
Fault-Tolerant Architecture
Design for Flow-Based Biochips

Morten Chabert Eskesen

Kongens Lyngby 2015

Technical University of Denmark
Department of Applied Mathematics and Computer Science
Richard Petersens Plads, building 324,
2800 Kongens Lyngby, Denmark
Phone +45 4525 3031
compute@compute.dtu.dk
www.compute.dtu.dk

Summary (English)

Microfluidic biochips revolutionise biology by placing laboratory functionality
on a very small chip. In this thesis, the focus is on flow-based biochips. Flow-
based microfluidic biochips are used for the manipulation of continuous fluid
through fabricated microchannels, using external pressure sources or integrated
mechanical micro-pumps. In these biochips, the basic building block is a mi-
crovalve, which can be fabricated at very high densities, e.g., 1 million valves
per cm2 [8]. By combining these valves, more complex units such as mixers,
switches and multiplexers can be built. Flow-based biochips are manufactured
using multilayer soft lithography.

A potential roadblock in the deployment of microfluidic biochips is the lack of
test techniques to screen defective devices before they are used for biochemical
analysis. Defective chips lead to repetition of experiments. This is undesirable
due to high reagent cost and limited availability of samples. Flow-based biochips
are also affected by faults, and the defects can escape the after-fabrication in-
spection and can thereby affect the operation. Recent work has addressed fault-
modeling and the automated testing of flow-based biochips.

Based on these fault models and testing techniques, the objective of this thesis is
to propose approaches for the fault-tolerant design of flow-based biochips, such
that the biochips can tolerate several permanent faults, given a cost budget and
a biochip area. During the physical design of the biochip layout, redundancy can
be introduced for on-chip components such as valves, channels and microfluidic
units in order to improve fault-tolerance, thereby increasing the yield.

The thesis proposes a fault model as part of the biochip architecture model and

ii

introduces a component library with fault-tolerant components. Using these
models, two algorithmic approaches to solving the problem of fault-tolerant
architecture synthesis are proposed. The fault-tolerant architecture synthesis
considers the application model, fault-tolerant routing and the physical con-
straints of the biochip such that the minimum amount of redundancy is added
to achieve fault-tolerance. The proposed approaches have been evaluated using
real-life case studies and synthetic benchmarks.

Summary (Danish)

Mikrofluidiske biochips revolutionerer biologi ved at lægge laboratorie funk-
tionalitet på en meget lille chip. Denne afhandling fokuserer på flow-baserede
biochips. Flow-baserede mikrofluidiske biochips er baseret på behandling af kon-
tinuerlig væske gennem fabrikeret mikrokanaler ved at bruge eksterne trykkilder
eller integreret mikro-pumper. I disse biochips er byggestenen en mikrovalve som
kan blive fabrikeret ved høj tæthed, fx. 1 million valves per cm2. Ved at kom-
binere disse valves kan mere komplekse enheder fremstilles - herunder mixere,
switches, multipleksere. Flow-baserede biochips er fremstillet ved brug af mul-
tilags blød litografi.

En potentiel forhindring i implementeringen af mikrofluidiske biochips er mang-
len på test-teknikker til at screene defekte enheder før de bruges til biokemisk
analyse. Defekte chips fører til gentagelse af eksperimenter. Dette er uhensigts-
mæssigt på grund af høje reagens omkostninger og begrænset tilgængelighed
af prøver. Flow-baserede biochips er også påvirket af fejl, og disse defekter kan
undslippe efter-fabrikation inspektion og dermed påvirke operationen. Fejlmo-
dellering og automatiske test af flow-baserede biochips er blevet adresseret for-
nyligt i en teknisk rapport.

Baseret på disse fejlmodeller og fejlfindingsteknikker er målet for denne afhand-
ling at foreslå tilgange til det fejltolerante design af flow-baserede biochips såle-
des at biochippen kan tolerere flere permanente fejl givet et budget og et biochip
område. Under det fysiske design af biochippens layout kan redundans introdu-
ceres for komponenterne på chippen såsom valves, kanaler og microfluidiske
enheder, og derved øge udbyttet af biochips.

iv

Denne afhandling foreslår en fejlmodel som en del af biochip arkitekturmodel-
len og introducerer et komponentbibliotek med fejltolerante komponenter. Ved
brug af disse modeller er to algoritmiske tilgange foreslået til at løse problemet
med fremstilling af fejltolerante arkitekturer. Fremstillingen af fejltolerante ar-
kitektur tager applikationsmodellen og fejltolerant rutebestemmelse på biochip-
pen med i overvejelserne samt de fysiske begrænsinger således at den minimale
mængde af redundans er tilføjet for at opnå fejltolerance. De foreslåede tilgange
er blevet evalueret ved brug af real-life case studies og syntetiske benchmarks.

Preface

This thesis was prepared at DTU Compute in fulfilment of the requirements for
acquiring an M.Sc. in Engineering.

The thesis deals with synthesis of fault-tolerant architectures for flow-based
microfluidic Very Large Scale Integration (mVLSI) biochips. The work has been
supervised by Associate Professor Paul Pop.

Lyngby, 26-June-2015

Morten Chabert Eskesen

vi

Acknowledgements

Firstly, I would like to thank my supervisor Paul Pop for his close involvement
and excellent guidance throughout my work which have been extremely helpful.
His capability to always be available for questions and discussion contributed a
great deal in the completion of this thesis.

Secondly, I want to thank my colleague and close friend Andreas Hallberg Kjeld-
sen, who has been an invaluable partner throughout my studies for five years
and contributed with small algorithmic ideas for this thesis.

Lastly, I want to extend my gratitude to my family who have supported and
encouraged me. I dedicate this thesis to my brother, Julian, who has been and
will always be my inspiration in life.

viii

Contents

Summary (English) i

Summary (Danish) iii

Preface v

Acknowledgements vii

1 Introduction 1
1.1 Flow-based Biochips . 2

1.1.1 Application Areas . 4
1.2 Motivation . 5

1.2.1 Related Work . 5
1.3 Thesis Overview . 6

2 Faults in Flow-Based Biochips 7
2.1 Possible Faults and Causes . 7
2.2 Defects and Fault Modeling . 9
2.3 Fault Model . 10
2.4 Fault-Specific Testing Strategy 11
2.5 General Testing Strategy . 12
2.6 Summary . 14

3 System Models 15
3.1 Biochip Architecture Model . 15

3.1.1 Component Model . 15
3.1.2 Architecture Model . 23
3.1.3 Fault Model . 24

3.2 Biochemical Application Model 26

x CONTENTS

3.3 Application Mapping . 27
3.4 Summary . 28

4 Architecture Synthesis 29
4.1 Problem Formulation . 29
4.2 Design Transformations . 34
4.3 Simulated Annealing Architecture Synthesis 35

4.3.1 Concept . 36
4.3.2 Implementation . 36

4.4 GRASP Architecture Synthesis 39
4.4.1 Concept . 39
4.4.2 Implementation . 40

4.5 Summary . 44

5 Architecture Evaluation 45
5.1 Objective Function . 45
5.2 Generation of Fault Scenarios . 47
5.3 Connectivity . 48
5.4 List Scheduling . 50
5.5 Summary . 53

6 Analysis, Design and Test 55
6.1 Design . 55

6.1.1 Architecture . 56
6.1.2 Fault Model . 57
6.1.3 Application . 57
6.1.4 Parsing . 57
6.1.5 Scheduling . 58
6.1.6 Architecture Modifier . 58
6.1.7 Serializing . 59
6.1.8 Run . 59

6.2 Testing . 59
6.3 Summary . 60

7 Experimental Evaluation 61
7.1 Benchmarks . 61

7.1.1 S-1 Benchmark . 62
7.1.2 PCR Benchmark . 63
7.1.3 IVD Benchmark . 64

7.2 Solution Quality . 65
7.2.1 Objective Function Evaluation 66
7.2.2 Yield Evaluation . 67

7.3 Performance . 68
7.4 Summary . 69

CONTENTS xi

8 Conclusions and Future Work 71
8.1 Conclusions . 71
8.2 Future Work . 72

A Netlists 75
A.1 Initial Netlists . 75

A.1.1 S-1 . 75
A.1.2 PCR . 76
A.1.3 IVD . 76

A.2 Netlists Obtained by SA . 77
A.2.1 S-1 . 77
A.2.2 PCR . 77
A.2.3 IVD . 78

A.3 Netlists Obtained by GRASP . 79
A.3.1 S-1 . 79
A.3.2 PCR . 79
A.3.3 IVD . 80

Bibliography 81

xii CONTENTS

List of Figures

1.1 Flow-based biochip . 2

1.2 Flow-based valve and switch . 3

2.1 Possible faults in flow-based biochips 8

2.2 Simple microfluidic biochip . 10

2.3 Schematic of a valve network . 13

2.4 Logic circuit model of a biochip 14

3.1 Switch and fault-tolerant switch 17

3.2 Mixer and fault-tolerant mixer 18

3.3 Heater, Filter, Detector and Separator and their fault-tolerant
counterpart . 20

3.4 Storage component . 22

3.5 Fault-tolerant storage component 22

3.6 Biochip architecture . 23

xiv LIST OF FIGURES

3.7 Application model . 26

4.1 Example application graph G for architecture synthesis 30

4.2 Example architecture for architecture synthesis 30

4.3 Possible solutions for fault-tolerant architecture synthesis of the
example . 32

4.4 Architecture synthesis . 33

4.5 Example of neighbouring solutions 35

4.6 Implementation of Simulated Annealing 37

4.7 Simulated Annealing example . 38

4.8 Implementation of GRASP . 41

4.9 Greedily Randomized Adaptive Search Procedure example 43

5.1 Architecture affected by fault scenario 46

5.2 Implementation of random generation of fault scenarios 48

5.3 Implementation of graph connectivity algorithm 49

5.4 Implementation of the List Scheduling algorithm 52

6.1 Class diagram of the implementation 56

7.1 Architecture and application graph of S-1 62

7.2 Application graph for PCR . 63

7.3 Application graph of IVD . 64

List of Tables

2.1 Defects and fault modeling . 9

2.2 Faulty behaviour of block and leak 10

2.3 Logic representation of valve states and pressure response 11

2.4 Testing strategy for different kinds of faults 12

2.5 Behavioural-level fault model for flow-based biochips 12

3.1 Component Library (L): Flow Layer Model 16

3.2 Example set of valve faults VF 25

3.3 Example set of channel faults CF 25

4.1 Example set of valve faults VF for architecture synthesis 30

4.2 Example set of channel faults CF for architecture synthesis . . . 31

7.1 The set of valve faults VF for S-1 62

7.2 The set of channel faults CF for S-1 62

xvi LIST OF TABLES

7.3 The set of valve faults VF for PCR 63

7.4 The set of channel faults CF for PCR 63

7.5 The set of valve faults VF for IVD 64

7.6 The set of channel faults CF for IVD 65

7.7 The benchmarks and their initial features 66

7.8 The resulting fault-tolerant netlist of the benchmarks 66

7.9 The benchmark and the yield evaluation thereof 67

7.10 The benchmarks and their performance 68

Chapter 1

Introduction

Microfluidics is the science of handling and manipulating very small volumes of
fluids. It is a multidisciplinary field that involves engineering, physics, chemistry,
biochemistry, nanotechnology, and biotechnology. Microfluidic biochips combine
different biochemical analysis functionalities, e.g. mixers, filter, detectors, on-
chip. It miniaturises the macroscopic chemical and biological processes to a
sub-millimetre scale [12].
There are several types of microfluidic biochip platforms. Based on the fluid
manipulation on the chip, biochips can broadly be divided into two categories
[8].

• Droplet-based biochips

• Flow-based biochips

In this thesis the focus is on flow-based biochips. The following sections will
explain the flow-based technology and its application areas.

2 Introduction

1.1 Flow-based Biochips

Flow-based biochips are fabricated using multilayer soft lithography. Figure 1.1
shows a flow-based biochip. Polydimethylsiloxane, PDMS, is used as the fabri-
cation substrate [7]. PDMS is used as it is a cheap and rubber-like elastomer
with good biocompatibility and optical transparency.

Figure 1.1: Flow-based biochip [1].

Flow-based biochips can have multiple physical layers, but the layers are log-
ically divided into two types: flow layer and control layer. The flow layer is
depicted in blue and the control layer in red as shown in Figure 1.2a. The liquid
is in the flow layer and it is manipulated using the control layer [7].

1.1 Flow-based Biochips 3

Figure 1.2: Flow-based valve and switch [8].

A valve (shown in Figure 1.2a) is the basic building block of such a biochip. The
control layer is connected to an external air pressure source through the punch
hole z1. This is referred to as a control pin. The flow layer is connected to a fluid
reservoir through a pump which generates the fluid flow. When the external air
pressure in the control layer is not active, the fluid is permitted to flow freely,
i.e. the valve is open. When the pressure source is activated, the high pressure
causes the elastic control layer to pinch the underlying flow layer (point a in
Figure 1.2a) blocking the fluid flow, i.e. the valve is closed. These valves are
used to manipulate fluids in the flow layer as the valves either restrict or permit
the fluid flow. More complex units such as switches, mixer, micropumps, etc.,
can be formed by combining these valves. An example of valves combining to
form a component is that of a switch. Three different switch configurations are
depicted in Figure 1.2b. As shown here a switch can consist of one or more
valves. Multiple valve switches are present at channel junctions and are used
to control the path of the fluids entering the switch from different sides. The
fluid flow can be generated by either using off-chip or on-chip pumps. The
control layer is not necessarily above the flow layer as shown in Figure 1.2a.
It can also be below the flow layer by creating a "push-up" valve, and having
the control layer above the flow layer is done by creating a "push-down" valve.
The connections to external ports (fluidic ports for the flow layer and pressure

4 Introduction

sources for the control layer) are made by punching holes in the chip and placing
external tubings into the punch holes [7]. All input ports are connected to the
off-chip pumps.

1.1.1 Application Areas

Since the introduction of this technology, several biochips have been designed
which target a variety of biochemical applications [3]. A few are listed below:

• Microreaction Technology : These chips allow the production of fine chem-
icals. The superior mixing and reaction control properties of microfluidic
systems are used to perform chemical reaction or syntheses at much bet-
ter yields and better selectivity than in conventional systems. Chemical
reactions can take place much faster by reducing the diffusion length [3].

• Cell Biology : As the typical dimensions of cells are 5-20 µm, it is an ideal
size for the size range of typical microfluidic structures. The applications
within cell biology range from the observation of the physical and bio-
logical behaviour of single cells in different culturing media, chemotaxis
experiments to observations of growth patterns, the guidance of growth.
This can potentially be of great importance in drug research [3].

