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Abstract Semidefinite relaxation techniques have shown great promise for
nonconvex optimal power flow problems. However, a number of independent
numerical experiments have led to concerns about scalability and robustness
of existing SDP solvers. To address these concerns, we investigate some numer-
ical aspects of the problem and compare different state-of-the-art solvers. Our
results demonstrate that semidefinite relaxations of large problem instances
with on the order of 10,000 buses can be solved reliably and to reasonable
accuracy within minutes. Furthermore, the semidefinite relaxation of a test
case with 25,000 buses can be solved reliably within half an hour; the largest
test case with 82,000 buses is solved within eight hours. We also compare the
lower bound obtained via semidefinite relaxation to locally optimal solutions
obtained with nonlinear optimization methods and calculate the optimality
gap.

Keywords AC Optimal Power Flow · Semidefinite Relaxation · Optimiza-
tion · Numerical Analysis

1 Introduction

The alternating current optimal power flow (ACOPF) problem is a nonlin-
ear optimization problem that is concerned with finding an optimal operating
point for a power system network. Today, more than 60 years after it was
first studied by Carpentier (1962), the problem still receives considerable at-
tention because of the challenging nature of the problem and its important
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role in power system planning and operation. Many optimization methods
have been applied to the ACOPF problem, including general nonlinear opti-
mization techniques, interior-point methods, and meta-heuristic optimization
methods (Taylor, 2015).

Following the work of Jabr (2006) and Bai et al. (2008), the use of con-
vex relaxation techniques applied to the ACOPF problem has been explored
extensively; see e.g. (Low, 2014a,b) for a recent survey. The interest in these
techniques is driven by the fact that the solution to a relaxed problem pro-
vides either a globally optimal solution to the original problem or a global
lower bound that can be used to assess the quality of locally optimal solutions
found by other means. Moreover, a solution to an SDR may also be used to
guide a load flow study (Mak et al., 2018) in order to find a feasible operating
point.

Different convex relaxations of the ACOPF problem have been proposed
and studied, including a second-order cone relaxation (SOCR) (Jabr, 2006),
a semidefinite relaxation (SDR) (Bai et al., 2008; Lavaei and Low, 2012),
moment relaxations (Molzahn and Hiskens, 2015; Josz et al., 2015), and more
recently, a quadratic convex relaxation (QCR) (Coffrin et al., 2016; Hijazi
et al., 2017). The different relaxations vary in tightness and computational
cost. For example, the SDR is generally tighter than the SOCR, but it is
generally also more computationally demanding. In an attempt to address
the computational cost associated with the SDR, Andersen et al. (2014) and
Bingane et al. (2018) have proposed simpler, weaker SDRs that are cheaper
to solve than the standard SDR. The QCR is generally neither weaker nor
stronger than the SDR, but it is computationally cheaper and often provides
a lower bound of similar quality as that of the SDR.

The high computational cost of solving an SDR of a large ACOPF prob-
lem has given rise to concerns about robustness and scalability (Hijazi et al.,
2016, 2017; Madani et al., 2017). These concerns are supported by numerical
experiments that show that solving the SDR is not only much slower than
other approaches, but also more unreliable (Coffrin et al., 2016). Our goal
with this paper is to address concerns regarding robustness and scalability
by demonstrating numerically that an SDR of the ACOPF problem can be
solved both reliably and within minutes using commodity hardware, even for
large networks with on the order of 10,000 buses. Our contribution is therefore
confined to numerical considerations and implementation details (Section 2)
as well as numerical experiments (Section 3) with the purpose of investigating
scalability, accuracy, and robustness for different solvers. What differentiates
our implementation from most implementations that have been described and
investigated in the literature is the fact that we construct the SDR manually
without the use of modeling tools such as YALMIP (Löfberg, 2004) and CVX
(Grant and Boyd, 2008). Although this manual approach can be both inflex-
ible and cumbersome, it is typically much faster and allows us to control the
exact problem formulation, avoiding automatic transformations that may ad-
versely affect the size and conditioning of the SDR problem. We remark that
some modeling tools allow some degree of control over the problem formula-
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tion (e.g., through options), but it is generally difficult for non-expert users to
predict the final problem formulation.

