
Linear matrix inequalities with chordal sparsity patterns and
applications to robust quadratic optimization

Martin S. Andersen and Lieven Vandenberghe
Electrical Engineering Department

University of California, Los Angeles
Los Angeles, California 90095

Email: {msa,vandenbe}@ee.ucla.edu

Joachim Dahl
MOSEK ApS
Fruebjergvej 3

2100 København Ø, Denmark
Email: dahl.joachim@gmail.com

Abstract— We discuss nonsymmetric interior-point methods
for linear cone programs with chordal sparse matrix cone
constraints. The algorithms take advantage of fast recursive
algorithms for evaluating the function values and derivatives
for the logarithmic barrier functions of the cone of positive
semidefinite matrices with a given chordal sparsity pattern, and
of the corresponding dual cone. We provide numerical results
that show that our implementation can be significantly faster
than general purpose semidefinite programming solvers. As a
specific application, we discuss robust quadratic optimization.

I. INTRODUCTION

A fundamental difficulty in solving large-scale semidefi-
nite programs (SDPs)

minimize tr(CX)
subject to tr(AiX) = bi, i = 1, . . . ,m

X � 0
(1)

is that the variableX ∈ S
n, a symmetric matrix of ordern,

is generally dense, even when the data matricesAi, C ∈ S
n

are sparse and share a common sparsity pattern. Here the
generalized inequalityX � 0 means thatX must be in the
cone of symmetric positive semidefinite matrices of ordern,
denotedSn

+. The dual of (1) is given by

maximize bT y
subject to

∑m

i=1 yiAi + S = C
S � 0,

(2)

where the variables arey ∈ R
m and S ∈ S

n. Unlike
the primal variableX, the dual slack variableS has the
same (aggregate) sparsity pattern asC and the matrices
Ai. This follows immediately from the equality constraint
in (2). The inherent sparsity ofS therefore makes it more
straightforward to exploit sparsity in dual methods than in
primal–dual methods when the data matrices are sparse. The
inverse ofS, however, is generally dense and it is needed to
evaluate the gradient and the Hessian of the dual logarithmic
barrier function.

To avoid storing the dense primal variableX, Fukuda
and Nakataet al. [1], [2], Burer [3], and Srijuntongsiri and
Vavasis [4] propose to pose the problems (1) and (2) as
optimization problems in the subspace of symmetric matrices

Research supported in part by NSF grants ECS-0524663 and ECCS-
0824003.

with a given sparsity pattern. Specifically, supposeC,Ai ∈
S

n
V , whereSn

V denotes the set of symmetric matrices of order
n with sparsity patternV . The primal-dual pair (1)-(2) can
then be written in the following equivalent form:

minimize tr(CX)
subject to tr(AiX) = bi, i = 1, . . . ,m

X �c 0,
(3)

and its dual

maximize bT y
subject to

∑m

i=1 yiAi + S = C
S � 0.

(4)

Here the primal variableX and the dual variableS are both
matrices in the subspaceSn

V , and X �c 0 means thatX
has a positive semidefinite completion. Note that the cone
{X ∈ S

n
V | X � 0} and its dual cone{X ∈ S

n
V | X �c 0}

are not identical for general sparsity patterns.
In this paper we describe an interior-point solver for

problems of the form (3)-(4) with chordal sparsity patternsV .
We outline how chordal matrix techniques can be exploited
in nonsymmetric (primal or dual) interior-point methods.
These chordal matrix techniques include efficient recursive
algorithms for evaluating barrier functions and their firstand
second derivatives. In addition we demonstrate the efficiency
of the techniques with some numerical examples arising in
robust quadratic optimization.

The rest of the paper is organized as follows. In Section II
we review chordal sparsity and define chordal matrix cones
and their logarithmic barrier functions. In Section III we
describe nonsymmetric interior-point methods for optimiza-
tion over sparse matrix cones, and in Section IV we give
some application examples as well as numerical results.
Conclusions are given in Section V.

