
02157
Functional
Program-

ming

Michael R. Hansen02157 Functional Programming
Lecture 8: Tail recursive (iterative) functions

Michael R. Hansen

1 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Overview

• Memory management: the stack and the heap

• Iterative (tail-recursive) functions is a simple technique to deal
with efficiency in certain situations, e.g.

• to avoid evaluations with a huge amount of pending operations, e.g.

7+(6+(5 · · ·+f 2 · · ·))

• to avoid inadequate use of @ in recursive declarations.

• Iterative functions with accumulating parameters correspond to
while-loops

• The notion: continuations, provides a general applicable
approach

2 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Overview

• Memory management: the stack and the heap

• Iterative (tail-recursive) functions is a simple technique to deal
with efficiency in certain situations, e.g.

• to avoid evaluations with a huge amount of pending operations, e.g.

7+(6+(5 · · ·+f 2 · · ·))

• to avoid inadequate use of @ in recursive declarations.

• Iterative functions with accumulating parameters correspond to
while-loops

• The notion: continuations, provides a general applicable
approach

3 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Overview

• Memory management: the stack and the heap

• Iterative (tail-recursive) functions is a simple technique to deal
with efficiency in certain situations, e.g.

• to avoid evaluations with a huge amount of pending operations, e.g.

7+(6+(5 · · ·+f 2 · · ·))

• to avoid inadequate use of @ in recursive declarations.

• Iterative functions with accumulating parameters correspond to
while-loops

• The notion: continuations, provides a general applicable
approach

4 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Overview

• Memory management: the stack and the heap

• Iterative (tail-recursive) functions is a simple technique to deal
with efficiency in certain situations, e.g.

• to avoid evaluations with a huge amount of pending operations, e.g.

7+(6+(5 · · ·+f 2 · · ·))

• to avoid inadequate use of @ in recursive declarations.

• Iterative functions with accumulating parameters correspond to
while-loops

• The notion: continuations, provides a general applicable
approach

5 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

An example: Factorial function (I)

Consider the following declaration:

let rec fact = function
| 0 -> 1
| n -> n * fact(n-1);;

val fact : int -> int

• What resources are needed to compute fact(N)?

Considerations:

• Computation time: number of individual computation steps.

• Space: the maximal memory needed during the computation to
represent expressions and bindings.

6 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

An example: Factorial function (I)

Consider the following declaration:

let rec fact = function
| 0 -> 1
| n -> n * fact(n-1);;

val fact : int -> int

• What resources are needed to compute fact(N)?

Considerations:

• Computation time: number of individual computation steps.

• Space: the maximal memory needed during the computation to
represent expressions and bindings.

7 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

An example: Factorial function (I)

Consider the following declaration:

let rec fact = function
| 0 -> 1
| n -> n * fact(n-1);;

val fact : int -> int

• What resources are needed to compute fact(N)?

Considerations:

• Computation time: number of individual computation steps.

• Space: the maximal memory needed during the computation to
represent expressions and bindings.

8 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

An example: Factorial function (II)

Evaluation:

fact(N)
 (n * fact(n-1) , [n 7→ N])
 N ∗ fact(N − 1)
 N ∗ (n * fact(n-1) , [n 7→ N − 1])
 N ∗ ((N − 1) ∗ fact(N − 2))
...
 N ∗ ((N − 1) ∗ ((N − 2) ∗ (· · · (4 ∗ (3 ∗ (2 ∗ 1))) · · ·)))
 N ∗ ((N − 1) ∗ ((N − 2) ∗ (· · · (4 ∗ (3 ∗ 2)) · · ·)))
...
 N!

Time and space demands: proportional to N Is this satisfactory?

9 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

An example: Factorial function (II)

Evaluation:

fact(N)
 (n * fact(n-1) , [n 7→ N])
 N ∗ fact(N − 1)
 N ∗ (n * fact(n-1) , [n 7→ N − 1])
 N ∗ ((N − 1) ∗ fact(N − 2))
...
 N ∗ ((N − 1) ∗ ((N − 2) ∗ (· · · (4 ∗ (3 ∗ (2 ∗ 1))) · · ·)))
 N ∗ ((N − 1) ∗ ((N − 2) ∗ (· · · (4 ∗ (3 ∗ 2)) · · ·)))
...
 N!

Time and space demands: proportional to N Is this satisfactory?