Notation The set Kn
q = {(t, x) ∈ R × Rn−1 | ‖x‖2 ≤ t} denotes the second-

order cone in Rn, Sn denotes the set of symmetric matrices of order n, and
Hn is the set of Hermitian matrices of order n. The sets Sn+ and Hn

+ are the
cones of positive semidefinite matrices in Sn and Hn, respectively. Since the
symmetric matrices of order n form a vector space of dimension n(n + 1)/2,
the cone Sn+ can be reparameterized as Kn

s = {svec(X) |X ∈ Sn+} ⊂ Rn(n+1)/2

where svec(·) is an injective function that maps a symmetric matrix of order
n to a vector of length n(n+ 1)/2. Similarly, we define Kn

h = {hvec(X) |X ∈
Hn

+} ⊂ Rn2

where hvec(·) maps a Hermitian matrix of order n to a vector
of length n2. The inner product between two matrices A,B ∈ Hn is tr(AHB)
where tr(A) denotes the trace of a square matrix A. Given a complex number
c = a + b where  =

√
−1, <(c) denotes the real part a, =(c) denotes the

imaginary part b, and c∗ denotes the complex conjugate of c.

2 Method

2.1 The AC Optimal Power Flow Problem

An AC power system in steady state can be modeled as a directed graph
where the set of nodes N = {1, 2, . . . , n} corresponds to a set of n power
buses, and the set of edges L ∈ N ×N corresponds to transmission lines, i.e.,
(k, l) ∈ L if there is a line from bus k to bus l. The set Lfl ⊆ L consists of all
transmission lines with a flow constraint, Lpa ⊆ L consists of all transmission
lines with a phase-angle difference constraint, Gk denotes a (possibly empty)
set of generators associated with bus k, and G =

⋃
k∈N Gk is the set of all

generators. The power produced by generator g ∈ G is sg = pg + qg, and at
each power bus k ∈ N , we define a complex load (i.e., demand) Sd

k = P d
k +Qd

k,
a complex voltage vk, and a complex current ik. To simplify notation, we
define a vector of voltages v = (v1, v2, . . . , vn) and a vector of currents i =
(i1, i2, . . . , in). With this notation, the ACOPF problem can be expressed as

minimize
∑
g∈G

fg(pg) (1a)

subject to

i∗kvk =
∑
g∈Gk

sg − Sd
k , k ∈ N (1b)

Pmin
g ≤ pg ≤ Pmax

g , g ∈ G (1c)

Qmin
g ≤ qg ≤ Qmax

g , g ∈ G (1d)

V min
k ≤ |vk| ≤ V max

k , k ∈ N (1e)
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k,l(v)

∣∣ ≤ Smax
k,l , (k, l) ∈ Lfl (1f)∣∣Sfl

l,k(v)
∣∣ ≤ Smax

l,k , (k, l) ∈ Lfl (1g)

φmin
k,l ≤ ∠(vkv

∗
l ) ≤ φmax

k,l , (k, l) ∈ Lpa (1h)

i = Y v (1i)

with variables i ∈ Cn, v ∈ Cn, and s ∈ C|G|, and where i = Y v corresponds to
Ohm’s law in matrix form, given the network admittance matrix Y ∈ Cn×n.
The cost of generation for generator g is given by fg(pg), and we will restrict
our attention to convex quadratic generation cost functions, i.e.,

fg(pg) = αgp
2
g + βgpg + γg, (2)

where the parameters αg ≥ 0, βg, and γg are given. The constraints (1b) are
power balance equations, (1c) and (1d) are generation limits, (1e) are voltage
magnitude limits, (1f) and (1g) are transmission line flow constraints, and (1h)
are phase-angle difference constraints. The flow from bus k to bus l is given by
Sfl
k,l(v) = vHTk,lv + vH T̃k,lv (provided that (k, l) ∈ Lfl or (l, k) ∈ Lfl) where

Tk,l ∈ Hn and T̃k,l ∈ Hn are given.

