
 5-7 May 2010, Seville, Spain

©EDA Publishing/DTIP 2010 ISBN: 978-2-35500-011-9

Synthesis of Biochemical Applications on Digital

Microfluidic Biochips with Operation Variability

Mirela Alistar, Elena Maftei, Paul Pop, Jan Madsen

Technical Univ. of Denmark, DK-2800 Kgs. Lyngby

email: mali@imm.dtu.dk

Abstract—Microfluidic-based biochips are replacing the con-
ventional biochemical analyzers, and are able to integrate on-
chip all the necessary functions for biochemical analysis using
microfluidics. The digital microfluidic biochips are based on
the manipulation of liquids not as a continuous flow, but as
discrete droplets. Researchers have presented approaches for
the synthesis of digital microfluidic biochips, which, starting
from a biochemical application and a given biochip architecture,
determine the allocation, resource binding, scheduling and place-
ment of the operations in the application. Existing approaches
consider that on-chip operations, such as splitting a droplet of
liquid, are perfect. However, these operations have variability
margins, which can impact the correctness of the biochemical
application. We consider that a split operation, which goes beyond
specified variability bounds, is faulty. The fault is detected using
on-chip volume sensors. We have proposed an abstract model
for a biochemical application, consisting of a sequencing graph,
which can capture all the fault scenarios in the application.
Starting from this model, we have proposed a synthesis approach
that, for a given chip area and number of sensors, can derive
a fault-tolerant implementation. Two fault-tolerant scheduling
techniques have been proposed and compared. We show that,
by taking into account fault-occurrence information, we can
derive better quality implementations, which leads to shorter
application completion times, even in the case of faults. The
proposed synthesis approach under operation variability has been
evaluated using several benchmarks.

I. INTRODUCTION

Microfluidic biochips represent a promising alternative to

conventional biochemical laboratories, and are able to integrate

on-chip all the necessary functions for biochemical analysis

using microfluidics, such as: transporting, splitting, merging,

dispensing, mixing, and detection [2]. Some of the immediate

advantages include: higher sensitivity, less likehood of human

error due to automation, miniaturized size in comparison to the

traditional laboratory equipment, lower price due to usage of

small volumes of sample and reagent substances. Applications

of biochips include: clinical diagnosis, drug discovery, DNA

analysis (e.g., polymerase chain reaction and nucleic acid

sequence analysis), protein and enzyme analysis and immuno-

assays [2].

The “digital microfluidic” biochips (DMBs) are based on

the manipulation of liquids not as a continuous flow, but as

discrete droplets (hence the term “digital”) and are highly

reconfigurable and scalable. A DMB is modeled as a two-

dimensional array of cells, where each cell can hold a droplet,

see Fig. 1b.

Considering their architecture and the design tasks that have

to be performed, the design of digital microfluidic biochips

has similarities to high-level synthesis of VLSI systems. Mo-

tivated by this similarity, researchers have started to propose

approaches for the top-down design of such biochips. The fol-

lowing are the main design tasks that have been addressed [2]:

• During the design of a digital microfluidic biochip, the

bioassay protocols have to be mapped to the on-chip

modules. The protocols are (i) modeled using process

graph models, where each node is an operation, and each

edge represents a dependency [2].

• Once the protocol has been specified, the necessary mod-

ules for the implementation of the protocol operations

will be selected from a module library. This is called the

(ii) allocation step [3].

• As soon as the (iii) binding of operations to the allocated

modules is decided, the (iv) scheduling step determines

the time duration for each bioassay operation, subject to

resource constraints and precedence constraints imposed

by the protocol [4].

• Finally, the chip will be synthesized according to the

constraints on the types of resources, cost, area and

protocol completion times. During the chip synthesis, the

(v) placement [5] of each module on the microfluidic

array and the (vi) routing of droplets from one module to

another have to be determined [6] [7].

All of the presented design tasks have to take into account

possible defects during the fabrication of the microfluidic

biochip. Thus, testing [8] [9] and reconfiguration [10] have

to be performed.

Although researchers have addressed fabrication faults, the

current research assumes that on-chip operations, such as

splitting a droplet of liquid are fault-free. However, the re-

ality is that these operations have variability margins, which

can impact the correctness of the biochemical application.

Moreover, because of the complex bioassays performed on

biochips, the cells are many times reconfigured and used for

different operations, which can lead to the situation where a

group of cells fail to function correctly during the operation.

