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A Convex Reconstruction Model for X-ray

Tomographic Imaging with Uncertain Flat-fields
Hari Om Aggrawal, Martin S. Andersen, Sean Rose, and Emil Y. Sidky

Abstract—Classical methods for X-ray computed tomography
are based on the assumption that the X-ray source intensity
is known, but in practice, the intensity is measured and hence
uncertain. Under normal operating conditions, when the exposure
time is sufficiently high, this kind of uncertainty typically has
a negligible effect on the reconstruction quality. However, in
time- or dose-limited applications such as dynamic CT, this
uncertainty may cause severe and systematic artifacts known as
ring artifacts. By carefully modeling the measurement process
and by taking uncertainties into account, we derive a new
convex model that leads to improved reconstructions despite poor
quality measurements. We demonstrate the effectiveness of the

methodology based on simulated and real data sets.

Index Terms—X-ray computed tomography, ring artifacts, low
intensity, reconstruction methods.

I. INTRODUCTION

X -RAY computed tomography (CT) is a non-invasive

method that is used to image the internal structure of

objects without cutting or breaking them. An X-ray source

illuminates an object from different directions while detec-

tors capture the attenuated X-rays. As the X-rays propagate

through the object along straight lines, they are attenuated

exponentially with a rate of decay that depends on the material.

This relationship is explained by the Lambert–Beer law which

forms the basis of major X-ray CT reconstruction models

and methods; see e.g. [1]. Reconstruction methods estimate

the spacial attenuation of the object of interest based on a

number of X-ray images, given the measurement geometry,

the source intensity, and possibly some assumptions on the

statistical nature of the measurement process.

In practice, the source intensity is never known exactly, but

it is estimated by acquiring a number of X-ray images without

an object in the scanner. Such measurements are also known as

air scans [2], flat-fields, or white-fields [3]. The elementwise

mean of these measurements provides an estimate of the flat-

field intensity and may be used for computing reconstructions.

However, in practice the measurements are noisy, and hence

the flat-field intensity estimate is a random variable whose

variance is proportional to the ratio of the flat-field intensity

and number of flat-field samples [4]. Consequently, the signal-

to-noise ratio (SNR) of the flat-field intensity estimate is

proportional to the square root of the product of the flat-field

intensity and the number of samples. Therefore, if the flat-field
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intensity is low or if the number of flat-field measurements

is small, the flat-field estimation error may be significant

and lead to reconstruction artifacts and errors. Since the flat-

field estimate is used to normalize measurements from all

projection directions, the estimation errors result in systematic

reconstruction errors. These are known as ring artifacts [5]

since they appear as concentric circles superimposed on the

reconstruction, and they are a common problem that can mask

important features in the reconstructed image [6], [7]. Ring

artifacts may not only occur because of flat-field estimation er-

rors; miscalibrated or dead detector elements and non-uniform

sensitivities may also systematically corrupt the measurements

and lead to ring artifacts in the reconstruction [3].

An experimental study [8] has pointed out that the ring

artifacts are more severe when the X-ray source intensity

is low, and hence a reconstruction from low-intensity mea-

surements may be very sensitive to the assumptions upon

which the reconstruction method is based. The problem may

arise when the acquisition time is limited, e.g., in dynamic or

time-resolved tomography, or if the application imposes strict

dose limitations. Thus, tomographic reconstruction based on

low-intensity measurements is a challenging problem, in part

because of the low SNR.

One approach to combating ring artifacts is to move the

detector array between projections [9]. This has an averaging

effect on the systematic error due to flat-field estimation errors

and often results in noticeable improvements, but it does not

address or model the underlying cause. Moreover, it requires

special hardware for the acquisition, and it is not suited for

applications such as dynamic CT where fast acquisition times

are important. Alternative software-based methods to mitigate

ring artifacts also exist. Roughly speaking, these methods can

be put into three categories: sinogram preprocessing meth-

ods [10]–[14], combined ring reduction and reconstruction

methods [15], [16], and post-processing methods that reduce

or remove rings from a reconstruction [3], [17], [18]. The

preprocessing methods detect and remove/reduce stripes in

the sinogram which, in turn, reduces the ring artifacts in

the image domain. These algorithms are typically based on

Fourier domain filtering [11], wavelet domain filtering [12], or

a normalization of measurements by estimating the sensitivity

of each detector pixel [14]. The post-processing methods

transform the reconstructed image from Cartesian to polar

coordinates [3] and remove stripes using, e.g., a median filter

[17], a wavelet filter, or a variational model for destriping [18].

In two recently proposed methods [15], [16], ring artifact

correction is included as an intrinsic part of the reconstruction

process. Motivated by the cause of ring artifacts, which
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appear as stripes in the sinogram domain, the sinogram is

split into the sum of the true sinogram and a component

which represents the systematic stripe errors. Although the

combined ring-reduction and reconstruction methods do take

the systematic nature of the flat-field estimation errors in the

sinogram domain into account, they do not explicitly model

the source of the errors nor their statistical properties.

Existing methods for mitigating ring artifacts have been

shown to work reasonably well when applied to measurement

data with high or acceptable SNRs. However, we are not aware

of any studies that investigate ring artifact correction for low

SNR measurements and where the intensity of X-ray beam

is assumed to be uncertain. To this end, we derive a new

reconstruction model that is based on a rigorous statistical de-

scription of our model assumptions. Unlike existing correction

methods that, roughly speaking, are based on the geometric

nature of ring artifacts in either the sinogram or the recon-

struction, our approach is based on a model of a fundamental

cause of these artifacts. The resulting reconstruction method

jointly estimates the flat-field and the attenuation image, and

we show that the estimation problem can be solved efficiently

by solving a convex optimization problem. We also derive a

quadratic approximation model which is similar to an existing

weighted least-squares reconstruction model.

Outline: Section II introduces our model assumptions and

reviews some existing approaches to CT reconstruction based

on low SNR measurements. We illustrate the sensitivity of

these existing methods to flat-field intensity estimation er-

rors. Section III proposes a new reconstruction model and

discusses different parameter selection strategies. We describe

our numerical implementation in Section IV, and we validate

the proposed model based on simulated data as well as real

tomographic measurements in Section V. Section VI concludes

the paper.

Notation: The set Rn denotes the n-dimensional real space,

Rn
+ is the nonnegative orthant of Rn, and Rm×n is the set of

m×n real-valued matrices. Upper case letters denote matrices,

lower case letters denote vectors or scalars, and boldface

letters denote random variables. Given a vector x ∈ Rn, the

matrix diag(x) is the n×n diagonal matrix with the elements

of x on the diagonal. Similarly, given a set of r square

matrices S1, . . . , Sr, the matrix blkdiag(S1, . . . , Sr) denotes

the block-diagonal matrix with diagonal blocks S1, . . . , Sr.

The vector ei denotes the ith column of an identity matrix,

and 1 denotes a vector of ones. Given a vector x ∈ Rn,

the notation log(x) and exp(x) is interpreted as elementwise

logarithm and exponentiation. A ⊗ B denotes the Kronecker

product of A ∈ Rm×n and B ∈ Rp×q , ‖A‖F denotes the

Frobenius norm of A, and |A| ∈ Rm×n is the element-wise

absolute value of A. The vector y = vec(Y ) denotes the

vector obtained by stacking the columns of the matrix Y .

Given a discrete random variable y, the probability of y = y
is P(y = y), or using shorthand notation, P(y). Similarly,

given a continuous random variable z, P(z) is shorthand for

the probability density associated with z, evaluated at z, and

finally, E[z] denotes the expectation of z.

II. CONVENTIONAL RECONSTRUCTION APPROACH

A. System and Measurement Model

The Lambert–Beer law describes how an X-ray beam is at-

tenuated as it travels through an object that is characterized by

a spatial attenuation function µ(x). Specifically, the incident

intensity of an X-ray beam on a detector is given by

I ≈ I0 exp

(
−
∫

l

µ(x) dx

)
(1)

where I0 is the intensity of the X-ray source, and l denotes

the line segment between the source and a detector. This

description does not take the detector efficiency and the

statistical nature of the photon arrival process into account.

