Written Examination, December 20th, 2011 Course no. 02157
The duration of the examination is 2 hours.

Course Name: Functional programming

Allowed aids: All written material

The problem set consists of 4 problems which are weighted approximately as follows:
Problem 1: 30%, Problem 2: 30%, Problem 3: 20%, Problem 4: 20%

Marking: 7 step scale.

02157

DTU CIVILINGENIOREKSAMEN December 20th, 2011 Page 2 of 4 pages

Problem 1 (Approx. 30%)

In this problem we will consider a simple register for members of a sports club. It could
be a tennis club, a fishing club, or To keep the problem simple we identify members
by their names and each member is described by a phone number and a level, where the
level is an indication of how well the member is performing in this sport. Phone numbers
and levels are modelled by integers and we arrive at the following declarations:

type
type
type

type
type

1.

name = string;;

phone = int;;

level = int;;

description = phone * level;;

register = (name * description) list;;

Declare a value of type register, that contains four members: Joe (having phone
number: 10101010 and level: 4) , Sal (having phone number: 11111111 and level: 2),
Sam (having phone number: 12121212 and level: 7), Jane (having phone number:
13131313 and level: 1).

Declare a function getPhone: name -> register -> phone to extract the phone
number of a member in a register. The function should raise an exception Register
if the member is not occurring in the register.

Declare a function delete: name * register -> register to delete the entry for
a member in a register.

We say that two levels [and " match if one is at most two larger than the other, i.e.
if |l -1 <3.

Declare a function getCandidates: level -> register -> (namexphone) list,
that for a given level [and register reg gives the name and phone number of all
members of reg with a level matching [. In the example from question 1, Joe and
Sam have levels matching the level 5.

02157 ... Continued on next page

DTU CIVILINGENIGREKSAMEN December 20th, 2011 Page 3 of 4 pages

Problem 2 (Approx. 30%)

In this problem we consider simple expressions, like 3 + 5 % 2, which can be constructed
from integer constants using binary operators. Such expressions are modelled using the
following declaration of the type exp:

type exp = | C of int
| BinOp of exp * string * exp;;

where the constructor C generates an integer constant and the operator is given as a string
(e.g. "+" and "*") when generating an expression using the constructor BinOp.

1. Give three different values of type exp.

2. Declare a function toString: exp -> string, that gives a string representation
for an expression. Put brackets around every subexpression with operators, e.g.
(3+(5%2)) is a string representation of the above example.

3. Declare a function to extract the set of operators from an expression.

4. The type for expressions is now extended to include identifiers (constructor Id) and
local definitions (constructor Def):

type exp = | C of int
| BinOp of exp * string * exp
| Id of string
| Def of string * exp * exp;;

where Def ("x", C 5 , BinOp(Id "x", "+", Id "x")), for example, denotes the
expression where x is defined by the constant 5 in the expression x+x. This expression
would evaluate to 10.

We say that an expression is defined if it evaluates to an integer value, i.e. if there is a
definition for every identifier occurring in the expression. We have, for example, that
Def ("x", C 5, BinOp(Id "x", "+", Id "x")) is defined, whereas the expression
Def ("x", C 5, BinOp(Id "y", "+", Id "x")) is not defined since there is no def-
inition for "y".

Declare a function isDef: exp -> bool that can test whether an expression is de-
fined.

Hint: make use of an auxiliary function having an extra argument that takes care of
defined identifiers.

02157 ... Continued on next page

DTU CIVILINGENIOREKSAMEN December 20th, 2011 Page 4 of 4 pages

Problem 3 (20%)

Consider the following F# declarations:

type ’a tree = | Lf
| Br of ’a * ’a tree * ’a tree;;

let rec f(n,t) =
match t with

| Lf -> Lf
| Br(a, t1, t2) -> if n>0 then Br(a, f(n-1, t1), f(n-1, t2))
else Lf;;

let rec g p = function
| Br(a, t1, t2) when p a -> Br(a, g p tl, g p t2)
| _ -> Lf;;

let rec h k = function
| Lf -> Lf
| Br(a, t1, t2) -> Br(k a, h k t1, h k t2);;

1. Give the types of £, g and h, and describe what each of these three functions compute.
Your description for each function should focus on what it computes, rather than on
individual computation steps.

Problem 4 (Approx. 20%)

Consider the following F# declarations:
let rec map f = function
| [] ->] (* m1 *)

| x::xs -> f x :: map f xs;; (* m2 *)

let rec rev = function

| L] -> [(x r1 *)
| x::x8 -> rev xs @ [x];; (*x r2 *)
Prove that
rev (map f zs) = map f (rev xs)

holds for all functions f and lists zs of appropriate types.
In your proof you can assume that

map f (zs@ys) — (map f o5) @ (map f ys)
holds for all functions f and lists zs and ys of appropriate types.

02157