10 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Another example: Naive reversal (I)

let rec naiveRev = function
| [] -> []
| x::xs -> naiveRev xs @ [x];;

val naiveRev : ’a list -> ’a list

Evaluation of naiveRev[x1, x2, . . . , xn]:

naiveRev[x1, x2, . . . , xn]
 naiveRev[x2, . . . , xn]@[x1]
 (naiveRev[x3, . . . , xn]@[x2])@[x1]
...
 ((· · · (([]@[xn])@[xn−1])@ · · · @[x2])@[x1])

Space demands: proportional to n satisfactory

Time demands: proportional to n2 not satisfactory

11 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Another example: Naive reversal (I)

let rec naiveRev = function
| [] -> []
| x::xs -> naiveRev xs @ [x];;

val naiveRev : ’a list -> ’a list

Evaluation of naiveRev[x1, x2, . . . , xn]:

naiveRev[x1, x2, . . . , xn]
 naiveRev[x2, . . . , xn]@[x1]
 (naiveRev[x3, . . . , xn]@[x2])@[x1]
...
 ((· · · (([]@[xn])@[xn−1])@ · · · @[x2])@[x1])

Space demands: proportional to n satisfactory

Time demands: proportional to n2 not satisfactory

12 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Another example: Naive reversal (I)

let rec naiveRev = function
| [] -> []
| x::xs -> naiveRev xs @ [x];;

val naiveRev : ’a list -> ’a list

Evaluation of naiveRev[x1, x2, . . . , xn]:

naiveRev[x1, x2, . . . , xn]
 naiveRev[x2, . . . , xn]@[x1]
 (naiveRev[x3, . . . , xn]@[x2])@[x1]
...
 ((· · · (([]@[xn])@[xn−1])@ · · · @[x2])@[x1])

Space demands: proportional to n satisfactory

Time demands: proportional to n2 not satisfactory

13 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Examples: Accumulating parameters

Efficient solutions are obtained by using more general functions:

factA(n,m) = n! · m, for n ≥ 0
revA([x1, . . . , xn], ys) = [xn, . . . , x1]@ys

We have:

n! = factA(n, 1)
rev[x1, . . . , xn] = revA([x1, . . . , xn],[])

m and ys are called accumulating parameters. They are used to hold
the temporary result during the evaluation.

14 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Examples: Accumulating parameters

Efficient solutions are obtained by using more general functions:

factA(n,m) = n! · m, for n ≥ 0
revA([x1, . . . , xn], ys) = [xn, . . . , x1]@ys

We have:

n! = factA(n, 1)
rev[x1, . . . , xn] = revA([x1, . . . , xn],[])

m and ys are called accumulating parameters. They are used to hold
the temporary result during the evaluation.

15 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Declaration of factA

let rec factA = function
| (0,m) -> m
| (n,m) -> factA(n-1,n*m) ;;

An evaluation:

factA(5,1)
 (factA(n-1,n*m), [n 7→ 5,m 7→ 1])
 factA(4,5)
 (factA(n-1,n*m), [n 7→ 4,m 7→ 5])
 factA(3,20)
 . . .

 factA(0,120) (m, [m 7→ 120]) 120

Space demand: constant.

Time demands: proportional to n

16 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Declaration of revA

let rec revA = function
| ([], ys) -> ys
| (x::xs, ys) -> revA(xs, x::ys) ;;

An evaluation:
revA([1,2,3],[])

 revA([2,3],1::[])
 revA([3],2::[1])
 revA([3],[2,1])
 revA([],3::[2,1])
 revA([],[3,2,1])
 [3,2,1]

Space and time demands:
proportional to n (the length of the first list)

17 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Iterative (tail-recursive) functions (I)

The declarations of factA and revA are tail-recursive functions

• the recursive call is the last function application to be evaluated
in the body of the declaration e.g. itfac(3,20) and
revA([3], [2, 1])

• only one set of bindings for argument identifiers is needed
during the evaluation

18 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Iterative (tail-recursive) functions (I)

The declarations of factA and revA are tail-recursive functions

• the recursive call is the last function application to be evaluated
in the body of the declaration e.g. itfac(3,20) and
revA([3], [2, 1])

• only one set of bindings for argument identifiers is needed
during the evaluation

19 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Iterative (tail-recursive) functions (I)

The declarations of factA and revA are tail-recursive functions

• the recursive call is the last function application to be evaluated
in the body of the declaration e.g. itfac(3,20) and
revA([3], [2, 1])

• only one set of bindings for argument identifiers is needed
during the evaluation

20 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Example

let rec factA = function
| (0,m) -> m
| (n,m) -> factA(n-1,n*m)

(* recursive "tail-call" *)

• only one set of bindings for argument identifiers is needed
during the evaluation

factA(5,1)
 (factA(n,m), [n 7→ 5,m 7→ 1])
 (factA(n-1,n*m), [n 7→ 5,m 7→ 1])
 factA(4,5)
 (factA(n,m), [n 7→ 4,m 7→ 5])
 (factA(n-1,n*m), [n 7→ 4,m 7→ 5])
 . . .

 factA(0,120) (m, [m 7→ 120]) 120

21 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Concrete resource measurements: factorial functions

let xs16 = List.init 1000000 (fun i -> 16);;
val xs16 : int list = [16; 16; 16; 16; 16; ...]

