
02157
Functional
Program-

ming

Michael R. Hansen02157 Functional Programming
Lecture 3: Lists

Michael R. Hansen

1 DTU Informatics, Technical University of Denmark Lecture 3: Lists MRH 17/09/2012

02157
Functional
Program-

ming

Michael R. Hansen

Overview

• Generation of lists

• Useful functions on lists

• Typical recursions on lists

• Programming as a modelling activity
– Cash register
– Map coloring

2 DTU Informatics, Technical University of Denmark Lecture 3: Lists MRH 17/09/2012

02157
Functional
Program-

ming

Michael R. Hansen

Range expressions (1)

A simple range expression [b .. e], where e ≥ b, generates the list:

[b; b + 1;b + 2; . . . ; b + n]

where n is chosen such that b + n ≤ e < b + n + 1.

Example

[-3 .. 5];;
val it : int list = [-3; -2; -1; 0; 1; 2; 3; 4; 5]

[2.4 .. 3.0 ** 1.7];;
val it : float list = [2.4; 3.4; 4.4; 5.4; 6.4]

Note that 3.0 ** 1.7 = 6.47300784.

The range expression generates the empty list when e < b:

[7 .. 4];;
val it : int list = []

3 DTU Informatics, Technical University of Denmark Lecture 3: Lists MRH 17/09/2012

02157
Functional
Program-

ming

Michael R. Hansen

Range expressions (2)

The range expression [b .. s .. e] generates either an ascending or a
descending list:

[b .. s .. e] = [b; b + s; b + 2s; . . . ; b + ns]

where
{

b + ns ≤ e < b + (n + 1)s if s > 0
b + ns ≥ e > b + (n + 1)s if s < 0

depending on the sign of s.

Examples:

[6 .. -1 .. 2];;
val it : int list = [6; 5; 4; 3; 2]

and the float representation of 0, π/2, π, 3
2π, 2π is generated by:

[0.0 .. System.Math.PI/2.0 .. 2.0*System.Math.PI];;
val it : float list =
[0.0; 1.570796327; 3.141592654; 4.71238898; 6.283185307]

4 DTU Informatics, Technical University of Denmark Lecture 3: Lists MRH 17/09/2012

02157
Functional
Program-

ming

Michael R. Hansen

Simple recursion on lists

We consider now three simple functions:

• append

• reverse

• isMember

whose declarations follow the structure of lists

let rec f ... xs ... =
| [] -> v
| x::xs -> f xs ...

using just two clauses.

5 DTU Informatics, Technical University of Denmark Lecture 3: Lists MRH 17/09/2012

02157
Functional
Program-

ming

Michael R. Hansen

Append

The infix operator @ (called ‘append’) joins two lists:

[x1;x2; . . .;xm] @ [y1;y2; . . .;yn]
= [x1;x2; . . . ;xm;y1;y2; . . . ;yn]

Properties

[] @ ys = ys
[x1;x2; . . .;xm] @ ys = x1::([x2; . . .;xm] @ ys)

Declaration

let rec (@) xs ys =
match xs with
| [] -> ys
| x::xs’ -> x::(xs’ @ ys);;

val (@) : ’a list -> ’a list -> ’a list

6 DTU Informatics, Technical University of Denmark Lecture 3: Lists MRH 17/09/2012

02157
Functional
Program-

ming

Michael R. Hansen

Append: evaluation

let rec (@) xs ys =
match xs with
| [] -> ys
| x::xs’ -> x::(xs’ @ ys);;

Evaluation

[1,2] @ [3,4]
 1::([2] @ [3,4]) (x 7→ 1, xs′

7→ [2], ys 7→ [3, 4])
 1::(2::([] @ [3,4])) (x 7→ 2, xs′

7→ [], ys 7→ [3, 4])
 1::(2::[3,4]) (ys 7→ [3, 4])
 1::[2,3,4]
 [1;2;3;4]

• Execution time is linear in the size of the first list

7 DTU Informatics, Technical University of Denmark Lecture 3: Lists MRH 17/09/2012

02157
Functional
Program-

ming

Michael R. Hansen

Append: polymorphic type

The answer from the system is:

> val (@) : ’a list -> ’a list -> ’a list

• ’a is a type variable

• The type of @ is polymorphic — it has many forms

’a = int: Appending integer lists

[1;2] @ [3;4];;
val it : int list = [1;2;3;4]

’a = int list: Appending lists of integer list

[[1];[2;3]] @ [[4]];;
val it : int list list = [[1]; [2; 3]; [4]]