• Diagnosis Testing : Certain chips allow the diagnosis of diseases. Known
examples are chips testing for Human Immunodeficiency Virus (HIV) and
syphilis [8]. The chip designed for this purpose is cheap, easy to use,
requires only micro-litres of the blood sample and it simultaneously tests
for HIV and syphilis producing the result within 20 minutes [8].

One of the biggest beneficiaries of microfluidic devices and systems is the diag-
nostic market, especially molecular diagnostics. Microfluidics and miniaturisa-
tion technologies have a crucial enabling role for new product development in
this field due to the required integration density, portability and speed for such
applications can only be realised in miniaturised solutions. Additionally, many
of the diagnostic procedures require the integration of methods of molecular
biology like DeoxyriboNucleic Acid (DNA) extraction or Polymerase Chain Re-
action (PCR) which can only be performed in their microfluidics-based protocols
outside a specialised laboratory [3].

1.2 Motivation 5

1.2 Motivation

A potential roadblock in the deployment of microfluidic biochips is the lack of
test techniques to screen defective devices before they are used for biochemical
analysis. Defective chips lead to repetition of experiments. This is undesirable
due to high reagent cost and limited availability of samples. Recent work has
addressed the fault-modeling and the automated testing of flow-based biochips
[4].

Based on these fault models and testing techniques, the objective of this thesis is
to propose approaches for the fault-tolerant design of flow-based biochips, such
that the biochips can tolerate several permanent faults, given a cost budget and
a biochip area. During the physical design of the biochip layout, redundancy can
be introduced for on-chip components such as valves, channels and microfluidic
units to improve fault-tolerance, thereby increasing the yield.

This thesis explores techniques and algorithms for designing fault-tolerant flow-
based biochips. The purpose is to design and implement a tool to assist the
designer in designing a fault-tolerant biochip. Implementing such a tool re-
quires a biochip architecture model, biochemical application model, heuristics
for introducing fault-tolerance and a way to evaluate the fault-tolerance of the
biochip.

1.2.1 Related Work

In [8] there are proposed system models for flow-based biochips which are used in
this thesis. The proposed models used in this thesis are the biochip architecture
model and the biochemical application model. Additionally, [8] also contributes
towards application mapping, architecture synthesis and control synthesis for
flow-based biochips.

The physical placement of components is done by the designer of the flow-
based biochip, which is a time-consuming and error-prone phase. In [10], an
automated tool for the physical placement of components is proposed which
assists the designer in choosing the best placement.

Fault-tolerant design of microfluidic biochips has been done in [2]. However,
the thesis in [2] introduces fault-tolerant design for droplet-based biochips. The
thesis proposes algorithms to generate application-specific biochip architectures
that are able to tolerate a certain number of permanent faults. The aim of the
thesis was to increase the yield of fabricated biochips.

6 Introduction

1.3 Thesis Overview

This thesis is organised in eight chapters. A brief summary of the chapters are
provided here.

Chapter 2 presents the different types of faults in flow-based biochips and an
automated testing strategy to determine the faults and locations thereof
in a flow-based biochip.

Chapter 3 describes the system models used in this thesis and proposes a
fault-model for flow-based biochips. Furthermore it outlines the problem
of application mapping.

Chapter 4 focuses on the fault-tolerant architecture synthesis problem for flow-
based biochips. It proposes two algorithmic solutions to obtain a fault-
tolerant architecture.

Chapter 5 proposes an evaluation method for architectures in order to deter-
mine if a given architecture is fault-tolerant.

Chapter 6 describes the implementation of the tool developed in this thesis.

Chapter 7 experimentally evaluates the proposed algorithmic approaches on a
number of benchmarks. The evaluation is done in terms of solution quality
and performance of the algorithms.

Chapter 8 presents the conclusions of this thesis and the options for future
work.

Chapter 2
Faults in Flow-Based

Biochips

This chapter will outline the possible faults and their causes in flow-based
biochips. Furthermore, it will outline the fault-modeling of the defects and
describe the recently developed automated testing technique for flow-based
biochips.

2.1 Possible Faults and Causes

Defects in a flow-based microfluidic biochip can be attributed to fabrication
steps and environmental reasons such as imperfections in molds, pollutants,
bubbles in PDMS gel, and failure in hard baking. Furthermore, as feature sizes
are scaled down, the sizes of and distances between microchannels are reduced
in order to achieve higher degrees of microfluidic integration. This increasing
density raises the likelihood of defects [4]. Some typical defects are listed below.

• Block: Channels may be disconnected, blocked or even missing. Fig-
ure 2.1(a)-(c) show some examples of the block defect in fabricated mi-
crofluidic biochips. The possible causes for block defects are environmental
particles or imperfection in silicon wafer mold.

8 Faults in Flow-Based Biochips

Figure 2.1: Possible faults in flow-based biochips [4].

• Leak: It is possible that some defective spots on the wall can connect inde-
pendent channels. Thereby the flows in either of the channels infiltrate the
other channel, which will result in a cross-contamination that can be catas-
trophic. The probability of a leaked channel pair increases as the length
of the channels increases. Additionally the probability becomes greater if
the distance between parallel channels decreases, and similarly the proba-
bility is smaller for channels that do not run in parallel. Figure 2.1(d)-(f)
shows some examples of leak defects that are caused by fiber pollutant in
fabricated microfluidic biochips. Some partial leak defects are shown in
Figure 2.1(g) and Figure 2.1(h). These defective spots may become full
leakage when high pressure is injected into the channels.

• Misalignment: The control layer and the flow layer of the biochip are
misaligned. Figure 2.1(i) shows the defect. The result of this is that
membrane valves either cannot be closed or are not even formed.

• Faulty Pumps: Pumps with defects fail to generate pressure when actu-
ated. The transmission of pressure is interrupted.

• Degradation of Valves: The membranes of valves may lose their flexibilities
or they might even be perforated after a large number of operations. The
result is that the valves cannot seal flow channels.

• Dimensional Errors: The actual fabricated microfluidic biochip might be

2.2 Defects and Fault Modeling 9

too narrow compared to the designed dimensions. The mismatch of height-
to-width ratio may lead to a valve that cannot be closed.

2.2 Defects and Fault Modeling

Despite the complexity of flow-based biochips the consequences of the defects
can be described as either a block or a leak [4]. These two generic faults (block
and leak) can be observed in both the control layer and the flow layer, however
their respective faulty behaviours are different. Their faulty behaviours are
described in Table 2.2. Therefore we can describe the possible defects in a
flow-based biochip and their respective fault model, which is given in Table 2.1.

Table 2.1: Defects and fault modeling

Defect Fault model
Block Block in control/flow channel

Leak / partial leak Leak in control/flow channel
Misalignment between flow and control layer Block in control channel

Faulty pumps Block in control/flow channel
Degradation of valves Block in control channel
Dimensional errors Block in control channel

Misalignment between flow and control layer can be modeled as the faulty be-
haviour of block in the control channels. This is possible as the result of the
defect is that membrane valves either cannot be closed or are not even formed
[4]. The behaviour of faulty pumps is similar to the faulty behaviour of a block
as the transmission of pressure is interrupted [4]. Degradation of valves can be
modeled as a block in a control channel as the valves cannot seal flow channels
[4]. Dimensional errors have similar faulty behaviour as that of a block in a
control channel as a valve cannot be closed, i.e. the flow cannot be stopped in
flow channels underneath the valve [4].

10 Faults in Flow-Based Biochips

Table 2.2: Faulty behaviour of block and leak [4]

Flow Layer Control Layer

Block
Fluid flow cannot go through
the obstacle inside the channel

so transport is blocked.

Pressure cannot reach the
flexible membrane, which
prevents the corresponding

valve from closing.

Leak Fluid flow permeates the
adjacent microchannels.

Control channels of two
independent valves are

unintentionally connected.
Pressure on either valve

activates both.

2.3 Fault Model

The errors due to defects can be modeled in terms of faulty behaviours of valves
[4]. For example a block in a flow channel can be modeled as a valve that
cannot be opened, i.e. the valve cannot be deactivated. While a block in a
control channel can be modeled as a valve that cannot be closed, i.e. the valve
cannot be activated. Similar behaviour models can be defined for leaks.

Figure 2.2: Simple microfluidic biochip

Figure 2.2 shows a layout of a simple microfluidic biochip with a mixer. The
rectangles indicate positions of valves and the black lines indicate flow channels.
Consider Figure 2.2 and consider the following defects.

• Block in flow channel : A block defect in the flow channel between valves
v3 and v9 leads to the behaviour that valve v3 cannot be opened. A valve
and the channels connected to it are considered to be a single entity.

2.4 Fault-Specific Testing Strategy 11

• Leak in flow channel : If a leak occurs between the flow channels v3-v9 and
v2-v4, the liquid in channel v3-v9 infiltrates channel v2-v4

• Block in control channel : If a block occurs in a control channel then pres-
surised air cannot reach the flexible membrane to seal the flow channel.
In this case valve v9 cannot be closed.

• Leak in control channel : If a leak occurs between the control channels of
v4 and v9, the two shorted valves effectively form one valve. The result is
that whenever either valve is activated then both valves are activated, i.e.
whenever v4 is closed then v9 is also closed.

2.4 Fault-Specific Testing Strategy

We use the testing strategy for flow-based biochips as proposed in [4]. The
used test set up has feedback generated when pressure sensors are connected
to the outlets and pumps are connected to the inlets. If a path exists between
the pump sources (inlets) and pressure sensors (outlets), pressure sensors at the
outlets will detect a high pressure generated by the pumps. The measured high
pressure is defined as output "1". If all paths between inlets and outlets are
blocked, pressure sensors cannot sense the high pressure injected by the pumps.
This is defined as output "0". All ports in flow-based biochips are identical,
regardless of functional classification. When testing, only one of the ports in
the flow layer is connected to a pressure source and the rest to pressure sensors.
Consequently the definitions for valve conditions can be formulated. Table 2.3
connects the logic representation of valve states to the corresponding pressure
response.

Table 2.3: Logic representation of valve states and pressure response [4]

Logic Valve state Valve condition Pressure response
1 open deactivated high
0 closed activated low

A binary pattern (test vector) is applied to all valves to set their/open close
states. The actual responses of pressure sensors are compared to the expected
responses. If these two sets match then the biochip is considered good.

Table 2.4 shows the testing strategy to target the faults in Table 2.2. The
test effectiveness is dependent on the quality of the test patterns. The more

12 Faults in Flow-Based Biochips

complicated the biochip structure is, the harder it is to determine a test pattern
set that covers every fault type for each valve and channel.

Table 2.4: Testing strategy for different kinds of faults [4]

Flow Layer Control Layer

Block

Position: v3-v9. Both valves v3
and v9 are deactivated to form

a route
inlet-v1-v3-v9-v8-v10-v11-O2. If
the output at O2 is "0", the

defect is detected.

Position: valve v9. The block
in the control layer prevents
valve from closing. Deactivate
valve v1, v3, v8, v10, v11 and
O2 but activate the rest

including v9. If O2 is "1" the
defect is detected.

Leak

Position between v3-v9 &
v2-v4. Deactivate valve v1, v2,
v9, v8, v10 and v11. If high
pressure is sensed at O2, the
leaking defect is detected.

Position: v7 & v9. Turn on
valve v1, v3, v9, v8, v10 and v11
but activate v7. If there is a
leakage, high pressure in

control channel v7 will activate
v9 and block the route.

Due to the difficulty of determining a test pattern set the more complicated a
biochip structure is, there is a need to further abstract faults and microfluidic
structures to facilitate automatic test-vector generation.

2.5 General Testing Strategy

Table 2.5 defines the behavioural-level fault models for a flow-based biochip.
This definition is possible since the defects can be modeled as faulty behaviour
of a valve and a binary logic framework can be defined where an activated valve
can be defined as "0" and a deactivated valve as "1".

Table 2.5: Behavioural-level fault model for flow-based biochips [4]

Flow Layer Control Layer
Block stuck-at-0 stuck-at-1
Leak OR-bridge (1-dominant) AND bridge (0-dominant)

All types of defects in control and flow channels can be mapped to specific
behaviour-level fault at a valve. By virtue of this classification the testing prob-

2.5 General Testing Strategy 13

lem is simplified from a 3-D structure to that of a 2-D design. Biochips with
complicated networks of channels and valves have their test generation simplified
because of this.

Figure 2.3: Schematic of a valve network corresponding to Figure 2.2.
Adapted from [4]

In order to easily describe and analyse biochip channel networks, a discretised
schematic is developed in [4] in place of a continuos fluid-flow topology. Fig-
ure 2.3 illustrates the design by using the biochip design in Figure 2.2. This
schematic infers logic relationships that define flow-based biochips. Figure 2.3
infers that valve v2 is serially connected to valve v4, v5, v6, and v7. Hence either
valve can potentially block the route, i.e. there is an "AND" logic relationship
among the valves. Contrary routes v2-v7 and v3-v9 are in parallel. Therefore
the activation of either of the two routes can lead to output "1". There is an
"OR" logic relationship between them.

The flow-based biochips can be further abstracted from the schematic represen-
tative of valve networks to valve-based logic gate circuit diagrams [4]. This is
shown in Figure 2.4 using Figure 2.2 as an example.

The logic expression of Figure 2.4 is {O1, O2} = {v11, v12} · v1 · v8 · v10 · (v2 · v4 ·
v5 ·v6 ·v7+v3 ·v9). The primary inputs are nodes in the schematic of Figure 2.3.
The following is the important attributes of the logic circuit model.

• Only primary inputs (valves) and outputs (pressure sensors) have phys-
ical meaning. All other circuit connections are used to represent logical
relationship. By virtue of this, it is only necessary to target faults at the
primary inputs of this circuit.

• A series connection of valves in a flow route is mapped to an AND gate.
Contrary a parallel connection of valves is mapped to an OR gate.

A physical defect in a flow-based biochip can be mapped to a fault at a primary

14 Faults in Flow-Based Biochips

Figure 2.4: Logic circuit model of the biochip in Figure 2.2. Adapted from [4]

input of a logic circuit. This is based on Figure 2.4 and Table 2.5. Targeting
the block defect in the flow channel v3-v9 is done by mapping the defect to a
stuck-at-0 according to Table 2.5. Afterwards, the fault is associated with the
primary input v3 in the logic circuit model in Figure 2.4. A leak defect between
valve v7 and v9 can be represented by an AND bridge fault between primary
inputs v7 and v9 of Figure 2.4. As a result of the logic circuit model it is possible
to readily determine the actual (with faults) and expected (fault-free) responses
of pressure sensors and hence accelerate the search for test stimuli. If the actual
output differ from the expected output, it is possible to not only conclude that
the biochip is faulty, but also infer the positions and types of defects.

