=]
=
=

>
>
>

02157 Functional Programming
Interpreters for two simple languages
— including exercises

Michael R. Hansen

fevan=3 @) E

DTU Informatics
Department of Informatics and Mathematical Modelling

Interpreters for two simple languages, — including exercises MRH
DTU Informatics, Technical University of Denmark 25/10/2012

2

Purpose

To show the power of a functional programming language, we
present a prototype for interpreters for a simple expression language
with local declarations and a simple WHILE language.

e Concrete syntax: defined by a contextfree grammar

o Abstract syntax (parse trees): defined by algebraic datatypes

e Semantics, i.e. meaning of programs: inductively defined
following the structure of the abstract syntax

succinct programs, fast prototyping

The interpreter for the simple expression language is a higher-order
function:
eval : Program — Environment — Value

The interpreter for a simple imperative programming language is a
higher-order function:

| : Program — State — State

Interpreters for two simple languages, — including exercises
DTU Informatics, Technical University of Denmark

=]
=
=

M

MRH
25/10/2012

=]
=
=

Expressions with local declarations

M

Concrete syntax:
ax* (-3 + (let x=5inx + a))
The abstract syntax is defined by an algebraic datatype:

type ExprTree = | Const of int

| ldent of string

| Mnus of ExprTree

| Sum of ExprTree * ExprTree
| Diff of ExprTree * ExprTree
| Prod of ExprTree * ExprTree
I

Let of string » ExprTree » ExprTree;;
Example:

let et =
Prod(ldent "a",
Sum(M nus (Const 3),
Let ("x", Const 5, Sun(ldent "x", ldent "a"))));;

Interpreters for two simple languages, — including exercises MRH
3 DTU Informatics, Technical University of Denmark 25/10/2012

4

Evaluation in Environments

An environment contains bindings of identifiers to values.

Al et tree Let (str, t1, to) is evaluated as in an environment env:

1 Evaluate t; to value v;

2 Evaluate t, in the env extended with the binding of str to v.

An evaluation function
eval :
is defined as follows:

let rec eval t env =
match t with
| Const n ->
| ldent s ->
| Mnus t ->
| Sum(tl,t2) ->
| Diff(t1,t2) ->
| Prod(tl,t2) ->
| Let(s,t1,t2) ->

DTU Informatics, Technical University of Denmark

ExprTree -> map<string,int> -> int

n

Map.find s env

- (eval t env)

eval t1l env + eval t2 env
eval t1 env - eval t2 env
eval t1 env * eval t2 env
let vl = eval t1 env

let envl = Map.add s vl env
eval t2 envl;;

Interpreters for two simple languages, — including exercises

=]
=
=

M

MRH
25/10/2012

=]
=
=

Example

M

Note that the meaning of a let expression is directly represented in
the program.

Example

let env = Map.add "a" -7 Map.enpty;;
eval et env;;
val it : int = 35

. . . . Interpreters for two simple languages, — including exercises MRH
5 DTU Informatics, Technical University of Denmark 25/10/2012

6

Example: Imperative Factorial program

An example of concrete syntax for a factorial program:

{Pre: x=K and x>=0}

y: =1 ;

whil e ! (x=0)

do (y:= y*Xx; x:=x-1)
{Post: y=K!'}

Typical ingredients
e Arithmetical expressions
e Boolean expressions

e Statements (assignments, sequential composition, loops, . ..

Interpreters for two simple languages, — including exercises

DTU Informatics, Technical University of Denmark

=]
=
=

M

MRH
25/10/2012

=]
=
=

Arithmetic Expressions

M

e Grammar:
aExp :: —n|v |aExp+aExp |aExp-aExp | aExp—aExp | (aExp)

where n is an integer and v is a variable.

e The declaration for the abstract syntax follows the grammar

type aExp = (* Arithnetical expressions *)
| N of int (* nunbers *)

V of string (* variabl es *)

Add of aExp * aExp (* addition *)

I
I
| Ml of aExp * aExp (* multiplication x)
| Sub of aExp * aExp;; (* subtraction *)

The abstract syntax is representation independent (no '+, ',
('), etc.), no ambiguities — one works directly on syntax trees.