2.2 Semidefinite Relaxation

Roughly following the steps described in (Andersen et al., 2014), we start by
reformulating the ACOPF problem (1). Specifically, we perform the following
steps:

1. Eliminate i = Y v and substitute Pmin
g + pl

g for pg, Qmin
g + ql

g for qg, and X

for vvH .
2. Drop constant terms in the objective:

f(pg) = αg(Pmin
g + pl

g)2 + βg(Pmin
g + pl

g) + γg

= αg(pl
g)2 + β̃gp

l
g + const.

where β̃g = (βg + 2αgP
min
g ).

3. Introduce an auxiliary variable tg for each g ∈ Gquad = {g ∈ G |αg > 0}
and include epigraph constraint

αg(pl
g)2 ≤ tg ⇔

1/2 + tg
1/2− tg√

2αgp
l
g

 ∈ K3
q.

4. Introduce slack variables to obtain a standard-form formulation.

These steps yield the equivalent problem

minimize
∑
g∈G

β̃gp
l
g +

∑
g∈Gquad

tg (3a)
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subject to

tr(YkX) =
∑
g∈Gk

(Pmin
g + pl

g)− P d
k , k ∈ N (3b)

tr(ỸkX) =
∑
g∈Gk

(Qmin
g + ql

g)−Qd
k, k ∈ N (3c)

pl
g + pu

g = Pmax
g − Pmin

g , g ∈ G (3d)

ql
g + qu

g = Qmax
g −Qmin

g , g ∈ G (3e)

Xkk − νl
k = (V min

k )2, k ∈ N (3f)

Xkk + νu
k = (V max

k )2, k ∈ N (3g)

zk,l =

 Smax
k,l

tr(Tk,lX)

tr(T̃k,lX)

 , (k, l) ∈ Lfl (3h)

zl,k =

 Smax
l,k

tr(Tl,kX)

tr(T̃l,kX)

 , (k, l) ∈ Lfl (3i)

wg =

1/2 + tg
1/2− tg√

2αgp
l
g

 , g ∈ Gquad (3j)

=(Xkl) = tan(φmin
k,l )<(Xkl) + yl

k,l, (k, l) ∈ Lpa (3k)

=(Xkl) = tan(φmax
k,l )<(Xkl)− yu

k,l, (k, l) ∈ Lpa (3l)

pl
g, p

u
g ≥ 0, g ∈ G (3m)

ql
g, q

u
g ≥ 0, g ∈ G (3n)

νl
k, ν

u
k ≥ 0, k ∈ N (3o)

yl
k,l, y

u
k,l ≥ 0, (k, l) ∈ Lpa (3p)

zk,l, zl,k ∈ K3
q, (k, l) ∈ Lfl (3q)

wg ∈ K3
q, g ∈ Gquad (3r)

X = vvH (3s)

with variables pl, pu, ql, qu ∈ R|G|, t ∈ R|Gquad|, νl, νu ∈ R|N |, yl, yu ∈ R|Lpa|,
zk,l, zl,k ∈ K3

q for (k, l) ∈ Lfl, wg ∈ K3
q for g ∈ Gquad, X ∈ Hn, and v ∈ Cn.

Notice that the constraints (3b)-(3l) are all linear. We refer the reader to

(Andersen et al., 2014) for a definition of the data matrices Yk, Ỹk, Tk,l, and

T̃k,l.

The only non-convex constraint in (3) is the rank-1 condition (3s). An SDR
of (3) is readily obtained by replacing (3s) by the positive semidefiniteness
constraint X � 0. The resulting SDR is a so-called cone linear program (CLP)
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that can be expressed as

minimize cTx
subject to Ax = b

x ∈ K
(4)

where x is the vector of variables and the cone K is a Cartesian product of
three types of cones, i.e.,

K = Rnl
+ ×K3

q × · · · × K3
q︸ ︷︷ ︸

nq

×Kn
h .