We consider that an operation which goes beyond specified

variability bounds is faulty (an example of a faulty split

operation is presented in Fig. 1c). Error detection is done by

routing the droplet to volume sensors and sensing the droplet

volume [11]. [12] is the only work so far that has addressed

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 27,2010 at 09:06:22 UTC from IEEE Xplore. Restrictions apply.

 5-7 May 2010, Seville, Spain

©EDA Publishing/DTIP 2010 ISBN: 978-2-35500-011-9

(a) Cell architecture (b) Biochip model: array of cells (c) Imperfect split operation [1]

Fig. 1: Biochip and architecture

the issue of operation variability. Their approach is to generate

extra droplets (checkpoints), which are stored on the chip, in

order to recover from errors, rolling back to the saved droplets.

Such an approach saves time at the expense of extra chip area

and reagent volumes.

The approach we present in this paper trades-off execution

time for chip area and reagent volumes, by redoing the failed

operation, such as split. The two fault-tolerant techniques are

complementary and can be used in conjunction with each other.

Our research has addressed so far tasks (i) to (v) [13]. In

this paper we use our synthesis approach from [13] to gen-

erate a non-fault-tolerant implementation. Starting from such

an implementation, our focus is on generating fault-tolerant

schedules and on the optimization and placement of volume

sensors. We show that, by taking into account fault-occurrence

information, we can derive better quality implementations,

which leads to shorter application completion times, even in

the case of faults.

This paper is organized in six sections. Sections II-A and

II-B present the architecture of the digital microfludic biochip,

and the sequencing graph that represents a biochemical appli-

cation, respectively. We formulate the problem in Section III

and use an example to illustrate the synthesis tasks. In Section

IV we present the proposed synthesis approach. The results of

the fault-tolerant implementation are discussed in Section V,

and in the last section we present our conclusions.

II. SYSTEM MODEL

A. Biochip Architecture

In a digital microfluidic biochip the manipulation of liquids

is performed using discrete droplets. We use electrowetting-

on-dielectric (EWD) [14] for droplet movement. A biochip

is composed of several cells. The architecture of a cell is

presented in Fig. 1a and the biochip architecture in Fig. 1b.

With EWD, the movement of droplets is controlled by applying

voltages to the required electrodes. For example, in Fig. 1a,

turning off the middle control electrode and turning on the

control electrode to the right, will force the droplet to move to

the right [14]. The chip also contains input and output ports and

detectors. The detection can be done by using, for example,

a light-emitting diode (LED) beneath the bottom plate and a

photodiode on the top plate.

The chip used in Fig. 1b can be used for the diagnosis

of metabolic disorders, by measuring the lactate and glucose

level in human physiological fluids. Hence, the device contains

the necessary input ports for introducing the samples (urine,

plasma and serum) and the reagents (lactate and glutamate

oxidase and buffer substance NaOH) on the microfluidic array,

where the corresponding protocol will be performed.

Using this architecture, and charging correspondingly the

voltages, all the required operations, such as transporting,

splitting, merging, dispensing, mixing, and detection, can be

performed. For example, the mixing operation is done by trans-

porting two droplets to the same location, and then moving

them next to each other. A mixing module can be created

by grouping adjacent electrodes on which the droplet can be

moved. Any cells on the chip can be used for such a purpose.

We consider that the designers will build and characterize a

module library L , where for each operation there are several

options with varying area and execution times, see Table I.

A split operation is performed by turning on simultaneously

the control electrodes to the right and left of the droplet.

However, due to the misalignment between the droplet and

the control electrode or because of the breakdown of electrode

dielectric [11], the resulting droplet volumes after a split

operation might be unbalanced, see Fig. 1c. Applications are

very sensitive to volume variations: the required precision in

liquid handling, measured by the standard deviation of a set

TABLE I: Module Library
Operation Module area Operation time (s)

Mix 2×5 2
Mix 2×4 3
Mix 1×3 5
Mix 3×3 7
Mix 2×2 10

Sensing 1×1 5

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 27,2010 at 09:06:22 UTC from IEEE Xplore. Restrictions apply.

 5-7 May 2010, Seville, Spain

©EDA Publishing/DTIP 2010 ISBN: 978-2-35500-011-9

of volumes divided by the mean, is ±2% for microdialysis

applications and ±10% in drug discovery applications. We

consider that a split operation is faulty if it results in droplets

with volumes below a given threshold. The threshold is given

by the designer and depends on the application.