2.6 Summary

In this chapter the possible faults and causes in a flow-based biochip are outlined.
The faults and causes can be attributed to fabrication steps and environmental
reasons. The consequences of the faults can be modeled as either a block or a
leak in flow or control channels. The errors due to defects can be modeled in
terms of faulty behaviours of valves. This fact is used to devise an automated
testing strategy that uses a logic circuit model to determine if a given biochip
is faulty and the types and positions of the defects.

Chapter 3

System Models

This chapter will outline the system models of flow-based biochips. We use
the biochip architecture model and the biochemical application model proposed
in [8]. An extension to this biochip architecture model is proposed by the
addition of fault-tolerant components and a fault model. Lastly the problem of
application mapping will be described.

3.1 Biochip Architecture Model

The biochip architecture model is composed of three models: component model,
architecture model and fault model. The following subsections will explain these
models.

3.1.1 Component Model

In [8], a dual-layer component modeling framework is proposed consisting of
a flow layer model and a control layer model. The flow layer model (P, C,H)
of each component M, is characterised by a set of operational phases P, the

16 System Models

execution time C and the geometrical dimensions H. The control layer model
captures the valve actuation details required for the on-chip execution of all
operational phases of a component.

The component library L =M(P, C,H) is shown in Table 3.1. The component
library describes the set of components that a biochip architecture can have. The
geometrical dimensions H are given as length×width and are scaled with a unit
length being equal to 150µm. Therefore a length of 10 in Table 3.1 corresponds
to 1500µm. FT is an abbreviation for Fault-Tolerant. Considering Table 3.1
the only change from a component to its fault-tolerant version is in width,
however this is not the case. The introduction of fault-tolerant components is
the difference between Table 3.1 and the component library given in [8]. The
components and their fault-tolerant counterpart will be described in this section.

Table 3.1: Component Library (L): Flow Layer Model

Component Phases(P) C H
Mixer Ip1 / Ip2 / Mix / Op1 / Op2 0.5 s 30 × 30

FT-Mixer Ip1 / Ip2 / Mix / Op1 / Op2 0.5 s 30 × 30
Filter Ip / Filter / Op1 / Op2 20 s 120 × 30

FT-Filter Ip / Filter / Op1 / Op2 20 s 120 × 60
Detector Ip / Detect / Op 5 s 20 × 20

FT-Detector Ip / Detect / Op 5 s 20 × 40
Separator Ip1 / Ip2 / Separate / Op1 / Op2 140 s 70 × 20

FT-Separator Ip1 / Ip2 / Separate / Op1 / Op2 140 s 70 × 40
Heater Ip / Heat / Op 20◦ C/s 40 × 15

FT-Heater Ip / Heat / Op 20◦ C/s 40 × 30
Storage Ip or Op - 90 × 30

FT-Storage Ip or Op - 90 × 40
Metering Ip / Met / Op1 / Op2 - 30 × 15

Multiplexer Ip or Op - 30 × 10

3.1.1.1 Fault-tolerant Switch

Figure 3.1a shows switches formed by combining valves. A switch can consist of
one valve that restricts or allows flow in a channel or a switch can consist of more
than one valve [8]. Multiple valve switches are present at channel junctions and
are used to control the path of the fluids entering the switch from different sides.
The conceptual view of a switch is shown below the actual component design.
A switch can fail in different ways. Each valve in the switch can be stuck open
or stuck closed. For example, if valve v3 in the third switch with four valves is

3.1 Biochip Architecture Model 17

Figure 3.1: Switch and fault-tolerant switch

stuck closed the effect is that fluid is restricted from entering the switch from
the channel controlled by v3 and the fluid is restricted from leaving the switch
going to the channel controlled by v3. However if the valve v3 is stuck open, the
fluid is allowed to enter the switch from the channel controlled by v3 and leave
the switch going to any other channel. But if the fluid is entering the switch
from any other valve (v1, v2 or v4) than v3, the fluid can only leave the switch
going to the channel controlled by v3.

Figure 3.1b shows the fault tolerant version of each switch in Figure 3.1a. These
are called fault-tolerant switches or ft-switches for short. The ft-switch is formed
by combining valves as regular switches and function like regular switches. The
conceptual view of a ft-switch is shown below the actual component design.
A ft-switch has an extra added valve for each valve in a regular switch. The
ft-switch tolerates faults that causes the valves to be stuck open as the extra
added valve can compensate for the failing valve. However, if a valve is stuck
closed, the switch is still faulty and the fluid is still restricted from leaving the
switch to the channel the valve controls, and from entering the switch from that
channel. A switch cannot consist of more than 4 valves, i.e. it cannot restrict /
allow flow in more than 4 channels. This also applies for the ft-switch however
the maximum number of valves is 8, but it cannot restrict / allow flow in more
than 4 channels. This is due to cleaning difficulties and for the reason that fluid

18 System Models

Figure 3.2: Mixer and fault-tolerant mixer

can be trapped inside the switch if it has more valves (i.e. channels).

3.1.1.2 Fault-tolerant Mixer

Figure 3.2a shows a pneumatic mixer, which is implemented by nine microfluidic
valves, v1 to v9. Figure 3.2b shows the conceptual view of the same mixer. The
valve set {v4, v5, v6} works as an on-chip pump which is used to perform the
mixing. The valve set {v1, v2, v3} is termed as switch S1 and facilitates the
inputs. The valve set {v7, v8, v9} is termed as switch S2 and facilitates the
outputs. The mixer has five operational phases. The first two phases represent
the input of two fluid samples to be mixed, which is followed by the mixing
phase. The mixed sample is then transported out of the mixer in the last two
phases. The mixer can fail in various ways. Each valve in the mixer can be stuck
closed or stuck open. The two channels inside the mixer can also fail as both
channels can suffer from a block defect or a leakage. For example, any valve
in the valve-set {v4, v5, v6}, that acts as the pump can suffer from being stuck
open or closed and the mixer will therefore not be able to perform its mixing
operation.

Figure 3.2c shows a fault-tolerant version of the pneumatic mixer called fault-
tolerant mixer or ft-mixer for short. Figure 3.2d shows the conceptual view of
the same ft-mixer. The ft-mixer has the same operational phases as the regular
mixer and performs them in the same way. The difference is the added valve v13.

3.1 Biochip Architecture Model 19

The purpose of this valve is to tolerate the fault of any valve in the pump being
stuck open. In case, any of the valves in the pump are stuck open, the pump
will still be functional by virtue of v13 and the mixing can still be performed.
However, in case, any of the other possible faults discussed previously happen,
the ft-mixer will not be able to perform the mixing operation. It is possible to
have a pump consisting of four valves as long as the amount of space between
the valves is kept small, i.e. the valves should be close together to perform the
pumping action. The result is that the pump can still function as intended and
thereby perform the mixing.

It is possible to route through the mixers as valves are controlling its mixing
operation. The valves are opened and closed by the designer. Therefore, the
fluid can be routed through the mixer without being unintentionally affected
by a mixing operation. Additionally, it is possible to route through the mixers
even with faults affecting it. For example, if the mixer suffers from a blocked
channel (v3-v9), the mixing operation cannot be performed, but it can use the
other non-faulty channel (v2 to v7) to route through the mixer. Furthermore,
it is possible for the mixer to receive input from both sides and similarly send
output to both sides.

3.1.1.3 Fault-tolerant Heater, Filter, Detector and Separator

This section outlines the components heater, filter, detector, separator and their
fault-tolerant counterparts. These components are similar in the sense that they
consist only of a channel where the channel has a specific operational function-
ality. The functionality is the only thing that differs between the components.
Therefore Figure 3.3 will be explained first with the possible faults and the
introduced fault-tolerant component. Afterwards the details specific to each
component will be described.

Figure 3.3a shows a component which consists of two valves v1 and v2. Fig-
ure 3.3b shows the conceptual view of the same component. The valve v1 is
termed as switch S1 and facilitates the input. The valve v2 is termed as switch
S2 and facilitates the output. The two valves also trap the fluid in the chan-
nel such that the component-specific operation can take place. The component
can fail in various ways. The valves v1 and v2 can either be stuck open or
stuck closed. If either valve is stuck open the component cannot trap the fluid
as needed by using its valves. If v2 is stuck closed the fluid cannot leave the
channel. Additionally if the channel of the component is blocked, the channel
is not usable and similarly if v1 is stuck closed the channel is not reachable.
Furthermore the channel can also suffer from a leakage.

20 System Models

Figure 3.3: Heater, Filter, Detector and Separator and their fault-tolerant
counterpart

Figure 3.3c shows a fault-tolerant version of the component which consists of
six valves v1, v2, v6, v7, v8 and v9. Figure 3.3d shows the conceptual view of the
same fault-tolerant component. The valve set {v1, v6, v7} is termed as switch S1

and facilitates the input. The valve set {v2, v8, v9} is termed as switch S2 and
facilitates the output. The component has two channels, where the fluid can
be trapped while the component performs its component-specific operational
phase(s). The valve set {v6, v8} can trap the fluid between them and similarly
{v7, v9}. The fault-tolerant component can tolerate one channel suffering from
a block defect as it is possible to use the other non-faulty channel. It can also
tolerate v1 and v2 being stuck open as the valves are no longer essential for
trapping the fluid inside the channels. However, if either v1 or v2 are stuck
closed then it is not possible to enter or leave the component, respectively.
Therefore, the component would still be considered faulty in the event of these
two faults occuring.

Detector The channel in a detector acts as a detection channel which identifies
and quantifies analyte by various methods. Fluorescence is one among the
many techniques to perform detection [6]. The fault-tolerant version is
called ft-detector. The detector and ft-detector have 3 operational phases
- Input / Detect / Output.

Heater The fluid trapped in the heating channel is heated by a metal plate
under the flow layer, which is activated when needed. The fault-tolerant
version is called ft-heater. The heater and ft-heater have 3 operational

3.1 Biochip Architecture Model 21

phases - Input / Heat / Output.

Filter The channel acts as a filtration channel, which treats and isolates the
analyte of interest from crude biological samples. Current methods of
filtration include the use of membranes, gels, electrophoresis and dielec-
trophoresis [6]. The fault-tolerant version is called ft-filter. The filter and
ft-filter have 4 operational phases - Input / Filter / Output1 and Output2.

Separator The channel acts as a separation channel which isolates samples
after other processes. Capillary electrophoresis is a used technique to
perform the separation. In this technique, the ionic particles are isolated
by their charge and frictional forces [6]. The fault-tolerant version is called
ft-separator. The separator and ft-separator have 5 operational phases -
Input1 / Input2 / Separate / Output1 / Output2.

3.1.1.4 Fault-tolerant Storage

Figure 3.4 shows a storage component with eight reservoirs Res1-Res8 and 28
valves total. The storage component is used to store fluid output from chemical
or biological reactions on the biochip. The fluid is stored in the channels between
the valve sets {v5, v5} and {v6, v6}. The storage component only receives input
or outputs fluid. The storage component can fail in many ways as it has a lot of
valves and channels. Each valve in the component can be stuck open or stuck
closed or any channel in the component could be suffering from a block defect or
leakage. However since the storage component has so many channels and valves
it has some fault-tolerance in itself depending how much storage is needed in
a given application at the same time. If it is necessary to store four fluids at
the same time and four of the storage reservoirs’ channel are blocked, then the
application can still run.

Additionally, it can also receive input and output from/to both sides and thereby
the two channels controlling the input can also be blocked and the storage
component is still usable. Furthermore, similar to the mixer, it is possible
to route through the storage component as the operations of the storage are
performed using only valves and thereby the fluid cannot be unintentionally
affected in any way.

Figure 3.5 shows a fault-tolerant version of the storage component with nine
reservoirs Res1-Res9 and 34 valves. It is called fault-tolerant storage or ft-
storage for short. The ft-storage has one more channel to store fluid than the
regular storage component, thereby adding additional fault-tolerance to the stor-
age component if there is a need to store eight fluids at the same time and one
of the reservoir’s channel is blocked.

22 System Models

Figure 3.4: Storage component

Figure 3.5: Fault-tolerant storage component

3.1 Biochip Architecture Model 23

3.1.2 Architecture Model

The architecture model outlined is proposed in [8]. The biochip architecture is
modeled by a topology graph A = (N ,S,D,F ,K, c), where N is a finite set of
vertices, S is a subset of N , S ⊆ N , D is a finite set of directed edges, F is
a finite set of flow paths and K is a finite set of routing constraints. A vertex
N ∈ N has two distinguished types, a vertex S ∈ S represents a switch, whereas
a vertexM∈ N , /∈ S represents a component or input/output node. A directed
edge Di,j denotes a direct connection from vertex Ni to Nj where Ni, Nj ∈ N .
A flow path, Fi ∈ F , is a subset of two or more directed edges of D, Fi ⊆ D,
|Fi| > 1, denoting a direct communication link between two vertices ∈ N using
a chain of directed edges ∈ D. A routing constraint Ki ∈ K is a set of flow
paths that are mutually exclusive with the flow path Fi ∈ F . These flow paths
can not be activated in parallel. The function c(y) where y is either a directed
edge Di,j ∈ D or a flow path Fi ∈ F denotes the routing latency, i.e. the time
required by a fluid sample to traverse y.

Figure 3.6: Biochip architecture

Figure 3.6 shows a biochip architecture equipped with two inputs, two outputs,
one mixer, one heater, one filter and eight storage reservoirs Res1-Res8 which
are contained in the component ’Storage-8’.

3.1.2.1 Netlist

The netlist defines which components are to be placed on the biochip and their
interconnections. Therefore, it models the functionality of the chip but not the

24 System Models

physical layout. The netlist is modeled as a directed graph where components
are nodes and the connections between components are the edges, i.e. the nodes
are N from the architecture model and the edges are D.

3.1.3 Fault Model

The following is a proposed fault model for flow-based biochip architectures.
The faults are modeled as a set of faults Z = (VF , CF , v, c), where VF is a
finite set of valve faults and CF is a finite set of channel faults. A valve fault
V F (N,w, t) ∈ VF can happen to a vertex N ∈ N in the architecture. The
component model, which specifies the valves, is part of the architecture. The
valve affected by the fault is denoted by w. The type of fault is denoted by t.
The type of fault is either stuck open or stuck closed. The v in the fault model
specifies the maximum number of valve faults happening at the same time in
the biochip architecture. Therefore more than v valve faults, V F ∈ VF , can be
specified in the fault model, but no more than v valve faults are happening at
the same time.
A channel fault can happen to a component M ∈ N , /∈ S in the architecture.
A channel fault can also happen to a connection Di,j ∈ D. The type of fault
is denoted by t, where the type of fault can either be a block defect or leak. A
channel fault on a component is denoted by CF (M, t) ∈ CF . A channel fault on
a connection is denoted by CF (Di,j , t) ∈ CF . The c in the fault model specifies
the maximum number of channel faults happening in the biochip architecture
at the same time. Hence more than c channel faults, CF ∈ CF , can be specified
in the fault model, but no more than c are happening at the same time.