#time;; // a toggle in the interactive environment

for i in xs16 do let _ = fact i in ();;
Real: 00:00:00.051, CPU: 00:00:00.046, ...

for i in xs16 do let _ = factA(i,1) in ();;
Real: 00:00:00.024, CPU: 00:00:00.031, ...

The performance gain of factA is much better than the indicated
factor 2 because the for construct alone uses about 12 ms:

for i in xs16 do let _ = () in ();;
Real: 00:00:00.012, CPU: 00:00:00.015, ...

Real: time elapsed by the execution. CPU: time spent by all cores.

22 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Concrete resource measurements: factorial functions

let xs16 = List.init 1000000 (fun i -> 16);;
val xs16 : int list = [16; 16; 16; 16; 16; ...]

#time;; // a toggle in the interactive environment

for i in xs16 do let _ = fact i in ();;
Real: 00:00:00.051, CPU: 00:00:00.046, ...

for i in xs16 do let _ = factA(i,1) in ();;
Real: 00:00:00.024, CPU: 00:00:00.031, ...

The performance gain of factA is much better than the indicated
factor 2 because the for construct alone uses about 12 ms:

for i in xs16 do let _ = () in ();;
Real: 00:00:00.012, CPU: 00:00:00.015, ...

Real: time elapsed by the execution. CPU: time spent by all cores.

23 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Concrete resource measurements: reverse functions

let xs20000 = [1 .. 20000];;

naiveRev xs20000;;
Real: 00:00:07.624, CPU: 00:00:07.597,
GC gen0: 825, gen1: 253, gen2: 0
val it : int list = [20000; 19999; 19998; ...]

revA(xs20000,[]);;
Real: 00:00:00.001, CPU: 00:00:00.000,
GC gen0: 0, gen1: 0, gen2: 0
val it : int list = [20000; 19999; 19998; ...]

• The naive version takes 7.624 seconds - the iterative just 1 ms.
• The use of append (@) has been reduced to a use of cons (::).

This has a dramatic effect of the garbage collection:
• No object is reclaimed when revA is used
• 825+253 obsolete objects were reclaimed using the naive version

Let’s look at memory management

24 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Concrete resource measurements: reverse functions

let xs20000 = [1 .. 20000];;

naiveRev xs20000;;
Real: 00:00:07.624, CPU: 00:00:07.597,
GC gen0: 825, gen1: 253, gen2: 0
val it : int list = [20000; 19999; 19998; ...]

revA(xs20000,[]);;
Real: 00:00:00.001, CPU: 00:00:00.000,
GC gen0: 0, gen1: 0, gen2: 0
val it : int list = [20000; 19999; 19998; ...]

• The naive version takes 7.624 seconds - the iterative just 1 ms.
• The use of append (@) has been reduced to a use of cons (::).

This has a dramatic effect of the garbage collection:
• No object is reclaimed when revA is used
• 825+253 obsolete objects were reclaimed using the naive version

Let’s look at memory management

25 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Concrete resource measurements: reverse functions

let xs20000 = [1 .. 20000];;

naiveRev xs20000;;
Real: 00:00:07.624, CPU: 00:00:07.597,
GC gen0: 825, gen1: 253, gen2: 0
val it : int list = [20000; 19999; 19998; ...]

revA(xs20000,[]);;
Real: 00:00:00.001, CPU: 00:00:00.000,
GC gen0: 0, gen1: 0, gen2: 0
val it : int list = [20000; 19999; 19998; ...]

• The naive version takes 7.624 seconds - the iterative just 1 ms.
• The use of append (@) has been reduced to a use of cons (::).

This has a dramatic effect of the garbage collection:
• No object is reclaimed when revA is used
• 825+253 obsolete objects were reclaimed using the naive version

Let’s look at memory management

26 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Memory management: stack and heap

• Primitive values are allocated on the stack

• Composite values are allocated on the heap

let xs = [5;6;7];;
let ys = 3::4::xs;;
let zs = xs @ ys;;
let n = 27;;

5 6 7 ×

3 4

5 6 7

stack heap

stack frame

27n

zs

ys

xs

27 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Memory management: stack and heap

• Primitive values are allocated on the stack

• Composite values are allocated on the heap

let xs = [5;6;7];;
let ys = 3::4::xs;;
let zs = xs @ ys;;
let n = 27;;

5 6 7 ×

3 4

5 6 7

stack heap

stack frame

27n

zs

ys

xs

28 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Observations

No unnecessary copying is done:

1 The linked lists for ys is not copied when building a linked list for
y :: ys.

2 Fresh cons cells are made for the elements of xs only when
building a linked list for xs @ ys.

since a list is a functional (immutable) data structure

The running time of @ is linear in the length of its first argument.