Our fault model assumes a maximum of k faults, given

a biochip architecture and a biochemical application. These

faults can appear in any split operation and have to be tolerated.

The error is detected using on-chip volume sensors. The

sensors have to be placed on the top of existing electrodes.

One of the resulted droplets, after a split, has to be routed to

the sensor. The sensing operation can take up to five seconds,

depending on the sensor type [15].

If an error is detected (the volume is below or above the

given threshold), the resulted droplets are merged back. They

have to be routed to the same place on the chip, and the

merging is instantaneous. The split operation will have to be

performed again, followed by sensing and, in case of error,

by merge. In the worst-case, a split will have to be performed

k + 1 times, to tolerate the maximum k faults that can happen

in the application. The last split does not have to be followed

by a sensing operation, since we know it will not experience

an error: all faults have already happened. Note, however, that

these k faults can happen in any of the split operations of the

application.

B. Biochemical Application Model

A biochemical application is modeled using a sequential

directed acyclic graph G(V,E) [13], where each node Oi ∈ V

represents an operation. The binding of operations to modules

in the architecture is captured by the function B : V → A ,

where A is the set of the allocated modules from the given

library L . An edge ei j ∈ E from Oi to O j indicates that the

Fig. 2: Biochemical application model example

Fig. 3: Fault-Tolerant Sequencing Graph (FTSG)

output droplet obtained after Oi finishes, will be used as input

for O j. An operation can be activated after all its inputs have

arrived and it issues its outputs when it terminates. We assume

that, for each operation Oi, we know the execution time C
Mk
i on

module Mk = B (Oi), where it is assigned for execution. Fig. 2

depicts part of an application, which consists of 15 operations

O1–O15, and it involves a series of mixing operations (O1, O2,

O3, O5, O6) followed by split operations (O4, O7). Operations

O10–O15 are input operations. In operation O8 one of the

resulted droplets after the O7 split is routed to a waste reservoir

and in O9 we perform a detection operation on the other

droplet. Each operation has a predecessor and a successor, thus

we have introduced two NOP nodes, as source and sink nodes

(i.e., the graph is polar). Let us consider that the operation

O1 is bound to a 2× 4 mixing module denoted by M1 (i.e.,

B (O1) = M1). Then, according to Table I, the execution time

for O1 will be 3 s. We consider routing as part of an operation

time. In this paper we use the data from [14], which allows us

to approximate that the time required to route the droplet one

cell is 0.01 s, an order of magnitude smaller than operation

times, see Table I.

Such a model does not capture the fault occurrences during

split operations. In this paper, we propose a fault-tolerant

sequencing graph G (V ,E ∪EC), see Fig. 3. In G , each split

operation is followed by a sensing operation which detects if

a fault has occurred. For example, operation O16 in Fig. 3 is a

sensing operation for split operation O4. Note that operations

O8–O15 from Fig. 2 are depicted in Fig. 3 as “...” due to

space constraints. During a sensing operation, one of the

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 27,2010 at 09:06:22 UTC from IEEE Xplore. Restrictions apply.

 5-7 May 2010, Seville, Spain

©EDA Publishing/DTIP 2010 ISBN: 978-2-35500-011-9

(a) Schedule (b) Placement at t = 0 (c) t = 2 (d) t = 4 (e) t = 5

Fig. 4: Schedule for application graph

droplets resulted from the previous split operation is routed

to the sensor for error detection. The overhead added by the

routing time to the sensor is considered part of the sensing

operation execution time. The number s of the sensors and

their placement on the biochip are decided by our synthesis

approach.

Each sensing operation is followed by two conditional

edges ∈ EC corresponding to the faulty and non-faulty split

scenarios, respectively. In Fig. 3, in case a fault is detected

by sensing operation O16, the condition on edge O16 → O20

is satisfied and node O20 is activated. In this case, the two

resulting droplets are merged back into the initial one, and the

split operation is repeated. However, if the sensing operation

does not detect a fault, nodes O5.1 and O6.1 are activated

instead.

Section IV-A presents how we derive the fault-tolerant graph

G starting from the application graph G. The fault-tolerant

graph G in Fig. 3 captures all the fault scenarios that can

happen during the execution of application G from Fig. 2,

considering a maximum number of 2 faults, i.e., k = 2. For

example, the shaded subgraph captures the fault scenario when

one fault happens during O4 and the second fault happens

during O7.