For photon-counting detectors, it is common to assume that

the photon arrival process is a Poisson process, and each

measurement is assumed to be a sample from a Poisson

distribution whose mean is prescribed by the Lambert–Beer

law. Here we will consider a two-dimensional geometry where

p projections are acquired using a one-dimensional detector

array with r detector elements. We will use the notation yij to

denote the measurement obtained with detector element i and

projection j, and we will assume that the ith detector element

has efficiency ηi ∈ (0, 1] such that the effective intensity is

vi = ηiI0. Thus, with the assumption that the arrival process

is Poisson process, yij is a realization of a random variable yij

which, conditioned on µ and vi, is a Poisson random variable

whose mean is prescribed by the Lambert–Beer law, i.e.,

yij | µ, vi ∼ Poisson

(
vi exp

(
−
∫

lij

µ(x) dx

))
(2)

where lij notes the line segment between the ith detector

element and the source for projection angle j. For ease of

notation, we define a matrix random variable Y of size r× p
with elements yij , and similarly, the r × p matrix Y denotes

a realization of Y and y = vec(Y ).
The attenuation function µ(x) may be discretized by using

a parameterization

µ(x) =

n∑

k=1

ukµk(x) (3)

where µk(x) is one of n basis functions (e.g., a pixel or voxel

basis), and u ∈ Rn is a vector of unknowns (e.g., pixel or

voxel values). With this parameterization, the line integrals in

(2) can be expressed as
∫

lij

µ(x) dx = eTi Aju

where the elements of the matrix Aj ∈ Rr×n are given by

(Aj)ik =

∫

lij

µk(x) dx,

and hence the columns of Y satisfy

E[yj |u, v] = diag(v) exp(−Aju), j = 1, . . . , p

where v = (v1, . . . , vr).
In practice, the vector v is unknown and must be measured.

As mentioned in the introduction, the measurements of v are
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often referred to as flat-field measurements and are simply

measurements obtained without any object in the CT scanner.

We will assume that s flat-field measurements are acquired for

each detector element based on the flat-field measuring model

fij | vi ∼ Poisson(vi) (4)

for i = 1, . . . , r and j = 1, . . . , s, and F denotes a r×s matrix

random variable with elements fij . As for the measurements

Y , the matrix F ∈ Rr×s denotes a realization of F.

B. Maximum Likelihood Estimation

Given the flat-field measurements F , a maximum likelihood

(ML) estimate of v is given by

v̂f = argmin
v

{− log P(F | v)} (5)

= argmin
v

{
s1T v − 1TFT log(v)

}
=

1

s
F1,

i.e., v̂f is simply the arithmetic average of the s flat-field

measurements. This estimate can be used to compute an

approximate ML estimate of the vector u which is given by

ûy = argmin
u

{− logP(Y | u, v̂f)} (6)

= argmin
u

{
(1⊗ v̂f)

T exp(−Au) + yTAu
}

where A ∈ Rrp×n is defined as A = [AT
1 · · · AT

p ]
T . The

estimation problem (6) is a convex optimization problem, and

it is essentially an approximate ML estimation problem since

with our model assumptions, the true likelihood P(Y | u, v)
is a function of both u and v. We will return to this issue in

the next section.

If y is positive, a quadratic approximation of (6) can be

obtained by means of a second-order Taylor expansion of the

likelihood function [19], and this yields the following weighted

least-squares objective function

1

2
‖diag(y)1/2(Au − b)‖22 (7)

where b = 1 ⊗ log(v̂f) − log(y). Notice that if A has full

rank and rp ≤ n, both (6) and the quadratic approximation

(7) reduce to the problem of solving the consistent system

of equations Au = b, but the two problems are generally

different when the system of equations Au = b is inconsistent.

The noise properties of reconstructions based on the weighted

least-squares objective (7) have been studied in [20].

C. The Effect of Flat-field Estimation Errors

The flat-field estimate v̂f in (5) satisfies E[v̂f ] = v,

and hence it is an unbiased estimate. However, v̂f is it-

self a random variable with covariance (1/s)diag(v), and

the flat-field estimation error may lead to artifacts in the

reconstruction. To study how flat-field estimation errors in-

fluence the reconstruction, we now consider a simplified

model based on Gaussian approximations. Specifically, we

assume that (v̂f)i|vi ∼ N (vi, s
−1vi) and yij |vi, u ∼

N (vi exp(−eTi Aju), vi exp(−eTi Aju)). With these assump-

tions, bij = log((v̂f)i) − log(yij) can be approximated by

linearizing each of the log terms around the mean of their

arguments, i.e.,

bij ≈ log(vi) +
(v̂f)i − vi

vi
− log(E[yij ])−

yij − E[yij ]

E[yij ]

= eTi Aju+ zi +wij

for i = 1, . . . , r and j = 1, . . . , p, and where

zi = ((v̂f )i − vi)/vi, zi ∼ N (0, (svi)
−1)

and

wij = (yij − E[yij ])/E[yij ], wij ∼ N (0, v−1
i exp(eTi Aju)).

The terms zi arise because of the flat-field estimation errors,

and the terms wij represent the effect of measurement noise.

If we define z = (z1, . . . , zr) and w = vec(W) where W is

the r × p matrix with elements wij , then

b ≈ Au+ 1⊗ z+w. (8)

Not surprisingly, this shows that flat-field estimation errors

affect all projections, and hence give rise to structured errors.

The linear approximation reaffirms that the variance of

the flat-field errors is inversely proportional to the flat-field

intensity and the number of flat-field measurements s. Thus,

if s is sufficiently large, the flat-field estimation errors play a

negligible role. However, a twofold reduction of the flat-field

error-to-noise ratio
√

E[z2i ]

E[w2
ij ]

=
1√

s exp(−eTi Aju)

requires a fourfold increase in the number of flat-field samples,

and hence it may require many samples to obtain a sufficiently

small flat-field error-to-noise ratio.

We now demonstrate the effect of flat-field estimation errors

by considering the behavior of reconstructions based on (6).

We will use a constant flat-field v = ω1 for ω > 0 to generate

a set of measurements according to the model (2) with r =
200 detector elements and p = 720 parallel beam projections

covering a full rotation. For the reconstruction we use the

flat-field ML estimate v̂f , as defined in (5), where only one

flat-field sample (s = 1) is acquired for each detector element

based on (4).

Our object u, shown in Fig. 1a, consists of three squares of

different sizes where the attenuation of the innermost square

is 0.5 cm−1, the enclosing square has attenuation 0.25 cm−1,

and the outermost square has no attenuation. The domain size

is 1 cm, and the reconstruction grid is 128×128 pixels. Fig. 1

shows three reconstructions based on (6) with different values

of the parameter ω. The effect of the flat-field error appears

as a ring in the reconstructions, and it is clear that the severity

of both noise and the ring in the reconstruction decreases as

the flat-field intensity is increased. In the next section, we

propose and investigate a new reconstruction model that takes

a statistical model of the flat-field into account.

The effect of a flat-field estimation error on the recon-

struction may also be analyzed by means of an analytic

reconstruction of the sinogram hθ(t) = δ(t − t0) where

t0 6= 0 is a given constant. This corresponds to a “line” in
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(a) Phantom (b) ω = 103 photons

(c) ω = 104 photons (d) ω = 105 photons

Fig. 1. Phantom (a) and reconstructions (b), (c), and (d), based on (6) with
flat-field estimation errors. The display range for each of the images is [0, 0.6].

the sinogram. The function hθ(t) is a radial function (i.e.,

it does not depend on θ), but it is not the Radon transform

of a function since hθ(t) 6= hθ+π(−t). As a consequence,

the Fourier slice theorem does not hold. However, we may

still compute a reconstruction using filtered backprojection.

