthetic example
 - Orion Crew Exploration Vehicle (CEV), a realistic larger test case

Name	ESes	RC msgs.	No. NSes		No. links		Dunning Time	$Cost(\Upsilon)$		Schedulable	
			SS	RAS	SS	RAS	Kuming Time	SS	RAS	SS	RAS
Synthetic test case	8	20	6	5	58	49	8 min 30 s	700	590	no	yes
Orion CEV	30	30	24	19	232	86	9 h 25 min 80 s	2,800	1,240	no	yes

Summary and message

- Safety-critical systems are becoming more networked
- Deterministic Ethernet solutions (such as TTEthernet) are emerging in safety-critical systems
- We were interested to derive a TTEthernet topology
 - Which has the level of redundancy specified by the designer
 - Is able to schedule all the application messages
 - Has the lowest cost
- We have proposed a Simulated Annealing-based approach
- Message: optimization tools are needed for the cost-effective introduction of redundancy in networked safety-critical systems