III. PROBLEM FORMULATION

In this paper we address the following problem. As input we

have a biochemical application modeled as a graph G(V,E),
which is performed on a biochip platform represented by a

m× n array C of cells and a characterized module library L .

The fault model is given by the parameter k which denotes

the maximum number of faults that can occur. The designer

specifies the maximum number s of volume sensors that can be

used. We are interested in synthesizing a fault-tolerant imple-

mentation Ψ such that the worst-case application completion

time δG is minimized.

Synthesizing an implementation Ψ = < A ,B ,P ,S > means

deciding on: the allocation A , which determines what modules

from library L are to be used; the binding B of each operation

Oi ∈ V to a module Mk ∈ A ;the placement P of the modules

and of the sensors on the m× n array C ; the fault tolerant

schedule S of the application, which contains the start time of

each operation Oi on its corresponding module.

Let us illustrate each of these tasks by considering the

application graph G(V,E) from Fig. 2 which is performed on

an 8× 8 biochip such as the one from Fig. 1b.

A. Allocation and Placement

The input and detection operations are already assigned to

the corresponding input ports and detection module, respec-

tively. Thus, O10 is assigned to the input port S1, O11 to S2, O12

to S3, O13 to B1, O14 to B2, O15 to R1. Detection operation O9

is allocated to the photodetector. However, for the remaining

mixing operations (O1, O2, O3, O5, O6) and split operations

(O4, O7), our synthesis approach has to allocate the appropriate

modules. We consider that a split operation takes place at the

same location as the preceding operation.

Let us consider the module library L provided in Table I.

During the allocation phase, certain modules are selected from

L and placed on the 8 × 8 chip, such that the application

completion time is minimized. For this example, the following

modules are used: one 1×3 mixer, two 2×5 mixers and one

2×4 mixer, see Fig. 4b–e. Due to the dynamic reconfiguration

feature of the biochip, each of these modules can be placed

anywhere on the chip. Modules can physically overlap on-

chip, provided that they do not overlap in time, i.e., they are

used during different time intervals. If two droplets get too

close to each other (e.g., they are situated on adjacent cells),

then they tend to merge into a single droplet. That is the

reason why, when a module is placed on the chip, a protection

border is needed. The placement for the discussed solution

is as indicated in the hashed are from Fig. 4b–e, where, for

example, module M1 is a 2× 5 mixer (4×7 with protection

borders) placed in the bottom left corner of the 8× 8 chip.

B. Binding and Scheduling

Once the modules have been allocated and placed on the

cell array, we have to decide where to execute the operations

(binding) and in which order (scheduling), such that the

application completion time is minimized.

Considering the graph in Fig. 2, the obtained schedule

without fault-tolerance is presented in Fig. 4a. The schedule is

depicted as a Gantt chart, where for each module, we represent

the operations as rectangles with their length corresponding to

the duration of that operation on the module. For example,

operation O1 is bound to module M1 and starts immediately

after operation O2 (tstart
1 = 2) and takes 2 s, finishing at time

t
f inish
1 = 4. The total schedule length is 8 s.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 27,2010 at 09:06:22 UTC from IEEE Xplore. Restrictions apply.

 5-7 May 2010, Seville, Spain

©EDA Publishing/DTIP 2010 ISBN: 978-2-35500-011-9

Fig. 5: FTS schedule for two faults in O7

Fig. 6: SS schedule

C. Fault-tolerant Scheduling

However, the presented schedule does not take in account

the possibility of fault occurrence during a split operation.

Let us consider a maximum number k of faults that can

occur during the application execution. The faults are detected

using sensors. The sensors differ from the modules described

above, as they are real devices, so their placement is not

reconfigurable. For the application in Fig. 2, we use one sensor,

placed as in Fig. 6a–d, where it occupies 1 cell (3×3 with

protection borders) at the top right corner of the chip.