@ is a built-in function

8 DTU Informatics, Technical University of Denmark Lecture 3: Lists MRH 17/09/2012

02157
Functional
Program-

ming

Michael R. Hansen

Reverse rev [x1; x2; . . . ; xn] = [xn; . . . ; x2; x1]

let rec naive_rev = function
| [] -> []
| x::xs -> naive_rev xs @ [x];;

val naive_rev : ’a list -> ’a list

An evaluation:
naive_rev[1;2;3]

 naive_rev[2;3] @ [1]
 (naive_rev[3] @ [2]) @ [1]
 ((naive_rev[] @ [3]) @ [2]) @ [1]
 (([] @ [3]) @ [2]) @ [1]
 ([3] @ [2]) @ [1]
 (3::([] @ [2])) @ [1]
 (3::[2]) @ [1]
 [3;2] @ [1]
 3::([2] @ [1])
 . . .
 [3;2;1]

Takes O(n2) time — Built-in version (List.rev) is efficient O(n)
We consider efficiency later.

9 DTU Informatics, Technical University of Denmark Lecture 3: Lists MRH 17/09/2012

02157
Functional
Program-

ming

Michael R. Hansen

Membership — equality types

isMember x [y1;y2; . . .;yn]
= (x = y1) ∨ (x = y2) ∨ · · · ∨ (x = yn)
= (x = y1) ∨ (member x [y2, . . .,yn])

Declaration

let rec isMember x = function
| [] -> false
| y::ys -> x=y || isMember x ys;;
val isMember : ’a -> ’a list -> bool when ’a : equality

• ’a is an equality type variable no function types

• isMember (1,true) [(2,true); (1,false)] false

• isMember [1;2;3] [[1]; []; [1;2;3]] true

10 DTU Informatics, Technical University of Denmark Lecture 3: Lists MRH 17/09/2012

02157
Functional
Program-

ming

Michael R. Hansen

Match on results of recursive call

We consider declarations on the form:

let rec f ... xs ... =
....
let pat(y) = f xs
e(y)

Recall unzip and split from last week.

11 DTU Informatics, Technical University of Denmark Lecture 3: Lists MRH 17/09/2012

02157
Functional
Program-

ming

Michael R. Hansen

Example: sumProd

sumProd [x0;x1; . . .;xn−1]
= (x0 + x1 + . . . + xn−1 , x0 * x1 * . . . * xn−1)

The declaration is based on the recursion formula:

sumProd [x0;x1; . . .;xn−1] = (x0 + rSum,x0 * rProd)
where (rSum,rProd) = sumProd [x1; . . .;xn−1]

This gives the declaration

let rec sumProd = function
| [] -> (0,1)
| x::rest ->

let (rSum,rProd) = sumProd rest
(x+rSum,x*rProd);;

val sumProd : int list -> int * int

sumProd [2;5];;
val it : int * int = (7, 10)

12 DTU Informatics, Technical University of Denmark Lecture 3: Lists MRH 17/09/2012

02157
Functional
Program-

ming

Michael R. Hansen

Example: split

Declare an F# function split such that:

split [x0;x1;x2;x3; . . .;xn−1] = ([x0;x2; . . .],[x1;x3; . . .])

The declaration is

let rec split = function
| [] -> ([],[])
| [x] -> ([x],[])
| x::y::xs -> let (xs1,xs2) = split xs

in (x::xs1,y::xs2);;

Notice

• a convenient division into three cases, and

• the recursion formula

split [x0;x1;x2; . . .;xn−1] = (x0 :: xs1,x1 :: xs2)
where (xs1,xs2) = split [x2; . . .;xn−1]

13 DTU Informatics, Technical University of Denmark Lecture 3: Lists MRH 17/09/2012

02157
Functional
Program-

ming

Michael R. Hansen

The problem

An electronic cash register contains a data register
associating the name of the article and its price to each
valid article code. A purchase comprises a sequence of
items, where each item describes the purchase of one or
several pieces of a specific article.

The task is to construct a program which makes a bill of a
purchase. For each item the bill must contain the name of
the article, the number of pieces, and the total price, and the
bill must also contain the grand total of the entire purchase.

14 DTU Informatics, Technical University of Denmark Lecture 3: Lists MRH 17/09/2012

02157
Functional
Program-

ming

Michael R. Hansen

Goal and approach

Goal: the main concepts of the problem formulation are traceable in
the program.

Approach: to name the important concepts of the problem and
associate types with the names.

• This model should facilitate discussions about whether it fits the
problem formulation.

Aim: A succinct, elegant program reflecting the model.

15 DTU Informatics, Technical University of Denmark Lecture 3: Lists MRH 17/09/2012

02157
Functional
Program-

ming

Michael R. Hansen

The problem

An electronic cash register contains a data register
associating the name of the article and its price to each
valid article code. A purchase comprises a sequence of
items, where each item describes the purchase of one or
several pieces of a specific article.