The reconstruction µ(x) is itself a radial function, and if we

let x = ρnφ where nφ = (cosφ, sinφ) such that |ρ| is the

distance to the origin, we obtain the expression [21]

µ(ρnφ) =
1

2

∫ π

−π

∫ ∞

−∞

Hθ(ζ)|ζ|e−2πǫ|ζ|ei2πζρn
T
φnθ dζ dθ

= π

∫ ∞

−∞

Hθ(ζ)|ζ|e−2πǫ|ζ|J0(2πζρ) dζ

= π

∫ ∞

0

[Hθ(ζ) +Hθ(−ζ)] e−2πǫζζJ0(2πζρ) dζ

where J0 denotes the zeroth-order Bessel function of the first

kind, Hθ(ζ) = e−i2πζt0 is the Fourier transform of hθ(t), and

|ζ|e−2πǫ|ζ| is an apodizing filter with parameter ǫ > 0. Using

the Hankel transform pair (20) in [22, p. 9], we obtain the

closed-form expression

µ̃(ρ) =
1

4π

(
σ

(σ2 + ρ2)3/2
+

σ̄

(σ̄2 + ρ2)3/2

)
(9)

where σ = ǫ + it0 and µ̃(ρ) = µ(ρnφ) . Fig. 2 shows three

examples of what this function may look like. It is clear from

the figure that a systematic error in the sinogram in the form

of a “line” will appear as spikes in the radial reconstruction. In

particular, the reconstruction will have two “rings” of opposite

sign near ρ = t0, corresponding to the positive and negative

peaks in the profile µ̃(ρ). The extrema of µ̃(ρ) (i.e., the spike

magnitudes) depend on both t0 and ǫ. The dotted curves in the

−2 −1 0 1 2
−5

0

5

10

ρ

µ̃
(ρ
)

t0 = 0.5 t0 = 1.0 t0 = 1.5

Fig. 2. Examples of radial profile of reconstruction of hθ(t) for three different
values of t0 (0.5, 1.0, and 1.5) and ǫ = 0.05.

figure provide an envelope of the extrema for ǫ = 0.05, and it

shows that the magnitude of a spike is large when |t0| is small

and vice versa. Our analysis of the extrema of µ̃(ρ), which is

included in Appendix A, shows that they are approximately

inversely proportional to
√
ǫ3|t0| when |t0| ≫ ǫ. Moreover,

µ̃(ρ) may have a significant offset near ρ = 0, as is the case

for the example with t0 = 0.5 in Fig. 2.

D. Including Prior Information

If the prior probability density P(u) is assumed to be

known, a so-called maximum a posteriori (MAP) estimate can

be expressed as

ûmap = argmin
u

{− logP(u | y, v)} (10)

where, according to Bayes’ rule, the posterior probability

density P(u|y, v) satisfies

P(u | y, v) ∝ P(y | u, v)P(u). (11)

Again, since v is generally unknown, an approximate MAP

(AMAP) estimate can be obtained by maximizing an approx-

imation of the posterior distribution, i.e.,

ûamap = argmin
u

{− log P(u | y, v̂f)} . (12)

We will restrict our attention to priors of the form

P(u | γ) ∝ e−γφ(u) (13)

where φ(u) is a convex function and γ > 0 is a hyperparam-

eter. With this prior, the AMAP estimation problem can be

expressed as

ûamap = argmin
u

{
(1⊗ v̂f)

T exp(−Au) + yTAu+ γφ(u)
}

(14)

which is a convex optimization problem. Alternatively, using

the quadratic approximation (7) in place of the log-likelihood

function, we obtain the regularized weighted least-squares

problem

ûwls = argmin
u

{
1

2
‖diag(y)1/2(Au − b)‖22 + γφ(u)

}
(15)

as an approximation to the AMAP estimation problem.
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III. JOINT RECONSTRUCTION APPROACH

We now turn to the main contribution of this paper, namely

a model for jointly estimating the flat-field v as well as the

absorption image u. Recall from the example in section

II-C that the approximate ML model (6) may lead to ring

artifacts. As will be evident from our numerical experiments in

section V, the approximate MAP model (14) suffers the same

drawback. To mitigate this, we consider joint MAP estimation

of u and v. This approach is motivated by the fact that

the measurements Y contain information about both u and

v. Indeed, given u, an ML estimate of v can be computed as

v̂y(u) = argmin
v

{− log P(Y | u, v)} (16)

= diag




p∑

j=1

exp(−Aju)




−1

Y 1. (17)

A. MAP Estimation Problem

With the model assumptions described in II-A and given a

flat-field prior P(v|α, β), the joint posterior distribution of the

unknown parameters u and v can be expressed as

P(u, v | Y, F ) ∝ P(Y, F | u, v)P(u | γ)P(v | α, β)

where P(Y, F |u, v) = P(Y |u, v)P(F |v), and α ∈ Rr and

β ∈ Rr are hyperparameters associated with the flat-field prior.

Here we will assume that vi and vj , i 6= j are independent,

and the flat-field prior is vi|αi, βi ∼ Gamma(αi, βi) for i =
1, . . . , r, i.e.,

P(vi | αi, βi) =
βαi

i

Γ(αi)
vαi−1
i exp(−βivi).

The Gamma prior is chosen because of computational conve-

nience; it is the so-called conjugate prior for the Poisson likeli-

hood function, and as a consequence, the posterior distribution

of v given u is itself a Gamma distribution. For the Gamma

distribution, the hyperparameter αi is commonly referred to as

the shape, and βi is referred to as the rate. The corresponding

MAP estimation problem can be expressed as

(û, v̂) = argmin
(u,v)

{− log P(u, v | Y, F )} (18)

= argmin
(u,v)

{J(u, v) + γφ(u)}

where

J(u, v) = vT d(u) + yTAu− cT log(v) (19)

and

c = F1+ Y 1+ α− 1, d(u) = s1+

p∑

j=1

exp(−Aju) + β.

(20)

The function J(u, v) is convex in u given v and vice versa,

but it is not jointly convex in u and v. However, by setting the

gradient of J(u, v) with respect to v equal to zero, we obtain

the first-order optimality condition v̂(u) = diag(d(u))−1c.

This allows us to eliminate v from the estimation problem

(18), i.e.,

J(u, v̂(u)) ∝ yTAu+ cT log(d(u)),

which is a convex function of u. Thus, the problem (18) is

equivalent to the following convex reconstruction model

û = argmin
u

{
yTAu+ cT log(d(u)) + γφ(u)

}
(21)

with the flat-field estimate v̂ given by

v̂ = diag(d(û))−1c. (22)

We note that v̂ has an interesting interpretation: each element

of v̂ can be expressed as a convex combination of three

independent estimates, i.e.,

v̂ = diag(θ1)v̂f + diag(θ2)v̂y(û) + diag(θ3)v̂pr(α, β) (23)

where θ1, θ2, θ3 ∈ Rr
+, θ1 + θ2 + θ3 = 1, are parameters that

depend on both data and û, α, and β. The ML estimate v̂f ,
defined in (5), is based on the flat-field measurements F , the

estimate v̂y(û) is based on the measurements Y and defined in

(16), and the estimate v̂pr(α, β) = diag(β)−1(α−1) is based

on the flat-field prior; see Appendix B for further details on

this interpretation.

B. Choosing The Hyperparameters

The estimation problem (21) depends on the flat-field hyper-

parameters α and β. We now discuss different ways to choose

these hyperparameters.

1) Uniform Positive Prior: The simplest prior is perhaps

the uniform positive (UP) prior which is obtained by setting

αi = 1 and βi = 0 for i = 1, . . . , r. In the present case, this

corresponds to simply omitting the prior P(v|α, β) from the

model, and hence the flat-field estimates v̂(u) become convex

combinations of only two estimates instead of three. This is

an improper prior since it does not integrate to one.

2) Jeffreys Prior: The Jeffreys prior (JP) for the Poisson

distribution is p(vi|αi, βi) ∝ 1/
√
vi which is obtained by

letting αi = 0.5 and βi = 0. This is also an improper prior.