The straightforward way to adapt the schedule from Fig. 4a

is to introduce after each split operation enough slack (idle

time) that allows the application to fully recover in case of

faults. The fault-tolerance is achieved through error detection

(sensing) and recovery (merging back the droplets, followed

again by a split). Considering the worst-case, in which all k

faults happen in the same split operation, the required slack

time is calculated as:

tslack = k× (tsensing+ tmerge + tsplit). (1)

We assume that merge and split operations are instantaneous

and we use a sensing time of 5 s, see Table. I. Thus, for

k = 2, the slack required for recovering the split operation

O4 is 2× 5 = 10 s, as depicted in Fig. 6e, with a rectangle

Fig. 7: FTS schedule for faults in O4 and O7

labeled “O4 slack”. A similar slack is introduced for O7, thus

obtaining the fault-tolerant schedule from Fig. 6e, with a worst-

case application completion time δG = 24 s. We call such a

fault tolerant strategy Straightforward Scheduling (SS). The

schedule obtained by using SS wastes a lot of unnecessary

time for recovery. For example, for the schedule in Fig. 6e, if

both faults happened during the split operation O4, then the

maximum number of faults (k = 2) is reached, and hence there

is not need in allocating slack time after split operation O7.

Therefore, in this paper, we propose an improved fault-

tolerant scheduling (FTS) technique, which can take into

account the actual fault-occurrence pattern during the execu-

tion. By taking into account fault-occurrence information, FTS

produces shorter schedules, leading to a reduced worst-case

application completion time δG. FTS relies on the fault-tolerant

sequencing graph G , proposed in Section II, which captures

all the possible fault-scenarios. The FTSG from Fig. 3 is build

starting from the application graph from Fig. 2 and captures all

alternative scenarios for k = 2. Starting from the FTSG G our

FTS algorithm generates a table S where, for each operation,

we have the activation condition (the particular combination

of faults) and the corresponding start time. For example, the

merge operation O20 will be activated at time t = 7 if a fault

has occurred in the split operation O4.1 (see Fig. 7e).

During runtime, depending on the detected fault occur-

rences, a scheduler will activate the corresponding operations.

For example, for the fault scenario captured by the shaded

subgraph in Fig. 3 (first fault in O4 and the second in O7),

the operations in Fig. 7e will be activated at the depicted start

times. For the case when two faults happen in O7 we have

the start times depicted in Fig. 5e. The worst-case application

completion time δG is 19 s for FTS, compared to 24 s for SS.

The difference between FTS and SS results from the sensing

operation time: unnecessary sensing operations are avoided by

FTS. We have considered that a sensing operation takes 5 s.

However, there are capacitance sensor implementations that

can detect a droplet volume in shorter time [15]. In this case,

SS is preferable over FTS due to its simplicity.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 27,2010 at 09:06:22 UTC from IEEE Xplore. Restrictions apply.

 5-7 May 2010, Seville, Spain

©EDA Publishing/DTIP 2010 ISBN: 978-2-35500-011-9

IV. FAULT-TOLERANT SYNTHESIS STRATEGY

Our fault-tolerant synthesis approach is outlined in Fig. 8

and has three steps:

1) In the first step, we use our synthesis algorithm from

[13], to obtain the allocation A 0, binding B 0 and place-

ment P 0 that minimizes the application completion time

without considering faults (line 1 in Fig. 8). We have

extended the synthesis strategy from [13] to decide

the number of sensors and their placement given the

maximum number of sensors s that are available.

2) In the second step, we build a FTSG model G starting

from the application graph G (line 2 in Fig. 8) that

captures all fault scenarios for a given k maximum

number of faults.

3) During the third step (line 3 in Fig. 8), we obtain a

fault-tolerant schedule table S using the FTS algorithm

presented in Section IV-B.

A. Fault-tolerant Graph Generation

The FTSG graph G is generated by the function Gener-

ateFTSG which takes as parameters the application graph G

and the maximum number of faults k. For the application

graph in Fig. 2, considering k = 2, we obtain the FTSG

from Fig. 3. Each split operation Oi is transformed into a

structure which models all possible fault occurrence scenarios.

For example, O4 is transformed into the structure that starts

with node O4.1 in Fig. 3. We use the notation convention Oi.x

to denote the xth copy of the split operation Oi inserted in G .

Each such split operation is followed by a sensing operation.

For example, O4.1 is followed by the sensing operation O16.

There are two possibilities: a fault is detected, or no fault is

detected. Both scenarios are captured by the split structure,

using conditional edges. For example, for the sensing operation

O16, we insert the following conditional edges: O16 → O20

under the condition of a fault occurrence (true), and edges

O16 → O5.1 and O16 → O6.1, under the condition of no fault

occurrence (false), respectively.

On the faulty branch, we have to add a merge operation

(O20) and a recovery split operation (O4.2). For both scenarios,

we have to copy from G the subgraphs originating from the

split operation.