Thus, the number of variables is N = nl +3nq +n2 where nl = 4|G|+ |Gquad|+
2|N |+2|Lpa| and nq = 2|Lfl|+ |Gquad|, and the number of equality constraints
is M = 4|N |+ 2|G|+ 2|Lpa|+ 3nq.

2.3 Conversion

The computational cost of solving (4) with a general-purpose interior-point
method becomes prohibitively large when n is large: the cost of an interior-
point iteration is at least O(n3). Fortunately, the problem (4) is generally very
sparse in practice, and hence the conversion method of Fukuda et al. (2001)
may be used to rewrite (4) as an equivalent CLP

minimize c̃T x̃

subject to Ãx̃ = b
Ex̃ = 0

x̃ ∈ K̃

(5)

with

K̃ = Rnl
+ ×K3

q × · · · × K3
q︸ ︷︷ ︸

nq

×Kr1
h × · · · × K

rm
h .

The conversion essentially decomposes the cone Kn
h into a Cartesian product

of a number of lower-dimensional cones Kr1
h ×· · ·×K

rm
h at the expense of a set

of coupling constraints Ex̃ = 0. This reformulation of the problem can have a
dramatic effect on the computational cost of solving the SDR of the ACOPF
problem, and it effectively mitigates the O(n3) bottleneck that arises with the
formulation (4). Moreover, the conversion technique often induces sparsity in
the system of equations that define the search direction at each interior-point
iteration, reducing the cost per iteration further if the solver can exploit this
type of sparsity. The conversion technique was first applied to SDRs of the
ACOPF problem by Jabr (2012).
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2.4 Implementation

Before turning to our numerical experiments, we briefly outline our imple-
mentation (Andersen, 2018). The code is written in Python and performs the
following steps:

1. Read case file and build the CLP (4).
2. Apply conversion method: convert (4) to (5).
3. Apply Hermitian-to-symmetric transformation: map Kri

h to K2ri
s for i =

1, . . . ,m.
4. Scale the problem data to improve conditioning.

As part of the first step, we allow some preprocessing of the data: (i) slack vari-
ables pg (or qg) for which Pmin

g = Pmax
g (or Qmin

g = Qmax
g ) may be eliminated,

(ii) numerical proxies for infinity which are used to indicate the absence of
limits (e.g., on generation) may be truncated, and (iii) a minimum resistance
of transmission lines may be enforced. The Hermitian-to-symmetric transfor-
mation is a well known trick that is only necessary because the solvers used in
our experiments cannot directly handle cones of Hermitian positive semidef-
inite matrices; see e.g. (Boyd and Vandenberghe, 2004). The scaling of the
problem data in step 4 yields an equivalent problem, and we found that for
some solvers, this can reduce the computational time by roughly a factor of
two; we briefly return to the topic of scaling in Section 4.

3 Results

3.1 Experiments

To investigate the robustness and scalability of our methodology, we conducted
a series of numerical experiments based on a collection of test cases from
MATPOWER (Zimmerman et al., 2011) (which includes a number of test
cases from (Josz et al., 2016)) and Power Grid Lib (PGLib-OPF, 2018) with
as many as n = 70,000 power buses; we have also included a synthetic case of
the continental USA from the Electric Grid Test Case Repository (Birchfield
et al., 2017) with n = 82,000 power buses. We excluded cases that are infeasible
and cases with generator cost functions that are neither quadratic nor linear.
For each test case, we set up a CLP formulation of the SDR and solved it
using five different CLP solvers: MOSEK 8.1 (MOSEK, 2015), SeDuMi 1.3
(Sturm, 1999), SDPT3 4.0 (Toh et al., 1999), SCS 1.2.7 (O’Donoghue et al.,
2016), and CDCS 1.1 (Zheng et al., 2016). MOSEK, SeDuMi, and SDPT3 are
interior-point methods whereas SCS and CDCS are first-order methods based
on the alternating direction method of multipliers (ADMM).

