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Abstract

We combine interior-point methods and results from matrix completion theory in an ap-
proximate method for the large dense quadratic programming problems that arise in support
vector machine training. The basic idea is to replace the dense kernel matrix with the maximum
determinant positive definite completion of a subset of the entries of the kernel matrix. The
resulting approximate kernel matrix has a sparse inverse and this property can be exploited to
dramatically improve the efficiency of interior-point methods. If the sparsity pattern is chordal,
the sparse inverse and its Cholesky factors are easily computed by efficient recursive algorithms.
Numerical experiments with training sets of size up to 60000 show that the approximate interior-
point approach is competitive with the libsvm package in terms of error rate and speed. The
completion technique can also be applied to other dense convex optimization problems arising
in machine learning, for example, in Gaussian process classification.
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interior-point methods

1 Introduction

Kernel methods typically require the solution of large, dense optimization problems. The best
known example is the quadratic program (QP) that arises in the dual formulation of the support
vector machine (SVM) training problem:

maximize −(1/2)zT Qz + dT z
subject to 0 � diag(d)z � γ1

1T z = 0.
(1)

The variable in this problem is z ∈ Rm, where m is the number of training examples. The vector
d ∈ {−1, 1}m contains the labels of the training examples, 1 is the m-vector with elements equal
to one, and γ > 0 is a positive parameter. The inequalities denote componentwise inequality. The
matrix Q in the objective is called the kernel matrix and is defined as

Qij = h(xi, xj), i, j = 1, . . . , m,
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where h is a positive semidefinite kernel function and x1, . . . , xm are the training examples. Im-
portant kernel functions on Rn × Rn are the linear kernel function h(u, v) = uT v, the radial basis
function kernel h(u, v) = exp(−‖u − v‖2

2/(2σ)), and the polynomial kernel h(u, v) = (uT v)δ.
The QP (1) is a convex optimization problem and can be solved by standard methods for

convex optimization, such as interior-point methods [NW06, ch.16]. This requires knowledge of the
entire kernel matrix and, at each iteration, a factorization of the sum of Q and a positive diagonal
matrix. Forming the (generally dense) kernel matrix Q requires O(m2n) time for the three standard
kernel functions mentioned above and O(m2) storage, and factorizing it costs O(m3) operations.
When the number of training vectors is large (say, greater than 10000), the QP therefore becomes
prohibitively expensive to solve by general-purpose QP interior-point solvers.

Efforts to improve the efficiency of large-scale SVM algorithms have been most successful for
the linear kernel h(u, v) = uT v. If the linear kernel is used, Q = XXT if X is the m×n-matrix with
rows xT

i . Therefore rankQ ≤ n if m ≥ n. This property can be exploited to reduce the complexity
of an interior-point method from O(m3) to O(nm2) per iteration [FS02, FM03]. Research on
fast first-order algorithms, such as projected gradient or cutting-plane algorithms, has also largely
focused on the linear kernel [HCL+08, FCH+08, Joa06, JY09], by taking advantage of the fact that
the gradient of the objective −Qz + d can be evaluated in O(mn) operations if Q has rank n.

If a nonlinear kernel is used, the matrix Q is generally dense and full rank, and this complicates
the implementation of quadratic programming algorithms. When m is large, it therefore makes
sense to approximate Q by a simpler matrix which is easy to compute, requires less storage, and
makes the QP easier to solve. Examples are low-rank [FS02] or diagonal-plus-low-rank [FM03]
approximations. If the rank is much less than m the cost per iteration of an interior-point method
can be reduced to O(mn2) by using the Sherman-Morrison-Woodbury formula or the product form
Cholesky factorization algorithm. Low-rank or diagonal-plus-low-rank approximations also simplify
the implementation of first-order methods because matrix-vector products are simplified. Finding
a suitable low-rank approximation, however, is a nontrivial task when m is large, since optimal ap-
proximations based on an eigenvalue decomposition are very expensive. Fine and Scheinberg [FS02]
discuss an incomplete Cholesky factorization algorithm for computing a low-rank approximation
of a kernel matrix. The method requires calculating (but not storing) all the entries in the kernel
matrix. In related work, Smola and Schölkopf [SS00] discuss greedy algorithms for low-complexity
approximations of the kernel matrix.

In this paper we explore an idea similar to methods based on low-rank kernel matrix approxi-
mations. However, instead of making a low-rank approximation, we approximate the kernel matrix
by a matrix with a sparse inverse. The approximation is obtained by computing the maximum de-
terminant positive definite completion of a partial kernel matrix. The approximated kernel matrix
is dense and full rank, but has the property that its inverse is sparse, making the QP very easy to
solve. An added advantage is that only a subset of the entries of the kernel matrix are needed to
compute the approximation. We will see that the Cholesky factors of the inverse of the completion
can be computed very efficiently if the positions of the specified entries in the partial kernel matrix,
which are also the nonzero positions in its inverse, form a chordal pattern, for example, a band
pattern. The purpose of the paper is to evaluate the performance of an SVM training algorithm
based on this sparse inverse kernel approximation. We focus on interior-point methods, but the ap-
proximation should be useful in first-order methods as well. It can also be combined with chunking,
decomposition, and active set methods that are based on solving a sequence of lower-dimensional
subproblems [OFG97, Pla99, Joa99, CL01].
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Outline The paper is organized as follows. In section 2 we define the maximum determinant
positive definite matrix completion problem and give its main properties. We also discuss in
detail how to compute the Cholesky factors of the sparse inverse of the completion of a band
matrix. Section 3 describes how matrix completion techniques can be exploited in an interior-point
method for solving an approximate SVM training problem. The approximate training problem can
be interpreted in two ways, and these lead to two different classifiers. In section 4 we consider
some numerical experiments, including a comparison of the two classifiers. We discuss some other
applications of the completion techniques in machine learning in section 5, and finally, we conclude
the paper in section 6.