Interpreters for two simple languages, — including exercises MRH
7 DTU Informatics, Technical University of Denmark 25/10/2012

=]
=
=

Semantics of Arithmetic Expressions

M

e A state maps variables to integers
type state = Map<string,int>;;

e The meaning of an expression is a function:
A: aExp -> state -> int

defined inductively on the structure of arithmetic expressions

let rec Aas =
match a with
| Nn ->n
| V x -> Map.find x s
| Add(al, a2) -> Aal s + Aa2s
| Mul(al, a2) -> Aal s » Aa2 s
| Sub(al, a2) -> Aal s - Aa2s;;

Interpreters for two simple languages, — including exercises MRH
8 DTU Informatics, Technical University of Denmark 25/10/2012

=]
=
=

Boolean Expressions

M

e Abstract syntax

type bExp = (* Bool ean expressions *)
| TT (* true *)
| FF (» false *)
| Egq of (* equality *)
| Lt of (* less than *)
| Neg of (* negation *)
| Con of o (* conjunction)

e Semantics B : bExp — State — bool

let Bbs =
match b with
| TT -> true

. . . . Interpreters for two simple languages, — including exercises MRH
9 DTU Informatics, Technical University of Denmark 25/10/2012

Statements: Abstract Syntax

=
>
type stm = (*» statenents *)
| Ass of string * aExp (* assignnent *)
| Skip
| Seq of stm=* stm (* sequential conposition x)
| ITE of bExp * stm=* stm (* if-then-else *)
| While of bExp * stny; (* while *)

Example of concrete syntax:

y:=1; while not(x=0) do (y:= y*x ; Xx:=x-1)

Abstract syntax ?

Interpreters for two simple languages, — including exercises MRH
10 DTU Informatics, Technical University of Denmark 25/10/2012

11

Update of states

An imperative program performs a sequence of state updates.

e The expression
updateyvs
is the state that is as s except that y is mapped to v.
Mathematically:

(updatey v s)(x) ={ \s/(x) :Ii ;5

e Update is a higher-order function with the declaration:
| et update x v s = Map.add x v s;;
e Type?

Interpreters for two simple languages, — including exercises

DTU Informatics, Technical University of Denmark

=]
=
=

M

MRH
25/10/2012

=]
=
=

Interpreter for Statements

M

e The meaning of statements is a function
| : stm — state — state

that is defined by induction on the structure of statements:

let rec | stms =
match stmw th
| Ass(x, a) -> update x (...) s
| Skip -> L.
| Seq(stnl, stnR2) -> ...
| I TE(b, stml, stnR) -> ...
| While(b, stm -> L

Interpreters for two simple languages, — including exercises MRH
12 DTU Informatics, Technical University of Denmark 25/10/2012

=]
=
=

Example: Factorial function P
(* {pre: x = K and x>=0}
y:=1; while !'(x=0) do (y:= y*x;Xx:=x-1)
{post: y = K!'} *)
let fac = Seq(Ass("y", N 1),
Whi | e(Neg(Eq(V "x", NO0)),
Seq(Ass("y", Mul(V "x", V "y")) ,
Ass("x", Sub(V "x", N 1))))):;
(» Define an initial state *)
let sO = Map.ofList [("x",4)];;
val sO : Map<string,int>=map [("x", 4)]
(* Interpret the program *)

let s1 =1 fac sO;;
val sl : Map<string,int>=mp [("x", 1); ("y", 24)]

Interpreters for two simple languages, — including exercises MRH
13 DTU Informatics, Technical University of Denmark 25/10/2012

=]
=
=

Exercises

M

o Complete the program skeleton for the interpreter, and try some
examples.

o Extend the abstract syntax and the interpreter with if-then and
repeat-until statements.

e Suppose that an expression of the form inc(x) is added. It adds
one to the value of x in the current state, and the value of the
expression is this new value of x.

How would you refine the interpreter to cope with this construct?

Interpreters for two simple languages, — including exercises MRH
14 DTU Informatics, Technical University of Denmark 25/10/2012