II. CHORDAL MATRIX CONES

A. Chordal Sparsity and Chordal Matrix Cones

Examples of matrices with chordal sparsity include matri-
ces with band structure, block-diagonal structure, and arrow
structure. The sparsity patternV of a symmetric matrix of
ordern can be represented by an undirected graphGV with
nodes1, 2, . . . , n and an edge between nodesi andj (i 6= j)
if there is a nonzero in positionsi, j and j, i. (All diagonal

entries are assumed to be nonzero1, but the corresponding
self-loops are not included in the graph.) Diagonal blocks
in V correspond to connected components ofGV . We say
that the sparsity patternV is chordal if the graphGV is
chordal, i.e., every cycle of length greater than three has a
chord. Aclique in GV is a set of nodes that define a maximal
complete subgraph, and the nodes in a clique correspond to
a dense principal subblock in the sparsity pattern. The set of
cliques can be organized in a so-called clique tree which is
used in chordal matrix algorithms. Clique trees of chordal
graphs can be efficiently computed (in linear time) by the
maximum cardinality searchalgorithm [5], [6], [7], and this
also provides a test for chordality.

Now supposeV is a chordal sparsity pattern. The chordal
matrix cone S

n
V,+ of positive semidefinite matrices with

sparsityV is then defined as

S
n
V,+ = {X ∈ S

n
V | X � 0}. (5)

The dual of this cone is the cone of matrices inS
n
V that have

a positive semidefinite completion and it is defined as

S
n
V,c+ = {PV (X) | X � 0} (6)

wherePV (X) is the projection ofX on S
n
V . Note thatSn

V,+

andS
n
V,c+ are not self-dual in general.

B. Chordal Matrix Algorithms

A number of sparse matrix problems can be solved
efficiently by specialized algorithms when the underlying
sparsity pattern is chordal. These algorithms consist of one
or two recursions over the clique tree, and they are described
in more detail in [8]. An implementation is available in the
CHOMPACK library [9].

In this section we give an overview of the sparse matrix
problems that can be solved efficiently with recursive algo-
rithms, starting with the most well-known example.

1) Cholesky factorization:Positive definite matrices with
a chordal sparsity pattern have a Cholesky factorization with
zero fill-in [5], [10]. Specifically, supposeS ≻ 0 has a
chordal sparsity patternV , then there exists a permutation
matrixP and a lower triangular matrixL such thatPT SP =
LLT andP (L + LT)PT has the sparsity patternV . This is
an important property of chordal graphs, and it is the basis
of the chordal matrix algorithms for the problems described
henceforth.

2) Value and gradient of dual barrier:The barrier for the
coneS

n
V,+ is defined as

φ : Sn
V → R, φ(S) = − log detS (7)

wheredom φ = S
n
V,++ (the interior ofSn

V,+). The Cholesky
factorization ofS provides an efficient method for evaluating
φ(S), i.e.,

φ(S) = −2

n
∑

i=1

log Lii (8)

1If the sparsity pattern has a zero on its diagonal, the corresponding
row/column of the positive semidefinite dual variableS must be zero, and
hence the row/column can be eliminated from the problem.

whereLii is the ith diagonal element ofL. The gradient of
φ is ∇φ(S) = −PV (S−1), and givenL, it can be computed
efficiently using a recursive algorithm without computing
S−1 which is generally dense.

3) Hessian and inverse Hessian of dual barrier:The
Hessian ofφ at S, evaluated atY ∈ S

n
V , is given by

∇2φ(S)[Y] = PV (S−1Y S−1). (9)

By exploiting chordal structure, this expression can be eval-
uated efficiently for large sparse matrices without forming
S−1Y S−1. This requires the Cholesky factor ofS and the
projected inversePV (S−1). The algorithm is based on two
recursions on the clique tree, and these recursions form a
pair of adjoint linear operators that allow us to evaluate the
Hessian in the factored formφ(S) = Ladj(L(S)). Moreover,
the linear operatorL is easily inverted, and this provides a
method for evaluating the inverse Hessian∇2φ(S)−1[Y] at
the same cost as the evaluation of the Hessian.

4) Maximum determinant positive definite completion:
Given a matrixX ∈ S

n
V , the maximum determinant positive

definite completion problem is defined as follows:

maximize log detZ
subject to PV (Z) = X.