29 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Observations

No unnecessary copying is done:

1 The linked lists for ys is not copied when building a linked list for
y :: ys.

2 Fresh cons cells are made for the elements of xs only when
building a linked list for xs @ ys.

since a list is a functional (immutable) data structure

The running time of @ is linear in the length of its first argument.

30 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Operations on stack and heap

Example:

let zs = let xs = [1;2]
let ys = [3;4]
xs@ys;;

Initial stack and heap prior to the evaluation of the local declarations:

stack heap

sf0 zs ?

31 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Operations on stack: Push

Evaluation of the local declarations initiated by pushing a new stack
frame onto the stack:

stack heap

sf0

sf1

xs

ys

result
zs ?

1 2 ×

3 4 ×

1 2

The auxiliary entry result refers to the value of the let-expression.

32 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Operations on stack: Pop

The top stack frame is popped from the stack when the evaluation of
the let-expression is completed:

stack heap

sf0 zs

† †
1 2 ×

3 4 ×

1 2

The resulting heap contains two obsolete cells marked with ’†’

33 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Operations on the heap: Garbage collection

The memory management system uses a garbage collector to
reclaim obsolete cells in the heap behind the scene.

The garbage collector manages the heap as partitioned into three
groups or generations: gen0, gen1 and gen2, according to their
age. The objects in gen0 are the youngest while the objects in gen2
are the oldest.

The typical situation is that objects die young and the garbage
collector is designed for that situation.

Example:

naiveRev xs20000;;
Real: 00:00:07.624, CPU: 00:00:07.597,
GC gen0: 825, gen1: 253, gen2: 0
val it : int list = [20000; 19999; 19998; ...]

34 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Operations on the heap: Garbage collection

The memory management system uses a garbage collector to
reclaim obsolete cells in the heap behind the scene.

The garbage collector manages the heap as partitioned into three
groups or generations: gen0, gen1 and gen2, according to their
age. The objects in gen0 are the youngest while the objects in gen2
are the oldest.

The typical situation is that objects die young and the garbage
collector is designed for that situation.

Example:

naiveRev xs20000;;
Real: 00:00:07.624, CPU: 00:00:07.597,
GC gen0: 825, gen1: 253, gen2: 0
val it : int list = [20000; 19999; 19998; ...]

35 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

The limits of the stack and the heap

The stack is big:

let rec bigList n = if n=0 then [] else 1::bigList(n-1);;
bigList 120000;;
val it : int list = [1; 1; 1; 1; 1; 1; 1; 1;...]
bigList 130000;;
Process is terminated due to StackOverflowException.

More than 1.2 · 105 stack frames are pushed in recursive calls.

The heap is much bigger:

let rec bigListA n xs = if n=0 then xs
else bigListA (n-1) (1::xs);;

let xsVeryBig = bigListA 12000000 [];;
val xsVeryBig : int list = [1; 1; 1; 1; 1; 1;...]
let xsTooBig = bigListA 13000000 [];;
System.OutOfMemoryException: ...

A list with more than 1.2 · 107 elements can be created.

The iterative bigListA function does not exhaust the stack. WHY?
36 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

The limits of the stack and the heap

The stack is big:

let rec bigList n = if n=0 then [] else 1::bigList(n-1);;
bigList 120000;;
val it : int list = [1; 1; 1; 1; 1; 1; 1; 1;...]
bigList 130000;;
Process is terminated due to StackOverflowException.

More than 1.2 · 105 stack frames are pushed in recursive calls.

The heap is much bigger:

let rec bigListA n xs = if n=0 then xs
else bigListA (n-1) (1::xs);;

let xsVeryBig = bigListA 12000000 [];;
val xsVeryBig : int list = [1; 1; 1; 1; 1; 1;...]
let xsTooBig = bigListA 13000000 [];;
System.OutOfMemoryException: ...

A list with more than 1.2 · 107 elements can be created.

The iterative bigListA function does not exhaust the stack. WHY?
37 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

The limits of the stack and the heap

The stack is big:

let rec bigList n = if n=0 then [] else 1::bigList(n-1);;
bigList 120000;;
val it : int list = [1; 1; 1; 1; 1; 1; 1; 1;...]
bigList 130000;;
Process is terminated due to StackOverflowException.

More than 1.2 · 105 stack frames are pushed in recursive calls.