This means that the set of faults in the fault model are divided into two cat-
egories - valve faults and channel faults where valves can either be stuck open
or stuck closed and channels can either suffer from a block defect or leakage.
The set of faults is specific to a biochip architecture. The faults are specific, i.e.
when the faults are specified, they denote a specific channel or valve suspected
to be faulty. The faults in the fault model can be faults, known by the designer,
to be common faults in the architecture.

Considering the architecture in Figure 3.6 a possible fault model could be: Z =
(VF , CF , 2, 2).

3.1 Biochip Architecture Model 25

Table 3.2: Example set of valve faults VF

Name Vertex (N ∈ N) Valve affected (w) Type (t)
V F1 Mixer1 v5 Open
V F2 S6 v3 Open
V F3 S5 v2 Open
V F4 S3 v3 Open

Table 3.3: Example set of channel faults CF

Name Component (M ∈ N , /∈ S) / Connection Di,j ∈ D Type (t)
CF1 Heater1 Block
CF2 Filter1 Block
CF3 S2 → Storage-8 Block
CF4 S1 →Mixer1 Block

A possible fault scenario using this fault model example could be the combina-
tion {V F1, V F3, CF1, CF3}. In this scenario these four faults are considered to
be affecting the architecture. This fault scenario has a lot of effects on the archi-
tecture. CF3 specifies that the connection from S2 → Storage-8 is blocked and
therefore reaching the Storage-8 component from In2 a longer route is necessary
going through S1, Mixer1, S3, S4, S5 and then reaching Storage-8. V F1 effec-
tively means that Mixer1 is faulty and cannot perform its mixing operation as
valve v5 (in the pump) is stuck open, however it is still possible to route through
Mixer1. CF1 means that the Heater1 is suffering from a block defect and there-
fore the channel is not usable which renders Heater1 faulty. V F3 specifies that
v2 of S5 is stuck open and therefore when reaching S5 in the architecture the
routing possibilities depend on which channel is used to enter the switch. Valve
v2 restricts / allows the flow to channel between S5 and Storage-8. Therefore,
if S5 is entered from Storage-8 the fluid can leave S5, using any other channel.
However, if S5 is entered from any other channel it can only use the channel
going to Storage-8.

A fault scenario is a combination of faults, where any combination of the faults
specified in the fault model is possible to create a fault scenario. The defects in
the biochip architecture are tested for and known after fabrication. Effectively,
this eliminates the tolerance of faults presented at run-time. A valve stuck
closed and a blocked channel fault lead to the same result as the channel cannot
be used due to the valve controlling the input and/or output of the channel.

26 System Models

Figure 3.7: Application model

3.2 Biochemical Application Model

The biochemical application model outlined is proposed in [8]. The biochemical
application is modeled by a sequencing graph. The graph G(O, E) is directed,
acyclic and polar. Therefore, the graph will always have a source vertex with no
predecessors and a sink vertex with no successors. Each vertex Oi ∈ O repre-
sents an operation in the biochemical application. The dependency constraints
in the assay are modeled by the edge set E . An edge ei,j from Oi to Oj describes
that the output of Oi is the input of Oj . All the inputs need to arrive before an
operation can be activated. The operations in the application can be bound to a
component by the binding function: B : O →M. Each vertex has an associated
weight CMj

i . This denotes the execution time required for operation Oi to be
completed on component Mj . The application is assumed to have a deadline
which it should complete within. This deadline is denoted as dG . Furthermore
it is also assumed that the biochemical application has been correctly designed,
i.e. all the operations will have the correct volume of liquid available for their
execution.

Figure 3.7 shows a simple application model that has 3 mixing operations (O1,
O2 and O5), 1 filtration operation (O3) and 1 heating operation (O4). The exe-
cution times for each operation are given in the parameter below the operation
type. The execution times provided in Table 3.1, are of the actual functional
phase, which is given in bold in the table. The execution times from this table

3.3 Application Mapping 27

are the typical execution times for the component types, however a biochemical
application description may specify a longer time, if required for a particular
operation.

3.3 Application Mapping

Application mapping is the problem of mapping a biochemical application onto
a given biochip architecture. Mapping the application onto the architecture
involves binding onto the allocated components, scheduling the operations and
performing the required fluidic routing. The architecture is modeled as described
in subsection 3.1.2 and the application is modeled as outlined in section 3.2. The
allocated components are therefore captured by the vertex setM, M ∈ N , in
the architecture model A. The component placement and interconnections are
also captured in the topology graph A modeling the architecture.
During the binding step, each vertex Oi, Oi ∈ O, representing a biochemical
operation in the application model is bound to an available component Mj ,
i.e. B(Oi) = Mj . Since the fluid transport latencies in microfluidic chips are
comparable to the operation execution times, fluid routing also needs to be con-
sidered. Therefore, the binding function must also capture the binding of the
edge set E ∈ G to an available route. The route can be a flow path, F ∈ F , or
a collection of flow paths called a composite route. A composite route is used
when the source and destination components are such that no direct flow path
exists between them.
A scheduling strategy is necessary to efficiently execute the biochemical oper-
ations on the biochip components, while considering the dependency captured
by the application model and the resource constraints captured by the biochip
architecture. Alongside, the set of operations O ∈ G given in the application
model the edge set E ∈ G also needs to be scheduled on the biochip while
considering the routing constraints. Before scheduling a specific edge, the im-
plementation needs to evaluate if a flow path F ∈ F is sufficient to bind the
edge or if a composite route is necessary.
Throughout the scheduling phase, the storage requirement analysis needs to
be performed. Consequently, after completion of an operation, a decision on
whether the output fluid should be moved to a storage reservoir or not, needs
to be made.

28 System Models

3.4 Summary

In this chapter, the used biochip architecture model has been outlined. The
biochip architecture model has been proposed before. However an addition is
proposed to the component model in form of an extended component library
with fault-tolerant components in the flow layer. Furthermore, a fault model
for describing faults in the biochip architecture has been proposed with the dis-
tinction between valve faults and channel faults. Lastly, the application model
used in the thesis has been defined and the problem of mapping a biochemical
application onto a given biochip architecture has been outlined.

Chapter 4

Architecture Synthesis

This chapter focuses on the architecture synthesis, i.e. synthesising a fault-
tolerant architecture. It takes the initial architecture (as a netlist) to be made
fault-tolerant, a component library, an application model and fault model as an
input and synthesises a fault-tolerant architecture. The chapter will state the
formal problem formulation. Furthermore it will present the solution strategy.

4.1 Problem Formulation

The problem can be formulated as follows: Given a netlist (components and
their interconnections), a component library L, an application graph G(O, E)
with a deadline dG and a fault model Z = (VF , CF , v, c), determine a fault
tolerant netlist such that the biochip is fault tolerant and it minimises the cost
of the architecture.

The architecture provided by the designer is assumed to be an architecture that
the designer knows well. By virtue of this the designer can specify exact faults
that are typical faults or critical faults in the architecture. The inputs are
modeled as described in chapter 3.

30 Architecture Synthesis

Figure 4.1: Example application graph G for architecture synthesis

Figure 4.2: Example architecture for architecture synthesis

Table 4.1: Example set of valve faults VF for architecture synthesis

Name Vertex (N ∈ N) Valve affected (w) Type (t)
V F1 Mixer1 v5 Open
V F2 S6 v3 Open
V F3 S5 v2 Open
V F4 S3 v3 Open

4.1 Problem Formulation 31

Table 4.2: Example set of channel faults CF for architecture synthesis

Name Component (M ∈ N , /∈ S) / Connection Di,j ∈ D Type (t)
CF1 Heater1 Block
CF2 Filter1 Block
CF3 S2 → Storage-8 Block
CF4 S1 →Mixer1 Block

Considering the application graph G in Figure 4.1 and the architecture A in Fig-
ure 4.2 we are interested in synthesising an architecture such that is tolerant to
the faults given in Table 4.1 and Table 4.2 and that the cost of the architecture
is minimised.
Figure 4.3a shows a straightforward solution to this problem, whereas Fig-
ure 4.3b shows an optimised solution to this problem. In the straightforward
solution, which we assume that the designer could create without the help of
our tool, a redundant component is added for each component that would be
unable to perform its operation considering the fault model which thereby im-
plies that the application graph in Figure 4.1 cannot complete. Fault-tolerant
switches, S3, S5 and S6, have been added to compensate for the failing valves.
Similarly a redundant channel has been added to compensate for the blocked
channel S2 → Storage-8. No channel has been added to make the S1 →Mixer1
channel redundant as it is not needed by virtue of Mixer2. The cost of the
architecture in Figure 4.3a is calculated to be 129. The calculation is the sum
of the total number of valves and the total number of channels.

In the optimised solution the fault tolerant variants of filter, heater and mixer
have replaced the original components. Consequently the components tolerate
the faults in the fault model and are therefore able to perform their operations.
Two redundant channels have been added to compensate for the two blocked
channels. Routing is still possible even though there are valves failing in some
switches. The cost of the architecture in Figure 4.3b is calculated to be 96.
The optimised solution is therefore less costly than the straightforward solu-
tion, while at the same time tolerating all the fault scenarios possible under
the given fault model. Considering the application G in Figure 4.1 there are
four routes that will be affected by the valves failing in the switches. When the
filtration and heating operation finish the resulting fluids from both operations
will need to route back to the FT -Mixer1. Consequently they need to route
through S6 to S7 however as the valve v3 is the failing valve it is still possible
use the channel S6 → S7. Recall that when the valve stuck open in the switch
restricts / allows flow to the channel, we want to route to, then the fault is
inconsequential. However when arriving to S5 the failing valve v2 in S5 forces
the fluid to go through Storage-8 and therefore the route is a bit longer than the

32 Architecture Synthesis

Figure 4.3: Possible solutions for fault-tolerant architecture synthesis of the
example

optimal route. The other two routes affected are FT -Mixer1 → FT -Heater1
and FT -Mixer1 → Out2. The optimal routes would be to use the channel FT -
Mixer1 → S3 however as the valve v3 of S3 is failing it is not possible to use this
channel and the desired optimal route. However the routes can use the redun-
dant channel FT -Mixer1 → S4. This allows the usage of the channel S4 → S3

and thereby route to FT -Heater1 and Out2. It is possible now to route to any
channel we want to from S3 as we are routing to S3 from the channel that the
stuck open valve restricts / allows flow from.

The assumption is that the fault-tolerant architecture synthesis is part of a
methodology. The steps in the methodology are as follow.

1. Architecture design. An architecture A is designed by the designer. This
architecture can be generated as an application-specific architecture, which
is possible using a tool developed in [8].

2. Fault-tolerant architecture synthesis. A fault-tolerant netlist is synthesised
for the architecture A designed in the previous step while considering an
application graph G with a deadline dG and a fault model Z.

4.1 Problem Formulation 33

3. Physical architecture synthesis. A physical architecture is synthesised
(generating the placements of the component) using the fault-tolerant
netlist generated in step 2. The physical architecture synthesis is pos-
sible using the tool developed in [10].

4. Fabrication. The biochips are fabricated using the architecture A obtained
in the previous step.

5. Testing. All the biochips are tested to determine if they have permanent
faults using techniques such as the one proposed in [4], which is outlined
in section 2.5. The exact locations of faults are determined during this
step. If there are any permanent faults on the biochip not present in the
fault model Z, the biochip is discarded.

The focus of this thesis is on the second step of the methodology: the fault-
tolerant architecture synthesis problem. The thesis proposes two solutions based
on metaheuristics, Simulated Annealing and Greedily Randomized Adaptive
Search Procedure. The flow of the metaheuristic implementations is outlined
in Figure 4.4. A metaheuristic explores the solution space using design trans-
formations called moves. These are applied to the current solution in order to
obtain neighbouring architecture alternatives.

Randomly generate fault scenarios

Constraints for architecture A:
 i. Tolerate fault scenarios in Z
 ii. Use library L
Constraints for fault model Z
 i. Number of fault scenarios
Constraints for application G:
 i. Complete within deadline d

G

Evaluate stop
criterion

Evaluate initial architecture A

Generate alternative
architecture A

1

Evaluate objective function

Update best-so-far
architecture solution

OUTPUT
Architecture solution

Continue

S
to

p

Evaluate cost, fault-tolerant
routability and timing constraints

Figure 4.4: Architecture synthesis

34 Architecture Synthesis

One of the architecture alternatives is then selected to be the current solution.
Therefore each architecture alternative is evaluated using an objective function
which is described in chapter 5. When a new architecture solution improves the
objective function it is accepted and chosen as the current solution. However
in some cases the Simulated Annealing metaheuristic accepts worse solution in
order to escape the local minima. The metaheuristic continues to apply the
moves on the determined current solution and uses the objective function to
evaluate the obtained neighbouring architectures. The search terminates when
a stop criterion is satisfied.

4.2 Design Transformations

In order to generate an alternative architecture a way to obtain neighbouring
solutions has to be defined. This is also called moves as mentioned. It is possible
to specify multiple moves. The possible moves implemented in this thesis are
as follows.

1. Add redundant component : In order to make a component redundant an-
other component of that type is added to the architecture.

2. Convert regular component to the fault-tolerant version: By virtue of the
component library L given in Table 3.1 with fault-tolerant components a
component can be changed to its fault-tolerant version provided it is a
component with a fault-tolerant version.

3. Add connection between two components: A redundant connection is added
between the two components.

4. Remove redundant component : A redundant component is removed from
the architecture. Note that it is only a redundant component that can
be removed, i.e. none of the original components in the architecture are
removed.

5. Convert fault-tolerant component to the regular version: This move is the
reverse of move 2 as no component is fault-tolerant in the initial architec-
ture.

6. Remove connection: A redundant connection is removed from the archi-
tecture. Note that it is only a redundant connection that can be removed.
None of the original connections in the architecture are removed.

4.3 Simulated Annealing Architecture Synthesis 35

Let us consider the architecture from Figure 4.5a as the current solutionAcurrent.
By applying the following moves: add redundant connection between S4 and
Heater1, convert Mixer1 to its fault-tolerant version and add redundant com-
ponent Filter2, we obtain the neighbouring architectures from Figure 4.5b, c
and d respectively.

Figure 4.5: Example of neighbouring solutions

4.3 Simulated Annealing Architecture Synthesis

As a solution to the fault-tolerant architecture synthesis problem we propose
a Simulated Annealing approach. Simulated Annealing, henceforth SA, is a
metaheuristic whose inspiration originates from a technique in metallurgy. In
metallurgy, annealing is the process used to temper or harden metals and glass
by heating them to a high temperature and then gradually cooling them, thus
allowing the material to reach a low-energy crystalline state [11]. In the following
sections the concept of SA will be explained and how it is implemented for the
fault-tolerant architecture synthesis problem.