3) Type-II ML Estimation: The flat-field measurements can

be used to estimate the hyperparameters by maximizing the

marginal probability of fi1, . . . , fis given the hyperparameters

αi and βi, i.e.,

(α̂i, β̂i) = argmin
(αi,βi)

{− log P(fi1, . . . , fis | αi, βi)} . (24)

This is known as type-II ML estimation or empirical Bayes

estimation [23]. As shown in Appendix C, this approach leads

to the AMAP model, i.e., a zero-variance prior with mean v̂f .
4) Flat-field Emphasizing Prior: Recall that the flat-field

estimate v̂(u) can be expressed as convex combinations of

three estimates. Specifically,

v̂i(u) =
s

di(u)
(v̂f)i +

τi(u)

di(u)
(v̂y)i +

βi
di(u)

αi − 1

βi
(25)

where τi(u) =
∑p

j=1 exp(−eTi Aju). If we set the mode of

the Gamma prior (i.e., (αi − 1)/βi) equal to the flat-field
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Fig. 3. Gamma distributions with hyperparameters βi and αi = 1+(v̂f )iβi
for (v̂f )i = 10 and βi ∈ {0.1, 1.0, 5.0}.

ML estimate (v̂f)i by letting αi = 1 + βi(v̂f)i, we obtain

the estimate

v̂i(u) =
s+ βi
di(u)

(v̂f)i +
τi(u)

di(u)
(v̂y)i (26)

which is a convex combination of two estimates. It is easy

to verify that v̂i(u) → (v̂f)i as β → ∞, and with βi = 0,

the estimate v̂i(u) is equivalent to the estimate obtained with

the UP prior. Thus, choosing βi > 0 and αi = 1 + βi(v̂f)i
allows us to emphasize the flat-field ML estimate (v̂f)i. This

is consistent with the fact that the parameter βi is the rate

parameter associated with the Gamma distribution: the larger

the rate, the more concentrated the distibution is around its

mode. This is illustrated in Fig. 3. We call this corresponding

prior the flat-field emphasizing (FE) prior.

C. Quadratic Approximation

A quadratic approximation of the first two terms in (21) can

be derived by means of a second-order Taylor expansion with

respect to Au. Substituting y for (I⊗diag(v̂(u))) exp(−Au),
we obtain the following approximate MAP estimation problem

ûswls = argmin
u

{
1

2
‖Au− b‖2

Σ̂−1

b

+ γφ(u)

}
(27)

where the covariance matrix Σ̂b is defined as

Σ̂b = (11T )⊗ diag(sv̂f + α− 1)−1 + diag(y)−1. (28)

This is also the covariance matrix associated with b in the

linear approximation (8). Note that the weighted least-squares

data fidelity term takes the systematic errors induced by flat-

field estimation errors into account without explicitly modeling

the flat-field, and hence we label this a regularized stripe-

weighted least-squares (SWLS) problem. The model depends

on the hyperparameter vector α, which appears in the covari-

ance matrix, but β does not appear in the model.

IV. IMPLEMENTATION

The MAP estimation problems (14) and (21) as well as

the WLS (15) and SWLS (27) quadratic approximations are

all convex problems that can be solved with a wide range

of numerical optimization methods. Here we will focus on

simple first-order methods which are suitable for large-scale

problems.

A. Attenuation Priors

Before we describe our implementation of the different re-

construction methods, we briefly discuss two attenuation priors

of the form (13), namely the nonnegativity prior (correspond-

ing to nonnegativity constraints ui ≥ 0), and a combination of

the nonnegativity prior and total variation (TV) regularization

[24]. Both of these priors can be combined with the existing

AMAP model (14), the proposed model (21), the WLS model

(15) and the SWLS model (27).

1) Nonnegativity: The nonnegativity constraints can be

expressed as φ(u) = I+(u) where I+(u) denotes the indicator

function of the nonnegative orthant, i.e., I+(u) = 0 if and only

if u is a nonnegative vector, and otherwise I+(u) = ∞.

2) Nonnegativity and TV: The combination of nonnegativ-

ity constraints and TV may be expressed as

φ(u) = I+(u) + TVδ(u)

where TVδ(u) =
∑n

i=1 ξδ(‖Diu‖2) is a differentiable TV-

approximation, ξδ denotes the Huber-norm

ξδ(t) =

{
(t)2/(2δ) |t| ≤ δ

|t| − δ/2 otherwise

with parameter δ, and Diu is a finite-difference approximation

of the gradient at pixel i. We will use a pixel basis correspond-

ing to an M ×N grid (i.e., n =MN ). Specifically, we define

Di =

[
eTi (IN ⊗ D̄M )
eTi (D̄N ⊗ IM )

]

where IM and IN are identity matrices, and D̄M and D̄N are

square difference matrices of order M and N , respectively,

and of the form



1 −1
. . .

. . .

1 −1
0




where the last row is zero, corresponding to Neumann bound-

ary conditions.

The function TVδ(u) has a Lipschitz continuous gradient

with constant Ltv(δ) = ‖D‖22/δ where D =
[
DT

1 · · ·DT
n

]T
.

B. Reconstruction Models

We now consider five different reconstruction models of

the form

minimize Ji(u) + γφ(u), i = 1, . . . , 5, (29)

where Ji(u) is based on either (10), (14), (21), (15) or (27).

1) Baseline and AMAP Estimation: The reconstruction

model (10) requires the true flat-field v which is not available

in practice. However, the model may be used to compute

a baseline reconstruction in simulation studies. The baseline

reconstruction problem corresponds to J1(u) = J(u, v) where

the true flat-field v is assumed to be known. If we replace

v by v̂f , we obtain the AMAP model (14) with objective

J2(u) = J(u, v̂f).
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To solve the reconstruction problem (29) using a first-order

method, we need the gradient of J(u, v) with respect to u,

i.e.,

∇uJ(u, v) = AT (y − ŷ(u, v)) (30)

where ŷ(u, v) = (I ⊗ diag(v)) exp(−Au). It is easy to verify

that the gradient ∇uJ(u, v) is Lipschitz continuous on the

nonnegative orthant since the norm of the Hessian

∇2
uJ(u, v) = ATdiag(ŷ(u, v))A

is bounded for u ≥ 0 and with v fixed. We will use

the Lipschitz constants L1 = maxi{vi}‖A‖22 and L2 =
maxi{(v̂f)i}‖A‖22.

2) Joint MAP Estimation: The MAP estimation problem

(21) is a special case of (29) if we let J3(u) = J(u, v̂(u)).
The gradient of J3(u) is

∇J3(u) = AT y +Dd(u)
T v̂(u) (31)

= AT (y − ŷ(u, v̂(u)))

where Dd(u) = −∑p
j=1 diag(exp(−Aju))Aj denotes the

Jacobian matrix of d(u). Comparing with (30), we see that

the only difference is that the residual y− ŷ(u, v̂(u)) is based

on the flat-field estimate v̂(u) instead of the true flat-field v
or the ML estimate v̂f .

To derive the Hessian of J3(u), note that

cT log(d(u)) =

r∑

i=1

ci log(di(u))

where di(u) = s +
∑p

j=1 exp(−eTi Aju) + βi. This implies

that the Hessian can be expressed as

r∑

i=1

ci

(∇2di(u)

di(u)
− ∇di(u)∇di(u)T

di(u)2

)
.

Now let Πi = I ⊗ eTi such that Πiy = Y T ei corresponds

to the ith row of Y , and define a permutation matrix Π =
[ΠT

1 · · · ΠT
r ]

T . This allows us to express the Hessian ∇2J3(u)
as

∇2J3(u) = ATΠT blkdiag(B1(u), . . . , Br(u))ΠA (32)

where Bi(u) = diag(Πiŷ)− 1
ci
Πiŷŷ

TΠT
i , and where ŷ is used

as shorthand for ŷ(u, v̂(u)). (We remark that v̂(u) depends

on both α and β, and consequently, so does the Hessian

∇2J3(u).) It follows that

‖∇2J3(u)‖2 ≤ ‖ATdiag(y)A‖2
which implies that ∇J3(u) is Lipschitz continuous with con-

stant L3 = ‖ATdiag(y)A‖2.

3) WLS Estimation: The quadratic approximation (15) cor-

responds to (29) with J4(u) = 1
2‖Au − b‖2

Σ̂−1

b

and Σ̂b =

diag(y)−1. The gradient of J4(u) is

∇J4(u) = ATΣ−1
b

(Au− b)

which is Lipschitz continuous with constant ‖AT Σ̂−1
b
A‖2.