The heap is much bigger:

let rec bigListA n xs = if n=0 then xs
else bigListA (n-1) (1::xs);;

let xsVeryBig = bigListA 12000000 [];;
val xsVeryBig : int list = [1; 1; 1; 1; 1; 1;...]
let xsTooBig = bigListA 13000000 [];;
System.OutOfMemoryException: ...

A list with more than 1.2 · 107 elements can be created.

The iterative bigListA function does not exhaust the stack. WHY?
38 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Iterative (tail-recursive) functions (II)

Tail-recursive functions are also called iterative functions.

• The function f (n,m) = (n − 1, n ∗ m) is iterated during
evaluations for factA.

• The function g(x :: xs, ys) = (xs, x :: ys) is iterated during
evaluations for revA.

The correspondence between tail-recursive functions and while loops
is established in the textbook.

An example:

let factW n =
let ni = ref n
let r = ref 1
while !ni>0 do

r := !r * !ni ; ni := !ni-1
!r;;

39 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Iterative (tail-recursive) functions (II)

Tail-recursive functions are also called iterative functions.

• The function f (n,m) = (n − 1, n ∗ m) is iterated during
evaluations for factA.

• The function g(x :: xs, ys) = (xs, x :: ys) is iterated during
evaluations for revA.

The correspondence between tail-recursive functions and while loops
is established in the textbook.

An example:

let factW n =
let ni = ref n
let r = ref 1
while !ni>0 do

r := !r * !ni ; ni := !ni-1
!r;;

40 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Iterative (tail-recursive) functions (II)

Tail-recursive functions are also called iterative functions.

• The function f (n,m) = (n − 1, n ∗ m) is iterated during
evaluations for factA.

• The function g(x :: xs, ys) = (xs, x :: ys) is iterated during
evaluations for revA.

The correspondence between tail-recursive functions and while loops
is established in the textbook.

An example:

let factW n =
let ni = ref n
let r = ref 1
while !ni>0 do

r := !r * !ni ; ni := !ni-1
!r;;

41 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Iterative (tail-recursive) functions (II)

Tail-recursive functions are also called iterative functions.

• The function f (n,m) = (n − 1, n ∗ m) is iterated during
evaluations for factA.

• The function g(x :: xs, ys) = (xs, x :: ys) is iterated during
evaluations for revA.

The correspondence between tail-recursive functions and while loops
is established in the textbook.

An example:

let factW n =
let ni = ref n
let r = ref 1
while !ni>0 do

r := !r * !ni ; ni := !ni-1
!r;;

42 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Iterative functions (III)

A function g : τ -> τ
′ is an iteration of f : τ -> τ if it is an instance of:

let rec g z = if p z then g(f z) else h z

for suitable predicate p : τ -> bool and function h : τ -> τ
′.

The function g is called an iterative (or tail-recursive) function.

Examples: factA and revA are easily declared in the above form:

let rec factA(n,m) =
if n<>0 then factA(n-1,n*m) else m;;

let rec revA(xs,ys) =
if not (List.isEmpty xs)
then revA(List.tail xs, (List.head xs)::ys)
else ys;;

43 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Iterative functions (III)

A function g : τ -> τ
′ is an iteration of f : τ -> τ if it is an instance of:

let rec g z = if p z then g(f z) else h z

for suitable predicate p : τ -> bool and function h : τ -> τ
′.

The function g is called an iterative (or tail-recursive) function.

Examples: factA and revA are easily declared in the above form:

let rec factA(n,m) =
if n<>0 then factA(n-1,n*m) else m;;

let rec revA(xs,ys) =
if not (List.isEmpty xs)
then revA(List.tail xs, (List.head xs)::ys)
else ys;;

44 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Iterative functions (III)

A function g : τ -> τ
′ is an iteration of f : τ -> τ if it is an instance of:

let rec g z = if p z then g(f z) else h z

for suitable predicate p : τ -> bool and function h : τ -> τ
′.

The function g is called an iterative (or tail-recursive) function.

Examples: factA and revA are easily declared in the above form:

let rec factA(n,m) =
if n<>0 then factA(n-1,n*m) else m;;

let rec revA(xs,ys) =
if not (List.isEmpty xs)
then revA(List.tail xs, (List.head xs)::ys)
else ys;;

45 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Iterative functions (III)

A function g : τ -> τ
′ is an iteration of f : τ -> τ if it is an instance of:

let rec g z = if p z then g(f z) else h z

for suitable predicate p : τ -> bool and function h : τ -> τ
′.

The function g is called an iterative (or tail-recursive) function.

