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Abstract We analyze the proximal Newton method for minimizing a sum of
a self-concordant function and a convex function with an inexpensive proximal
operator. We present new results on the global and local convergence of the
method when inexact search directions are used. The method is illustrated
with an application to L1-regularized covariance selection, in which prior con-
straints on the sparsity pattern of the inverse covariance matrix are imposed.
In the numerical experiments the proximal Newton steps are computed by an
accelerated proximal gradient method, and multifrontal algorithms for positive
definite matrices with chordal sparsity patterns are used to evaluate gradients
and matrix-vector products with the Hessian of the smooth component of the
objective.
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1 Introduction

The proximal Newton algorithm is a method for solving optimization problems

minimize f(x) = g(x) + h(x) (1)
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with g convex and twice continuously differentiable, and h convex and possibly
nondifferentiable. At each iteration of the algorithm, an update x := x+αv(x)
is made, where α is a positive stepsize and v(x) is the proximal Newton step
at x, defined as

v(x) = arg min
v

(
g(x) +∇g(x)T v +

1

2
vT∇2g(x)v + h(x+ v)

)
. (2)

The vector x+ v(x) minimizes an approximation

f̂x(y) = g(x) +∇g(x)T (y − x) +
1

2
(y − x)T∇2g(x)(y − x) + h(y) (3)

of the cost function f , obtained by replacing g with a second-order approx-
imation around x. For this reason the algorithm is also called a successive
quadratic approximation method [8]. When h is zero, the proximal Newton
step is v(x) = −∇2g(x)−1∇g(x) and the proximal Newton method reduces to
the standard Newton method for minimizing g(x).

The proximal Newton method and some of its variants have recently been
studied for applications in statistics and machine learning, in which h(x) is
an `1-norm penalty, added to a differentiable objective to promote sparsity in
the solution [8, 15–17, 22, 27, 28]. This approach is motivated by the fact that
the optimization problem in (2) is a ‘lasso’ problem (minimization of a convex
quadratic function plus an `1-norm) that can be solved by efficient iterative
algorithms. More generally, the proximal Newton method is interesting when h
has an inexpensive proximal operator, so the subproblem in (2) can be solved
by proximal gradient methods.

With exact steps v(x), the proximal Newton algorithm is known to have
the same excellent convergence properties as the Newton method for smooth
unconstrained minimization: fast local convergence, and global convergence
from any starting point if a proper stepsize selection is used. Moreover, in
constrast to many other nonsmooth optimization algorithms, the same line
search strategies can be adopted as for the unconstrained Newton method.
These convergence properties are discussed in [17] under the assumptions that
g is strongly convex with Lipschitz continuous gradient, and in [16, 27, 28] for
self-concordant functions g.

In practice, it is expensive to compute the proximal Newton step accu-
rately, since v(x) is found by minimizing (3) numerically. This is a funda-
mental difference with the standard Newton method. It is therefore important
to understand the convergence of the proximal Newton method with inexact
steps [8, 22, 26]. Lee, Sun, and Saunders [17, page 1428] propose the following
criterion for accepting an approximation v of (2). A vector v is accepted as an
approximate proximal Newton step at x if it satisfies

‖F̂x,t(x+ v)‖ ≤ ηf‖Ft(x)‖ (4)
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where t ≤ 1/λmax(∇2g(x)), and Ft, F̂x,t are the gradient mappings [20, section

2.2.3] of the cost function f and its local approximation f̂x, respectively, i.e.,

Ft(x) =
1

t
(x− proxth(x− t∇g(x))) ,

F̂x,t(x+ v) =
1

t

(
x+ v − proxth

(
x+ v − t(∇g(x) +∇2g(x)v)

))
,

where proxth denotes the proximal operator (defined in (12)). When h(x) = 0,
these definitions reduce to Ft(x) = ∇g(x) and F̂x,t(x+v) = ∇g(x)+∇2g(x)v,
and the inequality (4) to a classical condition in the literature on inexact
Newton methods [10,12]. The forcing term ηf in (4) can be adjusted adaptively
to obtain superlinear local convergence. Byrd, Nocedal, and Oztoprak [8] use
a similar condition, but also impose the condition

f̂x(x+ v)− f(x) ≤ β
(
∇g(x)T v + h(x+ v)− h(x)

)
with β ∈ (0, 1/2) and show that this ensures global convergence when g is
strongly convex with a Lipschitz continuous gradient. The papers [8, 17, 28]
also analyze variable metric or quasi-Newton methods, in which approximate
Hessians are used in the approximation (3). The effect of inexactness on the
proximal Newton method with a self-concordant function g is discussed in [16,
27]. In this analysis, inexactness is measured by the suboptimality (in function
value) of the approximate solution of (2).

In the first part of this paper (sections 2–4) we extend the results of [28]
for the (exact) proximal Newton method for self-concordant functions g to the
proximal Newton method with inexact steps. In the algorithms we analyze,
the condition (4) is replaced by the following criterion: a step v is accepted as
an approximation of v(x) if a residual

r ∈ ∇g(x) +∇2g(x)v + ∂h(x+ v)

in the optimality conditions for (2) is known that satisfies the inequality

‖∇2g(x)−1/2r‖ ≤ (1− θ)‖∇2g(x)1/2v‖.

We show that if g is self-concordant, then the inexact proximal Newton method
converges globally if a damped stepsize or backtracking line search is used. The
parameter 1 − θ plays a role similar to the forcing term ηf in (4). We show
that the local convergence is quadratic if θ = 1, linear if θ constant and less
than one, and superlinear if θ approaches one as the algorithm converges.