4) Regularized SWLS: The quadratic approximation (27)

corresponds to (29) with J5(u) =
1
2‖Au− b‖2

Σ̂−1

b

and

Σ̂b = ΠT
[
diag(Πy)−1 + diag(sv̂f + α− 1)−1 ⊗ (11T )

]
Π.

Thus, Σ̂b is a symmetric permutation of a block-diagonal

matrix with diagonal-plus-rank-one blocks, and hence matrix-

vector products with Σ̂−1
b

can be efficiently evaluated using

the Woodbury identity, i.e., Σ̂−1
b

= ΠTblkdiag(S1, . . . , Sr)Π
where

Si = diag(Πiy)−
1

s(v̂f)i + eTi Y 1+ αi − 1
Πiyy

TΠT
i . (33)

This allows us to evaluate the gradient as

∇J5(u) = ATΣ−1
b

(Au− b)

which is Lipschitz continuous with constant ‖AT Σ̂−1
b
A‖2.

It is instructive to compare the SWLS model to the WLS

model considered in [16]. This model implicitly includes the

flat-fields using the following objective function

J6(u, z) =
1

2
‖diag(y)1/2(Au − b+ 1⊗ z)‖22 +

λ

2
‖z‖22 (34)

where z ∈ Rr is an auxiliary variable that can be thought of

as the relative flat-field error (cf. the analysis in Section II-C).

Taking the gradient with respect to z and setting it equal to

zero yields z = diag(Y 1+ λ1)−1(1T ⊗ I)diag(y)(b − Au),
and using this expression in (34) yields

J6(u) =
1

2
‖Au− b‖2

Σ̂−1
(35)

where Σ̂−1 = ΠT blkdiag(S̄1, . . . , S̄r)Π and

S̄i = diag(Πiy)−
1

eTi Y 1+ λ
Πiyy

TΠT
i . (36)

The blocks S̄i clearly resemble the blocks Si from the SWLS

model in (33): the only difference is the scalar weight in

front of the rank-1 term in each of the r blocks. In particular,

notice that the weights in the SWLS model include information

derived from all measurements as well as the flat-field prior.

Moreover, the parameter λ in (36) plays a similar role as the

flat-field hyperparameters α in (33), but the SWLS model

is more general and flexible because it allows the use of a

different hyperparameter αi for each of the r blocks.

C. Algorithm

The functions J1(u), . . . , J5(u) are all differentiable with

Lipschitz continuous gradients on the nonnegative orthant, and

hence we can apply a proximal gradient method which is

suitable for minimizing problems of the form

minimize g(u) + h(u).

Here g : Rn → R is convex with a Lipschitz continuous

gradient with Lipschitz constant L, h : Rn → R is convex,

and the prox-operator

proxth(ū) = argmin
u

{
th(u) +

1

2
‖u− ū‖22

}
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is assumed to be cheap to evaluate. We will define g(u) =
Ji(u)+ γTVδ(u) and h(u) = I+(u), and hence the Lipschitz

constant is given by L = Li+γLtv(δ). Given a starting point

u(0) and a fixed number of iterations K , the algorithm can be

summarized as

u(k) = proxth(u
(k−1) − t∇g(u(k−1))), k = 1, 2, . . . ,K

where t ∈ (0, 2/L) is the step size and proxth(ū) =
max(0, ū) is the projection onto the nonnegative orthant.

With this step size, the method is a descent method. The

Lipschitz constant L can be estimated without an explicit

representation of A or D by means of the power iteration

algorithm. Our MATLAB implementation of the method is

available for download at https://github.com/hariagr/R2CT.

V. NUMERICAL EXPERIMENTS

A. Simulation Study

To evaluate the proposed reconstruction models, we con-

ducted a series of experiments in MATLAB based on sim-

ulated data. In these experiments, we used a parallel beam

geometry with p = 720 equidistant projection angles covering

half a rotation, and a 2 cm wide photon counting detector

array with r = 512 detector elements. To model a non-

uniform detection efficiency, the elements of the flat-field

vector v were drawn from a Poisson distribution with mean

I0. We used s = 5 measurements of the flat-field which

were generated according to (4), and the measurements Y
were generated according to (2) using a 2N × 2N pixel

discretization of a 2D phantom defined on a 4 cm2 square.

To avoid inverse crimes, we computed our reconstructions on

an N × N (N = 512) pixel grid with a circular mask. The

value of the TV-smoothing parameter δ was 0.01 cm−1 in all

experiments with the TV-prior. We used as step size t = 1.8/L,

and we used the ASTRA Toolbox [25] (version 1.7.1beta)

to compute filtered backprojection (FBP) reconstructions and

to implicitly compute products with A and AT on a GPU.

We generated the phantoms using the AIR Tools package [26]

(version 1.3), and we used the method outlined in Section IV-C

to numerically solve the reconstruction problems. As a remark,

we note that the ASTRA GPU code for backprojection (i.e.,

multiplication by AT ) is not an exact adjoint of the forward

operator (multiplication by A), and this may introduce small

errors in the gradient computations. However, it is significantly

faster than matched implementations, and we did not see any

noticeable differences in reconstruction quality when using the

exact adjoint.

As initial guess we used a vector of zeros, and we used a

fixed number of iterations as stopping criteria (500 iterations

for reconstructions without the TV-prior and 1,500 iterations

for reconstructions with the TV-prior). We determine the

parameter γ for the TV-prior based on the subjective visualiza-

tion. As flat-field prior P(v|α, β) we used αi = 1+βi(v̂f)i and

βi ≥ 0 (corresponding to the UP flat-field prior if βi = 0 and

the FE prior if βi > 0), and for the attenuation prior P(u|γ)
we used either nonnegativity or total variation combined with

nonnegativity. Note that SWLS only depends on α, but since

we also use αi = 1 + βi(v̂f)i for SWLS, we report the value

of β in the experiments.

To quantitatively compare the quality of reconstructions, we

report the relative attenuation error (RAE)

erelu (û) = 100 · ‖û− u‖2
‖u‖2

,

the relative flat-field error (RFE)

erelv (v̂) = 100 · ‖v̂ − v‖2
‖v‖2

,

the structural similarity (SSIM) index1 [27], and a “ring ratio”

(RR), defined as

‖ψv(v̂(û))‖F /‖ψv(v̂f)‖F

with ψv(v̂) defined as

ψv(v̂) = FBP(diag(v)−1(v̂ − v)1T ) (37)

and where FBP denotes the filtered backprojection reconstruc-

tion method. In other words, ψv(v̂) is the FBP reconstruction

of the sinogram stripes due to flat-field estimation errors, and

hence the norm ‖ψv(v̂)‖F quantifies how severely the flat-field

estimation errors affect the reconstruction. Thus, the RR can be

viewed as an indication of the expected ring artifact reduction

if we were to use the flat-field estimate v̂(û) instead of the

ML estimate v̂f (smaller is better) to compute a reconstruction.

Recall that all but the JMAP reconstruction model are based

on the ML estimate v̂f , so for the other models, the RFE and

the RR simply reflect what we obtain if we were to use the

reconstruction û to compute a new flat-field estimate v̂(û),
using (22). We used α = 1 and β = 0 to compute v̂(û) for

all but the JMAP and SWLS reconstruction models.

1) Low Intensity: In our first experiment, we used a phan-

tom based on the “grains” phantom from AIR Tools, shown

in the upper left corner of Fig. 4. We applied a circular

mask of radius 0.8 cm to obtain a phantom that is fully

contained by the reconstruction grid. We used I0 = 500 in

this experiment, corresponding to approximately 500 photons

per detector element per projection. As a result, the SNR is

relatively low. Estimates based on low SNR measurements

generally have a high variance, and hence a good model and

strong priors are of paramount importance. The reconstructions

shown in Fig. 4 demonstrate this. The baseline reconstructions

were computed using the true flat-field, and hence they are

“inverse crime” reconstructions that serve only as a baseline

for comparison. The two baseline MAP reconstructions (with

and without the TV prior) are based on the model (10).