Notation We denote with Sm the symmetric matrices of order m, Sm
+ is the cone of positive

semidefinite matrices in Sm, and Sm
++ is the set of positive definite matrices in Sm. The inner

product of two symmetric matrices A and B is defined as tr(AB) =
∑

ij AijBij . The inequalities
A � 0 and A ≻ 0 denote matrix inequality, i.e., A is positive semidefinite, respectively, positive
definite.

2 Maximum entropy kernel completion

In this section we review the basic properties of the maximum determinant positive definite matrix
completion problem [Dem72, GJSW84, Lau01]. We also make connections with positive definite
kernels and Gaussian processes [SS02, RW06].

2.1 Maximum determinant positive definite matrix completion

The positive definite matrix completion problem is a fundamental problem in matrix algebra
[GJSW84, Lau01]. We are given certain entries of a symmetric matrix and are asked to choose the
remaining entries so that the matrix is positive definite with maximum determinant. If we denote
the given entries by Qij , (i, j) ∈ V , then the problem can be expressed as an optimization problem

maximize log det X
subject to Xij = Qij ∀(i, j) ∈ V

(2)

with variable X ∈ Sm. (To simplify the notation we take as the domain of log detX the set of
positive definite matrices Sm

++, i.e., the constraint X ≻ 0 is made implicit in the definition of the
objective function.) Since log detX is concave on Sm

++, the problem (2) is a convex optimization
problem.

The matrix completion problem has an interesting statistical interpretation. Suppose f is a
random vector with known second moments Qij = E fifj for (i, j) ∈ V . Then the distribution
with maximum entropy that matches these moments is the zero-mean normal distribution N (0, X)
where X is the optimal solution of (2) [CT91, p.270]. For this reason the solution is also known as
the maximum entropy completion.

In the context of kernel methods, positive definite kernel functions h are often interpreted as
covariance functions of Gaussian processes f , i.e., h(x, y) = E(f(x)f(y)) [RW06], [SS02, Ch.16].
The solution of the completion problem with Qij = h(xi, xj) for (i, j) ∈ V then provides the
maximum entropy extension of the samples E(f(xi)f(xj)) = Qij , (i, j) ∈ V of the covariance
function.
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2.2 Duality and optimality conditions

We assume that the diagonal entries are included in V , so problem (2) cannot be unbounded.
However, depending on V and Qij it may be infeasible. If it is feasible, the optimal solution of (2)
satisfies the optimality conditions

X ≻ 0, Xij = Qij ∀(i, j) ∈ V, (X−1)ij = 0 ∀(i, j) 6∈ V. (3)

Therefore the inverse of the optimal completion has zeros in the positions of the unspecified entries
of X.

Additional insight in the problem can be gained from the dual of (2), which is

minimize tr(QZ) − log det Z − m
subject to Zij = 0 ∀(i, j) 6∈ V

(4)

with variable Z ∈ Sm. (Note that since Zij = 0 for (i, j) 6∈ V , the values of Qij outside V are
irrelevant in the objective.) The optimal solutions of (2) and (4) are related as Z = X−1. Therefore
the dual optimal Z is the sparse positive definite matrix whose inverse has values (Z−1)ij = Qij in
positions (i, j) ∈ V .

The dual problem also has an interesting statistical meaning. Recall that the relative entropy
(or Kullback-Leibler divergence) between two normal distributions N (0, Q) and N (0, X) is defined
as

1

2

(
tr(QX−1) − log det(QX−1) − m

)
(5)

[Kul97, p.189]. Except for the factor 1/2 this is identical to the dual objective function of (4)
evaluated at Z = X−1. The maximum determinant completion X can therefore be interpreted as
the covariance of the normal distribution N (0, X) that minimizes the relative entropy with N (0, Q),
subject to a sparsity constraint on X−1. The solution is independent of the values of Qij outside V .

2.3 Solution for band patterns

It is clear from (2) and (4) that only the entries Qij for (i, j) ∈ V are needed to compute the
optimal completion X and its inverse Z. For a general sparsity pattern V the problems must be
solved iteratively by a numerical optimization algorithm, for example, Newton’s method. However
when the sparsity pattern V is chordal, the problem (2) can be solved much more easily using a
simple recursive algorithm [DVR08, GJSW84]. In this section we give the details for a special case
of a chordal pattern, a band pattern with bandwidth 2w + 1, i.e., we take

V = {(i, j) | |i − j| ≤ w}.

We focus on band patterns because they will be used in the numerical experiments in section 4.
Matrix completion with general chordal patterns is discussed in section 2.4.

A necessary condition for existence of a positive definite completion is that the principal sub-
matrices of order w + 1,





Qkk Qk,k+1 · · · Qk,k+w+1

Qk+1,k Qk+1,k+1 · · · Qk+1,k+w+1
...

...
. . .