(10)

If V is chordal, the solution (if it exists) can be computed
from X via closed-form expressions [11]. Alternatively, the
Cholesky factor ofW = Z−1 can be computed recursively.
It follows from convex duality thatW has the sparsity pattern
V , and satisfies the nonlinear equation

PV (W−1) = X. (11)

The algorithm can therefore be interpreted as a method for
solving the nonlinear equation (11) with variableW ∈ S

n
V .

5) Value and gradient of primal barrier:A logarithmic
barrier function for the coneSn

V,c+ can be obtained from
the Legendre transform of the barrierφ of S

n
V,+ [12, p. 48].

Thus, the barrier for the primal coneSn
V,c+ is defined as

φc(X) = sup
S≻0

(−tr(XS) − φ(S)). (12)

If the sparsity pattern is chordal, the optimization problem in
the definition (12) can be solved analytically. The solutionis
a positive definite matrix̂S ∈ S

n
V that satisfies the equation

PV (Ŝ−1) = X, i.e., Ŝ−1 is the maximum determinant
positive definite completion ofX. We can now evaluate
φc(X) efficiently: first we computêS = LLT and then

φc(X) = log det Ŝ − n = 2

n
∑

i=1

log Lii − n. (13)

The gradient of the primal barrier follows from the properties
of the Legendre transform:

∇φc(X) = −Ŝ. (14)

6) Hessian and inverse Hessian of primal barrier:The
Hessian of the primal barrier function is given by

∇2φc(X) = ∇2φ(Ŝ)−1, (15)

where Ŝ is the maximizer in the definition ofφc(X). This
result follows from the standard properties of the Legendre
transform. The Hessian of the primal barrier can therefore be
evaluated using the method for evaluating the inverse Hessian
of the dual barrier.

C. Chordal Embedding

We have seen that it is possible to take advantage of
efficient recursive algorithms for evaluating barriers andtheir
first and second derivatives when the data matricesAi, C
have a common chordal sparsity pattern. These chordal
matrix algorithms can also be applied to matrices with a
nonchordal sparsity pattern by constructing a chordal em-
bedding or triangulation of the nonchordal sparsity pattern.
This amounts to adding edges to the sparsity graph to make
it chordal. Chordal embedding techniques can also be used
to “shape” the clique tree to improve the computational
efficiency of the algorithms. The efficiency depends largely
on the clique tree, and for example, merging cliques with
large relative overlap can often improve performance.

A chordal embedding of a nonchordal sparsity pattern can
easily be constructed by computing a symbolic Cholesky
factorization of the sparsity pattern. The amount of fill-in
(i.e. the number of added edges) generally depends heavily
on the ordering of the nodes, and fill-in reducing orderings,
such as theapproximate minimum degree(AMD) ordering
[13], are often used in practice.

III. INTERIOR-POINT METHODS

The chordal techniques discussed in the previous section
provide an efficient way to evaluate barriers and their first
and second derivatives when the underlying sparsity pattern
is chordal. In this section we outline how these techniques
can be exploited in interior-point methods for the pair of
cone programs (3)-(4).

A. The Central Path

The central path defines an arc of strictly feasible points,
and interior-point methods make use of it to steer the iteration
toward the solution. For the pair of cone programs (3)-(4),
the central path is defined as the set of pointsX ≻c 0, y,
S ≻ 0 that satisfy

tr(AiX) = bi, i = 1, . . . ,m, (16a)
m

∑

i=1

yiAi + S = C, (16b)

S = −µ∇φc(X) (16c)

whereµ is a positive parameter. Interior-point methods that
compute search directions based on linearizing (16a-c) are
called primal scaling methods. An equivalent formulation
can be obtained by replacing (16c) with the equation

X = −µ∇φ(S), (17)

and this gives rise todual scalingmethods. We will refer
to the corresponding linearized equations as the primal or
dual Newton equations. We now describe how the Newton
equations can be solved whenV is chordal.