Using the flat-field estimate v̂f instead of the true flat-field,

we obtained the FBP and AMAP reconstructions. It is clear

from these reconstructions that the flat-field estimation errors

introduce severe ring artifacts, even in the presence of a strong

prior such as the TV-prior. The ring artifacts are especially

severe near the center of the image (cf. Section II-C).

1We used the MATLAB ssim function with the radius parameter equal to
0.2 for reconstructions without the TV-prior and equal to 2.0 for reconstruc-
tions with the TV-prior.
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Fig. 4. Phantom and reconstructions based on simulated low-intensity measurements. The display range for the images is 0 to 1.2 cm−1. The reconstructions
with the TV-prior were computed with γ = 3. The insets are blow-ups of the reconstructions at the isocenter. The number of iterations was 500 for
reconstructions without TV prior and 1,500 for reconstructions with TV prior.

Model
Without TV (full domain, 2×2 cm) Without TV (disc, radius 0.8 cm) TV γ = 3 (disc, radius 0.8 cm)
RAE SSIM RFE RR RAE SSIM RFE RR RAE SSIM RFE RR

Baseline FBP 71.9 0.62 0.2 0.03 65.7 0.77 0.2 0.03 - - - -
FBP 101.2 0.55 3.5 0.66 94.7 0.70 3.6 0.66 - - - -
P-FBP 73.1 0.62 1.8 0.20 66.7 0.77 1.6 0.19 - - - -

Baseline MAP 58.7 0.79 0.3 0.04 58.4 0.80 0.2 0.04 6.1 0.93 0.3 0.06
AMAP 77.3 0.72 2.8 0.50 76.9 0.74 2.9 0.52 15.2 0.71 1.7 0.19
WLS 76.9 0.72 2.8 0.50 76.6 0.74 2.9 0.52 15.2 0.71 1.7 0.19
JMAP (β = 0) 63.8 0.72 5.4 0.25 58.1 0.80 2.7 0.12 8.2 0.92 0.9 0.09
SWLS (β = 0) 63.9 0.72 5.5 0.26 58.0 0.80 2.7 0.12 8.3 0.92 1.0 0.10
JMAP (β = 10) 61.8 0.74 3.1 0.20 58.4 0.80 1.5 0.15 7.6 0.92 0.7 0.09
SWLS (β = 10) 61.8 0.74 3.2 0.20 58.3 0.80 1.4 0.15 7.7 0.92 0.8 0.09
JMAP (β = 50) 62.0 0.75 2.3 0.30 60.3 0.79 2.0 0.31 7.6 0.91 1.2 0.17
SWLS (β = 50) 61.9 0.75 2.3 0.30 60.2 0.79 2.0 0.31 7.7 0.91 1.3 0.17

TABLE I
ERROR MEASURES FOR RECONSTRUCTIONS BASED ON SIMULATED LOW-INTENSITY MEASUREMENTS.

The preprocessed FBP (P-FBP) reconstruction is the result

of applying the combined wavelet and FFT filtering pre-

processing method2 by Münch et al. [12] to the sinogram,

followed by FBP. This removes stripes from the sinogram,

and although there are still some noticeable ring artifacts

in the reconstruction, the preprocessing step clearly reduces

the severity of the artifacts. However, the preprocessing step

involves several parameters that must be carefully tuned, and

it does not directly allow us to use the AMAP or MAP-based

reconstruction models for reconstruction.

The proposed models are quite effective at reducing ring

artifacts, as can be seen from the JMAP reconstructions as

well as the SWLS reconstruction. Notice that both the SWLS

2We used a damping factor of 0.9 and a Daubechies 5 wavelet with a
three-level decomposition.

(β = 0) reconstruction and the JMAP (β = 0) reconstruction

without the TV prior do not involve any parameters.

For the experiments without the TV-prior, Table I shows the

error measures based on both the full reconstruction domain

and based on a disc of radius 0.8 cm (corresponding to

the support of the phantom). The latter approach ignores

noise and ring artifacts outside the phantom, and hence this

gives a more practical picture of the performance. For the

reconstructions with a TV-prior, we report our results based on

a disc of radius 0.8 cm. Notice that in all cases, we obtain the

best reconstruction (in terms of both RAE and SSIM) using

either the JMAP reconstruction model or the SWLS model.

Moreover, these reconstructions have RAEs that are similar to

those of the baseline MAP reconstructions. We also see that

RRs and the RAEs for the JMAP reconstructions appear to be
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Fig. 5. Results of semi-convergence and initialization study. Reconstructions are computed with a UP prior β = 0.

correlated, but interestingly, the RFEs do not seem to agree

with the RAEs.

Despite the fact that the P-FBP reconstruction is worse

than the JMAP reconstructions, it is interesting to note that

it may be used to compute an improved flat-field estimate.

In our experiment, the ML estimate v̂f had a relative error

of 4.8%, but the flat-field estimate computed based on the P-

FBP reconstruction had a relative error of only around 1.8%.

However, using the TV-prior, the JMAP and SWLS model still

produced the best flat-field estimate of all the models.

Finally, we remark that the AMAP and WLS reconstructions

may be improved slightly by increasing the parameter γ.

Using γ = 10, we obtained AMAP and WLS reconstructions

with a relative error of around 10%, and although these

reconstructions did not have noticeable ring artifacts, they

contained an increased amount of undesirable TV-artifacts.

On the other hand, the JMAP and SWLS reconstructions

obtained with γ = 3 only have a limited amount of ring

artifacts and TV artifacts, and hence we conclude that the

proposed model allows us to reduce ring artifacts using a

smaller regularization parameter γ than with the AMAP or

WLS models, thus limiting unnecessary TV-induced artifacts.

2) Semi-convergence and Initialization: We now investigate

the role of regularization and its influence on the reconstruc-

tion. Recall that X-ray tomographic imaging is an ill-posed

problem where a small amount of noise in the measurements

may results in a large change in the reconstruction if it is not

regularized by a suitable prior. Thus, without regularization,

intermediate iterates sometimes provide better reconstructions

than iterates close to convergence. This behavior is known as

semi-convergence and depends on the reconstruction method

as well as initialization. Semi-convergence behavior often

indicates that the reconstruction is under-regularized, and

hence a solution to our convex reconstruction model may be a

poor reconstruction. In practice it is difficult to rely on semi-

convergence as the true solution is unknown.

We use the same experimental setup as in the previous

experiment. Fig. 5 shows RAE and RR as a function of the

number of iterations, with and without the TV-prior (i.e., regu-

larization). The semi-convergence behavior is evident without

the TV-prior, and not surprisingly, the baseline reconstruction

obtains the lowest RAE at the semi-convergence point after

approximately 50 iterations. After the semi-convergence point,

noise start to dominate the reconstruction and the RAE starts

to increase monotonically. Comparing the AMAP and JMAP

models, we see that the AMAP model has a lower RAE at

the semi-convergence point, but it converges to a higher RAE.

Taking the definition of the AMAP and JMAP estimators into

account, we can conclude that the JMAP model still converges

to a better reconstruction than the AMAP model. Fig. 5 also

shows the RR error measure, and while the AMAP model

exhibits semi-convergence both with respect to the RAE and

the RR, the JMAP model appears to monotonically reduce the

RR despite semi-convergence with respect to the RAE.

The dashed curves in Fig. 5 show the results of the same

experiment, but using the P-FBP reconstruction of u as ini-

tialization (the baseline MAP was initialized with the baseline

FBP reconstruction). The FBP reconstruction has a smaller

RAE than the zero-initialization, but FBP reconstructions

may be quite noisy when the SNR is low. Consequently,

this initialization may not lead to faster convergence without

regularization, as can be seen in Fig 5. The figure also shows

that the AMAP reconstruction method still exhibits a mild

degree of semi-convergence when using the TV-prior, but the

baseline method and the JMAP method appear to reduce the

RAE and the RR monotonically. Moreover, it is clear that

the FBP-initialization helps when combined with the TV-

prior. Finally, using the 50th AMAP iterate as initialization for

JMAP (corresponding to the semi-convergence point for the

RR), we obtained a significant improvement in the number of

iterations when compared to initialization with zeros.
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Fig. 6. Pixelwise bias and standard deviation based on 200 realizations of all measurements. The display range for the bias images is −0.1 to 0.1 cm−1, and
the display range for the standard deviation images is 0 to 0.06 cm−1. The reconstructions are computed with TV-prior with γ = 3. The insets are blow-ups
of the reconstructions at the isocenter.