...
Qk+w+1,k Qk+w+1,k+1 · · · Qk+w+1,k+w+1




, k = 1, . . . , m − w − 1, (6)
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are positive definite. We will assume that this is the case and prove constructively that the con-
dition is also sufficient. To derive the optimal completion algorithm we consider the optimality
conditions (3). The conditions show that X−1 is banded with bandwidth 2w + 1. Therefore the
optimal X can be factored as X−1 = RRT with R upper triangular and banded with bandwidth
w + 1. To determine R we examine the equation

XR = R−T , (7)

and use the fact that the entries Xij for (i, j) ∈ V are given and equal to Qij , and that R−T is
lower triangular with diagonal entries 1/Rkk.

The leading block of R of order w + 1 follows from

[
X1 ×
× ×

] [
R1 ×
0 ×

]
=

[
R−T

1 0
× ×

]
.

Here X1 and R1 denote the leading principal submatrices of order w + 1 and the ‘×’ entries are
blocks of the matrix that are irrelevant in the present discussion. Since all positions in X1 are in
V , the matrix X1 is entirely specified and positive definite, so R1 can be computed from a dense
Cholesky factorization X1 = R−1

1 R−T
1 .

The rest of R is determined column by column. To compute a column k > w + 1 of R, consider
column k of the two sides of the equation (7):





× × × ×
× Xk X̂k ×
× X̂T

k Xkk ×
× × × ×









0

R̂k

Rkk

0



 =





0
0

1/Rkk

×



 .

Here Xk has size w × w, and X̂k and R̂k are vectors of length w. This gives two equations from
which we can determine R̂k and Rkk:

XkR̂k + X̂kRkk = 0, X̂T
k Rk + XkkRkk =

1

Rkk
.

The equations are solvable because the submatrix

[
Xk X̂k

X̂T
k Xkk

]

is completely specified (and equal to the matrix (6)) and positive definite. The solution is

Rkk =
(
Xkk − X̂T

k X−1
k X̂k

)−1/2
, R̂k = −RkkX

−1
k X̂k.

We can compute Rkk and R̂k using a Cholesky factorization of Xk = LkL
T
k in three steps:

y := L−1
k X̂k, Rkk := (Xkk − yT y)−1/2, R̂k := −RkkL

−T
k y.

If the columns of R are computed in the natural order, we can reuse part of the Cholesky factor-
ization of Xk from one step to the next, by noting that Xk+1 is obtained from Xk by deleting the
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first row and column and by adding a new last row and column. Its Cholesky factorization can
therefore be updated from the factorization of Xk in O(w2) operations. This reduces the cost of
computing the maximum determinant completion to O(w2m) if m ≫ w.

In summary, the maximum determinant positive definite completion of the values Qij , |i−j| ≤ w,
in a diagonal band of width 2w + 1 exists if and only if the submatrices (6) are positive definite.
The inverse of the optimal completion is banded and its Cholesky factors can be computed from
the specified values Qij in O(w2m) steps.

2.4 Solution for general chordal patterns

An undirected graph is called chordal if every cycle of length greater than three has a chord,
i.e., an edge connecting non-adjacent nodes. A symmetric sparsity pattern V is chordal if the
graph with edges (i, j) ∈ V is chordal. Chordal sparse matrices have many important properties,
including three that extend the properties of band matrices used above. First, every positive definite
matrix Z with a chordal sparsity pattern has a zero-fill Cholesky factorization, i.e., there exists
a permutation P such that P T ZP = RRT where R is triangular with the same sparsity pattern
as P T ZP (i.e., R + RT has the sparsity pattern of P T ZP .) Second, the maximum determinant
positive definite completion of a subset of entries Qij , (i, j) ∈ V , with a chordal sparsity pattern V
exists if and only if all the completely specified principal submatrices are positive definite. These
principal submatrices correspond to cliques in the associated graph. Finally, there exist explicit
formulas and finite recursive algorithms for the maximum determinant positive definite completion
of a matrix with a chordal sparsity pattern. For example, as for the band patterns, one can compute
the Cholesky factors of the inverse of the optimal completion directly from Qij , (i, j) ∈ V . We refer
the reader to [DVR08] for more details.

3 SVM training by matrix completion

The matrix completion theory in the previous section can be applied to compute optimal (i.e.,
having minimum relative entropy) approximation of a kernel matrix by a positive definite matrix
with a sparse inverse. In this section we examine the computational advantages of a sparse inverse
kernel approximations when solving the SVM training problem (1).

Suppose Q̃ is the maximum determinant extension of Qij = h(xi, xj), (i, j) ∈ V , where V is a
chordal pattern. (In our experiments we will select V randomly, by choosing a band pattern after
applying a random permutation of the training vectors.) We will substitute Q̃ for Q in the training
problem (1) and consider

maximize −(1/2)zT Q̃z + dT z
subject to 0 � diag(d)z � γ1

1T z = 0.

(8)

In this section we first describe in detail how one can take advantage of the sparsity of Q̃−1 in an
interior-point method for the QP (8) (see sections 3.1 and 3.2). We then discuss two possible ways
of using the solution of (8). First, we can interpret the optimal z as the exact dual solution of an
SVM training problem for an unknown kernel function h̃ with values h̃(xi, xj) = Q̃ij on the training
set. We will discuss two choices for h̃ in section 3.3 and compare the performance of the resulting
classifiers in section 4. Second, we can view the optimal z as an approximation of the solution of

6



the QP (1) associated with the original kernel h and use the values of z to select a subset of training
vectors for which we then solve a smaller dense QP exactly. This idea is investigated in section 4.