B. Primal and Dual Methods

By linearizing the central path equations (16a-c) around
the current iterate (X, y, S) and eliminating∆S, we get the
primal Newton equations

tr(Ai∆X) = ri, i = 1, . . . ,m, (18a)
m

∑

i=1

∆yiAi − µ∇2φc(X)[∆X] = R, (18b)

with variables∆X,∆y and residualsR and ri. This is a
system ofm + |V | equations inm + |V | unknowns where
|V | denotes the number of nonzeros in the lower triangle of
V . The Newton equations (18a-b) can be further reduced by
eliminating∆X. This yields a system

H∆y = g (19)

whereH is positive definite with entries

Hij = tr
(

Ai∇
2φc(X)−1[Aj]

)

, i, j = 1, . . . ,m, (20)

andgi = µri + tr(Ai∇
2φc(X)−1[R]).

In the following we outline two methods for solving (19).
The first method is based on the Cholesky factorization ofH
(and henceH must be formed explicitly) whereas the second
method avoids explicit calculation ofH by exploiting the
factorization∇2φc(X)−1 = ∇2φ(Ŝ) = Ladj ◦L. We remark
that the dual scaling Newton equations can be derived and
solved in a similar way, and the complexity is exactly the
same.

1) Cholesky factorization:The first method explicitly
computes the lower triangle ofH, column by column, and
then solves (19) using a dense Cholesky factorization. We
distinguish between two techniques for computing column
j. The first technique (T1) is a straightforward evaluation of
(20), i.e., we first computeU = ∇2φ(X)−1[Aj], and then we
compute the inner products ofU andAj , . . . , Am. Although
the algorithm for evaluating∇2φ(X)−1[Aj] exploits chordal
sparsity, this technique can be inefficient whenAj is much
more sparse thanV (e.g. if Aj only has a few nonzeros).

The second technique (T2) is based on the expansion

Hij =
∑

(p,q)∈Ij

(Aj)pq(tr(AiPV (Ŝ−1epe
T
q Ŝ−1))) (21)

where the setIj indexes the nonzero entries inAj and ep

is thepth unit vector. Thus, ifAj only has a small number
of nonzeros columns, it is advantageous to precompute the
vectors uk = L−T L−1ek (where Ŝ = LLT) that occur
in (21). This technique is similar to the technique used in
SDPA-C [2].

Using the Cholesky factorization method, the columns of
H can be computed by selecting one of the two techniques
on a column-by-column basis, and a threshold on the number
of nonzero columns inAj can be used as a simple heuristic

for selecting which technique to apply when computing the
jth column.

2) QR decomposition:The second method for solving
the reduced Newton system (19) avoids the explicit calcu-
lation of H by exploiting the factorization∇2φc(X)−1 =
∇2φ(Ŝ) = Ladj ◦ L, i.e.,

Hij = tr (L(Ai)L(Aj)) . (22)

This factorization allows us to expressH as H = ÃT Ã
where Ã is a |V | × m matrix with columnsvec(L(Ai)).
Herevec(·) is a linear operator that converts matrices inS

n
V

to vectors inR
|V |, scaled such thatvec(U1)

T
vec(U2) =

tr(U1U2). Thus, instead of computing the Cholesky factor-
ization of H, we can compute a QR decomposition ofÃ
and use it to solve (19). This is important since the explicit
computation ofH is a source of numerical instability.

Finally we mention that this method is a variation of
the augmented systemsapproach in linear programming
interior-point methods. In semidefinite programming the loss
of stability in forming H is more severe than in linear
programming [14], but the augmented systems approach is
generally computationally intractable due to the large size
of the Newton equations. However, since we work in the
lower dimensional subspaceSn

V in our present context, the
augmented system approach is often feasible.

C. Complexity

The cost of solving the Newton system (18) is dominated
by the cost of solving (19). Recall that the first method
explicitly forms and factorsH whereas the second method
forms and factors the matrix̃A. Here we describe the cost
of the two methods.

