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Purpose

To show the power of a functional programming language, we
present a prototype for interpreters for a simple expression language
with local declarations and a simple WHILE language.

e Concrete syntax: defined by a contextfree grammar

o Abstract syntax (parse trees): defined by algebraic datatypes

e Semantics, i.e. meaning of programs: inductively defined
following the structure of the abstract syntax

succinct programs, fast prototyping

The interpreter for the simple expression language is a higher-order
function:
eval : Program — Environment — Value

The interpreter for a simple imperative programming language is a
higher-order function:

| : Program — State — State
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Expressions with local declarations

M

Concrete syntax:
ax* (-3 + (let x=5inx + a))
The abstract syntax is defined by an algebraic datatype:

type ExprTree = | Const of int

| ldent of string

| Mnus of ExprTree

| Sum of ExprTree * ExprTree
| Diff of ExprTree * ExprTree
| Prod of ExprTree * ExprTree
I

Let of string » ExprTree » ExprTree;;
Example:

let et =
Prod(ldent "a",
Sum(M nus (Const 3),
Let ("x", Const 5, Sun(ldent "x", ldent "a"))));;
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Evaluation in Environments

An environment contains bindings of identifiers to values.

Al et tree Let (str, t1, to) is evaluated as in an environment env:

1 Evaluate t; to value v;

2 Evaluate t, in the env extended with the binding of str to v.

An evaluation function
eval :
is defined as follows:

let rec eval t env =
match t with
| Const n ->
| ldent s ->
| Mnus t ->
| Sum(tl,t2) ->
| Diff(t1,t2) ->
| Prod(tl,t2) ->
| Let(s,t1,t2) ->

DTU Informatics, Technical University of Denmark

ExprTree -> map<string,int> -> int

n

Map.find s env

- (eval t env)

eval t1l env + eval t2 env
eval t1 env - eval t2 env
eval t1 env * eval t2 env
let vl = eval t1 env

let envl = Map.add s vl env
eval t2 envl;;
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Example

M

Note that the meaning of a let expression is directly represented in
the program.

Example

let env = Map.add "a" -7 Map.enpty;;
eval et env;;
val it : int = 35
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Example: Imperative Factorial program

An example of concrete syntax for a factorial program:

{Pre: x=K and x>=0}

y: =1 ;

whil e ! (x=0)

do (y:= y*Xx; x:=x-1)
{Post: y=K!'}

Typical ingredients
e Arithmetical expressions
e Boolean expressions

e Statements (assignments, sequential composition, loops, . ..
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Arithmetic Expressions

M

e Grammar:
aExp :: —n|v |aExp+aExp |aExp-aExp | aExp—aExp | (aExp)

where n is an integer and v is a variable.

e The declaration for the abstract syntax follows the grammar

type aExp = (* Arithnetical expressions *)
| N of int (* nunbers *)

V of string (* variabl es *)

Add of aExp * aExp (* addition *)

I
I
| Ml of aExp * aExp (* multiplication x)
| Sub of aExp * aExp;; (* subtraction *)

The abstract syntax is representation independent (no '+, ',
('), etc.), no ambiguities — one works directly on syntax trees.
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Semantics of Arithmetic Expressions

M

e A state maps variables to integers
type state = Map<string,int>;;

e The meaning of an expression is a function:
A: aExp -> state -> int

defined inductively on the structure of arithmetic expressions

let rec Aas =
match a with
| Nn ->n
| V x -> Map.find x s
| Add(al, a2) -> Aal s + Aa2s
| Mul(al, a2) -> Aal s » Aa2 s
| Sub(al, a2) -> Aal s - Aa2s;;
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Boolean Expressions

M

e Abstract syntax

type bExp = (* Bool ean expressions *)
| TT (* true *)
| FF (» false *)
| Egq of .... (* equality *)
| Lt of .... (* less than *)
| Neg of .... (* negation *)
| Con of .... o (* conjunction )

e Semantics B : bExp — State — bool

let Bbs =
match b with
| TT -> true
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type stm = (*» statenents *)
| Ass of string * aExp (* assignnent *)
| Skip
| Seq of stm=* stm (* sequential conposition x)
| ITE of bExp * stm=* stm (* if-then-else *)
| While of bExp * stny; (* while *)

Example of concrete syntax:

y:=1; while not(x=0) do (y:= y*x ; Xx:=x-1)

Abstract syntax ?
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Update of states

An imperative program performs a sequence of state updates.

e The expression
updateyvs
is the state that is as s except that y is mapped to v.
Mathematically:

(updatey v s)(x) ={ \s/(x) :Ii ;5

e Update is a higher-order function with the declaration:
| et update x v s = Map.add x v s;;
e Type?
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Interpreter for Statements

M

e The meaning of statements is a function
| : stm — state — state

that is defined by induction on the structure of statements:

let rec | stms =
match stmw th
| Ass(x, a) -> update x (... ) s
| Skip -> L.
| Seq(stnl, stnR2) -> ...
| I TE(b, stml, stnR) -> ...
| While(b, stm -> L

Interpreters for two simple languages, — including exercises MRH
12 DTU Informatics, Technical University of Denmark 25/10/2012



=]
=
=

Example: Factorial function P
(* {pre: x = K and x>=0}
y:=1; while !'(x=0) do (y:= y*x;Xx:=x-1)
{post: y = K!'} *)
let fac = Seq(Ass("y", N 1),
Whi | e(Neg(Eq(V "x", NO0)),
Seq(Ass("y", Mul(V "x", V "y")) ,
Ass("x", Sub(V "x", N 1)) ))):;
(» Define an initial state *)
let sO = Map.ofList [("x",4)];;
val sO : Map<string,int>=map [("x", 4)]
(* Interpret the program *)

let s1 =1 fac sO;;
val sl : Map<string,int>=mp [("x", 1); ("y", 24)]
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Exercises

M

o Complete the program skeleton for the interpreter, and try some
examples.

o Extend the abstract syntax and the interpreter with if-then and
repeat-until statements.

e Suppose that an expression of the form inc(x) is added. It adds
one to the value of x in the current state, and the value of the
expression is this new value of x.

How would you refine the interpreter to cope with this construct?
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