3.1 Quadratic programming duality

We first review the quadratic programming duality theory for the SVM training problem (1). The
dual of the problem can be expressed as

minimize (1/2)yT Q†y + γ1T v
subject to y ∈ range(Q)

diag(d)(y + b1) + v � 1

v � 0,

(9)

with variables y ∈ Rm, b ∈ R, and v ∈ Rm. The notation Q† denotes the pseudo-inverse of Q
(for now we do not make any assumptions on the invertibility of Q). The vector b is the multiplier
associated with the equality constraint in (1), the vector v is the multiplier for the inequality
diag(d)z � γ1. The multiplier for the constraint diag(d)z � 0 has been eliminated from (9) and
is equal to diag(d)(y + b1) + v − 1. If we make a substitution y = Qu we can simplify the dual
problem as

minimize (1/2)uT Qu + γ1T v
subject to diag(d)(Qu + b1) + v � 1

v � 0
(10)

with variables u, b. It can be shown that if z is optimal in (1), then y = Qz is optimal in (9) and
hence u = z is optimal in (10).

We can eliminate v and write the dual QP (10) as an unconstrained nondifferentiable problem

minimize
1

2
uT Qu + γ

m∑

i=1

max{0, 1 − di(
m∑

j=1

Qijuj + b)}. (11)

Since Qij = h(xi, xj) the second term is

m∑

i=1

max{0, 1 − di(
m∑

j=1

h(xi, xj)uj + b)},

i.e., the familiar hinge-loss penalty for the classifier

g(x) = sign(
m∑

j=1

h(x, xj)uj + b) (12)

evaluated on the training set defined by xi, di, i = 1, . . . , m. If the linear kernel is used (h(xi, xj) =
xT

i xj and Q = XT X, where X is the matrix with rows xT
i ), then (11) can be written as

minimize
1

2
wT w + γ

m∑

i=1

max
{
0, 1 − di(w

T xi + b)
}

with w = XT u. The classifier (12) reduces to g(x) = sign(wT x + b).
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3.2 Interior-point method

We now discuss the implementation of interior-point algorithms for solving the QP (8) and its
dual, when Q̃ is large and dense, but also invertible with a sparse inverse. For invertible Q̃ the dual
reduces to

minimize (1/2)yT Q̃−1y + γ1T v
subject to diag(d)(y + b1) + v � 1

v � 0.

(13)

The main step in an iteration of an interior-point method applied to (8) and (13) is the solution of
a linear equation of the form





Q̃−1 0 0 −diag(d) 0
0 0 0 −dT 0
0 0 0 −I −I

−diag(d) −d −I −D1 0
0 0 −I 0 −D2









∆y
∆b
∆v
∆z
∆w




=





r1

r2

r3

r4

r5




, (14)

where D1, D2 are positive diagonal matrices with values that change at each iteration. We will refer
to (14) as the Newton system because it can be interpreted as the linearization of the nonlinear
equations that define the primal-dual central path.

Interior-point methods are known to reach a high accuracy after a small number of iterations (in
the range 10–30), almost independent of problem size, so to get an idea of the overall complexity it is
fair to focus on the cost of solving one Newton system (14). (Some common interior-point algorithms
solve multiple Newton systems (usually two or three) per iteration, with different righthand sides
but with the same values for D1 and D2. The cost of solving the multiple systems is therefore
essentially the same as the cost of solving one Newton system [Wri97, NW06].) We now describe
an efficient algorithm for solving (14) by taking advantage of the sparsity of Q̃−1.

We start by eliminating ∆v, ∆z, ∆w. From the bottom three block rows in (14) and the identity



0 I I
I D1 0
I 0 D2




−1

=




−D1D2 D2 D1

D2 I −I
D1 −I I








(D1 + D2)

−1 0 0
0 (D1 + D2)

−1 0
0 0 (D1 + D2)

−1





we can express ∆v, ∆z, ∆w, as a function of ∆y, ∆b:



∆v
∆z
∆w



 = −




0 I I
I D1 0
I 0 D2




−1 






0 0

diag(d) d
0 0




[

∆y
∆b

]
+




r3

r4

r5









= −




D2

I
−I



diag(d)(D1 + D2)
−1

[
I 1

] [
∆y
∆b

]

−




−D1D2 D2 D1

D2 I −I
D1 −I I








(D1 + D2)

−1r3

(D1 + D2)
−1r4

(D1 + D2)
−1r5



 . (15)

Substituting this in (14) gives a smaller equation in ∆y, ∆b:
[

Q̃−1 + D̂ D̂1

1T D̂ 1T D̂1

] [
∆y
∆b

]
=

[
r̂1

r̂2

]
(16)

8



where D̂ = (D1 + D2)
−1 is positive diagonal and

[
r̂1

r̂2

]
=

[
r1

r2

]
−

[
diag(d)

dT

]
D̂(D2r3 + r4 − r5).