3) Noise Analysis: To investigate the noise properties of the

proposed reconstruction model, we generated 200 realizations

of all measurements based on the grains phantom (see Fig. 4)

and with I0 = 500. We then computed pixelwise bias (the

difference between the mean of the reconstructions and the

phantom) and standard deviation for reconstructions based on

the baseline MAP, the AMAP, and the JMAP reconstruction

models. All reconstructions were computed with the TV-prior

(γ = 3) and 1,500 iterations. The results are shown in

Fig. 6. Generally speaking, the AMAP model is less biased

than the JMAP model. For small values of β, the JMAP

bias is somewhat large in comparison to the AMAP bias,

especially near the boundary of the object and at the isocenter.

However, the JMAP bias decreases when the parameter β is

increased, but at the cost of increasing the standard deviation.

This is consistent with the fundamental trade-off between

bias and variance in statistical learning. More importantly, the

standard deviation is significantly lower for the JMAP model

in comparison to the AMAP model, and it is even comparable

to that of the baseline MAP model when β is small. Notice

that in all instances, the standard deviation is particularly large

near the interfaces of the grains where the intensity jumps.

Recall from the previous experiment that the flat-field

estimate may converge very slowly. As a consequence, the

bias component that is induced by flat-field estimation errors

decreases slowly as we increase the number of iterations.

The results therefore depend on the stopping criteria (i.e., the

number of iterations). Finally we note that the noise results for

the SWLS model were very similar to those of the the JMAP

model, and hence we have chosen to omit the SWLS results

for the sake of brevity.

4) Flat-field Regularization: Our next experiment demon-

strates a potential shortcoming of the proposed model when

using the UP flat-field prior for reconstruction. We used

the Shepp–Logan phantom for the experiment, but unlike in

the previous experiments, we generated the measurements

by evaluating the line integrals analytically. The intensity

parameter was I0 = 105. The reconstruction based on (14),

the leftmost reconstruction in Fig. 7, has some low-level ring

artifacts. JMAP with the FE prior and β = 0 leads to the

reconstruction in the middle of Fig. 7. Somewhat surprisingly,

while the low-level rings are mostly gone, the reconstruction

has a few wide and very noticeable rings. These rings arise

because of the structure of the flat-field estimation errors

which can be seen by looking at the reconstruction ψv(v̂),
defined in (37) and shown in Fig. 7. Several high-intensity

rings appear clearly, and these can be linked to large flat-field

estimation errors associated with a small number of detector

elements. In particular, the detector elements corresponding

to rays that intersect the outer ellipsoidal shell of the Shepp–

Logan phantom tangentially give rise to large estimation

errors. We remark that we have observed experimentally that

these artifacts seem to be exacerbated by the fact that the two

outer Shepp–Logan ellipses are centered at the isocenter.

Now recall that the flat-field estimate v̂(u) can be expressed

as (23), i.e., a convex combination of independent estimates.

Thus, the weights θ indicate the emphasis of the different flat-

field estimates. The plots in Fig. 7 show these weights for two

different priors parameterized by β. We see that when β = 0
(corresponding to the UP flat-field prior), the flat-field estimate

is based almost entirely on v̂y, and the estimates v̂f and v̂pr
both receive negligible (but nonzero) weights. Inspecting the

corresponding flat-field estimate (the bottom plot in Fig. 7)

reveals that for β = 0, the JMAP estimate is worse than the

ML estimate v̂f . This indicates over-fitting. To mitigate this,

we can emphasize the flat-field ML estimate v̂f by using the

FE prior (i.e., α = 1+β(v̂f)), as described in III-B. Doing so

effectively removes the major rings that were present with the

FE prior with β = 0, as shown in the rightmost reconstruction

in Fig. 7. Moreover, the rightmost plot in the figure confirms
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Fig. 7. Reconstructions of the Shepp–Logan phantom after 1,000 iterations,
without the TV-prior on u. The display range for the reconstruction images is
0 to 0.4 cm−1, and 0 to 0.04 for the ring images ψv(v̂). The first two plots
show the values of θ1, θ2, θ3, as defined in (23), for β = 0 and β = 50. The
third plot shows the element-wise relative error with respect to true flat-field
v, defined as ev(v̂) = 100 ·diag(v)−1(v̂−v), for the ML flat-field estimate
v̂f and two JMAP flat-field estimates. The table lists the RAE and RR error
measures.

that the resulting flat-field estimate depends less on v̂y than

with the FE prior with β = 0. The FBP reconstructions of

the flat-field error, shown below the reconstructions in Fig. 7,

clearly show a reduction in ring artifacts compared to the basic

AMAP and JMAP reconstructions.

B. Real Data Study

We now evaluate the performance of the proposed model

based on real measurement data provided by the Advanced

Photon Source (APS) facility operated by Argonne National

Laboratory (USA). The data set provides tomographic mea-

surements of a sample of glass beads with some dried potas-

sium from p = 900 projection angles between 0◦ and 180◦

in a parallel beam geometry and with a 600 × 960 pixel

detector array. In this experiment, we will consider only

a 2D reconstruction of the center slice (slice 300) so we

take r = 960. The energy of the X-ray source was 33.27

keV, and the photon flux per pixel in each projection was

approximately 1200 photons/s. With an exposure time of only

6 ms, that amounts to pixelwise photon counts in the range 0-

20 per projection. Out of a total of 20 flat-field measurements

collected before and after the experiment, 8 appear to be

corrupted, so we used s = 12 flat-field measurements for our

reconstructions. Moreover, we used a square grid with side

length 0.3053 cm and 768×768 pixels for the reconstructions.

Our reconstructions are shown in the Fig. 8.

Without the TV-prior on the attenuation image, the re-

constructions are quite noisy because of the low SNR. The

FBP reconstruction and the AMAP reconstruction both have

ring artifacts which heavily distort the reconstruction. The P-

FBP reconstruction does not have noticeable ring artifacts,

but the reconstruction is quite noisy. Thus, to reduce noise,

we smoothed the FBP and P-FBP reconstructions using a

Gaussian filter with standard deviation 1.0, and although this

help, the resulting images are still somewhat noisy compared

to the other reconstructions. The JMAP reconstruction with

the UP prior (β = 0) has no noticeable ring artifacts, but it

has a significant amount of noise. This is especially noticeable

near the circular boundary of the object, and it may be because

of flat-field estimation errors. Indeed, using the FE prior with

β = 200 yields a reconstruction that is somewhat improved

near the outer circles. Notice that the JMAP reconstructions

do not have such a “hole” in the middle like the FBP, P-FBP,

and AMAP reconstruction. Finally, including the TV-prior on

u results in the AMAP-TV and JMAP-TV reconstructions.

These results verify the applicability of proposed model for

tomographic reconstruction based on low-intensity measure-

ments.

VI. CONCLUSION

In X-ray computed tomography, the X-ray source inten-

sity is typically estimated based on a number of flat-field

measurements. This estimation introduces unavoidable errors

in popular reconstruction models such as AMAP, WLS, and

FBP, and these errors lead to systematic reconstruction errors

in the form of ring artifacts. By investigating the filtered

backprojection of a line in the sinogram, we have demonstrated

that such systematic errors introduce structural changes in the

reconstruction in the form of a ring. Based on the statistics of

X-ray measurements, our analysis shows an inverse relation-

ship between severity of ring artifacts and the source inten-

sity. Therefore, these systematic errors can have a significant

impact on the reconstruction quality of dose-constrained and

time-constrained problems. To mitigate this problem, we have

introduced a convex reconstruction model (JMAP) that jointly

estimates the attenuation image and the flat-field. We have also

introduced a quadratic approximation of the JMAP model, the
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FBP P-FBP AMAP JMAP (β = 0) JMAP (β = 200)

FBP + smoothing P-FBP + smoothing AMAP-TV JMAP-TV (β = 0) JMAP-TV (β = 200)

Fig. 8. Reconstructions of real tomographic measurements. The display range for the images is 0 to 10 cm−1. The reconstructions using the TV-prior were
obtained with γ = 0.01. The number of iterations were 50 for reconstructions without TV prior and 1,000 with TV prior. The insets are blow-ups of the
reconstructions at the isocenter.

stripe-weighted least-squares (SWLS) model, which provides

insight about the model and its similarities with existing

models.