36 Architecture Synthesis

4.3.1 Concept

The idea of SA is to randomly create an initial solution, s0, and choose an
initial temperature, t0. A neighbouring solution of s0 is explored to see if that
solution is an improvement. The quality of the solutions is determined by a
cost function. If the neighbouring solution improves the current solution, that
solution is chosen as the current one and the temperature is reduced according
to a cooling schedule. However if the neighbouring solution is worse it is accepted
with a certain probability. If the algorithm only accepted a solution determined
to be an improvement it would converge towards the local optimum and not the
global optimum.

The idea is that when the temperature is high a large part of the solution
space is explored. Accordingly at high temperatures almost any solution is
accepted regardless of the quality. As the temperature decreases the simulation
gradually becomes more and more reluctant to accept inferior solutions. When
the temperature becomes low enough SA will only accept solutions that improves
the current solution. This causes it to become stable at a local optimum. If the
cooling is slow then the local optimum is a good approximation on the global
optimum. The probability, p(s), that an inferior solution, s, will be chosen is
given by the exponential expression.

p(s) = e−δ/t

where δ is the cost increase from the previous solution, and t is the temperature.
The probability is inspired by the laws of thermodynamics.

4.3.2 Implementation

SA takes as input the initial architecture A, the component library L, the ap-
plication graph G, and a fault model Z and produces a fault-tolerant netlist of
minimum cost. For the evaluation of each architecture alternative the SA-based
architecture synthesis uses the cost function described in chapter 5. By the
fact that SA receives the initial architecture A as an input there is no need to
randomly generate an initial solution. The algorithm is shown in Figure 4.6.

4.3 Simulated Annealing Architecture Synthesis 37

1: function SimulatedAnnealing(A,L, G,Z)
2: t← t0 . Temperature is initialized, t0 > 0
3: while t ≤ ttermination do
4: for i← 0 to iterations do
5: A′ ← RandomNeighbor(A)
6: if Cost(A′) < Cost(A) ∨Random(0, 1) < e−δ/t then
7: A ← A′
8: end if
9: end for

10: t← ReduceTemperature(t) . Temperature is reduced
11: end while
12: return A
13: end function

Figure 4.6: Implementation of Simulated Annealing

Deciding whether or not to accept the architecture A′ or keep the current one
A is done in line 6. A superior architecture is always accepted (δ < 0) but an
inferior solution is accepted with the probability p(s) = e−δ/t. The criterion is
met by generating a number uniformly at random between 0 and 1, which must
be less than the acceptance probability, p(s).

The SA-based synthesis generates new architecture alternatives by performing
moves on the current solution which is line 5 of the algorithm. The moves are
described in detail in section 4.2. The moves are chosen uniformly at random.
Each move is randomised in itself. Adding a connection picks two components
uniformly at random and adds a connection between them. Similarly converting
a component to its fault-tolerant version move choses the component uniformly
at random, provided it has a fault-tolerant version. This randomness applies to
each move done by SA to obtain a neighbouring architecture.

The temperate cooling schedule consists of four parameters: initial value, reduc-
tion function, termination value and number of iterations at each temperature.
The initial value should be high such that initially the acceptance rate is close
to 100%. This ensures that the entire solution space is explored. The reduction
function determines the speed of the temperature cooling. The implementation
of SA uses this reduction function.

ReduceTemperature(t) = k · t

where k < 1. In order to ensure the cooling down is slow a value of 0.999 has
been used for k.
Performing many iterations at each temperature ensures a more thorough explo-
ration of the solution space. Considering that superior solutions are accepted

38 Architecture Synthesis

unconditionally spending more time at each temperature has a tendency to
lead to better final solutions. The number of iterations at each temperature,
iterations, can be used to scale the running time of the algorithm to ensure more
exploring of the solution space. A value of 1 has been used to obtain results.
Experimenting more with the number of iterations is a possible optimisation.
The cooling should continue until the temperature is zero. A value of 0.1 for
the termination temperature has provided good results in this thesis. However
often the heuristic settles for a non-improving stable solution long before the
temperature reaches zero. There could also be experimented more with the
termination temperature.

Figure 4.7: Simulated Annealing example

Let us consider the example in section 4.1 with the initial architecture given in
Figure 4.2, the application in Figure 4.1 and the faults in Table 4.1 and Table 4.2
to illustrate how SA works. Figure 4.7a is the current solution, Acurrent, where a
number of moves have been applied to the initial architecture in order to obtain
Acurrent. From here we can apply most of the moves described in section 4.2.
Uniformly at random we pick a move, which gives us the architecture alternative
Figure 4.7b. This move is accepted since it now tolerates the channel fault of
Heater1, which means it improves the current solution and is thereby chosen
as the current solution, Acurrent. From this solution we apply a random move

4.4 GRASP Architecture Synthesis 39

again to obtain the architecture in Figure 4.7c, which is adding a redundant
storage component. This move is accepted and chosen as Acurrent although it
does not improve the current solution. It only adds more valves and connections
without contributing to the completion of the application. The move is accepted
due to the randomness of SA when deciding whether to accept inferior solutions.
As in the previous steps we pick a random move to see how it affects the current
solution. This move chosen is removing the redundant component, Mixer2.
However this move is not accepted by SA as Mixer1 is affected by a fault
such that is unable to perform mixing, and by virtue of removing Mixer2 the
architecture cannot perform mixing. Therefore this move is not accepted even
though SA randomly accepts inferior solutions. This continues until SA reaches
its termination temperature.

4.4 GRASP Architecture Synthesis

Greedily Randomized Adaptive Search Procedure, henceforth GRASP, is a
metaheuristic for combinatorial optimisation [9]. Combinatorial optimisation
is a problem that consists of finding an optimal object from a finite set of ob-
jects.

4.4.1 Concept

GRASP is an iterative metaheuristic. Each iteration consists of two phases:
a construction phase and a local search phase. In the construction phase the
GRASP algorithm builds a solution based on a list of candidate design transfor-
mations. The local search phase explores the neighborhood of the built solution
to find the local optimum. GRASP runs for a number of iterations and returns
the best solution found, i.e. the found solution that minimises the cost function
the most.
In a greedy algorithm a solution is constructed one element at a time. At each
step in the construction a set C of candidate elements that can be added to
the solutions at that step is constructed. A greedy function is applied to each
element in C and the elements are ranked according to their greedy function
values. A best ranked element is added to the solution. By virtue of this the
set C is updated and the greedy function changes. The process continues until
C = ∅. By randomly generating initial solutions a multi-start procedure will
eventually find the global optimum. Using greedy solutions as starting points
for local search however in a multi-start method will generally lead to good
although often suboptimal solutions due to the small amount of variability in

40 Architecture Synthesis

greedy solutions and the small likeliness that a greedy starting solution is in
the vicinity of the global optimum [9]. A semi-greedy heuristic adds variability
to the greedy algorithm. The candidate elements are ranked according to their
greedy function values. Afterwards the well ranked candidates are placed in a
restrictive candidate list (RCL) and an element from RCL is selected at random
and added to the solution. There are two schemes to build an RCL [9]:

1. In the cardinality based scheme an integer k is fixed and the k top ranked
elements are placed in the RCL

2. In the value based scheme all candidate elements with greedy function
values within a% of greedy value are placed in the RCL, where a ∈ [0, 100]

The GRASP algorithm therefore builds initial solutions by applying design
transformations on elements from the RCL.

4.4.2 Implementation

The implementation of GRASP in this thesis is inspired by the implementation
given in [5] and adapted to the fault-tolerant architecture synthesis problem.
The implementation is shown in Figure 4.8. GRASP takes as input the initial
architecture A, the component library L and a fault model Z. Additional pa-
rameters to the algorithm are the number of iterations, NoI, for GRASP to
run, the size of the candidate list cl, the number of unsuccessful iterations, ui,
after which the algorithm increases the size of cl with cli. Similarly there is a
parameter specifying the number of iterations, NbI, for the local search.

The algorithm initializes the cost of the best known solution to the cost of
the initial architecture. Furthermore the number of unsuccessful iterations #ui
is initialized as 0 where an unsuccessful iteration is defined as not improving
the best known solution. GRASP performs two phases: solution construction
and local search. During the construction phase GRASP creates the candidate
list CL of cl potential candidate components that will be transformed. The
selection of potential candidates is done by ranking each component M ∈ N of
A by the number of fault scenarios affecting the component. A fault scenario
is affecting a component if it contains a valve fault or channel fault affecting
the component or if it contains a channel fault that blocks an input or output
channel of the component. Only cl components with the highest ranking are
selected by GRASP. However the number cl of potential candidate components
does not remain constant throughout the search. If ui number of iterations has
passed since improving the best known solution Abest the size cl of the potential

4.4 GRASP Architecture Synthesis 41

1: function GRASP(A,L, G,Z, NoI, cl, ui, cli,NbI)
2: Abest ← A
3: Costbest ← Cost(A)
4: #ui← 0
5: while i < NoI do
6: CL← CreateCandidates(A, cl) . Phase 1
7: RCL← ChooseCandidates(CL)
8: A′ ← ApplyDesignTransformations(A, RCL)
9: A′ ← HillClimbing(A′, NbI) . Phase 2

10: if Cost(A′) < Costbest then
11: Abest ← A′
12: Costbest ← Cost(Abest)
13: #ui← 0
14: else
15: #ui← #ui+ 1
16: end if
17: if #ui ≥ ui then
18: cl← cl × cli
19: #ui← 0
20: end if
21: i← i+ 1
22: end while
23: return Abest
24: end function
25: function HillClimbing(A, iterations)
26: j ← 0
27: while j < iterations do
28: A′ = RandomNeighbor(A)
29: if Cost(A′) < Cost(A) then
30: A ← A′
31: end if
32: j ← j + 1
33: end while
34: return A
35: end function

Figure 4.8: Implementation of GRASP

42 Architecture Synthesis

candidate list is increased by cli (lines 17-20).
From the candidates list CL GRASP selects a random subset RCL of candidates
(line 7). The size of the subset is chosen uniformly at random ranging from one
candidate to the full set of potential candidates. Each component from the
restricted candidate list RCL is then randomly applied to one of five design
transformations (line 8 in the algorithm):

1. Add a redundant component to the architecture to compensate for the
component

2. Convert the component to its fault-tolerant version

3. Convert the component to its fault-tolerant version and add a redundant
incoming connection to the component

4. Convert the component to its fault-tolerant version and add a redundant
outgoing connection from the component

5. Convert the component to its fault-tolerant version and add redundant
connections for the component both incoming and outgoing

In the second phase GRASP performs local search (line 9). In this GRASP
implementation a simple Hill Climbing, henceforth HC, algorithm is used. The
HC algorithm generates new architecture alternatives by performing moves on
the current solution (line 28). The possible moves are described in section 4.2.
The moves are chosen uniformly at random. Similarly to SA the moves are
also randomized in itself, i.e. it will pick two random components to connect
when adding a connection. It then evaluates the architecture alternative and
if it is deemed less costly it is chosen as the new solution in HC (line 29-31).
When the local search finishes it will return the best solution found. If the
solution found by HC is better than the best known solution in GRASP the
new solution is chosen as the best solution and #ui is reset to 0 as it has been
a successful iteration. If it is deemed more costly than the best known solution
then it is an unsuccessful iteration and #ui is incremented by 1 (line 10-16).
The GRASP algorithm returns the best found solution Abest in terms of the
objective function defined in chapter 5.

The GRASP algorithm consists of many defined parameters. The number of
iterations of the algorithm, size of the candidate list, number of unsuccessful
iterations after which the algorithm increases the size of the candidate list with
a certain amount. Lastly the number of iterations in the local search also has
to be defined. In this thesis the number of iterations of GRASP has been 50
which has provided good results. The initial size of the candidate list has been 2
where it has been increased by a factor of 2 each time the maximum number of

4.4 GRASP Architecture Synthesis 43

Figure 4.9: Greedily Randomized Adaptive Search Procedure example

unsuccessful iterations has been reached. The number of unsuccessful iterations
has been ranging from 5 to 10 where both have provided good results. The
number of iterations in the local search phase has ranged between 50 and 100
where good results have been produced within this range.

Let us consider the example in section 4.1 with the initial architecture given
in Figure 4.2, the application in Figure 4.1 and the faults in Table 4.1 and
Table 4.2 to illustrate how GRASP works. Each iteration of GRASP starts
with the initial architecture, Ainitial, shown in Figure 4.9a. The candidate
list has well ranked components, where the ranking is decided by the amount
of fault scenarios affecting the component. Therefore Mixer1, Heater1 and
Filter1 are in this candidate list. Randomly a subset of this candidate list is
chosen and each component in the subset is randomly applied to one of the five
moves described earlier. Mixer1 is converted to its fault-tolerant version and
an outgoing connection is added, FT -Mixer1 → S4, and Filter1 is converted
to its fault-tolerant version. This gives us the constructed solution shown in
Figure 4.9b, which is the first phase of GRASP. Then the local search starts from
Figure 4.9b to obtain the local optimum, i.e. it only accepts improving solutions.
At random the local search picks a move from the possible moves described in
section 4.2. It adds a redundant Filter2 to the architecture, which provides
the architecture in Figure 4.9c. This architecture is however not accepted as it

44 Architecture Synthesis

adds more valves and connections without contributing to the completion of the
application. FT -Filter1 can perform the filtering and therefore the redundant
Filter2 is not needed. Therefore Figure 4.9b is still the current solution and
it applies another a random move, which is adding a connection between S2

and FT -Mixer1. This move contributes to the completion of the application
as it was not possible to route from In1 or In2 to FT -Mixer1 due to blocked
channels. The local search continues until the maximum number of iterations
in the local search has been reached. When the local search finishes GRASP
will update the best known solution if, and only if, the solution found by local
search is deemed better than the best known. Afterwards GRASP restarts from
the initial architecture, Ainitial.

4.5 Summary

This chapter specifies that the problem addressed in this thesis is obtaining
a fault-tolerant netlist given an initial architecture, a component library, an
application graph, and a fault model. The general flow of the architecture
synthesis is described which consists of generating an architecture alternative by
performing a design transformation where six possible design transformations
have been defined. The chapter proposes two solutions to the fault-tolerant
architecture synthesis problem, Simulated Annealing and Greedily Randomized
Adaptive Search Procedure. These two algorithms are metaheuristics that have
been adapted to this problem. Both proposed solutions rely on randomisation
to obtain architecture alternatives.