1) Cholesky factorization:The cost of formingH de-
pends on the sparsity of the data matrices as well the
technique used to formH. FormingH using technique T1
costs at mostmK + O(m2|V |) where K is the cost of
evaluating∇2φc(X)−1[Aj]. The second termO(m2|V |) is
the worst-case complexity assuming that the data matrices
are all “dense” relative toV . This term is negligible if the
data matrices only have a small number of nonzeros. With
technique T2, the dominating cost of computing the columns
of H is solving the systemsLLT uk = ek for each nonzero
column inAi. The cost therefore mainly depends on|V | and
the number of nonzero columns in the data matrices. T2 is
generally many times faster than T1 when the data matrices
have only a few nonzeros. The matrixH is generally dense,
and hence the cost of factorizingH is O(m3).

The costK depends on the clique tree (i.e. the structure
of V) in a complicated way, but for special cases such as
band and block-arrow matrices we have|V | = O(n) and
K = O(n), and hence in these cases the cost of one iteration
is linear in n.

2) QR decomposition:Solving (19) via a QR decomposi-
tion of Ã costsO(mK) to form Ã andO(m2|V |) to compute
the QR decomposition. In particular, the cost of one iteration
is also linear inn for special cases such as band and block-
arrow matrices, when the other dimensions are fixed.

D. Implementation

We have implemented primal and dual scaling variants of
an interior-point method based on the techniques described
in this section. Our preliminary implementation is a feasible
start barrier method and it is available in the form of a Python
extension namedSMCP. It relies on the Python extensions
CVXOPT 1.1.2 [15] andCHOMPACK 1.1 [9] for linear algebra
and chordal matrix computations. The algorithm first tests
a number of heuristics in order to find a feasible starting
point, and if it fails, a phase I problem is solved. Additional
implementation details and extensive benchmarks can be
found in [16].

IV. NUMERICAL EXPERIMENTS

Sparsity patterns with block-arrow structure are chordal,
and matrix inequalities with block-arrow patterns arise in
several applications. Many robust counterparts of quadrat-
ically constrained quadratic programs (QCQPs) or second-
order cone programs (SOCPs) fall in this category [17],
[18], [19]. If the “width” of the arrow is not too large, it is
often advantageous to exploit chordal structure. Here we will
take robust quadratically constrained quadratic programming
(QCQP) and robust least-squares (RLS) as examples, and
we demonstrate with some numerical experiments that the
chordal matrix algorithms can lead to significant computa-
tional savings. Numerical experiments on different sets of
benchmarks have been reported in [16].

We conducted all experiments on a PC with an Intel
Q6600 quad core CPU, 4 GB of memory, and running
Ubuntu 9.10. In the experiments we used both the Cholesky
and the QR variants ofSMCP. For comparison, we used
the SDP solversDSDP 5.8 [20], SDPA-C 6.2.1 [21], and
SDPT3 4.0b [22].DSDP implements a dual-scaling algorithm
that exploits sparsity in the dual slack variable, and the solver
makes use of low rank factorizations of the data matrices as
well as an iterative method for solving the reduced Newton
system.SDPA-C implements a primal–dual path-following
method, and likeSMCP, it exploits chordal structure. Finally,
SDPT3 is a Matlab-based implementation of a primal–dual
predictor-corrector path-following method for general conic
optimization problems.

A. Robust Quadratic Programming

In our first example we look at quadratic programs with
one or more uncertain convex quadratic constrains of the
form

xT AT Ax ≤ 2bT x + d. (23)

Here the problem dataA ∈ R
p×q, b ∈ R

q, andd ∈ R are
uncertain. If we choose as uncertainty set a bounded ellipsoid

U =

{

(Ā, b̄, d̄) +

r
∑

i=1

ui(Ai, bi, di)

∣

∣

∣

∣

∣

uT u ≤ 1

}

(24)

where Ā, b̄, d̄ are nominal values, the robust counterpart of
the uncertain quadratic constraint (23) can be formulated as

TABLE I: Average time per iteration (seconds) for randomly
generated uncertain QCQPs withq = 100 andr = 5.

p SMCP–CHOL. SMCP–QR DSDP SDPA-C SDPT3
200 0.25 0.13 0.20 0.70 0.54

400 0.51 0.26 0.91 1.4 1.7

800 1.0 0.53 5.1 3.1 5.8

1600 2.1 1.2 33.6 6.5 21.6

3200 4.3 2.7 – 13.8 90.2

a linear matrix inequality (LMI) [18]

tI G(x)T h(x)
G(x) I Āx
h(x)T (Āx)T f(x) − t

 � 0 (25)

with variablest ∈ R andx ∈ R
q and where

G(x) = [A1x · · · Arx],

h(x) = (bT
1 x + d1/2, . . . , bT

r x + dr/2),

f(x) = 2b̄T x + d̄.

