
Real-Time Java

Martin Schöberl

Real Time Java 2

Overview

  What are real-time systems
  Real-time specification for Java
  RTSJ issues, subset
  Real-time profile
  Open question - GC

Real Time Java 3

History of (Real-Time) Java

1996 Nilsen: First Paper on Real-Time Java
1997 picoJava, PersonalJava

1992 Oak for *7
1995 Java for the Internet

1998 EmbeddedJava, RTSJ Start

2003 JTime

2000 J2EE: Server Applications

2002 RTSJ Final Release
2000 J2ME: Java for Mobile Phones

Java for Desktop Applications Embedded Systems?

2000 JOP executes first instructions

Real Time Java 4

Real-Time Systems

  A definition by John A. Stankovic:

In real-time computing the
correctness of the system depends
not only on the logical result of the
computation but also on the time at

which the result is produced.

Real Time Java 5

Real-Time Threads

  In real-time systems there are:
  Periodic threads
  Event threads/handler

  No continuous running threads
  Fixed Priority driven scheduler
  Threads can starve!

Real Time Java 6

Priority

  Kind of importance
  Scheduling theory:

  Shorter periods – higher priorities
  RMA: Rate Monotonic Analysis
  Assignment is optimal

  In (hard) RT forbidden
  sleep()
  wait(), notify()

Real Time Java 7

Real-Time Specification for Java

  RTSJ for short
  First JSR request
  Still in flux
  Implementations

  Timesys RI
  Purdue OVM
  Aicas JamaicaVM
  Sun Mackinac
  IBM J9

Real Time Java 8

RTSJ Guiding Principles

  Backward compatibility to standard Java
  Write Once, Run Anywhere
  Current real-time practice
  Predictable execution
  No Syntactic extension
  Allow implementation flexibility

Real Time Java 9

RTSJ Overview

  Clear definition of scheduler
  Priority inheritance protocol
  NoHeapRealtimeThread
  Scoped memory to avoid GC
  Low-level access through raw memory
  High resolution time and timer

Real Time Java 10

RTSJ: Scheduling

  Standard Java offers no guarantee
  Even non preemptive JVM possible

  Fixed priority
  FIFO within priorities
  Minimum of 28 unique priority levels
  GC priority level not defined

Real Time Java 11

RTSJ: Memory Areas

  GC collected Heap
  Immortal memory
  Scoped memory

  LTMemory
  VTMemory

  Physical memory
  Different time properties
  Access to HW devices!

Real Time Java 12

RTSJ: Thread Types

  Extensions of java.lang.Thread
  RealTimeThread

  NoHeapRealTimeThread

  AsyncEventHandler

  Scoped and immortal memory for
NHRTT
  Strict assignment rules
  Not easy to use

Real Time Java 13

RTSJ: Synchronization

  Use synchronized
  Priority inversion possible in standard

Java
  Priority inheritance protocol
  Priority ceiling emulation protocol

Real Time Java 14

RTSJ: Scoped Memory

  Cumbersome
programming style

  New class for each
code part

class UseMem implements Runnable {

 public void run() {

 // inside scoped memory
 Integer[] = new Integer[100];

 ...

 }

}

// outside of scoped memory

// in immortal? at initialization?

LTMemory mem = new LTMemory(1024,
1024);

UseMem um = new UseMem();

// usage

computation() {

 mem.enter(um);

}

Real Time Java 15

Asynchronous Event Handler

  Difference between bound an unbound
  Implementation hint at application level
  No functional difference for the application

  Better: only one type
  Specify a minimum latency at creation
  Runtime system decides about

implementation

Real Time Java 16

RTSJ Issues

  J2SE library:
  Heap usage not documented
  OS functions can cause blocking

  On small systems:
  Large and complex specification
  Expensive longs (64 bit) for time values

Real Time Java 17

RTSJ Subset

  Ravenscar Java
  Name from Ravenscar Ada
  Based in Puschner & Wellings paper

  Profile for high integrity applications
  RTSJ compatible
  No dynamic thread creation
  Only NHRTT
  Simplified scoped memory
  Implementation?

Real Time Java 18

Real-Time Profile

  Hard real-time profile
  See Puschner paper

  Easy to implement
  Low runtime overhead
  No RTSJ compatibility

Real Time Java 19

Real-Time Profile

  Schedulable objects:
  Periodic activities
  Asynchronous sporadic activities

  Hardware interrupt or software event
  Bound to a thread

  Application:
  Initialization
  Mission

Real Time Java 20

Application Structure

  Initialization phase
  Fixed number of threads
  Thread creation
  Shared objects in immortal memory

  Mission
  Runs forever
  Communication via shared objects
  Scoped memory for temporary data

Real Time Java 21

Schedulable Objects

  Three types:
  RtThread, HwEvent and

SwEvent

  Fixed priority
  Period or minimum

interarrival time
  Scoped memory per

thread
  Dispatched after

mission start

public class RtThread {

 public RtThread(int priority, int period)

 ...

 public RtThread(int priority, int period,

 int offset)

 public void run()

 public boolean waitForNextPeriod()

 public static void startMission()

}

public class HwEvent extends RtThread {

 public HwEvent(int priority, int minTime,

 int number)

 public void handle()

}

public class SwEvent extends RtThread {

 public SwEvent(int priority, int minTime)

 public final void fire()

 public void handle()

}

Real Time Java 22

Scheduling

  Fixed priority with strict monotonic
order

  Priority ceiling emulation protocol
  Top priority for unassigned objects

  Interrupts under scheduler control
  Priority for device drivers
  No additional blocking time
  Integration in schedulability analysis

Real Time Java 23

Memory

  No GC: Heap becomes immortal
memory

  Scoped memory
  Bound to one thread at creation
  Constant allocation time

  Cleared on creation and on exit

  Simple enter/exit syntax

Real Time Java 24

Restrictions of Java

  Only WCET analyzable language constructs
  Static class initializers invoked at JVM start
  No finalization

  Objects in immortal memory live forever
  Finalization complicates WCET analysis of exit

from scoped memory

  No dynamic class loading

Real Time Java 25

RtThread Example
public class Worker extends RtThread {

 private SwEvent event;

 public Worker(int p, int t,
 SwEvent ev) {

 super(p, t);
 event = ev;
 init();
 }

 private void init() {
 // all initialzation stuff
 // has to be placed here
 }

 public void run() {

 for (;;) {
 work(); // do work
 event.fire(); // and fire
 // an event

 // wait for next period
 if (!waitForNextPeriod()) {
 missedDeadline();
 }
 }
 // should never reach
 // this point
 }
}

Real Time Java 26

Application Start
 // create an Event
 Handler h = new Handler(3, 1000);

 // create two worker threads with
 // priorities according to their periods
 FastWorker fw = new FastWorker(2, 2000);
 Worker w = new Worker(1, 10000, h);

 // change to mission phase for all
 // periodic threads and event handler
 RtThread.startMission();

 // do some non real-time work
 // and invoke sleep() or yield()
 for (;;) {
 watchdogBlink();
 Thread.sleep(500);
 }

Real Time Java 27

Garbage Collection?

  An essential part of Java
  Without GC it is a different computing

model
  RTSJ does not believe in real-time GC
  Real-time collectors evolve
  Active research area

  More on Wednesday

Real Time Java 28

Summary

  Real-time Java is emerging
  RTSJ defined by Sun
  Subsets: RJ, JOP-RT
  Real-time GC missing

Project Work

  Meet on Tu 14:00
  Wiki Entry
  2nd Example
  First Results

Real Time Java 29