The composite optimization problem (1) with self-concordant functions g
has important applications in machine learning [28]. The proximal Newton
method that we develop in sections 2–4 is motivated by an application to
sparse inverse covariance selection. In this problem, the smooth component g
is self-concordant, but it is not strongly convex and its gradient is not Lipschitz
continuous on its entire domain. Moreover, in the large sparse setting that we
describe in section 5, matrix-vector products with the Hessian ∇2g(x)v or the
inverse Hessian ∇2g(x)−1w can be computed quite efficiently, at roughly the
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same cost as the gradient ∇g(x). These properties make it possible to com-
pute a sufficiently accurate approximate Newton step by applying a proximal
gradient method to minimize (3). This is described in more detail in section 5.

The rest of the paper is organized as follows. In section 2 we first review the
definition and key properties of self-concordant functions, and present a the-
orem that provides bounds on the optimum of (1) in terms of the magnitude
of inexact proximal Newton steps. In sections 3 and 4 we discuss the proxi-
mal Newton method with a damped stepsize and a backtracking line search,
respectively, and give global and local convergence results that account for
inexactness of the search directions. In section 5 we discuss the application to
covariance selection and present some numerical results.

2 Proximal Newton step for self-concordant functions

We consider unconstrained optimization problems of the form (1) with g :
Rn → R a self-concordant function and h : Rn → R a closed, convex,
and possibly nondifferentiable function. We assume the problem is feasible
(dom f = dom g ∩ domh 6= ∅). This implies that the sum f = g + h is a
closed function (see, for example, [14, page 158]).

2.1 Self-concordance

Specifically, we make the following assumptions about g.

– g is closed, convex, with open domain.
– g is three times continuously differentiable with ∇2g(x) positive definite

on dom g.
– The Hessian of g satisfies the matrix inequality

d

dα
∇2g(x+ αv)

∣∣∣∣
α=0

� 2‖v‖x∇2g(x) (5)

for all x ∈ dom g and all v, where ‖v‖x = (vT∇2g(x)v)1/2. (The inequality
A � B means B −A is positive semidefinite.)

These properties characterize self-concordant functions as defined by Renegar
[23] and Nesterov [20]. They define a subclass of the self-concordant functions
introduced in [21]: in Nesterov and Nemirovski’s book, closed self-concordant
functions are called strongly self-concordant, self-concordant functions with
nonsingular Hessians are called nondegenerate, and the fundamental inequal-
ity (5) includes a scaling parameter a that we take to be one. Nesterov [20, page
181] refers to self-concordant functions with a = 1 as standard self-concordant
functions. We do not assume that g is a self-concordant barrier (i.e., has the
property that ∇g(x)T∇2g(x)−1∇g(x) is bounded on dom g; see [21, definition
2.3.1]).

For future reference, we list the properties of self-concordant functions that
are used in the paper.
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Fig. 1 Left. The functions ω(u) = u − log(1 + u) and ω∗(u) = −u − log(1 − u). Right.
The function ω∗(u) in solid line, with two upper bounds ω∗(u) ≤ u2 for u ≤ 0.68 and
ω∗(u) ≤ u2/2 + u3 for u ≤ 0.81.

– Bounds on Hessian [21, theorem 2.1.1]. If x, y ∈ dom g and ‖y − x‖x < 1,
then

(1− ‖y − x‖x)2∇2g(x) � ∇2g(y) � 1

(1− ‖y − x‖x)2
∇2g(x). (6)

– Bounds on gradient [19, lemma 1]. If x, y ∈ dom g and ‖x− y‖x < 1, then

‖∇g(y)−∇g(x)−∇2g(x)(y − x)‖x∗ ≤
‖y − x‖2x

1− ‖y − x‖x
. (7)

Here ‖v‖x∗ = (vT∇2g(x)−1v)1/2 denotes the dual norm of ‖ · ‖x.
– Bounds on function value [20, theorems 4.1.7 and 4.1.8]. If x, y ∈ dom g,

then

ω(‖y − x‖x) ≤ g(y)− g(x)−∇g(x)T (y − x) ≤ ω∗(‖y − x‖x), (8)

where ω and ω∗ denote the functions

ω(u) = u− log(1 + u), ω∗(u) = −u− log(1− u).

The left-hand inequality in (8) holds for all x, y ∈ dom g. The right-hand
inequality holds for all x, y ∈ dom g with ‖x − y‖x < 1. Note that ω and
ω∗ are Fenchel conjugates (Legendre transforms). In particular, we will use
the fact that

inf
v

(ω(v)− uv) = −ω∗(u), inf
u

(ω∗(u)− uv) = −ω(v). (9)

Figure 1 shows the two functions and illustrates the inequalities ω(u) ≤
u2/2 ≤ ω∗(u) and

ω∗(u) ≤ u2/2 + u3 for u ∈ [0, 0.81], ω∗(u) ≤ u2 for u ∈ [0, 0.68]. (10)
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A useful lower bound on ω(u) is

ω(u) ≥ u2

2(1 + u)
for u ≥ 0. (11)

– Dikin ellipsoid theorem [21, theorem 2.1.1.b]. The (open) Dikin ellipsoid
at x ∈ dom g is defined as

Ex = {y | ‖y − x‖x < 1}.

The upper bound in (8) implies that Ex ⊂ dom g.

2.2 Scaled proximal operator

The proximal operator of a closed convex function h is defined as

proxh(y) = arg min
u

(
h(u) +

1

2
‖u− y‖2

)
, (12)

where ‖ · ‖ denotes the Euclidean norm. It can be shown that the proximal
operator proxh(y) is uniquely defined for all y [18].

With every x ∈ dom g we can associate a scaled proximal operator proxh,x,
defined in a similar way as the standard proximal operator, but using the local
quadratic norm ‖v‖x = (vT∇2g(x)v)1/2 instead of the Euclidean norm:

proxh,x(y) = arg min
u

(
h(u) +

1

2
‖u− y‖2x

)
. (13)

This scaled proximal operator can be expressed in terms of the standard (un-
scaled) proximal operator of the function h̃(y) = h(∇2g(x)−1/2y):

proxh,x(y) = ∇2g(x)1/2proxh̃(∇2g(x)1/2y).