The sparsity pattern associated with the LMI (25) has block-
arrow structure, and it can be either chordal or nonchordal,
depending on the structure ofG(x) (which, in turn, is
determined by the choice of uncertainty set). It is typically
worthwhile to exploit chordal sparsity in two cases. IfG(x)
is dense andp ≫ r or r ≫ p, an efficient chordal embedding
can easily be constructed by filling the smaller of the two
diagonal blocks. This chordal embedding will have cliques
of order at mostmin(r + 1, p + 1). If on the other hand
G(x) is sparse, the sparsity pattern may have an efficient
chordal embedding with small cliques even whenp ≈ r.
As a special case we mention that ifG(x) has at most one
nonzero entry in each column for allx (or alternatively, at
most one nonzero entry in each row), the sparsity pattern is
chordal and the cliques are of order at most three. Here we
will consider a numerical experiment withG(x) dense, and
in the next section we look at an example whereG(x) is
sparse and the LMI has a chordal sparsity pattern.

In our first experiment we are interested in the average
CPU time per iteration as a function ofp for randomly
generated uncertain QCQPs withq, r fixed and withr small.
Specifically, we minimize a linear objectivef0(x) = cT x
subject to a single uncertain quadratic constraint of the form
(23). For this experiment we chooseq = 100, r = 5, and
generate problem instances with̄A, b̄, Ai random,bi = 0,
d̄ = 1, and di = 0. The results are listed in Table I. It is
easily verified that average time per iteration grows roughly
linearly for SMCP. Furthermore, notice thatSDPA-C, which
also exploits chordal structure, is quite fast as well. The other
solvers scale quadratically or worse, and hence the benefit of
exploiting chordal sparsity becomes evident forp large. We
remark thatDSDP crashed on the largest problem instance.
Finally we note that having multiple uncertain quadratic
constraints gives rise to an LMI with block-diagonal structure
and with blocks of the form (25).

10 20 30 40 50 60 70

10

20

30

40

50

60

70

(a) Before reordering.
10 20 30 40 50 60 70

10

20

30

40

50

60

70

(b) After reordering.

Fig. 1: Sparsity pattern associated with an RLS problem
instance with dimensionsp = 25, q = 10, andr = 50.

B. Robust Least-Squares

Our next experiment is based on robust least-squares
which is a special case of robust QCQP. Suppose we want to
minimize ‖Ax− b‖2 whereA ∈ U is uncertain but assumed
to lie in the ellipsoidal uncertainty set

U = {Ā + u1A1 + · · · + urAr | ‖u‖2 ≤ 1}. (26)

Here Ā ∈ R
p×q is a known nominal coefficient matrix,b ∈

R
p is a known vector, and the matricesAi ∈ R

p×q define
the structure of the setU . The RLS problem seeks a solution
x ∈ R

q that minimizes the worst-case error which is defined
as

ewc(x) = sup
‖u‖2≤1

‖G(x)u + h(x)‖2, (27)

whereG(x) = [A1x · · · Arx] andh(x) = Āx−b. The RLS
problem can be cast as an SDP [17]:

minimize t + λ

subject to

t 0 h(x)T

0 λI G(x)T

h(x) G(x) I

 � 0
(28)

with variablest, λ ∈ R andx ∈ R
q. Note that the SDP (28)

hasm = q +2 variables and an LMI of ordern = p+ r +1.
In the following experiment we consider a family of RLS

problems, defined as follows. SupposēA has r uncertain
entries indexed by(i1, j1), . . . , (ir, jr). Furthermore, let the
matricesA1, . . . , Ar be defined as

(Ak)ij =

{

γ i = ik, j = jk

0 otherwise
k = 1, . . . , r, (29)

where γ > 0 is a parameter that controls the size of the
uncertainty setU . The resulting SDP has a chordal sparsity
pattern with|V | = 2p+2r+1 nonzeros in the lower triangle
of V , and furthermore, the sparsity pattern hasp+ r cliques
of order two. An example of a sparsity pattern from an RLS
problem is shown in Fig. 1.