To assess the reduction of ring artifacts in the recon-

structions, we have proposed a “ring ratio” error measure

which quantifies the flat-field error in the image domain.

Our experimental results indicate that the model effectively

mitigates ring artifacts even for low SNR data, not only

with simulated data but also with real data sets. In some

cases, the proposed method may itself introduce artifacts when

not appropriately regularized. These artifact essentially arise

because of overfitting, and we have shown that they can be

mitigated or supressed by means of a suitable regularizing

flat-field prior. Moreover, we have shown experimentally that

the JMAP and the SWLS models have similar performance in

terms of noise and reconstruction quality.

Finally, we mention that the proposed methodology can

readily be extended to estimate a time-varying flat-field which

may be useful in applications where the flat-field does not

remain stable while acquiring the tomographic measurements

and/or when the scanner acquires projection images and flat-

field images in an interleaved temporal order.

APPENDIX A

EXTREMA OF THE RADIAL PROFILE

The extrema of the radial profile µ̃(ρ), defined in (9), depend

on the parameters t0 and ǫ > 0. To see this, we derive the

critical points of µ̃(ρ). Setting the derivative equal to zero

yields the equation

µ̃′(ρ) = −3ρ
(
σ(σ2 + ρ2)−5/2 + σ̄(σ̄2 + ρ2)−5/2

)
= 0

where σ = ǫ+ it0. It follows that the critical points are ρ = 0
and any solution to the equation

σ(σ2 + ρ2)−5/2 + σ̄(σ̄2 + ρ2)−5/2 = 0,

or equivalently, ρ = 0 and solutions to the equation

σ

σ̄
= −

(
σ2 + ρ2

σ̄2 + ρ2

)5/2

.

Taking the complex logarithm of both sides of the equation

yields the equation 2∠σ + 2kπ = π + 5∠(σ2 + ρ2), k ∈ Z,
and hence

∠(σ2 + ρ2) =
2

5
∠σ +

2k − 1

5
π, k ∈ Z. (38)

This implies that the tangent of ∠(σ2 + ρ2) is equal to

2ǫt0
ρ2 + ǫ2 − t20

= tan

(
2

5
∠σ +

2k − 1

5
π

)
, k ∈ Z, (39)

or equivalently, if we define c−1
k = tan

(
2
5∠σ + 2k−1

5 π
)

and

solve for ρ2, we get ρ2 = 2ǫt0ck + t20 − ǫ2, k ∈ Z. Thus, in

addition to ρ = 0, the real roots of the right-hand side of this

equation are the critical points of µ̃(ρ), and hence we may

limit our attention to k ∈ Z for which 2ǫt0ck + t20 − ǫ2 ≥ 0.

In order to find the extrema of µ̃(ρ), we now rewrite (9) as

µ̃(ρ) =
1

4π

|σ|
|σ2 + ρ2|3/2 cos(∠σ − ∠(σ2 + ρ2)).

At a nonzero critical point ρk 6= 0, the angle ∠(σ2 + ρ2k) is

given by (38), and it follows from (39) that

|σ2 + ρ2k| = 2ǫ|t0|
(
c2k + 1

)1/2
.

This allows us to express the extrema associated with ρk as

µ̃(ρk) =
(ǫ2 + t20)

1/2

4π(1 + c2k)
3/4(2ǫ|t0|)3/2

cos

(
2

5
∠σ +

2k − 1

5
π

)
,

and it immediately follows that for |t0| ≫ ǫ, the extrema are

approximately inversely proportional to
√
ǫ3|t0|.
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APPENDIX B

INTERPRETATION OF FLAT-FIELD ESTIMATE

The ith element of flat-field estimate v̂, defined in (22), is

given by

v̂i(u) =
1T fi + 1T yi + αi − 1

di(u)
(40)

where fi ∈ Rs, yi ∈ Rp, di(u) = s+ τi(u) + βi, and τi(u) =∑p
j=1 exp(−eTi Aju). This expression can be reformulated as

v̂i(u) =
s

di(u)

1T fi
s

+
τi(u)

di(u)

1T yi
τi(u)

+
βi

di(u)

αi − 1

βi

=
s

di(u)
(v̂f)i +

τi(u)

di(u)
(v̂y)i +

βi
di(u)

v̂pr(αi, βi) (41)

where the ML estimate v̂f is defined in (5), the estimate v̂y(û)
is defined in (16), and

v̂pr(α, β) = diag(β)−1(α− 1)

is the mean of the Gamma prior. It follows from the definition

(20), i.e., di(u) = s+ τi(u) + βi, that

s

di(u)
+
τi(u)

di(u)
+

βi
di(u)

= 1

and hence v̂i(u) is a convex combination of three estimates.

Thus, the full flat-field vector v̂(u) can be expressed as

v̂(u) = diag(θ1)v̂f + diag(θ2)v̂y(û) + diag(θ3)v̂pr(α, β)

where θ1 = diag(d(u))−1s1, θ2 = diag(d(u))−1τ(u), and

θ3 = diag(d(u))−1β with θ1 + θ2 + θ3 = 1.

APPENDIX C

TYPE-II ML ESTIMATION OF HYPERPARAMETERS

The marginal probability of fi1, . . . , fis given the hyperpa-

rameters αi and βi can be computed analytically and is given

by

P(fi1, . . . , fis | αi, βi)

=

∫ ∞

0

P(fi1, . . . , fis | vi)P(vi | αi, βi)dvi

=
Γ(ki + αi)

(
∏s

k=1 fik!) Γ(αi) ski

(
βi

s+ βi

)αi
(

s

s+ βi

)ki

(42)

where ki =
∑s

k=1 fik. Here the identity
∫∞

0 xbe−ax dx =
Γ(b+1)
ab+1 was used to derive this expression. This probability

distribution resembles the negative binomial distribution, and

it follows from the first-order optimality conditions associated

with (24) that βi = sαi/ki, or equivalently, αi/βi = ki/s.
This implies that the mean of the Gamma prior is equal

to the flat-field ML estimate (v̂f)i. Substituting the expres-

sion for βi in (24), we obtain the one-dimensional problem

argminαi
κi(αi) where

κi(αi) = − log
Γ(ki + αi)

Γ(αi)
− αi log

αi

αi + ki
− ki log

ki
αi + ki

.

The derivative of κi(αi) is

κ′i(αi) = −
[
̥(ki + αi)−̥(αi)− log

(
1 +

ki
αi

)]

= −
ki−1∑

l=0

1

αi + l
+ log

(
1 +

ki
αi

)
,

where ̥(x) denotes the digamma function. Similarly, the

second derivative is given by

κ′′i (αi) =

ki−1∑

l=0

1

(αi + l)2
− ki
αi(αi + ki)

(43)

where the summation satisfies the inequality

ki−1∑

l=0

1

(αi + l)2
=

αi+ki−1∑

n=αi

1

n2
>

∫ αi+ki

αi

1

x2
dx

=
k

αi(αi + ki)
(44)

for αi > 0. This shows that κ′′i (αi) > 0 for α > 0, and hence

κi is convex on the positive real line. Moreover, since κ′(αi)
tends to zero as as αi tends to infinity, κ′(αi) can not have

a positive zero. Consequently, the resulting flat-field Gamma

prior has zero variance (i.e., αi/β
2
i tends to zeros for αi → ∞

since βi = sαi/ki) and its mean is equal to the empirical flat-

field estimate, i.e., αi/βi = (v̂f)i.
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