It can be shown (directly from the definition (13) or by reduction to the
unscaled proximal operator) that u = proxh,x(y) exists and is unique for all
x ∈ dom g and all y, and that it is the unique solution of the monotone
inclusion problem

0 ∈ ∂h(u) +∇2g(x)(u− y). (14)

As an immediate consequence we note that if x? minimizes f(x), i.e., 0 ∈
∇g(x?) + ∂h(x?), then

x? = proxh,x
(
x? −∇2g(x)−1∇g(x?)

)
(15)

for all x ∈ dom g. Conversely, if x? satisfies (15) for some x ∈ dom g, then x?

minimizes f .



Inexact proximal Newton methods for self-concordant functions 7

2.3 Proximal Newton step

The proximal Newton step v(x) at x is defined as

v(x) = proxh,x
(
x−∇2g(x)−1∇g(x)

)
− x

= arg min
v

(
g(x) +∇g(x)T v +

1

2
vT∇2g(x)v + h(x+ v)

)
.

From the second expression, or from the first expression and (14), we see that
v(x) is characterized by the condition

0 ∈ ∇g(x) +∇2g(x)v(x) + ∂h(x+ v(x)), (16)

and that x is optimal if and only if v(x) = 0.

The magnitude ‖v(x)‖x of the Newton step in the local norm ‖ · ‖x plays
an important role in the analysis of Newton’s method for minimizing self-
concordant functions (i.e., problem (1) with h(x) = 0) [20,21]. In [21] ‖v(x)‖x
is called the Newton decrement of f at x.

When h(x) is nonzero, it is generally not possible to compute v(x) very
accurately, and it is important to allow for inexact proximal Newton steps. In
the algorithms discussed in the next sections, the following criterion will be
used for accepting a vector v as an inexact proximal Newton step at x: there
exists an r such that

r ∈ ∇g(x) +∇2g(x)v + ∂h(x+ v), ‖r‖x∗ ≤ (1− θ)‖v‖x, (17)

where θ ∈ (0, 1] is an algorithm parameter. We can interpret 1− θ as a bound
on the relative error in the conditions (16) that characterize the exact proximal
Newton step. With θ = 1, the condition requires r = 0 and therefore v = v(x),
the exact proximal Newton step.

The next theorem shows that if v satisfies (17) for some r, and ‖v‖x is
sufficiently small, then x is close to optimal for (1). The theorem is an extension
of theorem 4.1.11 in [20], which characterizes the distance to the minimum of
a self-concordant function in terms of the norm ‖v(x)‖x of the Newton step
when ‖v(x)‖x < 1.

Theorem 1 Suppose x ∈ dom g, x + v ∈ domh, and v and r satisfy (17)
with θ ∈ (0, 1]. If

‖v‖x <
1

2− θ
. (18)

then the following properties hold.

– f is bounded below and

inf
y
f(y) ≥ f(x+ v) + θ‖v‖2x − ω∗(‖v‖x)− ω∗((2− θ)‖v‖x). (19)
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– The sublevel set Sx = {y | f(y) ≤ f(x+v)} is bounded: Sx ⊆ {y | ‖y−x‖x ≤
ρ̂} where ρ̂ is the positive root of the nonlinear equation

ω(ρ)− ρ(2− θ)‖v‖x = max {0, ω∗(‖v‖x)− θ‖v‖2x} (20)

if ‖v‖x > 0, and ρ̂ = 0 if ‖v‖x = 0.
– f has a unique minimizer x? and ‖x− x?‖x ≤ ρ̂.

Proof We first note that, by the Dikin ellipsoid theorem, x+v ∈ dom g, since
‖v‖x < 1. Therefore x + v ∈ dom f = dom g ∩ domh, and the right-hand
side of (19) and the sublevel set Sx are well defined.

To show (19) we consider an arbitrary y ∈ dom f . We combine the lower
bound on g(y) from (8) and the upper bound on g(x+ v) from (8), to get

g(y) ≥ g(x) +∇g(x)T (y − x) + ω(‖y − x‖x)

≥ g(x+ v) +∇g(x)T (y − x− v)− ω∗(‖v‖x) + ω(‖y − x‖x).

A lower bound on h(y) follows from from the subgradient in (17):

h(y) ≥ h(x+ v) + (r −∇g(x)−∇2g(x)v)T (y − x− v).

Adding the lower bounds on g(y) and h(y) gives a lower bound on f(y):

f(y)− f(x+ v)

≥ (r −∇2g(x)v)T (y − x)− rT v + ‖v‖2x − ω∗(‖v‖x) + ω(‖y − x‖x)

≥ (r −∇2g(x)v)T (y − x)− ‖r‖x∗‖v‖x + ‖v‖2x − ω∗(‖v‖x) + ω(‖y − x‖x)

≥ (r −∇2g(x)v)T (y − x) + θ‖v‖2x − ω∗(‖v‖x) + ω(‖y − x‖x). (21)

Next, we find a lower bound for the right-hand side of (21). We express y as
y = x+ tw with ‖w‖x = 1 and t ≥ 0 and write (21) as

f(x+ tw) ≥ f(x+ v) + t(r −∇2g(x)v)Tw + θ‖v‖2x − ω∗(‖v‖x) + ω(t).

We first consider the minimum of the right-hand side over w. Using the
Cauchy-Schwarz inequality, the triangle inequality, and the condition (17) we
get

f(x+ tw) ≥ f(x+ v)− t‖r −∇2g(x)v‖x∗ + θ‖v‖2x − ω∗(‖v‖x) + ω(t)

≥ f(x+ v)− t(‖r‖x∗ + ‖v‖x) + θ‖v‖2x − ω∗(‖v‖x) + ω(t)

≥ f(x+ v)− t(2− θ)‖v‖x + θ‖v‖2x − ω∗(‖v‖x) + ω(t). (22)

The lower bound (19) now follows if we use the conjugacy relation (9) to
minimize the right-hand side of (22) over t.