To compare our methodology to an approach based on a modeling tool,
we used SDPOPF (Molzahn et al., 2013) from “MATPOWER Extras” to set
up and solve an SDR of each case. SDPOPF uses YALMIP (Löfberg, 2004)
to set up the problem which is then solved numerically using one of several
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possible solvers: we used MOSEK in order to facilitate a fair comparison.
Finally, to compare our approach to a nonlinear optimization approach, we
used MATPOWER to set up and solve each case with three different interior-
point methods for nonlinear optimization: MIPS (Wang et al., 2007) from
MATPOWER 6.1, IPOPT 3.12.9 (Wächter and Biegler, 2006) with PARDISO
6.0 (Kourounis et al., 2018), and KNITRO 10.3.1 (Byrd et al., 2006). These
are all called via MATPOWER using its default initialization—the default is
sometimes referred to as “flat start” since all voltages are set to 1 p.u. and the
active power generation is set to the midpoint of its bounds. When successful,
these solvers return a locally optimal solution that provides an upper bound
on the optimal value in contrast to the SDR that provides a lower bound.

3.2 Setup

Using the implementation described in section 2.4, we processed the problem
data before setting up the SDRs. Specifically, we truncated generator bounds
larger than 50 times the base MVA. We remark that SDPOPF enforces a
minimum transmission line resistance of 10−4; in the experiments, we do not
enforce a minimum resistance in our SDR.

All experiments but those involving KNITRO were conducted on an HPC
node with two Intel XeonE5-2650v4 processors (a total of 24 cores) and 240 GB
memory. All experiments with KNITRO were conducted on different hardware
(2.5 GHz Intel Core i5 CPU, 8 GB of memory) because of license restrictions.
As a result, the KNITRO computation times that we report cannot be com-
pared directly to those reported for the other solvers. All MATLAB-based
solvers were used with MATLAB R2017b, and MOSEK was called through
its Python interface in Python 3.6.3. Finally, we modified the default solver
options as follows: for SeDuMi, we raised the maximum number of iterations
from 150 to 250; for SCS and CDCS, we limited the number of iterations to
20,000; for CDCS, we disabled “chordalize” and used the “primal” solver since
this allowed us to solve the most cases; for SCS, we used the direct solver; for
SDPT3 we used a value of 400 for “smallblockdim” and changed the maximum
number of iterations from 100 to 250.

3.3 Robustness

We start with an investigation of robustness. Table 1 contains a summary of
return statuses for the different solvers for a total of 159 test cases. The column
labeled “success” refers to return values that indicate successful termination
with an optimal or near optimal (global or local) solution. The “failure” col-
umn refers to return values that indicate some kind of error. We remark that
SDPOPF ignores phase angle constraints and fails in 31 cases because of a
MATPOWER error; the solver is never called in these cases.

The results in Table 1 clearly demonstrate that the SDRs can be solved
reliably using MOSEK: all cases were solved to optimality with MOSEK’s
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Table 1 Summary of return statuses by solver.

Solver Success Max. iter. Failure

MOSEK 159 0 0
SeDuMi 53 0 106
SDPT3 52 0 107
SDPOPF 128 0 31
CDCS 146 13 0
SCS 17 142 0

IPOPT 133 0 26
KNITRO 145 0 14
MIPS 116 0 43

default tolerances. In contrast, the nonlinear solvers IPOPT and KNITRO
only succeed in roughly 85% of the cases while MIPS succeeds in approximately
75% of the cases. Note also that although CDCS solves all but one case, the
accuracy and speed is poor compared to MOSEK as we show later in this
section. Both SeDuMi and SCS succeed in less than 50% of the cases.