Chapter 5

Architecture Evaluation

This chapter focuses on architecture evaluation. The chapter will define how
an alternative architecture generated by SA and GRASP is evaluated. The
objective function consists of three parts: graph connectivity, scheduling of the
application onto the architecture and the cost of the architecture. These three
parts will be explained in detail in this chapter.

5.1 Objective Function

Before evaluating an architecture the set of fault scenarios, FS, must be ran-
domly generated from the fault model Z = (VF , CF , v, c). The number of fault
scenarios is given by the designer. The generated fault scenarios are iterated
and each iteration applies a fault scenario to the architecture, i.e. the faults in
the fault scenario are injected into the architecture (see Figure 5.1). In each
iteration the connectivity of the architecture, ft, and the finish time, δ, of the
application on the architecture are determined. The architecture evaluation is
then the sum of three variables.

Objective(A) =

 FS∑
f∈FS

¬ft

×Wft +

 FS∑
f∈FS

max(0, δ − dG)

×Ws + CostA

46 Architecture Evaluation

Figure 5.1: Architecture affected by fault scenario

 FS∑
f∈FS

¬ft

 is the number of fault scenarios that causes the architecture to not

be connected. Connectivity is denoted by ft where ft will be 1 if the architecture
is connected and 0 if it is not connected. The number is then multiplied withWft

which denotes a penalty value for the connectivity. Consequently this variable
will become smaller the more fault scenarios that pass the connectivity test.
The penalty value Wft is specified as 10000. FS∑
f∈FS

max(0, δ − dG)

 denotes the scheduling of the application on the ar-

chitecture affected by the different fault scenarios. In each fault scenario the
maximum of either 0 or the application finish time minus the application dead-
line is added to the sum. Thereby the sum grows larger as the application is
not schedulable on the architecture or if it completes after the deadline. The
sum is then multiplied with Ws which denotes a penalty value for the schedule.
Therefore the variable will grow larger as the application is not able to com-
plete within its deadline or no schedule has been found. The penalty value Ws

is defined as 5000.

CostA denotes the physical constraints. This variable is the sum of the total
number of valves and the total number of channels in the architecture.

Let us consider Figure 5.1a as the architecture to be evaluated, Aoriginal. Con-
sider the fault scenario, where the channel S1 → Mixer1 is blocked and the
channel of Heater1 suffers from a block defect. Additionally valves v6 (a valve
in the pump) of Mixer1, v1 (channel towards S3) and v3 (channel towards S5)
of S4 are stuck open. The effects of this fault scenario is shown in Figure 5.1b,
where channels marked with a thick red line represent unusable channels and
components marked with red are unable to perform their operation. Therefore

5.2 Generation of Fault Scenarios 47

we are unable to perform mixing, heating and route to Filter1. This injection
of the faults in a fault scenario is done for all generated fault scenarios, and the
connectivity and scheduling are determined for each fault scenario.

The following sections will describe how the fault scenarios are generated, how
the connectivity of the architecture is determined and how scheduling the ap-
plication onto the architecture is done.

5.2 Generation of Fault Scenarios

The fault scenarios, FS, are randomly generated from the fault model Z =
(VF , CF , v, c). A fault scenario f ∈ FS is a set of faults containing a set of
valve faults from the set of valve faults, VF , in the fault model and a set of
channel faults from the set of channel faults, CF , in the fault model. The fault
scenarios are generated such that they are unique, i.e. f ∈ FS will occur once
and only once.

The random generation of fault scenarios is divided into two phases.

First phase The first phase consists of generating all the possible combinations
of subsets of both the set of valve faults, VF , and the set of channel faults,
CF . Recall that v is the maximum number of valve faults happening in the
architecture at any point and likewise c is the maximum number of channel
faults. Therefore all permutations of the set of valve faults needs to be
generated where cardinality of the subsets are 0 ≤ k ≤ v. Likewise for the
set of channel faults where the cardinality of the subsets are 0 ≤ j ≤ c.

Second phase The second phase picks a random subset from all the possible
combinations of subsets of valve faults. Similarly it picks a random subset
from the subsets of channel faults. Combining these two subsets consti-
tutes a fault scenario, f ∈ FS. This continues until the specified number
of fault scenarios to generate are generated.

Normally we would have to use all the fault scenarios when doing the tests
for connectivity and scheduling. However, as these are too numerous we have
decided to use a subset. By virtue of this we are not guaranteed to create a
fault-tolerant architecture which is fault-tolerant to all scenarios. However, our
argument is that by using a subset, we can synthesise an architecture that can
tolerate most of the fault scenarios. This argument has been investigated in

48 Architecture Evaluation

chapter 7. However, it is not a problem if an architecture is not fault-tolerant.
As mentioned in section 4.1 this tool is part of a methodology. If after testing
we determine that a fault, which is not tolerated, is present, we will discard the
chip.

The implementation of the generation of fault scenarios is shown in Figure 5.2.
NoFS is the number of fault scenarios to be generated.

1: function GenerateFaultScenarios(Z, NoFS)
2: vsubsets← PossibleCombinations(VF , v) . Phase 1
3: csubsets← PossibleCombinations(CF , c)
4: i← 0
5: FS ← ∅
6: while i < NoFS do . Phase 2
7: v ← RandomSet(vsubsets)
8: c← RandomSet(csubsets)
9: f ← v ∪ c

10: if f /∈ FS then . If the fault scenario does not exist add it to FS
11: FS ← FS ∪ f
12: i← i+ 1
13: end if
14: end while
15: return FS
16: end function
17: function PossibleCombinations(set, k)
18: j ← 1
19: subsets← ∅
20: while j ≤ k do
21: r ← permutations(set, j))
22: subsets← subsets ∪ r
23: end while
24: subsets← subsets ∪∅ . The empty set (no faults) is possible
25: return subsets
26: end function

Figure 5.2: Implementation of random generation of fault scenarios

5.3 Connectivity

Due to permanent faults, an architecture can become disconnected and thereby
routing of fluid to the desired destination is no longer possible. Therefore it is

5.3 Connectivity 49

1: function IsConnected(A)
2: start← ChooseRandomInput(A)
3: visited← ∅ . Keep track of the visited components
4: Q.enqueue(start) . Q is a FIFO queue
5: visited← visited ∪ start
6: while Q is not empty do
7: v ← Q.dequeue()
8: for all connection from v to w in A.OutConnections(v) do
9: if connection not faulty and w /∈ visited then

10: visited← visited ∪ w
11: Q.enqueue(w)
12: end if
13: end for
14: end while
15: if (N \ A.inputs) ∈ visited then . If all vertices N ∈ N excluding

inputs are in the visited set. The architecture is connected
16: return true
17: else
18: return false
19: end if
20: end function

Figure 5.3: Implementation of graph connectivity algorithm

50 Architecture Evaluation

important that an architecture is connected. The initial architecture given by
the designer is assumed to be connected. The connectivity of the architecture
is determined by using the algorithm Breadth First Search or BFS for short.
BFS is an algorithm for traversing a graph data structure. The BFS algorithm
starts at one of the input nodes and traverses the architecture. If BFS visits
all the components, excluding the input nodes, in the architecture then the
architecture is connected. The input nodes are excluded due to being a source
of input and they never receive any fluid from other components on the chip.
Contrary if some components are not visited by the BFS then the architecture
is not connected. The implementation considers connections (channels) that
are blocked and switches that are affected by a valve fault and therefore have
their routing affected. The implementation of the BFS algorithm is shown in
Figure 5.3. If in a given fault scenario a switch is suffering from more than
one valve fault that causes it to disallow fluid going to a certain component
the affected connection is deemed faulty and removed from the architecture
while being affected by that fault scenario. It is added again to the architecture
when the architecture is restored from being affected by the fault scenario.
Similarly blocked channels are considered. Therefore the implementation shown
in Figure 5.3 is possible. The connectivity test is done for each fault scenario in
the set of generated fault scenarios.

5.4 List Scheduling

An architecture is only fault-tolerant if it can run the application within its
deadline. To determine the finishing time of the application, on a given ar-
chitecture affected by a fault scenario, we use the List Scheduling Algorithm,
henceforth LS. Mapping the application onto the architecture involves binding
of operations onto the allocated components, scheduling the operations and per-
forming the required fluidic routing as outlined in section 3.3. LS is a heuristic
approach to solve the problem of application mapping in a computationally effi-
cient manner. Together with the operation binding and scheduling, the heuristic
approach also considers the fluidic routing and channel contention. The input
to this tool is a netlist, which is not yet routed, i.e. the physical placement
of components is not known yet. We only know the exact routing latencies if
we know the routes. However, the routing latencies should not be completely
ignored when determining a schedule using LS. Therefore we assume that the
designer gives an average latency, which we use when determining a schedule.
This may mean that the application is actually not schedulable as we could be
using routing latencies, which are smaller than those resulted after the physical
synthesis. However it is still a reasonable estimation of the application comple-
tion time. In case the application is actually not schedulable, this will be known

5.4 List Scheduling 51

after the testing, when we have the physical architecture. If the application
turns out not to be schedulable, the chip is discarded.

LS is a while loop that runs until all operations (O) and edges (E) from the
application (G) are scheduled. The operations are topologically sorted based
on the dependency constraints. At each step a ready operation and its edges
are bound and scheduled to a component. The algorithm tries all possible
bindings and chooses a binding that produces the shortest completion time for
that operation. The list of ready operations are prioritised using the urgency
criteria. The urgency of an operation is specified as the length of the longest
path from the operation to the sink, i.e. summing the execution weights of the
vertices. When an operation has been scheduled its ready successor operations
are added to the list of ready operations. If no component is found during
the binding then there is no schedule for the application on the architecture.
If the number of ready operations exceeds the number of available resources
the most urgent operations are scheduled and the remaining ones are deferred.
Ready operations are defined as operations whose predecessors have completed.
Determining routes between components is done by using BFS where the BFS
considers channels affected by faults and switches affected by valve faults as
when determining the connectivity.

The implementation of LS in this thesis is given in Figure 5.4. The application
is preprocessed such that two operations are added with execution times of 0.
Recall the application G has a source and a sink as shown in Figure 3.7. These
two operations are added where the source is added such that all the operations
which originally had no dependencies (input operations) depend on the source
operation. Contrary the sink is added such that all operations who originally no
other operation depended on (output operations), the sink operation depends on
the completion of them. Thereby the completion time of the application graph
G onto the architecture A is the finish time of the sink operation. Furthermore
the source operation provides the LS algorithm with a starting point.

In the BindAndSchedule() function the algorithm tries all the possible bindings
for an operation and chooses the one that produces the shortest completion time
for the operation. It also considers the routing time and routing constraints.
If the component is occupied by another operation it will consider the time
it takes for the operation occupying the component to route to the storage.
Therefore a storage reservoir is only used if the component to which the previous
operation was bound is needed for performing another operation. The function
ScheduleOperation() then schedules the operation on the component specified.
It also binds and schedules the edges such that the channel(s) used by the edges
cannot be used by other edges during that time. The operation also schedules the
flows to storage if needed for the previous operation occupying the component.
If no route can be found to a component needed by the operation or if no

52 Architecture Evaluation

1: function ListScheduling(A,G)
2: PQ.put(G.source) . PQ is a priority queue
3: while PQ is not empty do
4: o← PQ.ExtractMax()
5: success← BindAndSchedule(o)
6: if success is true then
7: for all op ∈ ReadySuccessors(o) do
8: PQ.put(op)
9: end for

10: else
11: return dG × 2 . No schedule is found and a high value is

returned to make the cost of the architecture higher
12: end if
13: end while
14: return G.sink.finishtime
15: end function
16: function BindAndSchedule(operation)
17: time←∞
18: best← null
19: components← A.GetComponentsForOperation(operation) . The

architecture keeps track of faulty components
20: for all component ∈ components do
21: t = ReadyTime(operation, component)
22: if t < time then
23: time← t
24: best← component
25: end if
26: if best 6= null then
27: ScheduleOperation(operation, best) . This also schedules the

edges and renders the channels unusable while the operation is using them
28: return true
29: else
30: return false . The operation is not possible to schedule
31: end if
32: end for
33: end function

Figure 5.4: Implementation of the List Scheduling algorithm

5.5 Summary 53

component is able to perform that operation then no schedule exists and the LS
algorithm returns the a high value to make the cost of the architecture higher,
i.e. dG × 2.

5.5 Summary

This chapter defines how an architecture is evaluated. The architecture is eval-
uated by determining if the architecture is connected and if the application is
able to finish within its deadline when affected by a fault scenario in the set of
generated fault scenarios. Connectivity of the architecture is determined using
the algorithm Breadth First Search. The schedule for the application graph on
the architecture is determined using the List Scheduling algorithm. The fault
scenarios are generated at random from the fault model where the number of
generated fault scenarios is determined by the designer. Additionally the objec-
tive function also considers the physical constraints of the architecture, which
is the number of valves and channels (connections) in the architecture.

54 Architecture Evaluation

Chapter 6

Analysis, Design and Test

This chapter describes how the tool has been implemented using Python (version
3.4) as the programming language. The input to the tool are given as JavaScript
Object Notation (JSON) files and the tool also outputs a JSON file.

6.1 Design

The implementation has been done by dividing responsibilities into separate
modules and classes. In total, the tool consists of 8 modules and 27 classes.
To explain how the tool is implemented Figure 6.1 shows a high level class
diagram. Figure 6.1 does not show all the classes to simplify the class diagram.
Furthermore not all methods and attributes in the classes are shown.

In the following sections each module will be described and each class within
the module will be clarified.