To show the bound on the sublevel set, we note that (22) implies that
f(x+ tw) > f(x+ v) when

ω(t)− t(2− θ)‖v‖x > ω∗(‖v‖x)− θ‖v‖2x.

When v = 0, this holds for any t > 0. For nonzero v, it holds if t is greater
than the positive root of the nonlinear equation (20).



Inexact proximal Newton methods for self-concordant functions 9

10−4 10−3 10−2 10−1 100
0

0.2

0.4

0.6

0.8

1− θ

µ
(θ
)

10−4 10−3 10−2 10−1 100
0

2

4

6

8

1− θ

ν
(θ
)

Fig. 2 Left. µ(θ) is the solution u of the nonlinear equation ω∗((2−θ)u) = θu2 for 3−
√

5 ≤
θ ≤ 1. We have µ(1) = 0.68 and µ(3 −

√
5) = 0. Right. The function ν(θ) defined in (25).

We have ν(1) = 6.28 and ν(3−
√

(5)) = 0.

Finally, since f is a closed function, it attains its minimum if the sublevel
sets are bounded (by the Weierstrass theorem [6, page 119]). Since f is also
strictly convex (the sum of a strictly convex function g and a convex function
h), the minimizer is unique. ut

The bounds on f(x?) and ‖x − x?‖x in theorem 1 can be simplified by
restricting ‖v‖x to a smaller interval than allowed by (18). We mentioned in
section 2.1, that ω∗(u) ≈ u2/2 for small u and ω∗(u) ≤ u2 for u ∈ [0, 0.68].
More generally, for each θ ∈ (3−

√
5, 1] = (0.764, 1] there exists a positive µ(θ)

such that

ω∗((2− θ)u) ≤ θu2 for u ∈ [0, µ(θ)] (23)

(see figure 2). If θ ∈ (3−
√

5, 1], we can use the inequality (23) to simplify the
lower bound (19) as follows: if ‖v‖x ≤ µ(θ), then

inf
y
f(y) ≥ f(x+ v) + θ‖v‖2x − 2ω∗((2− θ)‖v‖x)

≥ f(x+ v)− θ‖v‖2x. (24)

Hence, for sufficiently small ‖v‖x, the quantity θ‖v‖2x gives an upper bound
on f(x+ v)− infy f(y).

We can also derive a simple upper bound on ρ̂. For 0 < ‖v‖x ≤ µ(θ) and
θ ∈ (3−

√
5, 1], the right-hand side of (20) is zero because of (23), and ρ̂ is the

positive root of the equation

log(1 + ρ) = ρ(1− (2− θ)‖v‖x).

In other words, ρ̂ = φ−1(1− (2− θ)‖v‖x) where φ(t) = log(1 + t)/t. Since φ−1

is a convex function and φ−1(1) = 0, Jensen’s inequality gives

ρ̂ ≤
(

1− ‖v‖x
µ(θ)

)
φ−1(1) +

‖v‖x
µ(θ)

φ−1(1− (2− θ)µ(θ)) =
ν(θ)

µ(θ)
‖v‖x
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where

ν(θ) = φ−1 (1− (2− θ)µ(θ)) . (25)

This function is shown in figure 2. It follows that when ‖v(x)‖x ≤ µ(θ), the
sublevel set Sx is bounded by a ball with radius (ν(θ)/µ(θ))‖v(x)‖x around x.
In particular,

‖x− x?‖x ≤
ν(θ)

µ(θ)
‖v‖x. (26)

For θ = 1 and v = v(x), the bounds (24) and (26) are

inf
y
f(y) ≥ f(x+ v(x))− ‖v(x)‖2x, ‖x− x?‖x ≤ 9.18 ‖v(x)‖x, (27)

and these are valid if ‖v(x)‖x ≤ 0.68. In the following section we will be
interested in values of θ close to one, and it will be useful to note that µ(θ) =
1/4 for θ = 0.84. In particular, if θ ≥ 0.84, then the bound (24) holds for
‖v‖x ≤ 1/4.

3 Damped proximal Newton method

In this section we analyze the following version of the proximal Newton method
with inexact proximal Newton steps.

Algorithm 3.1. Proximal Newton algorithm with damped stepsize.
Input: A starting point x ∈ dom g and three parameters θmin ∈

[0.9, 1], η ∈ (0, 1/4], and δ ∈ (0, 1).
Repeat:

1. Compute a step v that satisfies (17) for some r and θ ≥ θmin.
2. If ‖v‖x ≤ 0.25 and θ‖v‖2x ≤ δ, return x+ v.
3. Otherwise, set x := x+ αv with

α =
θ

1 + θ‖v‖x
if ‖v‖x ≥ η, α = 1 otherwise.

The exit condition guarantees that f(x+ v)− infy f(y) ≤ δ. This follows from
the fact that (24) holds if θ ≥ 0.84 and ‖v‖x ≤ 1/4, as we saw at the end of the
previous section. The lower bound θmin ≥ 0.9 is imposed only to simplify this
stopping criterion. Alternatively, one can take any θmin ∈ (0, 1] and use (19)
to bound f(x+ v)− infy f(y).

Note that the starting point x is not required to be in domh. However, the
Dikin ellipsoid theorem guarantees that x ∈ dom f after the first iteration.
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3.1 Local convergence

The following theorem extends a quadratic convergence result for Newton’s
method applied to a self-concordant function [20, theorem 4.1.14]. A related
result is [28, theorem 7] on the local convergence of the exact proximal Newton
method with self-concordant g. For θ = 1, theorem 2 gives an improvement
over [28, theorem 7], which requires the condition ‖v(x)‖x < 1 − 1/

√
2; see

also [28, remark 10]. Theorem 2 further generalizes these results by allowing
inexact proximal Newton steps.