The system (16) is a positive definite equation because D̂ − (1T D̂1)−1D̂11T D̂ � 0 for positive
diagonal D̂. To solve (16) we can solve two equations

(Q̃−1 + D̂)y(1) = r̂1, (Q̃−1 + D̂)y(2) = −D̂1, (17)

and make a linear combination ∆y = y(1) + ∆b y(2), with ∆b chosen to satisfy the last equation
in (16), i.e.,

∆b =
r̂2 − 1T D̂y(1)

1T D̂(y(2) + 1)
. (18)

In summary, we can solve (14) by first solving the two equations (17), then computing ∆b and
∆y = y(1) + ∆b y(2), and then ∆v, ∆z, ∆w from (15). If Q̃−1 is sparse then the matrix Q̃−1 + D̂ is
sparse, with the same sparsity pattern as Q̃−1. In particular, as we saw in section 2, if the sparsity
pattern of Q̃−1 is chordal, then we can factor Q̃−1 + D̂ with a zero-fill Cholesky factorization. For
a band pattern with constant bandwidth, for example, the cost of solving (14), and hence the cost
of the interior-point algorithm itself, is linear in m.

3.3 Completion kernel classifier

Every positive definite matrix can be interpreted as a kernel matrix for some positive definite kernel
function [SS02, p.44]. Replacing the kernel matrix Q with a positive definite completion Q̃ of a
subset of the entries of Q can therefore be thought of as applying a modified positive definite kernel
function h̃. The value of the modified kernel function h̃ is known and equal to Q̃ij at pairs of
training points (xi, xj), i, j = 1, . . . , m, but is not uniquely defined for other points. To evaluate
the decision function

g(x) = sign(
m∑

i=1

h̃(x, xi)zi + b), (19)

at at test point x we therefore need to assign a value h̃(x, xi).
A first choice is to simply use h̃(x, xi) = h(x, xi). While our results below indicate that this

works well in some cases (e.g., if the bandwidth is chosen sufficiently large), there is no guarantee
that h̃ is a positive definite kernel, as it can happen that the bordered kernel matrix

Q̃′ =

[
Q̃ q̃
q̃T h(x, x)

]
, (20)

is not positive definite if we take q̃i = h(x, xi). We will refer to the classifier (19) with h̃(x, xi) =
h(x, xi) as the standard kernel classifier.

A second choice is to take the chordal pattern V used to define the completion Q̃ and extend it
to a chordal pattern V ′ for the bordered kernel matrix Q̃′ in (20). We define Q̃′

ij for (i, j) ∈ V ′ as

Q̃ij = h(xi, xj) ∀(i, j) ∈ V, q̃i = h(xi, x) ∀(i, m + 1) ∈ V ′,
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and use the maximum determinant completion of these entries to define q̃i = h̃(xi, x) at the other
values of i. More specifically, suppose V is a band pattern of bandwidth 2w + 1 and let V ′ be a
band pattern of the same bandwidth. The w + 1 nonzero entries ρ and ri, i > m − w, in the last
column of the Cholesky factorization of

[
Q̃ q̃
q̃T h(x, x)

]−1

=

[
R r
0 ρ

] [
RT 0
rT ρ

]

can be obtained from R using the algorithm described in section 2.3. This requires w + 1 kernel
evaluations and O(w2) operations. The factorization Q̃′ = (R′)−T (R′)−1 provides a method for
evaluating h̃(xi, x), i.e.,

h̃(xi, x) = eT
i Q̃′em+1 = ui (21)

where u is obtained by solving R′(R′)T u = em+1. The cost of computing u is O(wm). If w ≪ m
the cost of evaluating the decision function (19) is therefore O(wm). We will refer to this classifier
as the completion kernel classifier.

Experiments with the standard kernel and completion kernel classifiers are given in the next
section.

4 Numerical experiments

To evaluate the performance and accuracy of SVMs obtained with the completion kernels, we have
conducted a series of experiments based on the mnist database of handwritten digits [LC98]. The
training set consists of 60000 patterns while the test set consists of 10000 patterns. We scale
the data by 1/256; no other preprocessing is used. All experiments were conducted on a desktop
computer with an Intel Core 2 Quad Q6600 CPU (2.4 GHz), 4 GB RAM, and running Ubuntu 9.10
(64 bit). The algorithm was implemented in Python as a custom KKT-solver for cvxopt 1.1.2
[DV08] and using chompack 1.1 [DV09] for chordal matrix computations1. The software package
libsvm 2.9 [CL01] was used for comparison.

We use the RBF kernel function h(xi, xj) = exp(−‖xi − xj‖2/(2σ)). The kernel completions Q̃
are computed for band patterns V with bandwidth 2w + 1, after applying a random permutation
of the training examples.

4.1 Cross-validation accuracy

In the first experiment we compare the cross-validation accuracy for the two classifiers defined in
section 3.3. We use a training set consisting of 10000 randomly chosen examples from the mnist

database (1000 examples of digit 0 and 9000 examples of digits 1–9), and for each pair of parameters
(γ = 2p, σ = 2q), where p and q are integers, we compute the 10-fold cross-validation accuracy.
The half-bandwidth is w = 100. The results are shown in Figure 1. We see that the two classifiers
have similar cross-validation accuracies when the best combination of parameters is chosen. The
completion kernel classifier appears to be less sensitive to parameter changes.

The optimal values of the parameters obviously depend on the bandwidth used in the approx-
imation problem as well as the number of training vectors. In the next experiment we fix the
parameters γ and σ and examine the test error rate as a function of bandwidth w.

1The code used in the experiments is available at www.ee.ucla.edu/~vandenbe/software.
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(a) Standard kernel classifier.
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(b) Completion kernel classifier.