56 Analysis, Design and Test

Run
Main

generate_fault_scenarios
generate_possible_combinations
fault_scenario_exists

total_faultscenarios
faultscenarios

RandomFaultScenarioGenerator

add_valvefault
add_channelfault

valvefaults
channelfaults
total_valvefaults
total_channelfaults

FaultModel

add_fault

valvefaults
channelfaults

FaultScenario

objecttype
objectname

id
type

Fault

affected
ValveFault ChannelFault

add_faultscenario_to_architecture
restore_architecture
evaluate_architecture
make_component_fault_tolerant
make_component_non_ft
add_redundant_component
add_redundant_connection
remove_redundant_con
remove_redundant_comp

faultscenarios
components_added
connections_added
ftcomponents
fault_tolerant_weight
schedulable_weight

ArchitectureModifier

run
perform_random_move

temperature
temp_reduction
termination

SimulatedAnnealing

run
choose_CL
rank_components
create_RCL
apply_move

best_architecture
best_cost

GRASP

schedule_application
schedule_operation
bind_and_schedule

operations_to_components
ListScheduler

preprocess
unschedule
add_flow
add_operation

source
sink

Application

schedule
ready_time_on_component
unschedule
succesors_ready

time
start_time
finish_time
component

Operation

schedule
unschedule
predict_time

time
to_storage
from_storage

Flow

add_fault
restore
remove/add_component
remove/add_connection
generate_connections
is_connected
find_route

average_connection_time
faults

Architecture
route_through_component
get_ft_version_of_component
get_ft_of_component

ComponentLibrary

remove/add_in_connection
remove/add_out_connection
is_fault_tolerant

finish_time
occupied_by
faults

Component

get_other_component
unschedule

components
Connection

Figure 6.1: Class diagram of the implementation

6.1.1 Architecture

The architecture module contains the classes for the architecture model, com-
ponents, connections, component library and routes. The Architecture class
implements the architecture model and it has the responsibility of adding and
removal of components and connections, finding routes for the fluid and gen-
erating the effects of faults. When finding routes between components, the
architecture considers the effects of valve faults on switches, i.e. it might only
be able to use certain connections if the valve is faulty. Similarly, the route
search also considers blocked channels. Furthermore, it contains methods to
add faults and restore from faults. The architecture uses the Component, Con-
nection and ComponentLibrary classes. The component class specify the type
of the component, the in and out connections it has and furthermore it has
scheduling related specifications. The connection class specify a simple graph
edge and knows the two component it connects and it has details about schedul-
ing. The reasoning behind components and connections having details about
the scheduling is that it simplifies the scheduler, and unscheduling is also sim-
ple as it is just the resetting of used attributes. The component library has
all the possible components and it keeps track of which components have and
do not have fault-tolerance, the fault-tolerance of the components and which

6.1 Design 57

components they are the fault-tolerant version of.

6.1.2 Fault Model

The fault model module contains classes for the fault model, the faults, fault
scenarios and the random generation of fault scenarios. The FaultModel class
is simple as it contains two sets which distinguish channel and valve faults, the
maximum number of valve faults and the maximum number of channel faults.
Fault is a superclass which has two subclasses ValveFault and ChannelFault.
The fault class specifies the object type the fault affects, either component or
connection, and the name of component or connection, where the names of com-
ponents and connections are specified in the JSON file for the architecture. The
FaultScenario class contains a set of valve faults and a set of channel faults. The
RandomFaultScenarioGenerator class implements the fault scenario generation
algorithm described in detail in section 5.2.

6.1.3 Application

The application module implements the application graph, the operations and
the flows (edges) in the application graph. The Application class contains a
preprocess method for preprocessing the application graph and functionality
to unschedule the application such it can be rescheduled and thereby a new
schedule in the objective function can be found. The preprocessing consists of
adding a source and a sink as operations to the graph. The source is added
such that all the input operations depend on the source and the sink is added
such that the sink depend on all the output operations. The Operation class
represent operations in the application graph. The class implements methods to
find the ready time on specific components, which considers the routing time and
constraints. The Flow class model the dependencies (edges) in the application
graph. The class implements methods to schedule the flows to storage and from
storage if needed when scheduling, and they can easily be unscheduled.

6.1.4 Parsing

The parsing module contains all the parsers for the JSON files. The module
contains a superclass named Parser. In total, the tool receives 5 files and there
is a class to parse each type of file, where all are subclasses of Parser. The
ArchitectureParser is responsible for parsing the netlist from the JSON file and

58 Analysis, Design and Test

create an object of the architecture class. Similarly, ApplicationParser, Compo-
nentLibraryParser, FaultModelParser, and ConfigParser create the application
graph, component library, fault model and the config data, respectively. The
config data specifies the average routing latency, application deadline, number
of fault scenarios, which algorithm to use and the algorithm specific details.

6.1.5 Scheduling

The scheduling module implements a superclass Scheduler such that it is easily
extendable to implement more schedulers if more schedulers are needed. The
ListScheduler class is a subclass of Scheduler. The ListScheduler class imple-
ments the List Scheduling algorithm which is described in detail in section 5.4.

6.1.6 Architecture Modifier

The architecture modifier module implements the design transformations, ar-
chitecture evaluation, SA and GRASP. It has three classes ArchitectureModi-
fier, SimulatedAnnealing and GRASP. The ArchitectureModifier is a superclass
which implements the design transformations, evaluates the architecture using
the fault scenarios and keeps track of the added components, connections and
fault-tolerant components converted. The moves are described in detail in sec-
tion 4.2. Converting a component to fault-tolerant is simple as the type of the
component just needs to be changed to the fault-tolerant type. Similar is the
case, when converting it back to its regular version. When adding a connec-
tion, we just need to consider that the components do not get more incoming or
outgoing channels than they are able to handle. Recall that a switch can only
consist of four valves (channels) which also means that, e.g. a mixer cannot
have more than two incoming and outgoing channels. Removing a connection is
also simple as we keep track of the connections, we add to architecture and only
redundant connections can be removed. Adding a redundant component how-
ever adds more complexity. The move is implemented such that the incoming
and outgoing connections are always from / to switches. Consider the situation
where all switches already have the maximum allowed channels, then two con-
nections between two switches has to be modified to add a switch between them
such that we can add the new component. Removing a redundant component
therefore has to take this into consideration. It is implemented such that if a
component has added switches to the architecture and we want to remove it,
then it also removes the switches if, and only if, the switches do not have a con-
nection to other components than the one, we wish to remove, and the switches
from the connection, we modified. If the switches have connections to other

6.2 Testing 59

components, they are kept in the architecture and added to the list of added
components such that it is possible to remove. If it is removed later on, it will
add the connection that we modified to the architecture.

Simulated Annealing and GRASP are subclasses of the ArchitectureModifier
class as they use the moves and the architecture evaluation of their superclass.
SA and GRASP are explained in detail in section 4.3 and section 4.4, respec-
tively. The ArchitectureModifier superclass makes it easy to extend the tool with
more algorithms to produce a fault-tolerant netlist that use the same moves and
evaluation method.

6.1.7 Serializing

The serializing module contains two classes, a superclass Serializer and a sub-
class NetlistSerializer. This is to output the JSON file specifying the fault-
tolerant netlist produced from this tool. The superclass is created such that it
is easy to extend with more serializers, e.g. a serializer for applications.

6.1.8 Run

The run module is the main file for running the program. It takes the command
line input which is the JSON files specifying the initial netlist, application, fault
model and config file.

6.2 Testing

The tool has been tested in an incremental manner as the different aspects
was implemented. The scheduling was one of the first functionalities that was
implemented. It was tested on different architectures with the associated ap-
plication models using the architectures and applications provided by the work
of [8] and [10]. The example in section 4.1 has been used as the key example
for all steps in the implementation process. When the logic to generate faults
was implemented, this example was used to test that the architecture responded
in the correct way when finding routes and determining the connectivity of the
architecture. Furthermore, we also tested how the faults affected the scheduling
by affecting it both with faults that would make it impossible to schedule the
application and contrary with faults where scheduling would still be possible.

60 Analysis, Design and Test

When it was determined that the effects of the faults were implemented cor-
rect, the moves were implemented. The moves were tested in different stages.
First they were tested to see if when applied to an architecture the outcome
was appropriate. When that test succeeded, it was then tested by affecting the
architecture with faults that would affect connectivity and scheduling. Redun-
dancy was then added to compensate for the faults and the outcome should
be that the connectivity test and the scheduling would pass. After successfully
implementing the moves, SA was implemented to use these moves and it was
tested many times using the key example from section 4.1 to make sure that the
moves and their counter-moves were acting correctly when applied many times.
GRASP was then implemented and tested similarly to SA.

6.3 Summary

This chapter outlines how the tool was implemented using a class diagram and
explaining the different modules and classes. The implementation has been
done such that it is easy to extend with new algorithms that will use the same
objective function and moves as SA and GRASP and implement new scheduling
algorithms. Similarly, every aspect of the tool is implemented. The testing was
done incrementally where examples have been used to test every aspect of the
tool.

Chapter 7

Experimental Evaluation

The algorithms proposed in chapter 4 are experimentally evaluated by applying
them to a number of benchmarks. The evaluation is done in terms of solution
quality and performance.

The algorithms are implemented in Python3.4. All the experiments were run
on DTU High Performance Clusters.

7.1 Benchmarks

In order to evaluate the proposed design methodology we use both synthetic
and real-life benchmarks. The following sections will describe the benchmarks
used.

62 Experimental Evaluation

7.1.1 S-1 Benchmark

Figure 7.1: Architecture and application graph of S-1

S-1 is a synthetic benchmark. The architecture for S-1 is shown in Figure 7.1a
and application graph for S-1 is shown in Figure 7.1b (5 operations).
The fault model for S-1 is: Z = (VF , CF , 2, 2) where VF and CF are shown in
Table 7.1 and Table 7.2, respectively.

Table 7.1: The set of valve faults VF for S-1

Name Vertex (N ∈ N) Valve affected (w) Type (t)
V F1 Mixer1 v5 Open
V F2 S6 v3 Open
V F3 S5 v2 Open
V F4 S3 v3 Open

Table 7.2: The set of channel faults CF for S-1

Name Component (M ∈ N , /∈ S) / Connection Di,j ∈ D Type (t)
CF1 Heater1 Block
CF2 Filter1 Block
CF3 S2 → Storage-8 Block
CF4 S1 →Mixer1 Block

7.1 Benchmarks 63

7.1.2 PCR Benchmark

Figure 7.2: Application graph of PCR

Polymerase Chain Reaction, henceforth PCR, is a real-life benchmark. The
application graph for PCR is shown in Figure 7.2 (7 operations). The PCR
architecture consists of 2 input nodes, 2 output nodes, 2 mixers, 1 storage
component and 7 switches.
The fault model for PCR is: Z = (VF , CF , 2, 2) where VF and CF are shown
in Table 7.3 and Table 7.4, respectively.

Table 7.3: The set of valve faults VF for PCR

Name Vertex (N ∈ N) Valve affected (w) Type (t)
V F1 Mixer1 v5 (pump) Open
V F2 Mixer2 v6 (pump) Open
V F3 S1 v2 (towards S2) Open
V F4 S3 v3 (towards Storage1) Open

Table 7.4: The set of channel faults CF for PCR

Name Component (M ∈ N , /∈ S) / Connection Di,j ∈ D Type (t)
CF1 S4 → S7 Block
CF2 Mixer1 → S3 Block
CF3 S5 →Mixer1 Block

64 Experimental Evaluation

7.1.3 IVD Benchmark

Figure 7.3: Application graph of IVD [8]

In-vitro Diagnostics, henceforth IVD, is a real-life benchmark. The application
graph for IVD is shown in Figure 7.3 (12 operations). The IVD architecture
consists of 2 input nodes, 2 output nodes, 2 mixers, 2 detectors, 1 storage
component and 43 switches.
The fault model for PCR is: Z = (VF , CF , 2, 2) where VF and CF are shown
in Table 7.5 and Table 7.6, respectively.

Table 7.5: The set of valve faults VF for IVD

Name Vertex (N ∈ N) Valve affected (w) Type (t)
V F1 Mixer2 v5 (pump) Open
V F2 S23 v3 (towards S14) Open
V F3 S42 v2 (towards Detector2) Open
V F4 S2 v3 (towards Storage1) Open
V F5 S5 v3 (towards S15) Open
V F6 S10 v2 (towards S3) Open
V F7 S3 v1 (towards S21) Open

7.2 Solution Quality 65

Table 7.6: The set of channel faults CF for IVD

Name Component (M ∈ N , /∈ S) / Connection Di,j ∈ D Type (t)
CF1 Detector1 Block
CF2 Detector2 Block
CF3 S9 → Detector2 Block
CF4 Mixer1 Block
CF5 S21 → S28 Block
CF6 S16 → S5 Block
CF7 Storage1 Block

7.2 Solution Quality

The parameters of which to evaluate fault-tolerant architectures depend on
many factors. Two of the important factors are that we have to be able to reach
every component on the chip (connectivity) and that the application has to be
able to complete on the chip, even in the presence of any fault scenario possible
under the given fault model. Meanwhile the physical constraints of the biochip
also have to be considered as the physical size of the biochip should be kept as
small as possible. Otherwise it would be easy to introduce fault-tolerance as we
could just introduce many redundant components. Therefore the fault-tolerant
architecture produced should be evaluated according to these three parameters,
and the parameters are also considered by the objective function outlined in
chapter 5. A more practical and equally important feature considering solu-
tion quality is the yield of the biochips, i.e. the number of fabricated biochips
that, after testing, are considered fault-tolerant hence they can be used by the
end-users. Note that in principle, when introducing fault-tolerance to a given
fault model, all the manufactured biochips should be fault-tolerant, so the yield
should be 100%. However, in practice, it may happen that after testing we
detect a fault which is not captured by the fault model. Also, since our solution
is based on a metaheuristic that uses a subset of the possible fault scenarios to
decide on introducing redundancy, it may happen that the fault-tolerant biochip
design is actually not tolerant to all the possible fault scenarios from the fault
model.

The experiments evaluating solution quality are divided into two sets of experi-
ments. The first set of experiments have the purpose to evaluate the quality of
the obtained solutions and compare SA and GRASP. The second set of experi-
ments will evaluate the yield of the obtained solutions.

66 Experimental Evaluation

7.2.1 Objective Function Evaluation

The initial features of the benchmarks are presented in Table 7.7. In Table 7.7
|N | is the number of components, |D| is the number of connections, the cost
is the number of valves and connections, the objective function calculated cost,
Objcost of the initial architecture Ainitial, the number of possible fault scenarios,
the number of fault scenarios, |FS|, generated for the specific benchmark, and
dG denotes the deadline for the application. Note that the Objcost of the initial
architecture is quite high due to the penalty values of the objective function.

Table 7.7: The benchmarks and their initial features

Name Type Ainitial Possible |FS| |FS| dG|N | |D| Cost Objcost
S-1 Synthetic 15 17 84 22350084 121 100 50
PCR Real-life 14 16 88 1695088 77 50 65
IVD Real-life 52 78 274 1800274 841 100 90

In Table 7.8 the resulting fault-tolerant netlists are presented. The specifications
are the same as in Table 7.7 with the addition that FT-|N | is the number of fault-
tolerant components. The netlist obtained by Simulated Annealing is denoted
as ASA and the netlist obtained by GRASP is denoted as AGRASP . The initial
netlists and the resulting netlists are shown in Appendix A where they are drawn
using GraphViz.

Table 7.8: The resulting fault-tolerant netlist of the benchmarks

Name ASA AGRASP
|N | FT-|N | |D| Cost |N | FT-|N | |D| Cost

S-1 24 1 35 185 15 3 20 102
PCR 19 1 27 124 14 1 17 92
IVD 53 2 80 285 52 2 78 279

These experiments show that both algorithms have been able to find a solution
deemed fault-tolerant by using the same cost function presented in chapter 5.
This is the case for all benchmarks used. Thereby a fault-tolerant architecture
has been synthesised for each benchmark such that the architecture is connected
and the application can complete within its deadline considering their respective
fault models.