Theorem 2 (Unit steps) Suppose x ∈ dom g, x + v ∈ domh, ‖v‖x < 1,
and (17) is satisfied for some r and θ ∈ (0, 1]. Define x+ = x + v. Suppose
x+ + v+ ∈ domh and

r+ ∈ ∇g(x+) +∇2g(x+)v+ + ∂h(x+ + v+), ‖r+‖x+∗ ≤ (1− θ+)‖v+‖x+

holds for some r+ and θ+ ∈ (0, 1]. Then

‖v+‖x+ ≤ ‖v‖x
θ+(1− ‖v‖x)

(
1− θ +

‖v‖x
1− ‖v‖x

)
.

If ‖v‖x ≤ 1− 1/
√

2 = 0.293, we have the simpler bound

‖v+‖x+ ≤
√

2‖v‖x
θ+

(
1− θ +

√
2‖v‖x

)
. (28)

Proof We first note that x+ = x+ v ∈ dom g as a consequence of the Dikin
ellipsoid theorem. Define

w = r −∇g(x)−∇2g(x)v, w+ = r+ −∇g(x+)−∇2g(x+)v+.

We have w ∈ ∂h(x + v) and w+ ∈ ∂h(x+ + v+), by definition of r and r+.
Monotonicity of the subdifferential ∂h implies that

(w+ − w)T v+ = (w+ − w)T (x+ + v+ − x− v) ≥ 0.

This observation is used in the first inequality of the following derivation:

‖v+‖x+ ≤ ‖v+ +∇2g(x+)−1(w+ − w)‖x+

= ‖∇2g(x+)−1(r+ −∇g(x+)− w)‖x+

= ‖r+ −∇g(x+)− w‖x+∗

≤ ‖r+‖x+∗ + ‖∇g(x+) + w‖x+∗

= ‖r+‖x+∗ + ‖r +∇g(x+)−∇g(x)−∇2g(x)v‖x+∗

≤ (1− θ+)‖v+‖x+ + ‖r‖x+∗ + ‖∇g(x+)−∇g(x)−∇2g(x)v‖x+∗

θ+‖v+‖x+ ≤ 1

1− ‖v‖x
(
‖r‖x∗ + ‖∇g(x+ v)−∇g(x)−∇2g(x)v‖x∗

)
≤ ‖v‖x

1− ‖v‖x

(
1− θ +

‖v‖x
1− ‖v‖x

)
.
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On the second line we use the definition of w+, and on the fifth line the
definition of w. Line 7 follows from (6), which implies that

‖z‖2x+v,∗ = zT∇2g(x+ v)−1z ≤ 1

(1− ‖v‖x)2
zT∇2g(x)−1z =

‖z‖2x∗
(1− ‖v‖x)2

.

The last step follows from (7). ut

Theorem 2 can be used to establish local convergence of algorithm 3.1.

Exact proximal Newton method. Suppose the starting point x satisfies ‖v‖x <
η and we take θmin = 1, so v = v(x). The inequality (28) reduces to

‖v(x+)‖x+ ≤ 2‖v(x)‖2x (29)

and, since η ≤ 1/4, we have ‖v(x+)‖x+ < η. All subsequent iterates therefore
satisfy ‖v(x)‖x < η. It then follows from (29) that after k iterations

2‖v(x)‖x ≤ (2η)2k

≤
(

1

2

)2k

.

This shows that algorithm 3.1 converges quadratically when started at a point

with ‖v(x)‖x < η. Since ‖v(x)‖2x ≤ (1/2)2k+1

, the exit condition ‖v‖2x ≤ δ is
satisfied after less than log2 log2(1/δ) iterations.

Inexact proximal Newton method. Suppose the starting point x satisfies ‖v‖x <
η and we take θ constant. From (28),

‖v+‖x+ ≤
√

2

(
1 +
√

2η

θ
− 1

)
‖v‖x

≤
√

2

(
1 +
√

2/4

0.9
− 1

)
‖v‖x

= 0.713 ‖v‖x.

Therefore ‖v‖x converges to zero linearly. If we let θ → 1, then the inequal-
ity (28) shows superlinear convergence.

3.2 Global convergence

The next theorem is an extension of a global convergence result for the stan-
dard damped Newton method for self-concordant functions [20, theorem 4.1.12].
When θ = 1, the result is identical to [28, theorem 6].

Theorem 3 (Damped steps) Suppose x ∈ dom f , x+v ∈ domh, and (17)
is satisfied for some r and θ ∈ (0, 1]. If α = θ/(1 + θ‖v‖x), then

f(x+ αv) ≤ f(x)− ω(θ‖v‖x).
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Proof First note that α‖v‖x < 1. Hence x+αv ∈ dom f as a consequence of
the Dikin ellipsoid theorem. To show the upper bound on f(x+αv) we apply
the upper bound (8) with y = x+ αv:

g(x+ αv) ≤ g(x) + α∇g(x)T v + ω∗(α‖v‖x).

An upper bound on h(x + αv) follows from Jensen’s inequality and the sub-
gradient of h at x+ v from (17):

h(x+ αv) ≤ h(x) + α(h(x+ v)− h(x))

≤ h(x) + α(r −∇g(x)−∇2g(x)v)T v

= h(x) + α(r −∇g(x))T v − α‖v‖2x.

Adding the upper bounds on g and h gives

f(x+ αv) ≤ f(x) + α(rT v − ‖v‖2x) + ω∗(α‖v‖x)

≤ f(x) + α(‖r‖x∗‖v‖x − ‖v‖2x) + ω∗(α‖v‖x)

≤ f(x)− αθ‖v‖2x + ω∗(α‖v‖x). (30)

This bound holds when α‖v‖x < 1. The right-hand side is minimized at α =
θ/(1 + θ‖v‖x), with minimum value f(x)− ω(θ‖v‖x). ut

Theorem 3 implies that if ‖v‖x ≥ η in algorithm 3.1, then

f(x+ αv) ≤ f(x)− ω(θη),

so the cost function is decreased by at least a positive amount ω(θη). If the
function is bounded below, we must reach ‖v‖x < η after a finite number
of iterations. Hence algorithm 3.1 converges from any starting point if the
problem is bounded below.