Figure 1: 10-fold cross-validation accuracy using the RBF kernel. The dots mark the best parameter
pairs. The completion kernel classifier performs well on a large set of parameters, and it appears
to be less sensitive to the choice of parameters than the standard kernel classifier.

4.2 Bandwidth versus test error rate

We consider a single binary classification problem (digit 0 versus digits 1–9) and again we use
as training set a subset of 10000 training vectors from the mnist training set (1000 randomly
chosen examples of digit 0 and 9000 randomly chosen examples digits 1–9). In addition to the
standard kernel classifier and the completion kernel classifier, we also compute a third classifier by
training an SVM with the exact RBF kernel function h(xi, xj) on the set of support vectors from
the approximation problem. We use γ = 4 and σ = 32. Since the elements in the completed kernel
matrix depend on the permutation of the training set, we repeated the experiment 10 times with
different pseudo-randomly generated permutations. The average of these results is shown in Table 1.
As the bandwidth increases and the approximation gets better, the CPU time increases rapidly (as
w2), as expected. In this example the completion classifier performs better than the approximation
classifier except for the smallest bandwidth (w = 10). Notice also that the third classifier (obtained
by solving a subproblem with the support vectors from the approximation problem) consistently
performs well, and the problem size (and hence also the training time) decreases quite fast with
increasing bandwidths. The total training time therefore involves a trade-off between the complexity
of the approximation problem and the dense subproblem. In this example the fastest total training
time (41 seconds) is obtained for w = 150.

In column 2 we notice that the solution time for the approximation problem with w = 1000 is
roughly the same as the time for the full dense QP with m = 10000. We believe that this is due to
overhead in the current implementation of chompack (in which it is assumed that w ≪ m). In a
more sophisticated implementation the cost for the banded case should approach the cost for the
dense case only when w ≈ m.

Extrapolating the values in columns 4 and 5, we also note that the error rate in the completion
classifier and the support vectors stop decreasing substantially after a certain value of w < m.
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Approx. problem (m = 10000) SV subset
w time SC error (%) CC error (%) m time #SVs error (%)
10 2 6.22 8.77 7786 567 654 0.30
20 4 7.95 7.39 5985 244 654 0.30
30 5 10.06 6.55 5100 146 649 0.31
40 5 12.10 5.52 4563 104 645 0.31
50 6 13.53 4.65 4152 79 644 0.32
75 10 15.79 3.84 3456 45 642 0.32

100 15 16.57 3.10 2988 28 640 0.32
150 26 16.18 2.28 2407 15 631 0.32
200 41 14.29 1.89 2057 10 630 0.31
250 59 12.12 1.54 1805 7 627 0.32
300 81 9.86 1.34 1623 5 626 0.31
400 138 6.25 1.01 1382 3 622 0.31
500 218 3.85 0.90 1240 2 616 0.31
750 643 1.39 0.67 1024 1 608 0.32

1000 1193 0.76 0.57 925 1 615 0.31

Table 1: Average training time (in seconds) and test error rates for the approximation problem
and the dense subproblem, parameterized by the half bandwidth w and with parameters γ = 4 and
σ = 32. SC refers to the standard kernel classifier and CC refers to the completion kernel classifier.
For the dense subproblem, m is the number of support vectors obtained from the approximation
problem. We remark that solving the full QP (m = 10000) took 1194 seconds and produced
659 support vectors and a test error of 0.30 %.

4.3 Multistage method

In the previous experiment we were able to obtain a low error rate by solving a smaller, dense
SVM QP with a reduced training set consisting of the support vectors from the approximation
problem. This suggests using the approximated QP as a heuristic for working set selection. In our
next experiment we solve a sequence of approximation problems with increasing bandwidth and
decreasing training set size. We consider ten binary classification problems (each digit versus the
nine other digits). For each instance, we first solve the approximation QP (8) using the full mnist

data set as training data and with half-bandwidth w1. We refer to this as stage 1. At a subsequent
stage i we solve (8) with half-bandwidth wi and using as training data the support vectors from
stage i− 1. If the number of support vectors from stage j is below m̄ = 6000, we proceed to a final
stage and solve the SVM QP with the exact kernel matrix Q. At most five stages are used before
the final stage, regardless of the number of support vectors in stage 5. If the number of support
vectors at stage 5 exceeds the threshold m̄, we only keep the m̄ training vectors with the largest
values of zi in the solution of the stage 5 problem. We choose w1 = 100 and set wi ≈

√
2wi−1 at

subsequent stages.
Table 2 lists the number of support vectors and the time required to solve the QP in each stage.

Table 3 shows the total CPU time for all stages and the error rate for the resulting classifier. We
can note that on average the total CPU time for the multiple stages is less than half the CPU time
for libsvm. Except for digit 9, the test error rate obtained in the final stage is comparable to that of
libsvm. Furthermore, the final stage produces slightly fewer support vectors than libsvm. Whether
the smaller number of support vectors is due to the suboptimality of the approximation problem
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Digit Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Final stage
(w = 100) (w = 141) (w = 200) (w = 282) (w = 400) (dense)

time #SVs time #SVs time #SVs time #SVs time #SVs time #SVs
0 94 15558 35 6290 22 3757 - - - - 50 1584
1 94 8410 19 2688 - - - - - - 21 1161
2 100 21417 48 11976 44 8175 47 6392 66 5102 120 2869
3 100 19525 47 10932 41 8097 47 6636 69 5477 150 3149
4 95 19395 44 10553 39 7179 41 5636 - - 175 2713
5 100 24613 56 14841 55 10311 61 8059 86 6421 192 3192
6 100 17550 39 7564 27 4662 - - - - 92 2002
7 99 16752 40 7354 26 5126 - - - - 122 2511
8 95 23122 52 13367 50 9861 58 8110 86 6789 192 3633
9 100 19293 44 11802 44 8931 52 7585 80 6481 193 3722