We continue the transformation with the next split op-

erations, including those introduced in G by the previous

transformations. In Fig. 3, k = 2. The split operation O4.2

is placed on the faulty branch originating from the sensing

operation O16, which means that a fault has already occurred

(in O4.1). Since k = 2, another fault can occur, which means

FTSynthesis(G, C , L , k)

1 Ψ0 = DMBSynthesis(G, C , L)

2 G = GenerateFTSG(G, k)

3 S = FTScheduling(G , C , B 0, P 0, k)

4 return Ψ = < A 0, B 0, S , P 0 >

Fig. 8: Fault-tolerant Synthesis

that O4.2 has to be followed by a sensing operation, O21. Our

construction procedure keeps track of the fault occurrence to

build the structure of G . On the faulty branch from O21 we

introduce the recovery split operation O4.3. However, O4.3 is

not followed by a sensing operation, since we are currently in

the scenario when both faults have already occurred (first in

O4.1 and second in O4.2).

The process continues until all possible alternative scenarios

are built. A scenario represents the fault pattern of maximum k

faults that can happen during the split operations from G. The

graph in Fig. 3 assumes a maximum number of 2 faults which

can occur on 2 split operations. There are 6 possible scenarios

in this particular case: /0—no faults at all; {O4}—one fault

during O4; {O7}—one fault during O7; {O4, O7}—two faults,

one during O4,and one on O7; {O4, O4}—two faults during

O4; {O7, O7}—two faults during O7. These six alternative

scenarios are captured in the FTSG in Fig. 3.

B. Fault-tolerant Scheduling Algorithm

The fault-tolerant schedule table S is obtained by the

FTScheduling algorithm from Fig. 9, which takes as input

the FTSG graph G generated in the previous step, the biochip

architecture C and the binding B 0 and placement P 0 obtained

in step 1 by our DMBSynthesis from [13]. We start by

generating all the fault scenarios F (line 1 in Fig.r̃efalg:FTS),

see the previous section for the list of scenarios captured in

graph G . Then, we traverse the FTSG and extract all subgraphs

corresponding to each possible scenario Fi ∈ F . We use

the Breadth-First Search (BFS) algorithm to traverse G (line

10) and for each split operation encountered we remove the

branch that does not correspond to the current scenario Fi. In

Fig. 3, the scenario {O4, O7} corresponds to the case when

the first fault happens during O4, so when we evaluate the split

operation O4.1, we remove the non-faulty branch, starting with

the edges O16 → O5.1 and O16 → O6.1. The process continues

until all split operations are evaluated. Eventually, for {O4,

FTScheduling(G, C , B , P)

1 F = GenerateFaultScenarios(G)

2 S = /0

3 for each Fi ∈ F do do

4 G ′ = G

5 Oi = source

6 while Oi 6= /0 do

7 if Oi is split operation then then

8 RemoveBranch(G ′, Oi, Fi)

9 end if

10 Oi = BFS(G ′, Oi)

11 end while

12 Graph = G ′

13 S = ListScheduling(Graph, C , B , P) ∪ S
14 end for

15 return S

Fig. 9: FTS algorithm

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 27,2010 at 09:06:22 UTC from IEEE Xplore. Restrictions apply.

 5-7 May 2010, Seville, Spain

©EDA Publishing/DTIP 2010 ISBN: 978-2-35500-011-9

ListScheduling(Graph, C , B , P)

1 CriticalPath(Graph)

2 repeat

3 List = GetReadyOperations(Graph)

4 Oi = RemoveOperation(List)

5 tstart
i = Schedule(Oi, B (Oi), C , P)

6 t = earliest time when a scheduled operation terminates

7 UpdateReadyList(Graph, t, List)

8 until List = /0

9 return S

Fig. 10: List scheduling algorithm

O7} we obtain the shaded subgraph in Fig. 3.

After extracting the scenario subgraphs, we schedule each

of them (Fig. 9, line 13) by using the list scheduling algorithm

from Fig. 10. The ListScheduling function takes as input the

m× n chip C , the subgraph Graph, the binding B 0 and the

placement P 0. Every node from Graph is assigned a specific

priority according to the critical path priority function (line 1)

[16]. List contains all operations that are ready to run, sorted by

priority. The algorithm takes each ready operation Oi, stored in

List, and schedules it at the time when corresponding module

Mi = B (Oi) can be placed on the chip C (line 5). When a

scheduled operation finishes executing, the List is updated with

the operations that have become ready. The ListScheduling

function outputs the schedule table obtained for Graph. For

example, for the shaded subgraph in Fig. 3, ListScheduling

will produce the schedule table from Fig. 7e.