3.4 Accuracy

We now compare the solutions returned by the five CLP solvers. Since the
solvers have different tolerances (i.e., stopping criteria), we will compare the
solvers based on the so-called “DIMACS error measures” described in (Mittel-
mann, 2003). Roughly speaking, these are five relative error measures quanti-
fying the primal residual norm, primal cone violation, dual residual norm, dual
cone violation, and duality gap. Fig. 1 summarizes the results in a box plot of
the DIMACS measures for each solver (the smaller the error, the better).

MOSEK, shown in Fig. 1a, generally performs well with DIMACS errors
below 10−7 in all cases. The SeDuMi errors, shown in Fig. 1c, reveal that
SeDuMi returns a high-accuracy solution whenever it succeeds; the same is
true for SDPT3, shown in Fig. 1e. This suggests that the default tolerances
may be too strict for all but the small cases. Both CDCS and SCS generally
return solutions with larger errors, as shown in Fig. 1b and 1d. This is to be
expected since they are both first-order methods. While CDCS is relatively
robust, it often terminates with sizable dual residuals which are indicative of
low-accuracy solutions.

3.5 Optimality Gap

Next we investigate the objective values provided by the solvers. We limit
our attention to MOSEK and the nonlinear solvers IPOPT, MIPS, and KNI-
TRO. The nonlinear solvers provide an upper bound when they terminate at
a feasible point. We define the best upper bound as

f = min(fIPOPT, fKNITRO, fMIPS), (6)
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Fig. 1 Box plots of logarithm of DIMACS errors. The red markers correspond to cases
where the solver did not succeed. We note that in order to accommodate a logarithmic axis,
we have replaced errors below 10−16 by this value.

i.e., the minimum of the objective values provided by the three solvers (if a
solver does not succeed, we define its objective value to be ∞). Similarly, the
SDR (MOSEK) provides a lower bound which we denote by f = fMOSEK. The
optimality gap may then be defined as

gap =
f − f
f
· 100%. (7)

The gap is equal to 0 if f = f , implying that we have a globally optimal

solution. On the other hand, if the gap is large, f may be a poor local minimum
and/or the SDR provides a weak lower bound f .
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Fig. 2 Scatter plot of the time used by the SDP solvers against the number of buses for
successful cases. Note that SDPOPF solves an equivalent but different SDR.

We have made four tables listing objective values and optimality gap for
all cases with more than 300 buses based on their origin: table 2 contains
cases from the MATPOWER library; table 3 contains cases from PGLIB in
typical operating conditions; table 4 contains cases from PGLIB with small
phase angle difference constraints; table 5 contains cases from PGLIB with
binding thermal limit constraints. The cases are sorted by the number of buses
in ascending order. Note that the optimality gap is undefined if none of the
nonlinear solvers succeed. The optimality gap is close to zero in many cases
and below 1% in all but a handful of cases.

3.6 Scalability

We end this section by comparing the time required by each solver to solve
the test cases. Fig. 2 shows the time used by the SDP solvers compared to the
number of buses in the case. To make a fair comparison, we report computation
times without preprocessing, i.e., only the time required by the actual solver
is recorded (we briefly discuss some considerations related to preprocessing in
Section 4).

MOSEK is generally the fastest. The difference between MOSEK and SD-
POPF (which also uses MOSEK, but based on the problem formulation com-
piled by YALMIP) highlights that the formulation of the SDR may have a
significant impact on the computation time as well as robustness. The striking
difference between MOSEK and CDCS, both in terms of computation time
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and accuracy, makes it hard to justify the use of first-order methods for highly
sparse problems like these.

In addition to cost function value and optimality gap, tables 2–5 list the
computation times (excluding preprocessing) for MOSEK and the three solvers
IPOPT, KNITRO, and MIPS. MOSEK solves the SDR of all but one case with
less than 25,000 buses in less than 10 minutes; the only exception is the case
4661 sdet from PGLIB (all three operating conditions). Solving this problem
takes MOSEK around 80 minutes. The longer computation time required to
solve this case compared to other cases with a similar number of buses can in
part be explain by looking at the chordal embedding of the network graph.
The largest clique is of size 242 which is similar to the case with 82,000 buses
(238) and around three times the size of all other cases with less than 25,000
buses. The case with 25,000 power buses is solved in approximately an hour
by MOSEK, and the largest cases with 70,000 and 82,000 buses are solved in
around seven hours. The nonlinear solvers are typically 5-20 times faster than
MOSEK (they solve a different problem!), but they sometimes fail. The RTE
cases from PGLIB appear to be particularly difficult for the nonlinear solvers:
in some cases, none of the nonlinear solvers succeed, and the computation
times are occasionally large compared to the general trend.