Table 2: CPU time (seconds) and number of support vectors at each stage. The parameters
γ = 0.667 and σ = 32 were used at all stages. The full training set (m = 60000) is used at stage 1,
and at the following stages, the support vectors from the previous stage are used as training set.
We skip to the final stage, where we solve a dense subproblem, when the number of support vectors
is less than 6000. If there are more than 6000 support vectors at stage 5, we truncate the set based
on the magnitude of the variables zi. On average 9.2 interior-point iterations were needed to solve
a subproblem.

Digit Multistage approximation libsvm

#SVs time error (%) #SVs time error (%)
0 1584 203 0.21 1650 560 0.23
1 1161 135 0.24 1254 266 0.20
2 2869 430 0.52 3051 936 0.54
3 3149 456 0.65 3492 1100 0.51
4 2713 395 0.40 2869 804 0.49
5 3192 553 0.38 3412 1066 0.51
6 2002 260 0.32 2015 472 0.33
7 2511 289 0.71 2540 672 0.76
8 3633 536 0.72 4072 1205 0.67
9 3722 515 3.53 4138 1072 0.89

Table 3: Number of support vectors, total CPU time (in seconds), and test error rate for the
multistage method as well as libsvm. We used the parameters γ = 0.667 and σ = 32 for all
classifiers. The multistage method yields fewer support vectors in all cases. For digits 0–8, the
test error rates obtained with the approximation method are similar or slightly better than those
obtained with libsvm. The last classifier (9-versus-the rest), however, has an error rate of nearly
four times that of libsvm. The approximation algorithm required a total of 3777 seconds whereas
the total for libsvm was 8156 seconds.
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m Stage 1 (w = 100) Stage 2 (w = 200) Stage 3 (dense) libsvm

#SVs error (%) #SVs error (%) #SVs error (%) #SVs error (%)
2000 613 2.89 294 0.88 244 0.55 277 0.56
4000 1221 8.74 525 0.75 380 0.32 405 0.33
8000 2289 4.66 916 0.62 508 0.31 543 0.33

16000 4686 2.34 1687 0.84 712 0.28 764 0.28
32000 8628 1.97 2950 0.71 1075 0.24 1114 0.25
50000 13023 4.76 4188 0.81 1398 0.21 1435 0.23

Table 4: Test error rates and number of support vectors at the three stages and for libsvm. Here
m is the number of training vectors used at stage 1 and with libsvm, and the error rates reported
at stage 1 and 2 were obtained using the completion kernel classifier. The parameters γ = 40000/m
and σ = 32 were used.

Stage 1 Stage 2 Stage 3 Stage 1+2+3 libsvm

m time m time m time time time
2000 3 613 1 294 0.09 5 2
4000 6 1221 4 525 0.3 11 6
8000 13 2289 8 916 1 23 15

16000 26 4686 18 1687 5 50 41
32000 57 8628 32 2950 25 115 128
50000 85 13023 52 4188 74 212 424

Table 5: CPU time (in seconds) for the three stages and for libsvm. The parameters γ = 40000/m
and σ = 32 were used. The time at stages 1 and 2 grows linearly with m whereas at stage 3, which
involves a dense QP, the time grows faster than linear.

or simply related to thresholding is not clear. On average about nine interior-point iterations were
required at each stage and it is possible that this number can be reduced by using a warm-start
technique. Finally notice that the number of support vectors for each of the ten classifiers varies
by more than a factor of three.

4.4 Number of training vectors versus test error rate

In the last example we consider the test error rate as a function of the number of training vectors m.
As in the previous experiment, we use a multi-stage approach where the last stage is a dense QP,
but in this experiment we do not use a threshold before the final dense SVM QP. We train a single
one-versus-the rest classifier with 0 as class 1 and 1–9 as class 2. The training set consists of m+

randomly chosen examples from class 1 and m− = 9m+ randomly chosen examples from class 2.
The test set is the full mnist test set. Table 4 shows the test error rate at each stage as well as the
test error rate obtained with libsvm. As can be seen, the number of support vectors at stage 1
grows roughly linearly with the number of training vectors. As a result, the overall CPU time
grows faster than linearly (more or less quadratically) with the training set size. This growth rate
is comparable with libsvm.
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5 Other applications

Sparse inverse approximations of dense positive definite matrices are useful for a variety of op-
timization problems. In this section we mention two interesting further examples from machine
learning.

5.1 Gaussian process classification

We first consider Gaussian process (GP) classification [RW06, Section 3.3]. In two-class GP clas-
sification it is assumed that the probability of observing a binary outcome ±1 at a point x ∈ Rn

depends on the value of a latent variable f(x) via the formulas

prob (outcome at x is 1 | f(x)) = κ(f(x))

and

prob (outcome at x is −1 | f(x)) = 1 − κ(f(x))

= κ(−f(x)),

where κ : R → R is a symmetric function (i.e., satisfying κ(−u) = 1 − κ(u)) with values in
[0, 1]. The latent variable f(x) is assumed to be random with a zero-mean Gaussian process with
covariance function h(x, y) = E f(x)f(y) as prior distribution. Common choices for κ are the
logistic function κ(u) = 1/(1 + exp(−u)) and the probit function (the cumulative density of a
zero-mean unit-variance Gaussian). We note that these two functions κ(u) are log-concave.