V. EXPERIMENTAL RESULTS

In order to evaluate the proposed synthesis approach, we

have used two real life examples and seven synthetic bench-

marks. The FTSynthesis algorithm was implemented in Java

(JDK 1.6), running on a MacBook Pro computer with Intel

Core 2 Duo CPU at 2.53 GHz and 4 GB of RAM. The module

library used for all experiments is shown in Table. I.

For the first set of experiments we were interested to

evaluate the proposed synthesis approach in terms of worst-

case application completion time δG, as the number of faults

increases. For this, we have compared the δFT S
G obtained by

our FTScheduling from Section IV-B with δSS
G obtained by

the Straightforward Scheduling (SS) approach, considering the

same binding and placement, produced by DMBSynthesis in

line 1 in Fig. 8. SS generates a fault-tolerant schedule by

inserting slack, as discussed in Section III-C. Thus, we insert

in the application graph G a “slack” operation after each split

operation. The slack execution time is calculated using the

formula Eq. (1). We then apply the list scheduling algorithm

from Fig. 10 to obtain the fault-tolerant schedule. For the

application graph in Fig. 2, and k = 2 we obtained the fault

tolerant schedule of 24 s, depicted in Fig. 6.

We have used two real-life applications: (1) In-vitro diag-

nostics on human physiological fluids (IVD) [7], which has 25

operations and (2) The colorimetric protein assay (PRT) [10]

TABLE II: Results
Nodes Area s k = 2 k = 3 k = 4 k = 5

SS FTS SS FTS SS FTS SS FTS

10 6×6 1 46 41 56 46 66 51 76 53

20 8×8 2 37 29 47 36 57 46 67 56

30 8×12 3 40 36 55 37 70 56 85 76

40 10×8 2 37 33 48 38 58 40 68 45

50 8×12 3 44 38 57 43 73 49 87 51

60 12×10 4 50 45 59 50 65 50 79 52

70 10×12 4 65 60 82 63 102 66 122 74

IVD 10×10 2 36 31 41 36 51 36 61 41

PRT 15×15 6 88 68 114 73 145 76 176 84

utilized for measuring the concentration of a protein in a

solution, which has 134 nodes. For all benchmarks, including

the seven synthetic applications from [13], we ignored the

detection operations, and the dilution operations were replaced

by a mix operation followed by a split operation.

The results are presented in Table II, where we have, in

separate columns, the schedule lengths of both SS and FTS

approaches for k number of faults varying from 2 to 5. The

first three columns contain the application size given in number

of operations, the considered biochip area and the number

of sensors placed on the biochip, respectively. We can see

that using the FTS approach results in reduced application

completion times compared to SS, especially as k increases.

For k = 5 we have obtained an average improvement of 52.4%

in the FTS completion time compared to SS.

Our synthesis approach has three steps: running the adapted

implementation from [13] for the specified times (60–1,800 s),

generating the fault-tolerant graph, which takes very little

time, and obtaining the fault tolerant schedules. The duration

of the last step increases exponentially with the number of

faults k and the number of split operations. For example, for

the in-vitro diagnostics, a real life application with 4 split

operations [7], the execution times for 1 to 5 faults are 0.15 s,

0.45 s, 0.82 s, 1.51 s, 2.65 s, respectively.

For the second set of experiments, we were interested in the

impact of reducing costs (in terms of chip area and number of

sensors) on the implementation quality. The results presented

in Table III are obtained for the IVD application, for a fixed

number of faults, k = 4. The application is executed initially

on a large biochip area of 18×18 on which there are placed

4 sensors, for which we obtained an improvement of 12.1%

with FTS over SS. For the next evaluations, we have reduced

the area and the number of sensors. As expected the schedule

length increases with the reduced area and number of sensors.

TABLE III: Results
Area Sensors Schedule length (s)

SS FTS

18×18 4 46 41

16×16 4 47 41

14×14 3 46 36

12×12 3 46 31

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 27,2010 at 09:06:22 UTC from IEEE Xplore. Restrictions apply.