The task is to construct a program which makes a bill of a
purchase. For each item the bill must contain the name of
the article, the number of pieces, and the total price, and the
bill must also contain the grand total of the entire purchase.

16 DTU Informatics, Technical University of Denmark Lecture 3: Lists MRH 17/09/2012

02157
Functional
Program-

ming

Michael R. Hansen

A Functional Model

• Name key concepts and give them a type

A signature for the cash register:

type articleCode = string
type articleName = string
type price = int
type register = (articleCode * (articleName*price)) list
type noPieces = int
type item = noPieces * articleCode
type purchase = item list
type info = noPieces * articleName * price
type infoseq = info list
type bill = infoseq * price

makeBill: register -> purchase -> bill

Is the model adequate?

17 DTU Informatics, Technical University of Denmark Lecture 3: Lists MRH 17/09/2012

02157
Functional
Program-

ming

Michael R. Hansen

Example

The following declaration names a register:

let reg = [("a1",("cheese",25));
("a2",("herring",4));
("a3",("soft drink",5))];;

The following declaration names a purchase:

let pur = [(3,"a2"); (1,"a1")];;

A bill is computed as follows:

makeBill reg pur;;
val it : (int * string * int) list * int =
([(3, "herring", 12); (1, "cheese", 25)], 37)

18 DTU Informatics, Technical University of Denmark Lecture 3: Lists MRH 17/09/2012

02157
Functional
Program-

ming

Michael R. Hansen

Functional decomposition (1)

Type: findArticle: articleCode → register → articleName * price

let rec findArticle ac = function
| (ac’,adesc)::_ when ac=ac’ -> adesc
| _::reg -> findArticle ac reg
| _ ->

failwith(ac + " is an unknown article code");;
val findArticle : string -> (string * ’a) list -> ’a

Note that the specified type is an instance of the inferred type.

An article description is found as follows:

findArticle "a2" reg;;
val it : string * int = ("herring", 4)

findArticle "a5" reg;;
System.Exception: a5 is an unknown article code

at FSI_0016.findArticle[a] ...

Note: failwith is a built-in function that raises an exception

19 DTU Informatics, Technical University of Denmark Lecture 3: Lists MRH 17/09/2012

02157
Functional
Program-

ming

Michael R. Hansen

Functional decomposition (2)

Type: makeBill: register → purchase → bill

let rec makeBill reg = function
| [] -> ([],0)
| (np,ac)::pur ->

let (aname,aprice) = findArticle ac reg
let tprice = np*aprice
let (billtl,sumtl) = makeBill reg pur
((np,aname,tprice)::billtl, tprice+sumtl);;

The specified type is an instance of the inferred type:

val makeBill :
(string * (’a * int)) list -> (int * string) list

-> (int * ’a * int) list * int

makeBill reg pur;;
val it : (int * string * int) list * int =
([(3, "herring", 12); (1, "cheese", 25)], 37)

20 DTU Informatics, Technical University of Denmark Lecture 3: Lists MRH 17/09/2012

02157
Functional
Program-

ming

Michael R. Hansen

Patterns with guards: Three versions of findArticle

An if-then-else expression in

let rec findArticle ac = function
| (ac’,adesc)::reg -> if ac=ac’ then adesc

else findArticle ac reg
| _ -> failwith(ac + " is an unknown article code");;

may be avoided using clauses with guards:

let rec findArticle ac = function
| (ac’,adesc)::reg when ac=ac’ -> adesc
| (ac’,adesc)::reg -> findArticle ac reg
| _ -> failwith(ac + " is an unknown article code");;

This may be simplified using wildcards:

let rec findArticle ac = function
| (ac’,adesc)::_ when ac=ac’ -> adesc
| _::reg -> findArticle ac reg
| _ -> failwith(ac + " is an unknown article code");;

21 DTU Informatics, Technical University of Denmark Lecture 3: Lists MRH 17/09/2012

02157
Functional
Program-

ming

Michael R. Hansen

Summary

• A succinct model is achieved using type declarations.

• Easy to check whether it fits the problem.

• Conscious choice of variables (on the basis of the model)
increases readability of the program.

• Standard recursions over lists solve the problem.

22 DTU Informatics, Technical University of Denmark Lecture 3: Lists MRH 17/09/2012

02157
Functional
Program-

ming

Michael R. Hansen

Example: Map Coloring.

A map should be colored so that neighbouring countries get different
colors

"b"
"a"

"d"

"c"

The types for country and map are “straightforward”:

• type country = string

Symbols: c, c1, c2, c’; Examples: ”a”, ”b”, . . .