4 Proximal Newton method with backtracking line search

Although backtracking line searches are typically used in smooth optimization
algorithms, the proximal Newton algorithm is readily modified to include a
backtracking line search of the type used with the Newton algorithm in [7,
chapter 9]; see [17]. We will analyze the following algorithm and use it in the
experiments of section 5.

Algorithm 4.1. Proximal Newton algorithm with line search.
Input: A starting point x ∈ dom f , and parameters θmin ∈ (0, 1],

β ∈ (0, 1), and γ ∈ (0, θmin/2).
Repeat:

1. Compute a step v that satisfies (17) for some r and θ ≥ θmin.
2. If ‖v‖x is sufficiently small, return x+ v.
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3. Otherwise, set x := x + αv(x) where α is the largest number
in {1, β, β2, β3, . . .} for which

x+ αv ∈ dom f, f(x+ αv) ≤ f(x)− αγθ‖v‖2x. (31)

To formulate a rigorous stopping condition that guarantees a bound on
f(x+v)− infy f(y) one can use the inequality (19) in theorem 1, which is valid
for any θ ∈ (0, 1), or the simpler inequality (24), which assumes θ > 0.764.

We refer to the condition (31) as the condition of sufficient decrease. Note
that the starting point of algorithm 4.1 is required to be in dom f , so the
right-hand side in the condition of sufficient decrease is well defined in the
first iteration. Alternatively, one can start at x ∈ dom g and use a damped
Newton step in the first iteration.

The following observation extends a result for the standard Newton method
with backtracking line search applied to self-concordant functions [7, section
9.6.4].

Theorem 4 The stepsize selected by the backtracking line search satisfies

βθ

1 + θ‖v‖x
< α ≤ 1.

A unit stepsize is selected if ‖v‖x ≤ θ(1− γ)− 1/2.

Proof We first note that the step size α̂ = θ/(1+θ‖v‖x) satisfies the condition
of sufficient decrease. This can be seen from the upper bound (30):

f(x+ α̂v) ≤ f(x)− α̂θ‖v‖2x + ω∗(α̂‖v‖x)

= f(x)− ω(θ‖v‖x)

≤ f(x)− θ2‖v‖2x
2(1 + θ‖v‖x)

= f(x)− α̂θ‖v‖2x/2
≤ f(x)− α̂γ‖v‖2x.

Line 3 follows from the inequality (11). The last step follows because γ ≤ θ/2.
Since α̂ satisfies the condition of sufficient decrease, the stepsize α selected by
the line search can not be less than or equal to

βα̂ =
βθ

1 + θ‖v‖x
.

For the second part of the theorem, note that if ‖v‖x ≤ θ(1 − γ) − 1/2
then, again using (30),

f(x+ v) ≤ f(x)− θ‖v‖2x + ω∗(‖v‖x)

≤ f(x)− θ‖v‖2x +
1

2
‖v‖2x + ‖v‖3x

= f(x)− (θ − 1/2− ‖v‖x)‖v‖2x
≤ f(x)− γθ‖v‖2x.
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Line 2 follows from the first inequality in (10). ut

Theorem 4 can be combined with the analysis of section 3 to show that
algorithm 4.1 has the same convergence properties as algorithm 3.1. Choose
any positive η. If ‖v‖x > η, the condition of sufficient decrease and the lower
bound on the stepsize from theorem 4 guarantees

f(x+ αv) ≤ f(x)− αγθ‖v‖2x

≤ f(x)− βγ θ2‖v‖2x
1 + θ‖v‖x

≤ f(x)− βγ θ2
minη

2

1 + θminη
.

(The last step follows from monotonicity of the function t2/(1 + t).) If the
problem is bounded below, the algorithm reaches a stopping condition ‖v‖x ≤
η, for any positive η, after a finite number of iterations.

Moreover, if we choose θmin > 1/2 and γ < 1 − 1/(2θmin) then theorem 4
guarantees that for sufficiently small ‖v‖x, a unit stepsize is chosen and the
local convergence results of section 3.1 apply.

5 Restricted sparse inverse covariance selection

In this section we illustrate the convergence properties of the inexact proximal
Newton method with an application to the covariance selection problem from
statistics.

5.1 Covariance selection

The covariance selection problem was introduced by Dempster in 1972 [11].
Dempster considered the problem of computing the maximum likelihood esti-
mate of the covariance matrix Σ of a normal distribution N(0, Σ), subject to
a constraint on the sparsity pattern of Σ−1. Zeros in the inverse covariance
Σ−1 indicate pairs of conditionally independent components of the random
variable. If we assume the random vector has dimension p, then the maximum
likelihood estimation problem can be shown to be equivalent to

minimize tr(CΣ−1) + log detΣ
subject to (Σ−1)ij = 0 for (i, j) ∈ Ē, (32)

where C is the sample covariance matrix, and the sets

E ⊆ {(i, j) | i, j ∈ {1, 2, . . . , p}, i > j},
Ē = {(i, j) | i, j ∈ {1, 2, . . . , p}, i > j} \ E

are a subset of the off-diagonal index pairs and its complement. We refer to the
set E, which contains the positions of the possibly nonzero entries in Σ−1, as
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the sparsity pattern of Σ−1. Throughout this section, we assume that log detX
is only defined for positive definite X, i.e., the problem (32) also includes an
implicit constraint that the variable Σ is positive definite. Dempster observed
that the problem is convex if X = Σ−1 is used as optimization variable. After
this change of variables, the covariance selection problem can be written as a
convex optimization problem

minimize tr(CX)− log detX + ψ(X), (33)

with variable X ∈ Sp (the set of symmetric p × p matrices), where ψ is the
‘indicator’ function of the sparsity pattern:

ψ(X) =
∑

(i,j)∈Ē

δ(Xij), δ(u) =

{
0 u = 0
∞ u 6= 0.