Examples: factA and revA are easily declared in the above form:

let rec factA(n,m) =
if n<>0 then factA(n-1,n*m) else m;;

let rec revA(xs,ys) =
if not (List.isEmpty xs)
then revA(List.tail xs, (List.head xs)::ys)
else ys;;

46 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Iterative functions: evaluations (I)

Consider: let rec g z = if p z then g(f z) else h z

Evaluation of the g v :

g v
 (if p z then g(f z) else h z , [z 7→ v])
 (g(f z), [z 7→ v])
 g(f 1v)
 (if p z then g(f z) else h z , [z 7→ f 1v])
 (g(f z), [z 7→ f 1v])
 g(f 2v)
 . . .

 (if p z then g(f z) else h z , [z 7→ f nv])
 (h z, [z 7→ f nv]) suppose p(f nv) false

 h(f nv)

47 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Iterative functions: evaluations (II)

Observe two desirable properties:

• there are n recursive calls of g,

• at most one binding for the argument pattern z is ‘active’ at any
stage in the evaluation, and

• the iterative functions require one stack frame only.

48 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Iteration vs While loops

Iterative functions are executed efficiently:

#time;;

for i in 1 .. 1000000 do let _ = factA(16,1) in ();;
Real: 00:00:00.024, CPU: 00:00:00.031,
GC gen0: 0, gen1: 0, gen2: 0
val it : unit = ()

for i in 1 .. 1000000 do let _ = factW 16 in ();;
Real: 00:00:00.048, CPU: 00:00:00.046,
GC gen0: 9, gen1: 0, gen2: 0
val it : unit = ()

• the tail-recursive function actually is faster than the imperative
while-loop based version

49 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Iteration vs While loops

Iterative functions are executed efficiently:

#time;;

for i in 1 .. 1000000 do let _ = factA(16,1) in ();;
Real: 00:00:00.024, CPU: 00:00:00.031,
GC gen0: 0, gen1: 0, gen2: 0
val it : unit = ()

for i in 1 .. 1000000 do let _ = factW 16 in ();;
Real: 00:00:00.048, CPU: 00:00:00.046,
GC gen0: 9, gen1: 0, gen2: 0
val it : unit = ()

• the tail-recursive function actually is faster than the imperative
while-loop based version

50 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Example: Fibonacci numbers (I)

A declaration based directly on the mathematical definition:

let rec fib = function
| 0 -> 0
| 1 -> 1
| n -> fib(n-1) + fib(n-2);;

val fib : int -> int

is highly inefficient. For example:

fib 4
 fib 3 + fib 2
 (fib 2 + fib 1) + fib 2
 ((fib 1 + fib 0) + fib 1) + fib 2
 · · · 2 + (fib 1 + fib 0)
 · · ·

Ex: fib 44 requires around 109 evaluations of base cases.

51 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Example: Fibonacci numbers (II)

An iterative solution gives high efficiency:

fun recitfib(n,a,b) = if n <> 0
then itfib(n-1,a+b,a)
else a;;

The expression itfib(n,0, 1) evaluates to Fn, for any n ≥ 0:

• Case n = 0: itfib(0, 0, 1) 0 (= F0)

• Case n > 0:

itfib(n, 0,1)
 itfib(n − 1, 1, 0) = itfib(n − 1, F1, F0)
 itfib(n − 2, F1 + F0, F1)
 itfib(n − 2, F2, F1)
...
 itfib(0,Fn,Fn−1)
 Fn

52 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Example: Fibonacci numbers (II)

An iterative solution gives high efficiency:

fun recitfib(n,a,b) = if n <> 0
then itfib(n-1,a+b,a)
else a;;

The expression itfib(n,0, 1) evaluates to Fn, for any n ≥ 0:

• Case n = 0: itfib(0, 0, 1) 0 (= F0)

• Case n > 0:

itfib(n, 0,1)
 itfib(n − 1, 1, 0) = itfib(n − 1, F1, F0)
 itfib(n − 2, F1 + F0, F1)
 itfib(n − 2, F2, F1)
...
 itfib(0,Fn,Fn−1)
 Fn

53 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Example: Fibonacci numbers (II)

An iterative solution gives high efficiency:

fun recitfib(n,a,b) = if n <> 0
then itfib(n-1,a+b,a)
else a;;

The expression itfib(n,0, 1) evaluates to Fn, for any n ≥ 0:

• Case n = 0: itfib(0, 0, 1) 0 (= F0)

• Case n > 0:

itfib(n, 0,1)
 itfib(n − 1, 1, 0) = itfib(n − 1, F1, F0)
 itfib(n − 2, F1 + F0, F1)
 itfib(n − 2, F2, F1)
...
 itfib(0,Fn,Fn−1)
 Fn

54 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Limits of accumulating parameters

Accumulating parameters are not sufficient to achieve a tail-recursive
version for arbitrary recursive functions.