• type map=(country*country) list

Symbols: m; Example: val exMap = [(”a”,”b”); (”c”,”d”); (”d”,”a”)]

How many ways could above map be colored?

23 DTU Informatics, Technical University of Denmark Lecture 3: Lists MRH 17/09/2012

02157
Functional
Program-

ming

Michael R. Hansen

Abstract models for color and coloring

• type color = country list

Symbols: col; Example: [”c”; ”a”]

• type coloring = color list

Symbols: cols; Example: [[”c”; ”a”]; [”b”; ”d”]]

Be conscious about symbols and examples

colMap: map -> coloring

Meta symbol: Type Definition Sample value
c: country string "a"
m: map (country*country) list[("a","b"),("c","d"),("d","a")]
col: color country list ["a","c"]
cols: coloring color list [["a","c"],["b","d"]]

Figure: A Data model for map coloring problem

24 DTU Informatics, Technical University of Denmark Lecture 3: Lists MRH 17/09/2012

02157
Functional
Program-

ming

Michael R. Hansen

Algorithmic idea

"b"
"a"

"d"

"c"

Insert repeatedly countries in a coloring.

country old coloring new coloring
1. "a" [] [["a"]]
2. "b" [["a"]] [["a"] ; ["b"]]
3. "c" [["a"] ; ["b"]] [["a";"c"] ; ["b"]]
4. "d" [["a";"c"] ; ["b"]] [["a";"c"] ; ["b";"d"]]

Figure: Algorithmic idea

25 DTU Informatics, Technical University of Denmark Lecture 3: Lists MRH 17/09/2012

02157
Functional
Program-

ming

Michael R. Hansen

Functional decomposition (I)

To make things easy
Are two countries neighbours?

areNb: map → country → country → bool

let areNb m c1 c2 = isMember (c1,c2) m || isMember (c2,c1) m;;

Can a color be extended?

canBeExtBy: map → color → country → bool

let rec canBeExtBy m col c =
match col with
| [] -> true
| c’::col’ -> not (areNb m c’ c) && canBeExtBy m col’ c;;

canBeExtBy exMap ["c"] "a";;
val it : bool = true

canBeExtBy exMap ["a"; "c"] "b";;
val it : bool = false

26 DTU Informatics, Technical University of Denmark Lecture 3: Lists MRH 17/09/2012

02157
Functional
Program-

ming

Michael R. Hansen

Functional composition (I)

Combining functions make things easy
Extend a coloring by a country:

extColoring: map → coloring → country → coloring

Examples:
extColoring exMap [] "a" = [["a"]]
extColoring exMap [["b"]] "a" = [["b"] ; ["a"]]
extColoring exMap [["c"]] "a" = [["a"; "c"]]

let rec extColoring m cols c =
match cols with
| [] -> [[c]]
| col::cols’ -> if canBeExtBy m col c

then (c::col)::cols’
else col::extColoring m cols’ c;;

Function types, consistent use of symbols, and examples
make program easy to comprehend

27 DTU Informatics, Technical University of Denmark Lecture 3: Lists MRH 17/09/2012

02157
Functional
Program-

ming

Michael R. Hansen

Functional decomposition (II)

To color a neighbour relation:

• Get a list of countries from the neighbour relation.

• Color these countries

Get a list of countries without duplicates:

let addElem x ys = if isMember x ys then ys else x::ys;;

let rec countries = function
| [] -> []
| (c1,c2)::m -> addElem c1 (addElem c2 (countries m));;

Color a country list:

let rec colCntrs m = function
| [] -> []
| c::cs -> extColoring m (colCntrs m cs) c;;

28 DTU Informatics, Technical University of Denmark Lecture 3: Lists MRH 17/09/2012

02157
Functional
Program-

ming

Michael R. Hansen

Functional composition (III)

The problem can now be solved by
combining well-understood pieces

Create a coloring from a neighbour relation:

colMap: map → coloring

let colMap m = colCntrs m (countries m);;

colMap exMap;;
val it : string list list = [["c"; "a"]; ["b"; "d"]]

29 DTU Informatics, Technical University of Denmark Lecture 3: Lists MRH 17/09/2012

02157
Functional
Program-

ming

Michael R. Hansen

On modelling and problem solving

• Types are useful in the specification of concepts and operations.

• Conscious and consistent use of symbols enhances readability.

• Examples may help understanding the problem and its solution.

• Functional paradigm is powerful.

Problem solving by combination of well-understood pieces

These points are not programming language specific

30 DTU Informatics, Technical University of Denmark Lecture 3: Lists MRH 17/09/2012