(34)

A popular approach for estimating a sparse inverse covariance matrix X =
Σ−1 when the sparsity pattern is not known, is to add an `1-norm penalty to
the log-likelihood objective, i.e., solve (33) with

ψ(X) = λ
∑
i>j

|Xij |. (35)

The solution is sometimes referred as the graphical lasso solution, and several
specialized algorithms have been developed for computing it; see the surveys
in [13, chapter 9] and [25].

An interesting combination of the functions (34) and (35) is

ψ(X) =
∑

(i,j)∈Ē

δ(Xij) + λ
∑

(i,j)∈E

|Xij |. (36)

With this choice of ψ, the off-diagonal entries of X indexed by Ē are con-
strained to be zero; the remaining entries are penalized by an `1-norm penalty.
This formulation is useful when the sparsity pattern of Σ−1 is partially known.
The constraints on the entries in Ē then represent the prior information about
the sparsity pattern. For example, if the random variable contains consecutive
values of a vector autoregressive process with lag r, then the inverse covariance
matrix is block-banded with half-bandwidth r. Incorporating prior informa-
tion of this kind reduces the number of parameters to be estimated in the
maximum-likelihood problem, and hence the number of samples needed for a
good estimate. We will refer to problem (33) with the penalty function (36)
as a restricted sparse inverse covariance selection.

The proximal Newton method is an attractive algorithm for the restricted
covariance selection problem because the key computations in the algorithm
can be implemented using efficient sparse matrix techniques. The starting
point is to reformulate the problem as follows. We first compute a triangulation
or chordal extension E′ of the sparsity pattern E, i.e., a sparsity pattern E′

that contains E and is also chordal [29]. Instead of optimizing over X ∈ Sp,
as in (33), we can then restrict X, without loss of generality, to SpE′ , the space
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of symmetric p × p matrices with sparsity pattern E′. Thus the problem can
be written equivalently as

minimize φ(X) + ψ(X) (37)

with a sparse matrix variable X ∈ SpE′ , and functions φ, ψ : SpE′ → R defined
as

φ(X) = tr(CX)− log detX, ψ(X) =
∑

(i,j)∈E′\E

δ(Xij) + γ
∑

(i,j)∈E

|Xij |.

As mentioned we define domφ = {X ∈ SpE′ | X � 0}. Problem (37) is a
composite convex optimization problem that can be expressed as (1) if we
represent the matrices X as vectors x of length n = |E′|+ p. The second term
ψ is separable and its proximal operator reduces to simple component-wise op-
erations (soft-thresholding for entries in positions (i, j) ∈ E; substituting zero
for entries in positions (i, j) ∈ E′ \E). The first term φ is self-concordant [21].
Moreover the chordal structure of E′ allows us to apply specialized algorithms
for computing φ and its derivatives. To evaluate φ at a given X � 0, we
compute a sparse Cholesky factorization

X = PTLLTP,

where P is a permutation matrix and L is lower triangular. Adding the log-
arithms of the diagonal elements of L gives φ(X) = −2

∑
i logLii. Given the

Cholesky factorization, the gradient and Hessian are also readily computed
by algorithms that are closely related to the multifrontal algorithm for sparse
Cholesky factorization and use similar recursions on an elimination tree or
supernodal elimination tree [2, 29]. The gradient of φ, as a function from SpE′

to R, is given by

∇φ(X) = ΠE′(C −X−1),

where ΠE′ denotes projection on SpE′ . Computing the gradient therefore re-
quires computing the entries of X−1 on the diagonal and in positions (i, j) ∈
E′, but not any of the other entries. For a chordal pattern, this projected
inverse can be computed by a recursion on the elimination tree. The Hessian
HX of φ at X ∈ domφ is a linear mapping from SpE′ to SpE′ defined by

HX(V ) = ∇2φ(X)[V ] =
d

dα
∇φ(X + αV )

∣∣∣∣
α=0

= ΠE′(X−1V X−1V ).

For a chordal pattern E′, the evaluations of HX(V ) or H−1
X (V ) that are re-

quired by the proximal Newton method, can be computed by two recursions
on the elimination tree. The complexity of each of these operations is roughly
the same as the cost of a sparse Cholesky factorization with sparsity pattern
E′. We refer the interested reader to [29] for details and historical background
on these techniques.
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5.2 Subproblem

In the experiments described in the next section a basic version of the FISTA
algorithm [4] was used to minimize the function (3) in the subproblems. At
iteration k of FISTA a new estimate vk of the solution of the subproblem is
computed, by making a proximal gradient update

vk = proxth
(
x+ w − t(∇g(x) +∇2g(x)w)

)
− x

where w is the previous value vk−1 plus an an extrapolation term,

w = vk−1 +
k − 2

k + 1

(
vk−1 − vk−2

)
.

From the definition of the proximal operator proxth, the following relation
between these variables holds:

1

t
(w − vk) ∈ ∇g(x) +∇2g(x)w + ∂h(x+ vk).

This shows that the vector

r =
1

t
(w − vk) +∇2g(x)(vk − w) = (

1

t
I −∇2g(x))(w − vk)

satisfies r ∈ ∇g(x) + ∇2g(x)vk + ∂h(x + vk). In our implementation, r was
used in the condition ‖r‖x∗ ≤ (1− θ)‖vk‖x to determine whether to accept vk

as an inexact proximal Newton step v.
To select the FISTA stepsize t, we used the simple backtracking strat-

egy suggested in [4]. More sophisticated variants of FISTA, such as N83 in
the TFOCS package [5], or methods that use different strategies for select-
ing t [24], are likely to lead to substantial improvements over our results. We
also note that several first-order methods could be used as alternatives to
FISTA, including the coordinate descent method [15] and the orthant-based
method [8].