Consider for example:

type BinTree<’a> =
| Leaf
| Node of BinTree<’a> * ’a * BinTree<’a>;;

let rec count = function
| Leaf -> 0
| Node(tl,n,tr) -> count tl + count tr + 1;;

A counting function:

countA: int -> BinTree<’a> -> int

using an accumulating parameter will not be tail-recursive due to the
expression containing recursive calls on the left and right sub-trees.
(Ex. 9.8)

55 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Limits of accumulating parameters

Accumulating parameters are not sufficient to achieve a tail-recursive
version for arbitrary recursive functions.

Consider for example:

type BinTree<’a> =
| Leaf
| Node of BinTree<’a> * ’a * BinTree<’a>;;

let rec count = function
| Leaf -> 0
| Node(tl,n,tr) -> count tl + count tr + 1;;

A counting function:

countA: int -> BinTree<’a> -> int

using an accumulating parameter will not be tail-recursive due to the
expression containing recursive calls on the left and right sub-trees.
(Ex. 9.8)

56 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Continuations

Continuation: A function for the “rest” of the computation.

The continuation-based version of bigList has a continuation

c: int list -> int list

as argument:

let rec bigListC n c =
if n=0 then c []
else bigListC (n-1) (fun res -> c(1::res));;

val bigListC : int -> (int list -> ’a) -> ’a

• Base case: “feed” the result of bigList into the continuation c.

• Recursive case: let res denote the value of bigList(n-1):
• The rest of the computation of bigList n is 1::res.

• The continuation of bigListC(n-1) is
fun res -> c(1::res)

57 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Continuations

Continuation: A function for the “rest” of the computation.

The continuation-based version of bigList has a continuation

c: int list -> int list

as argument:

let rec bigListC n c =
if n=0 then c []
else bigListC (n-1) (fun res -> c(1::res));;

val bigListC : int -> (int list -> ’a) -> ’a

• Base case: “feed” the result of bigList into the continuation c.

• Recursive case: let res denote the value of bigList(n-1):
• The rest of the computation of bigList n is 1::res.

• The continuation of bigListC(n-1) is
fun res -> c(1::res)

58 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Continuations

Continuation: A function for the “rest” of the computation.

The continuation-based version of bigList has a continuation

c: int list -> int list

as argument:

let rec bigListC n c =
if n=0 then c []
else bigListC (n-1) (fun res -> c(1::res));;

val bigListC : int -> (int list -> ’a) -> ’a

• Base case: “feed” the result of bigList into the continuation c.

• Recursive case: let res denote the value of bigList(n-1):
• The rest of the computation of bigList n is 1::res.

• The continuation of bigListC(n-1) is
fun res -> c(1::res)

59 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Continuations

Continuation: A function for the “rest” of the computation.

The continuation-based version of bigList has a continuation

c: int list -> int list

as argument:

let rec bigListC n c =
if n=0 then c []
else bigListC (n-1) (fun res -> c(1::res));;

val bigListC : int -> (int list -> ’a) -> ’a

• Base case: “feed” the result of bigList into the continuation c.

• Recursive case: let res denote the value of bigList(n-1):
• The rest of the computation of bigList n is 1::res.

• The continuation of bigListC(n-1) is
fun res -> c(1::res)

60 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Observations

• bigListC is a tail-recursive function, and

• the calls of c are tail calls in the base case of bigListC and in
the continuation: fun res -> c(1::res).

The stack will hence neither grow due to the evaluation of recursive
calls of bigListC nor due to calls of the continuations that have
been built in the heap:

bigListC 16000000 id;;
Real: 00:00:08.586, CPU: 00:00:08.314,
GC gen0: 80, gen1: 60, gen2: 3
val it : int list = [1; 1; 1; 1; 1;...]

• Slower than bigList

• Can generate longer lists than bigList

61 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Observations

• bigListC is a tail-recursive function, and

• the calls of c are tail calls in the base case of bigListC and in
the continuation: fun res -> c(1::res).

The stack will hence neither grow due to the evaluation of recursive
calls of bigListC nor due to calls of the continuations that have
been built in the heap:

bigListC 16000000 id;;
Real: 00:00:08.586, CPU: 00:00:08.314,
GC gen0: 80, gen1: 60, gen2: 3
val it : int list = [1; 1; 1; 1; 1;...]

• Slower than bigList

• Can generate longer lists than bigList

62 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Observations

• bigListC is a tail-recursive function, and

• the calls of c are tail calls in the base case of bigListC and in
the continuation: fun res -> c(1::res).

The stack will hence neither grow due to the evaluation of recursive
calls of bigListC nor due to calls of the continuations that have
been built in the heap:

bigListC 16000000 id;;
Real: 00:00:08.586, CPU: 00:00:08.314,
GC gen0: 80, gen1: 60, gen2: 3
val it : int list = [1; 1; 1; 1; 1;...]