As in the previous experiment, we are interested in the
computational cost per interior-point iteration as a function
of p. We generate random problem instances as follows. The
vectorb is computed asb = Āx̄ + σw whereĀ is a (dense)
random matrix,x̄ and w are random vectors, andσ is a
positive parameter. The number of uncertain entries ofĀ is

TABLE II: Average time per iteration (seconds) for randomly
generated RLS problems withq = 100 andr = 5p.

p SMCP–CHOL. SMCP–QR DSDP SDPA-C SDPT3
100 0.19 0.14 0.20 0.18 1.0

200 0.41 0.31 0.81 0.62 4.8

400 0.82 0.64 4.4 2.8 27.6

800 1.7 1.4 25.2 11.1 125.2

1600 3.6 3.2 153.6 45.3 –

parameterized byd ∈ (0, 1] such thatr = ⌈pqd⌉ where⌈x⌉
denotes the smallest integer larger than or equal tox. The
positions of the unknown entries are selected at random.

Table II shows the average CPU time per iteration (in
seconds) for problem instances with different values ofp
and with the remaining problem parameters fixed (q = 100
and d = 0.05). Notice once again that forSMCP the time
per iteration grows roughly linearly with the parameterp.
The other solvers scale quadratically or worse, and for the
largest instance the general purpose solverSDPT3 ran out
of memory. Note also that in this exampleSDPA-C does not
scale as well as in the previous experiment.

V. CONCLUSIONS

We have described how chordal sparsity can be exploited
in nonsymmetric interior-point methods for linear optimiza-
tion over sparse matrix cones. These cones include as special
cases the nonnegative orthant, the second-order cone, the
cone of positive semidefinite matrices, and direct products
of these. More importantly, the sparse matrix cones include
a wide range of intermediate cones that fill the complexity
gap between the three standard cones. For general sparse
nonchordal sparsity patterns the performance of the method
depends on the efficiency of the chordal embedding. If
no efficient chordal embedding can be found, the chordal
techniques are generally not advantageous, although in many
cases their efficiency is still comparable to that of the primal-
dual interior-point solvers.

The robust counterpart of a convex quadratic optimization
problem (least-squares problem, QCQP, or SOCP) with ellip-
soidal uncertainty set is typically an SDP with block-arrow
structure. Although convex, the robust problem is therefore
substantially more expensive to solve using general-purpose
solvers than the nominal non-robust problem. Our numerical
results show that by exploiting the chordal structure of the
arrow pattern, the cost of solving the robust problem can be
reduced dramatically, depending on the number of uncertain
parameters and the structure of the uncertainty.

REFERENCES

[1] M. Fukuda, M. Kojima, K. Murota, and K. Nakata, “Exploiting
sparsity in semidefinite programming via matrix completion I: general

framework,” SIAM Journal on Optimization, vol. 11, pp. 647–674,
2000.

[2] K. Nakata, K. Fujitsawa, M. Fukuda, M. Kojima, and K. Murota, “Ex-
ploiting sparsity in semidefinite programming via matrix completion
II: implementation and numerical details,”Mathematical Programming
Series B, vol. 95, pp. 303–327, 2003.

[3] S. Burer, “Semidefinite programming in the space of partial positive
semidefinite matrices,”SIAM Journal on Optimization, vol. 14, no. 1,
pp. 139–172, 2003.

[4] G. Srijuntongsiri and S. A. Vavasis, “A fully sparse
implementation of a primal-dual interior-point potential reduction
method for semidefinite programming,” 2004. [Online]. Available:
http://www.citebase.org/abstract?id=oai:arXiv.org:cs/0412009

[5] D. J. Rose, “Triangulated graphs and the elimination process,”Journal
of Mathematical Analysis and Applications, vol. 32, pp. 597–609,
1970.