5.3 Experiments

In this section we present some results for the proximal Newton method ap-
plied to (37). We use the Python packages CHOMPACK [3] and CVXOPT [1]
for the sparse matrix computations (evaluation of φ and its gradient, Hessian,
and inverse Hessian). The main purpose of the experiments is to compare the
convergence properties with the theoretical results in sections 3–4. Our imple-
mentation is not optimized, because it requires several conversions between
different sparse matrix formats. Moreover the proximal Newton algorithm it-
self, and some key functions of CHOMPACK (such as the symbolic factor-
ization), are implemented in Python and would be faster when implemented
directly in C. This must be kept in mind when comparing the computation
times for different parameter values in the experiments.
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Fig. 3 Convergence of the proximal Newton method in the first experiment, for different
values of θ.

Band patterns. In the first experiment we use a band pattern E of size p =
1000 with half-bandwidth 20. Band patterns are chordal, so E′ = E in this
experiment. To generate a sample covariance matrix C we first create a sparse
matrix Σ−1 as follows. We randomly select 80% of the entries within the
band E, and set them to zero. For the remaining entries in E, we randomly
generate values following a normal distribution N(0, 1). A multiple of the
identity is added to the matrix Σ−1 if it is not positive definite. We then
generate N = 10p samples from the distribution N(0, Σ) and form the sample
covariance matrix C. The regularization parameter in (37) was set to λ = 0.02.

Figure 3 shows the convergence of algorithm 4.1 with different, constant
values of the parameter θ, and backtracking parameters γ = 0.01, β = 1/2.
The first figure confirms the conclusions about the effect of θ in the theoretical
analysis of section 4. It also shows that the proximal Newton method can reach
a high accuracy, even with very inaccurate solutions of the subproblems (low
values of θ). The second figure shows the convergence versus elapsed time (on
a machine with a 2.5GHz Intel Core i7 processor). The plots suggest there is a
value of θ that gives the fastest convergence. Although the best value of θ and
the overall solution times are likely to be quite different in a more optimized
implementation of the algorithm, the figure shows the benefits that can be
expected from improvements in the algorithm for the subproblem, and from
strategies for adapting θ during the algorithm, as suggested in [17].

Sparsity patterns from University of Florida collection. In the second exper-
iment we use three patterns from the UF collection [9]. Table 1 gives the
dimension and the number of nonzeros 2|E| + p for each pattern, and the
number of nonzeros in a chordal extension (the second and third patterns are
chordal, so E = E′). We generate a sample covariance matrix as in the first
experiment. We first generate a sparse matrix Σ−1 ∈ SpE . A randomly selected
subset of 30% of the entries in E are set to zero. The values of the remaining
entries in E are chosen from N(0, 1). A multiple of the identity is added to
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Name p nnz nnz after extension

1138 bus 1138 4054 5392
Chem97ZtZ 2541 7361 7361
mhd4800b 4800 27520 27520

Table 1 Three sparsity patterns from the University of Florida collection.
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Fig. 4 Convergence of the proximal Newton method for the three test problems in the
second experiment.

make the matrix positive definite. We then use Σ to generate N = 10p samples
and form the sample covariance C.

Figure 4 shows the convergence of algorithm 4.1 for the three problems.
We use θ = 0.5, γ = 0.01, and β = 1/2. Even though the dimensions of the
three problems are quite different, the method converges in roughly the same,
small number of iterations, as is typical for the standard Newton method.

6 Conclusion

We presented an analysis of the proximal Newton method for minimizing a
sum of a self-concordant function and a function with an inexpensive proximal
mapping. The analysis extends results from [28] by taking into account inexact-
ness of the computation of the proximal Newton steps, and differs from [16,27]
in the conditions used to describe inexactness of the Newton steps. The con-
clusions are similar to the results reached in [8,17] under different assumptions
on the smooth component of the cost function.

The analysis presented in this paper is motivated by applications to the
sparse covariance selection problem from statistics, in which we impose prior
constraints on the sparsity pattern of the inverse covariance matrix. The log-
det term in the cost function of this problem is self-concordant, and efficient
methods exist for evaluating the matrix-vector products with its Hessian and
inverse Hessian needed in the proximal Newton method.
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Preliminary numerical results indicate that the method can reach a high
accuracy, even with inexact computation of the proximal Newton steps. Impor-
tant questions for further research include the choice of algorithm for solving
the subproblems, and the formulation of good strategies for adaptive control
of the accuracy with which the subproblems are solved. As was pointed out
by a reviewer of this paper, path-following methods offer an alternative for
minimizing self-concordant functions and have a lower computational com-
plexity than the damped Newton method. It would be of great interest to
formulate path-following methods for the composite problem (1), for example,
by extending the algorithm of [20, page 205].
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14. J.-B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization Algorithms

I, volume 305 of Grundlehren der mathematischen Wissenschaften. Springer-Verlag,
New York, 1993.

15. C.-J. Hsieh, M. A. Sustik, I. S. Dhillon, and P. Ravikumar. Sparse inverse covariance
matrix estimation using quadratic approximation. In Advances in Neural Information
Processing (NIPS), volume 24, pages 2330–2338, 2011.

16. A. Kyrillidis, R. Karimi-Mahabadi, Q. Tran-Dinh, and V. Cevher. Scalable sparse
covariance estimation via self-concordance. In Proceedings of the 28th AAAI Conference
on Artificial Intelligence, pages 1946–1952, 2014.

17. J. D. Lee, Y. Sun, and M. A. Saunders. Proximal Newton-type methods for minimizing
composite functions. SIAM Journal on Optimization, 24(3):1420–1443, 2014.
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