• Slower than bigList

• Can generate longer lists than bigList

63 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Example: Tail-recursive count

let rec countC t c =
match t with
| Leaf -> c 0
| Node(tl,n,tr) ->

countC tl (fun vl -> countC tr (fun vr -> c(vl+vr+1)))
val countC : BinTree<’a> -> (int -> ’b) -> ’b

countC (Node(Node(Leaf,1,Leaf),2,Node(Leaf,3,Leaf))) id;;
val it : int = 3

• Both calls of countC are tail calls

• The calls of the c is tail call

Hence, the stack will not grow when evaluating countC t c.

• countC can handle bigger trees than count

• count is faster

64 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Example: Tail-recursive count

let rec countC t c =
match t with
| Leaf -> c 0
| Node(tl,n,tr) ->

countC tl (fun vl -> countC tr (fun vr -> c(vl+vr+1)))
val countC : BinTree<’a> -> (int -> ’b) -> ’b

countC (Node(Node(Leaf,1,Leaf),2,Node(Leaf,3,Leaf))) id;;
val it : int = 3

• Both calls of countC are tail calls

• The calls of the c is tail call

Hence, the stack will not grow when evaluating countC t c.

• countC can handle bigger trees than count

• count is faster

65 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Example: Tail-recursive count

let rec countC t c =
match t with
| Leaf -> c 0
| Node(tl,n,tr) ->

countC tl (fun vl -> countC tr (fun vr -> c(vl+vr+1)))
val countC : BinTree<’a> -> (int -> ’b) -> ’b

countC (Node(Node(Leaf,1,Leaf),2,Node(Leaf,3,Leaf))) id;;
val it : int = 3

• Both calls of countC are tail calls

• The calls of the c is tail call

Hence, the stack will not grow when evaluating countC t c.

• countC can handle bigger trees than count

• count is faster

66 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Summary and recommendations

• Loops in imperative languages corresponds to a special case of
recursive function called tail recursive functions.

• Have iterative functions in mind when dealing with efficiency,
e.g.

• to avoid evaluations with a huge amount of pending operations
• to avoid inadequate use of @ in recursive declarations.

• Memory management: stack, heap, garbage collection

• Continuations – provide a technique to turn arbitrary recursive
functions into tail-recursive ones.

trades stack for heap

Note: Iterative function does not replace algorithmic idea and the use
of good algorithms and datastructure.

67 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Summary and recommendations

• Loops in imperative languages corresponds to a special case of
recursive function called tail recursive functions.

• Have iterative functions in mind when dealing with efficiency,
e.g.

• to avoid evaluations with a huge amount of pending operations
• to avoid inadequate use of @ in recursive declarations.

• Memory management: stack, heap, garbage collection

• Continuations – provide a technique to turn arbitrary recursive
functions into tail-recursive ones.

trades stack for heap

Note: Iterative function does not replace algorithmic idea and the use
of good algorithms and datastructure.

68 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Summary and recommendations

• Loops in imperative languages corresponds to a special case of
recursive function called tail recursive functions.

• Have iterative functions in mind when dealing with efficiency,
e.g.

• to avoid evaluations with a huge amount of pending operations
• to avoid inadequate use of @ in recursive declarations.

• Memory management: stack, heap, garbage collection

• Continuations – provide a technique to turn arbitrary recursive
functions into tail-recursive ones.

trades stack for heap

Note: Iterative function does not replace algorithmic idea and the use
of good algorithms and datastructure.

69 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Summary and recommendations

• Loops in imperative languages corresponds to a special case of
recursive function called tail recursive functions.

• Have iterative functions in mind when dealing with efficiency,
e.g.

• to avoid evaluations with a huge amount of pending operations
• to avoid inadequate use of @ in recursive declarations.

• Memory management: stack, heap, garbage collection

• Continuations – provide a technique to turn arbitrary recursive
functions into tail-recursive ones.

trades stack for heap

Note: Iterative function does not replace algorithmic idea and the use
of good algorithms and datastructure.

70 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Summary and recommendations

• Loops in imperative languages corresponds to a special case of
recursive function called tail recursive functions.

• Have iterative functions in mind when dealing with efficiency,
e.g.

• to avoid evaluations with a huge amount of pending operations
• to avoid inadequate use of @ in recursive declarations.

• Memory management: stack, heap, garbage collection

• Continuations – provide a technique to turn arbitrary recursive
functions into tail-recursive ones.

trades stack for heap

Note: Iterative function does not replace algorithmic idea and the use
of good algorithms and datastructure.

71 DTU Informatics, Technical University of Denmark Lecture 8: Tail recursive (iterative) functions MRH 1/11/2012