Suppose we have a training set of observed outcomes di ∈ {−1, 1} at m training points xi. To
simplify the notation we denote by F = (f(x1), . . . , f(xm)) the random vector of latent variables at
the training points. The first step in deriving the GP classifier is a maximum a posteriori (MAP)
estimation of F given the observed outcomes d = (d1, . . . , dm). The MAP estimate of F is the
solution of the optimization problem

maximize L(u) =
m∑

i=1

log κ(diui) −
1

2
uT Q−1u − 1

2
log detQ (22)

with variable u ∈ Rm. The matrix Q has elements Qij = h(xi, xj) and is the covariance of the prior
distribution N (0, Q) of F . The function L(u) is, up to a constant, the logarithm of the posterior
density pF |d(u) of the latent variables F , given the observed outcomes di, i = 1, . . . , m. The MAP
estimate of the latent variables at the training points is the solution of (22). Problem (22) is a
convex optimization problems if the function κ is log-concave. We refer the reader to [RW06, §3.4.2]
for the details on how the MAP estimate is applied for classifying test points.

The key step in GP classification is the solution of the unconstrained optimization problem (22).
If the function κ is log-concave, this problem is convex and can be solved by Newton’s method.
Each step requires the solution of an equation ∇2L(u)∆u = ∇L(u), or

(
Q−1 + D

)
∆u = −∇L(u) (23)

where D is diagonal with diagonal elements

Dii =
κ′(diui)

2 − κ′′(diui)κ(diui)

κ(diui)2
.
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For most common kernel functions the covariance Q and its inverse Q−1 are dense, so the Newton
equation may be expensive to solve when n is large. The complexity can be improved by making low-
rank or low-rank-plus-diagonal approximations, as described in section 1 (see also [RW06, section
3.4.3]). Clearly, the Newton equation (23) becomes much easier to solve if we can replace Q−1 by a
sparse approximation Q̃−1, obtained via a maximum determinant positive definite completion Q̃ of
Qij = h(xi, xj), (i, j) ∈ V . This is equivalent to replacing the Gaussian prior N (0, Q) in (22) with
the maximum entropy distribution that matches the moments E f(xi)f(xj) = h(xi, xj), (i, j) ∈ V .

5.2 Kernel PCA

In the two applications discussed so far, we have used sparse (zero-fill) Cholesky factorizations of the
inverse completion kernel to reduce the linear algebra cost of interior-point algorithms and Newton’s
method. Another benefit of the sparse inverse is that it simplifies matrix-vector products. As an
example, we discuss how the matrix completion techniques can be exploited in kernel principal
component analysis (PCA).

The main computational effort in kernel PCA lies in computing an eigenvalue decomposition of
the centered kernel matrix [SSM98]

Qc = (I − (1/m)11T )Q(I − (1/m)11T )

= Q − (1/m)11T Q − (1/m)Q11T + (1/m2)11T Q11T (24)

where Qij = h(xi, xj). Computing the entire eigenvalue decomposition is clearly not feasible
when the number of observations m is large, so in practice some approximation is often used, for
example, sparse greedy methods [SS00]. If matrix-vector products with Qc are cheap, the dominant
eigenvalues and eigenvectors can also be computed iteratively, using the Lanczos method [GL96].

Suppose we replace the dense kernel matrix Q with the maximum determinant positive definite
completion Q̃ of a partially specified kernel matrix. The matrix-vector product Q̃cv can then be
evaluated efficiently given the sparse factorization Q̃−1 = RRT , i.e., using (24),

Q̃cv = R−T (R−1v − z1T v) − 1zT R−1v + zT z11T v (25)

where z is the solution of Rz = 1. The cost of evaluating (25) is linear in m for band patterns
with fixed bandwidth. Hence the dominant eigenvalues of Q̃c and the corresponding eigenvectors
can then be computed efficiently using the Lanczos method.

6 Conclusions

Interior-point methods for SVM training provide robust and accurate solutions but are well known
to be limited by the high demands of computation time and storage, as a consequence of the density
of the kernel matrix. Scaling interior-point methods to training set sizes above 10000 therefore
requires approximations of the dense kernel matrix. Examples of such approximations that have
been studied in the literature include low-rank, diagonal-plus-low-rank, and sparse approximations.
In this paper we investigate the use of sparse inverse approximations. By approximating the positive
definite kernel matrix by the maximum determinant positive definite completion of a partially
specified kernel matrix with chordal sparsity, we obtain an approximate QP where the inverse of
the kernel matrix is sparse. Exploiting the sparsity of the inverse in an interior-point method
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leads to a dramatic improvement in solution time and memory requirements. As a consequence,
very large problems can be solved on a standard desktop PC using an interior-point method.
Numerical results with band sparsity indicate that the method is typically faster than libsvm

while the test error rates are comparable. However, more experimentation is needed to evaluate
the robustness of the method across different kernel functions and data sets. The positive definite
matrix completion techniques should also be of interest in other applications that involve large
dense convex optimization problems. As two examples in machine learning we have mentioned
Gaussian process classification and kernel PCA.
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