4 Discussion

The difference between our formulation of the SDR and the one constructed by
SDPOPF via YALMIP shows that the problem formulation can have a signif-
icant impact on computation times and robustness. Our experiments demon-
strate that an SDR of the ACOPF problem can be solved accurately and
reliably with the right combination of problem formulation and solver. How-
ever, it is possible that the problem formulation can be further improved. For
example, as mentioned in section 2.4, the conditioning of the problem may
improve with some scaling of the constraints, and this, in turn, may reduce
the number of iterations and/or the computation time. We have conducted
some experiments in this direction, and our preliminary results show that us-
ing MOSEK, the solution time can roughly be cut in half; the geometric mean
of the speed-up obtained by means of scaling was 1.9. Indeed, the solution
time for the largest test case with 25,000 buses was reduced from about one
hour to half an hour with MOSEK. We did not observe a similar improve-
ment with scaling for the other solvers. Finally, we remark that scaling may
affect stopping criteria, so care must be taken when comparing the accuracy
of solutions obtained with and without scaling.

The QCR, proposed by Coffrin et al. (2016), provides a promising alter-
native to the SDR in that it is computationally cheaper and often as tight as
the SDR (and in some cases even tighter). However, the findings reported in
(Coffrin et al., 2016) only include SDRs of cases with less than 3,000 buses,
and it is therefore unclear how the QCR and the SDR compare with respect
to optimality gap for larger test cases. Moreover, the results pertaining to the



On the Robustness and Scalability of SDR for OPF Problems 13

SDR were obtained using an implementation based on SDPT3 and the mod-
eling tool CVX, so the sizable gap between the two relaxations in terms of
computational time will likely shrink if MOSEK and our problem formulation
is used for the SDR.

The computation times reported in Section 3 did not include preprocess-
ing time (i.e., the time required to construct the SDR). To give the reader
an idea of the preprocessing workload, we remark that the construction of the
SDR of the case with 25 thousand buses took approximately 25 seconds or ap-
proximately 1/60 of the time required to solve the SDR with MOSEK, and the
geometric average of the ratio of the solution time to the preprocessing time for
cases with more than 300 buses was approximately 13, i.e., preprocessing ac-
counted for around 7% of the total time on average. In contrast, YALMIP (via
SDPOPF) required approximately 6 minutes to compile the case with 25,000
buses. Comparing the ratio of the preprocessing time for YALMIP to that of
our approach, we found that the geometric average was approximately 13, i.e.,
on average it took 13 times longer with YALMIP. We note that our Python-
based preprocessing code may be improved, e.g., by reimplementing critical
parts of the code in C. In principle, the preprocessing time may be amortized
if several problem instances with the same underlying power network need to
be solved. However, this would require a symbolic chordal conversion of the
problem such that the problem data can easily be updated or replaced.

5 Conclusion

SDR is a promising technique that may be used to compute useful global lower
bounds on the optimal value of ACOPF problems. However, concerns about
robustness and scalability have cast doubt on the practical usefulness of the
technique. We have shown experimentally that the problem formulation can
have a significant impact on both robustness and scalability. By construct-
ing the SDR manually instead of using a modeling tool, we avoid problem
transformations that incur significant overhead. Our numerical experiments
establish that SDRs of a large collection of test cases can be solved reliably
with MOSEK. Moreover, the time required to solve an SDR is typically within
an order of magnitude of the time required by state-of-the-art nonlinear solvers
such as KNITRO and IPOPT.
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