 5-7 May 2010, Seville, Spain

©EDA Publishing/DTIP 2010 ISBN: 978-2-35500-011-9

However, our proposed FTS approach produces significantly

better schedules than SS, thus allowing us to save costs. For

example, in the most constrained case, an 12×12 biochip area

and 3 sensors, we have obtained an improvement of 48.3%

compared to SS.

VI. CONCLUSIONS

In this paper we have proposed a fault-tolerant synthesis

approach for digital microfluidic biochips. We have considered

that split operations are faulty if the resulted droplet volumes,

detected using sensors, are outside of a given threshold.

Recovery from faults is done by merging the droplets back

and redoing the split operation. We have used the synthesis

strategy from [13] to generate a binding and placement of

operation (ignoring faults) and we have focused on generating

good quality fault-tolerant schedules.

We have proposed a fault-tolerant sequencing graph that

can capture all the fault scenarios in the application and we

have devised a scheduling technique to derive the fault-tolerant

schedule tables.

As the experimental results show, by taking into account

fault-occurrence information we can derive better quality

schedules, which leads to shorter application completion times

even in the worst-case fault scenario. This has the potential to

reduce costs, because smaller area biochips and less sensors

can be used to implement the application.

REFERENCES

[1] R. B. Fair, “Biochip engineering,” 2008, lecture notes.
[2] K. Chakrabarty and F. Su, Digital Microfluidic Biochips: Synthesis,

Testing, and Reconfiguration Techniques. Boca Raton, FL: CRC Press,
2006.

[3] F. Su and K. Chakrabarty, “Architectural-level synthesis of digital
microfluidics-based biochips,” in Proceedings of International Confer-

ence on Computer Aided Design, 2004, pp. 223–228.
[4] ——, “Unified high-level synthesis and module placement for defect-

tolerant microfluidic biochips,” in Proceedings of the 42nd annual

conference on Design automation, 2005, pp. 825–830.
[5] P.-H. Yuh, C.-L. Yang, and Y.-W. Chang, “Placement of digital microflu-

idic biochips using the T-tree formulation,” in Proceedings of Design

Automation Conference, 2006, pp. 931–934.
[6] M. Cho and D. Z. Pan, “A high-performance droplet router for digital

microfluidic biochips,” in Proceedings of International Symposium on

Physical Design, 2008, pp. 200–206.
[7] F. Su, W. Hwang, and K. Chakrabarty, “Droplet routing in the synthesis

of digital microfluidic biochips,” in Proceedings of Design, Automation
and Test in Europe, vol. 1, 2006, pp. 73–78.

[8] T. Xu and K. Chakrabarty, “Functional testing of digital microfluidic
biochips,” in Proc. Int. Test Conf., 2007, pp. 1 – 10.

[9] H. G. Kerkhoff, “Testing microelectronic biofluidic systems,” IEEE Des.
Test Comput., vol. 24, no. 1, pp. 72–82, 2007.

[10] F. Su and K. Chakrabarty, “Module placement for fault-tolerant
microfluidics-based biochips,” ACM Transactions on Design Automation
of Electronic Systems, vol. 11, no. 3, pp. 682–710, 2006.

[11] H. Ren, R. B. Fair, and M. G. Pollack, “Automated on-chip droplet
dispensing with volume control by electro-wetting actuation and capaci-
tance metering,” Sensors and Actuators B, vol. 98, no. 2–3, pp. 319–327,
2004.

[12] Y. Zhao, T. Xu, and K. Chakrabarty, “Control-path design and error
recovery in digital microfluidic lab-on-chip,” ACM Journal on Emerging
Technologies in Computing Systems, 2010.

[13] E. Maftei, P. Paul, and J. Madsen, “Tabu search-based synthesis of
dynamically reconfigurable digital microfluidic biochips,” in Proceedings

of the Compilers, Architecture, and Synthesis for Embedded Systems
Conference, 2009, pp. 195–203.

[14] M. G. Pollack, A. D. Shenderov, and R. B. Fair, “Electrowetting-based
actuation of droplets for integrated microfluidics,” Lab Chip Journal,
vol. 2, pp. 96–101, 2002.

[15] M. G. Pollack, “Electrowetting-based microactuation of droplets for
integrated microfluidics,” Ph.D. dissertation, 2001.

[16] G. D. Micheli, Synthesis and Optimization of Digital Circuits. McGraw-
Hill Science, 1994.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 27,2010 at 09:06:22 UTC from IEEE Xplore. Restrictions apply.

