Microcode

O
@

Spartan
Cyclone



i The Project

= 4/5 programming languages
=« VHDL, Java, Microcode, C, (Verilog)
s 2648 files

s 498k LoC
= Java: 350k
= VHDL: 49k

= Microcode (.asm): 4k
= C: 4k

= 5 FPGA types, 9 target boards
= Docu: 19k LoC

JVMHW JOP Design Flow



i Don't Panic

= This complexity is not unusual
= Linux kernel: 6M LOC!
= There is a master Makefile
= A single target can be built
= Calls batch files
= Help
= Some documentation is available (pdf and web)
= e-mail to Schoeberl
= Yahoo! Groups : java-processor

JVMHW JOP Design Flow



= The hardware description of JOP
m dSIM

= The JVM in microcode
o java

= System sources (JVM, JDK)

= Target applications
= T0ols

JVMHW JOP Design Flow



i Directories cont.

= quartus
= Project files for Altera FPGA boards

= Each board and variation in its own
directory

n Xilinx
= Project files for Xilinx FPGA boards

JVMHW JOP Design Flow



i File Types

= Source
= .asm, .vhd, .java

= Generated
= JVM assembly: .vhd, .mif, .dat
= Quartus: .sof, ...
= JOPizer: .jop
= Configuration
= Project: Makefile, .bat
= Quartus: .gsf, .cdf

JVMHW JOP Design Flow



JVM

core.vhd

Synthesize
Quartus

FPGA config.
jop.sof

Configure

classes.zip

Hello.jop

- g
JVMHW JOP Design Flow



iJOP Startup

= FPGA configuration
= ByteBlaster download cable
= USB

= Flash on power up
« Watchdog -> PLD configures FPGA

= Java application
= Serial line
= USB
= Flash

JVMHW JOP Design Flow



i Startup Configuration

= FPGA configuration
=« PLD (MAX7064)
« ByteBlaster: cyc_conf_init.pof
« Flash: cyc_conf.pof

= Java application

= JVM (jvm.asm) on startup
= Loads the application (.jop)
= Defines download type
= Constants: FLASH, USB, SIMULATION

JVMHW JOP Design Flow



i Targets

= Top level defines FPGA type
= jopcyc.vhd
= jopcycl2.vhd
= jopacx.vhd

= IO top level defines board type
scio_min.vhd

scio_baseio.vhd

Sscio_dspio.vhd

JVMHW JOP Design Flow



i JVM + Library

= JVM
= Microcode (jvm.asm)
= Java (JVM.java, Startup.java, GC.java)

= Library
= JOP specific: util, ejip, joprt
» JDK: System, String, ...

JVMHW JOP Design Flow

11



i Native Functions

= Bridge between Java and the HW
= Memory, 10 access
= Register, stack cache

= Special bytecode
= Implemented in microcode
= Translated by JOPizer

= Define in:
= jvm.asm

= com.jopdesign.sys.Native.java
= com.jopdesign.tools.JoplInstr.java

JVMHW JOP Design Flow

12



i Simulation

= VHDL with ModelSim

= HW related changes
= Testbench reads the memory content

= High level with JopSim
= System debugging (e.g. GC)

= Reads .jop files
= AJVM In Java

= Board simulation

JVMHW JOP Design Flow

13



iSummary

= Modules
=« JOP — VHDL files
= JVM — Microcode + Java
= Application — Java

= Build

= Jopa, Quartus -> FPGA configuration file (.sof)
= javac, JOPizer -> Java application file (.jop)
= Makefile + Batchfiles

JVMHW JOP Design Flow

14



iMore Information

= Chapter 2 in the handbook
x An Introduction to the Design Flow for

JOP

JVMHW JOP Design Flow

15



i Next Lecture

= Topic: The Java Virtual Machine
= We 9.6.2010, 10:00, Room 030

= Recommended preparation:
= JOP Thesis: p 7-16, p 55-64, JOPThesis
=« Handbook: p 35-46

= Look into a very simple JVM e.q.:
= JopSim.java (in java/tools/src/com/jop...)
» http://www.jopdesign.com/download.jsp
= Disassemble simple Java files with javap

JVMHW JOP Design Flow 16




= Starts today in Databar 229

= Do preparation examples
= Build JOP and change simple things

= Start to think about the project
= See you at 13:00!

JVMHW JOP Design Flow

17