In terms of obtaining a less costly fault-tolerant netlist GRASP performs bet-

7.2 Solution Quality 67

ter than SA in all benchmarks. However considering the IVD benchmark the
algorithms perform almost equally. GRASP uses less components and connec-
tions to obtain a fault-tolerant solution and thereby the cost of the solutions
are smaller for GRASP. On average the cost of the solutions found by GRASP
are 20% less costly than the solutions found by SA. A possible reason that SA
does worse than GRASP is that SA performs a number of bad moves in order
to converge towards the global optimum, where the moves are hard to recover
from. However, this requires further investigation in order to determine the
exact reasons.

7.2.2 Yield Evaluation

In this set of experiments only one benchmark is used, which is S-1. Furthermore
it will use only one algorithm to evaluate the yield. The algorithm used is
GRASP considering it performed better than SA in the first set of experiments.
The purpose of these experiments is evaluating the yield and the influence of
the number of randomly generated fault scenarios on the obtained solution. The
result of the experiments are given in Table 7.9. In Table 7.9 |N | is the number of
components, |D| is the number of connections, the objective function calculated
cost is denoted by Objcost, the cost is the number of valves and connections,
the initial architecture is denoted Ainitial, Aresult is the resulting architecture,
|FS| is the number of fault scenarios generated for the specific benchmark,
|FT | denotes the number of fault scenarios, f ∈ FS, the resulting architecture
tolerates, |¬FT | denotes the number of fault scenarios not tolerated and FT%
is the percentage of fault scenarios tolerated.

Table 7.9: The benchmark and the yield evaluation thereof

Ainitial |FS| Aresult |FT | |¬FT | FT%|N | |D| Objcost |N | FT-|N | |D| Cost
15 17 5760084 25 16 2 20 98 105 16 86.78
15 17 10540084 50 15 3 19 99 117 4 96.69
15 17 18580084 85 16 2 21 101 121 0 100
15 17 27610084 121 15 3 19 99 121 0 100

Table 7.9 shows that the number of fault scenarios generated has some influence
on the obtained solutions, although it is not a critical factor. When generating
only 25 fault scenarios we obtain a solution that tolerates 86.78% of the possi-
ble fault scenarios. This is because if a fault-tolerant solution in terms of the
objective function, i.e. the application can be scheduled and the architecture
is connected in all the generated fault scenarios, is found then it tolerates each

68 Experimental Evaluation

individual fault in the fault scenarios. However the combination of certain faults
will make the biochip unusable. This experiment shows that even generating
a fraction of the possible fault scenarios can lead to good fault tolerance to all
possible fault scenarios. In this case 21% of the possible fault scenarios were
generated and the percentage of fault scenarios tolerated is 86.78%. By virtue of
this it is possible to get good fault-tolerance results on large architectures where
generating a large portion of the fault scenarios to use in the cost function would
be computationally infeasible. Furthermore the experiment also shows that it
is able to obtain a fault-tolerance of 100% to the possible fault scenarios when
generating 70% percent of the fault scenarios. Thus the yield can be increased
considerably by using the tool in developed in this thesis.

7.3 Performance

In Table 7.10 the running time of the experiments presented earlier are outlined.
The number of vertices in initial architecture Ainitial are denoted as |N | and
the number of connections is |D|. The number of operations in the application
graph G are denoted as |O| and the number of generated fault scenarios for the
benchmarks are denoted as |FS|. ASA describes the running time of Simulated
Annealing where the time is presented as hh:mm:ss. AGRASP presents the
running time of GRASP with the same time formatting as ASA. Note that test
2, 3, 4 and 5 in the table has no running time for SA as these benchmarks were
only evaluated with GRASP in subsection 7.2.2.

Table 7.10: The benchmarks and their performance

Name Type Ainitial |O| |FS| ASA AGRASP|N | |D|
1 S-1 Synthetic 15 17 5 100 06:23:54 01:22:36
2 S-1 Synthetic 15 17 5 25 - 00:23:23
3 S-1 Synthetic 15 17 5 50 - 00:45:23
4 S-1 Synthetic 15 17 5 85 - 01:15:45
5 S-1 Synthetic 15 17 5 121 - 01:43:26
6 PCR Real-life 14 16 7 50 16:05:57 02:23:52
7 IVD Real-life 52 78 12 100 184:50:28 27:40:37

Table 7.10 shows that the running time of GRASP is much faster than SA in
all benchmarks. Part of the reason is that SA uses the objective function at
each iteration whereas GRASP uses it only in the local search and furthermore
SA with a slow temperature cooling schedule will have more iterations than the

7.4 Summary 69

main loop of GRASP. The objective function is the computationally slow part
of the algorithms. However GRASP still does considerably better in terms of
running time. Considering the S-1 benchmark GRASP is approximately 4 times
faster than SA. GRASP finds a solution to the PCR benchmark approximately
6-7 times faster than SA. Similarly with the IVD benchmark where GRASP finds
a solution 7-8 times faster than SA. Therefore it can be concluded that GRASP
does substantially better performance-wise in the benchmarks. However there
could be implemented optimisations of the objective function that would benefit
the running time of both algorithms.

7.4 Summary

In this chapter the algorithms proposed for the fault-tolerant architecture syn-
thesis problem have been evaluated by applying them to three different bench-
marks. The evaluation was done in terms of solution quality and performance,
where GRASP did considerably better than SA in both categories. Furthermore
in an effort to increase the yield even generating a fraction of the possible fault
scenarios provides good fault-tolerance on all possible fault scenarios.

70 Experimental Evaluation

Chapter 8

Conclusions and Future
Work

This chapter presents the conclusions and possible extensions of the work pre-
sented in this thesis.

8.1 Conclusions

This thesis describes the problems involved in synthesising a fault-tolerant archi-
tecture. We use the biochip architecture model and application model proposed
before in [8] and propose extensions to the biochip architecture model for achiev-
ing fault-tolerance. We propose a fault model, which consists of a set of valve
faults and a set of channel faults where a maximum number of valve faults and
a maximum number of channel faults can happen at any given time. Further-
more, the component library for the flow layer model has been extended with
fault tolerant components which are the fault-tolerant switch, mixer, heater,
filter, separator, detector and storage.

In order to achieve a fault-tolerant architecture, metaheuristics have been im-
plemented. Two metaheuristics have been proposed as solutions to the problem.
Simulated Annealing (SA) has been implemented. SA has the important prop-

72 Conclusions and Future Work

erty that the found solution converges towards the global optimum. The second
metaheuristic is Greedily Randomized Adaptive Search Procedure (GRASP)
which constructs randomised semi-greedy solutions as starting points for local
search. It then uses local search to find the local optimum.

An important factor is to decide and define what a good solution is. In this the-
sis, an architecture is considered fault-tolerant if, despite faults, the application
that has to run on the architecture can complete within its deadline and that
the architecture is connected such that all components on the chip are reach-
able. The fault scenarios used in the evaluation are randomly generated from
the fault model considering the maximum number of valve faults and channel
faults. Furthermore, the physical constraints have to be considered as the size
of the architecture should be kept small. The physical constraints have been
defined as the total number of valves and the total number of channels in the
architecture. The total number of valves and channels should therefore be kept
as small as possible while still achieving a fault-tolerant architecture. The two
metaheuristics must optimise the architecture with respect to these features.

These two algorithmic approaches are evaluated on benchmarks, both synthetic
and real-life benchmarks. The evaluations were done in terms of solution quality
and performance. The quality of a solution is defined by two things: minimising
the cost of the architecture and increasing the yield of biochips. The meta-
heuristic GRASP produced the best results in terms of solution quality with an
average of 20% less costly solutions compared to SA. Both of the algorithms
produced fault-tolerant architectures. Furthermore, the evaluation proved that
generating even a fraction of the possible fault scenarios in the fault model pro-
vided good results in fault-tolerance to all possible fault scenarios. Generating
21% percent of the possible fault scenarios provided fault tolerance to 86% of all
the possible fault scenarios. Generating approximately 70% of the possible fault
scenarios provided a fault-tolerance of 100%. GRASP also performed better
than SA in terms of performance by finding a solution between 4-7 times faster
than SA depending on the benchmark.

8.2 Future Work

The fault-tolerant architecture synthesis algorithms can be extended and im-
proved in many ways. Either to improve the quality of the fault-tolerance or to
improve algorithm performance. Some possible extensions are listed below.

• Considering a general fault model instead of a specific fault model. A
general fault model means considering, e.g., that any k channel(s) can

8.2 Future Work 73

suffer from a fault in the architecture where k is the max number of failing
channels. Similarly, extended the model to valves, where k valves could
suffer from faults. In the extreme case, the fault model could therefore be
that any valve will be stuck open and any channel will be blocked.

• The objective function could be optimised such that when generating a
neighbouring solution, only the affected fault scenarios should be evalu-
ated as it adds considerable complexity to go through each fault scenario.
For larger architectures, it takes a long time to produce a fault-tolerant
architecture as it has to schedule and consider connectivity for each fault
scenario.

• An extension could take the same approach as [2]. In this thesis, an
application-specific architecture is generated, where the architecture is
fault-tolerant to a maximum of k permanent faults. This was done previ-
ously for droplet-based biochips as mentioned, hence this thesis introduce
fault-tolerant design for the first time for flow-based biochips.

74 Conclusions and Future Work

Appendix A

Netlists

A.1 Initial Netlists

A.1.1 S-1

In order to better understand how the netlists look using GraphViz, the S-1
benchmark can be seen here to compare its GraphViz outcome to how it is
illustrated in the thesis which is in subsection 7.1.1.

76 Netlists

A.1.2 PCR

A.1.3 IVD

A.2 Netlists Obtained by SA 77

A.2 Netlists Obtained by SA

A.2.1 S-1

A.2.2 PCR

78 Netlists

A.2.3 IVD

A.3 Netlists Obtained by GRASP 79

A.3 Netlists Obtained by GRASP

A.3.1 S-1

A.3.2 PCR

80 Netlists

A.3.3 IVD

Bibliography

[1] Stephen Quake’s group at stanford university. http://thebigone.
stanford.edu/. Accessed: 2015-06-08.

[2] Mirela Alistar. Compilation and synthesis for fault-tolerant digital mi-
crofluidic biochips. Technical report, Technical University of Denmark,
DTU Compute, 2014.

[3] Holger Becker and Claudia Gartner. Microfluidics and the life sciences.
Science Progress, 95(95):175–198, 2012.

[4] Kai Hu, Feiqiao Yu, Tsung-Yi Ho, and Krishnendu Chakrabarty. Testing
of flow-based microfluidic biochips: Fault modeling, test generation, and
experimental demonstration. In IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, Vol. 33, No. 10, October 2014,
pages 1463–1475, 2014.

[5] Dobo Imre, Domitian Tamas-Selicean, and Paul Pop. Incremental schedul-
ing of TTEthernet networks to reduce re-certification costs. Technical re-
port, Technical University of Denmark, DTU Compute.

[6] Y.C. Lim, A.Z. Kouzani, and W. Duan. Lab-on-a-chip: a component view.
Microsyst Technol, 16(16):1995–2015, 2010.

[7] Jessica Melin and Stephen R. Quake. Microfluidic large-scale integration:
The evolution of design rules for biological automation. Annu. Rev. Bio-
phys. Biomol. Struct. 2007, 36(36):213–231, 2007.

[8] Wajid Hassan Minhass. System-level modeling and synthesis techniques
for flow-based microfluidic very large scale integration biochips. Technical
report, Technical University of Denmark, DTU Compute, 2012.

http://thebigone.stanford.edu/
http://thebigone.stanford.edu/

82 BIBLIOGRAPHY

[9] Leonidas S. Pitsoulis and Mauricio G.C. Resende. Greedy randomized
adaptive search procedures. Technical report, Princeton University.

[10] Michael Raagaard. Placement algorithm for flow-based microfluidic
biochips. Technical report, Technical University of Denmark, DTU Com-
pute, 2014.

[11] Stuart J. Russell and Peter Norvig. Artificial Intelligence - A Modern
Approach. Pearson, 2010.

[12] T. Thorsen, S. J. Maerki, S.J. Maerki, and S.R. Quake. Microfluidic large-
scale integration. Science, (298(5593)):580–584, 2002.

	Summary (English)
	Summary (Danish)
	Preface
	Acknowledgements
	Contents
	1 Introduction
	1.1 Flow-based Biochips
	1.1.1 Application Areas

	1.2 Motivation
	1.2.1 Related Work

	1.3 Thesis Overview

	2 Faults in Flow-Based Biochips
	2.1 Possible Faults and Causes
	2.2 Defects and Fault Modeling
	2.3 Fault Model
	2.4 Fault-Specific Testing Strategy
	2.5 General Testing Strategy
	2.6 Summary

	3 System Models
	3.1 Biochip Architecture Model
	3.1.1 Component Model
	3.1.2 Architecture Model
	3.1.3 Fault Model

	3.2 Biochemical Application Model
	3.3 Application Mapping
	3.4 Summary

	4 Architecture Synthesis
	4.1 Problem Formulation
	4.2 Design Transformations
	4.3 Simulated Annealing Architecture Synthesis
	4.3.1 Concept
	4.3.2 Implementation

	4.4 GRASP Architecture Synthesis
	4.4.1 Concept
	4.4.2 Implementation

	4.5 Summary

	5 Architecture Evaluation
	5.1 Objective Function
	5.2 Generation of Fault Scenarios
	5.3 Connectivity
	5.4 List Scheduling
	5.5 Summary

	6 Analysis, Design and Test
	6.1 Design
	6.1.1 Architecture
	6.1.2 Fault Model
	6.1.3 Application
	6.1.4 Parsing
	6.1.5 Scheduling
	6.1.6 Architecture Modifier
	6.1.7 Serializing
	6.1.8 Run

	6.2 Testing
	6.3 Summary

	7 Experimental Evaluation
	7.1 Benchmarks
	7.1.1 S-1 Benchmark
	7.1.2 PCR Benchmark
	7.1.3 IVD Benchmark

	7.2 Solution Quality
	7.2.1 Objective Function Evaluation
	7.2.2 Yield Evaluation

	7.3 Performance
	7.4 Summary

	8 Conclusions and Future Work
	8.1 Conclusions
	8.2 Future Work

	A Netlists
	A.1 Initial Netlists
	A.1.1 S-1
	A.1.2 PCR
	A.1.3 IVD

	A.2 Netlists Obtained by SA
	A.2.1 S-1
	A.2.2 PCR
	A.2.3 IVD

	A.3 Netlists Obtained by GRASP
	A.3.1 S-1
	A.3.2 PCR
	A.3.3 IVD

	Bibliography