[6] D. J. Rose, R. E. Tarjan, and G. S. Lueker, “Algorithmic aspects of
vertex elimination on graphs,”SIAM Journal on Computing, vol. 5,
no. 2, pp. 266–283, 1976.

[7] R. E. Tarjan and M. Yannakakis, “Simple linear-time algorithms to test
chordality of graphs, test acyclicity of hypergraphs, and selectively
reduce acyclic hypergraphs,”SIAM Journal on Computing, vol. 13,
no. 3, pp. 566–579, 1984.

[8] J. Dahl, L. Vandenberghe, and V. Roychowdhury, “Covariance se-
lection for non-chordal graphs via chordal embedding,”Optimization
Methods and Software, vol. 23, no. 4, pp. 501–520, 2008.

[9] J. Dahl and L. Vandenberghe,CHOMPACK: Chordal Matrix Package,
2009,abel.ee.ucla.edu/chompack.

[10] E. G. Ng, “Sparse matrix methods,” inHandbook of linear algebra,
L. Hogben, Ed. Chapman & Hall/CRC, Nov. 2006.

[11] R. Grone, C. R. Johnson, E. M. Sá, and H. Wolkowicz, “Positive
definite completions of partial Hermitian matrices,”Linear Algebra
and Appl., vol. 58, pp. 109–124, 1984.

[12] Y. Nesterov and A. Nemirovskii,Interior-point polynomial methods in
convex programming, ser. Studies in Applied Mathematics. Philadel-
phia, PA: SIAM, 1994, vol. 13.

[13] P. Amestoy, T. Davis, and I. Duff, “An approximate minimum degree
ordering,”SIAM Journal on Matrix Analysis and Applications, vol. 17,
no. 4, pp. 886–905, 1996.

[14] J. F. Sturm, “Avoiding numerical cancellation in the interior point
method for solving semidefinite programs,”Mathematical Program-
ming Series B, vol. 95, pp. 219–247, 2003.

[15] J. Dahl and L. Vandenberghe,CVXOPT: A Python Package for Convex
Optimization, abel.ee.ucla.edu/cvxopt, 2008.

[16] M. S. Andersen, J. Dahl, and L. Vandenberghe,Implementation of
nonsymmetric interior-point methods for linear optimization over
sparse matrix cones, 2009,abel.ee.ucla.edu/smcp.

[17] L. El Ghaoui and H. Lebret, “Robust solutions to least-squares
problems with uncertain data,”SIAM Journal of Matrix Analysis and
Applications, vol. 18, no. 4, pp. 1035–1064, 1997.

[18] A. Ben-Tal and A. Nemirovski, “Robust convex optimization,” Math-
ematics of Operations Research, vol. 23, pp. 769–805, 1998.

[19] M. V. Kothare, V. Balakrishnan, and M. Morari, “Robust constrained
model predictive control using linear matrix inequalities,”Automatica,
vol. 32, no. 10, pp. 1361–1379, 1996.

[20] S. J. Benson and Y. Ye, “DSDP5 user guide — software for
semidefinite programming,” Mathematics and Computer Science
Division, Argonne National Laboratory, Argonne, IL, Tech.
Rep. ANL/MCS-TM-277, September 2005. [Online]. Available:
http://www.mcs.anl.gov/ benson/dsdp

[21] K. Fujisawa, M. Fukuda, M. Kojima, K. Nakata, and M. Ya-
mashita, “SDPA-C (SemiDefinite Programming Algorithm – Comple-
tion method) user’s manual — version 6.10,” Dept. Math. & Comp.
Sciences, Tokyo Institute of Technology, Tech. Rep. B-409,2004.

[22] R. H. Tütünc̈u, K. C. Toh, and M. J. Todd, “Solving semidefinite-
quadratic-linear programs using SDPT3,”Mathematical Programming
Series B, vol. 95, pp. 189–217, 2003.

