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Materials (scattering and absorption of light)

I Optical properties (index of refraction, n(λ) = n′(λ) + i n′′(λ)).

I Reflectance distribution functions, S(xi , ~ωi ; xo , ~ωo).
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Subsurface scattering

I Behind the rendering equation [Nicodemus et al. 1977]:

dLr (xo , ~ωo)

dΦi (xi , ~ωi )
= S(xi , ~ωi ; xo , ~ωo) . xi xo

n1

n2

I An element of reflected radiance dLr is proportional to an
element of incident flux dΦi .

I S (the BSSRDF) is the factor of proportionality.

I Using the definition of radiance L =
d2Φ

cos θ dA dω
, we have

Lr (xo , ~ωo) =

∫

A

∫

2π
S(xi , ~ωi ; xo , ~ωo)Li (xi , ~ωi ) cos θ dωi dA .
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BRDF BSSRDF
[Jensen et al. 2001]



[Donner and Jensen 2006]



Splitting up the BSSRDF

I Bidirectional Scattering-Surface Reflectance Distribution
Function: S = S(xi , ~ωi ; xo , ~ωo) .

I Away from sources and boundaries, we can use diffusion.

I Splitting up the BSSRDF

S = T12(S (0) + S (1) + Sd)T21 .

where
I T12 and T21 are Fresnel transmittance terms (using ~ωi , ~ωo).
I S (0) is the direct transmission part (using Dirac δ-functions).
I S (1) is the single scattering part (using all arguments).
I Sd is the diffusive part (multiple scattering, using |xo − xi |).

I We distribute the single scattering to the other terms using
the delta-Eddington approximation:

S = T12(SδE + Sd)T21 ,

and generalize the model such that Sd = Sd(xi , ~ωi ; xo).



Diffusion theory

I Think of multiple scattering as a diffusion process.

I In diffusion theory, we use quantities that describe the light
field in an element of volume of the scattering medium.

I Total flux, or fluence, is defined by

φ(x) =

∫

4π
L(x, ~ω) dω .
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z

x
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I We find an expression for φ by solving the diffusion equation

(D∇2 − σa)φ(x) = −q(x) + 3D∇·Q(x) ,

where σa and D are absorption and diffusion coefficients,
while q and Q are zeroth and first order source terms.



Deriving a BSSRDF

I Assume that emerging light is diffuse due to a large number
of scattering events: Sd(xi , ~ωi ; xo , ~ωo) = Sd(xi , ~ωi ; xo).

I Integrating emerging diffuse radiance over outgoing directions,
we find

Sd =
Cφ(η)φ− CE(η)D ~no ·∇φ

Φ 4πCφ(1/η)
,

where
I Φ is the flux entering the medium at xi .
I ~no is the surface normal at the point of emergence xo .
I Cφ and CE depend on the relative index of refraction η and are

polynomial fits of different hemispherical integrals of the
Fresnel transmittance.

I This connects the BSSRDF and the diffusion theory.

I To get an analytical model, we use a special case solution for
the diffusion equation (an expression for φ).

I Then, “all” we need to do is to find ∇φ (do the math) and
deal with boundary conditions (build a plausible model).



Point source diffusion or ray source diffusion

standard dipole

I Point source diffusion
[Bothe 1941; 1942]

φ(r) = Φ
4πD

e−σtrr

r ,

where r = |xo − xi | and
σtr =

√
σa/D is the

effective transport
coefficient.

our model

I Ray source diffusion
[Menon et al. 2005a; 2005b]

φ(r , θ) = Φ
4πD

e−σtrr

r(
1 + 3D 1+σtrr

r cos θ
)
,

where θ is the angle
between the refracted ray
and xo − xi .



Our BSSRDF when disregarding the boundary

d

I Using x = xo − xi , r = |x|, cos θ = x · ~ω12/r , we take the
gradient of φ(r , θ) (the expression for ray source diffusion)
and insert to find

S ′
d(x, ~ω12, r) = 1

4Cφ(1/η)
1

4π2
e−σtrr

r3

[
Cφ(η)

(
r2

D + 3(1 + σtrr) x · ~ω12

)

− CE(η)

(
3D(1 + σtrr) ~ω12 · ~no −

(
(1 + σtrr) + 3D 3(1+σtrr)+(σtrr)2

r2 x · ~ω12

)
x · ~no

)]
,

which would be the BSSRDF if we neglect the boundary.



Dipole configuration (method of mirror images)

d

I We place the “real” ray source at the boundary and reflect it
in an extrapolated boundary to place the “virtual” ray source.

I Distance to the extrapolated boundary [Davison 1958]:

de = 2.131D/
√

1− 3Dσa .

I In case of a refractive boundary (η1 6= η2), the distance is

Ade with A =
1− CE(η)

2Cφ(η)
.



Modified tangent plane

d

I The dipole assumes a semi-infinite medium.

I We assume that the boundary contains the vector xo − xi and
that it is perpendicular to the plane spanned by ~ni and xo − xi .

I The normal of the assumed boundary plane is then

~n ∗i =
xo − xi
|xo − xi |

× ~ni × (xo − xi )

|~ni × (xo − xi )|
, or ~n ∗i = ~ni if xo = xi .

and the virtual source is given by

xv = xi + 2Ade~n
∗
i , dv = |xv −xi | , ~ωv = ~ω12−2(~ω12 ·~n ∗i )~n ∗i .



Distance to the real source (handling the singularity)
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I Emergent radiance is an integral over z of a Hankel transform
of a Green function which is Fourier transformed in x and y .

I Approximate analytic evaluation is possible if r is corrected to

R2 = r2 + (z ′ + de)2 .

I The resulting model for z ′ = 0 corresponds to the standard
dipole where z ′ = zr and de is replaced by the virtual source.



Distance to the real source (handling the singularity)
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I Since we neither have normal incidence nor xo in the tangent
plane, we modify the distance correction:

R2 = r2 + z ′2 + d2
e − 2z ′de cosβ .

I It is possible to reformulate the integral over z to an integral
along the refracted ray.

I We can approximate this integral by choosing an offset D∗

along the refracted ray. Then z ′ = D∗| cos θ0|.



Our BSSRDF when considering boundary conditions

I Our final distance to the real source becomes

d2
r =

{
r2 + Dµ0(Dµ0 − 2de cosβ) for µ0 > 0 (frontlit)
r2 + 1/(3σt)

2 otherwise (backlit) ,

with µ0 = cos θ0 = −~no · ~ω12 and

cosβ = − sin θ
r√

r2 + d2
e

= −
√

r2 − (x · ω12)2

r2 + d2
e

.

I The diffusive part of our BSSRDF is then

Sd(xi , ~ωi ; xo) = S ′d(xo − xi , ~ω12, dr )− S ′d(xo − xv , ~ωv , dv ) ,

while the full BSSRDF is as before:

S = T12(SδE + Sd)T21 .



Previous Models

I Previous models are based on the point source solution of the
diffusion equation and have the problems listed below.

1. Ignore incoming light direction:
I Standard dipole [Jensen et al. 2001].
I Multipole [Donner and Jensen 2005].
I Quantized diffusion [d’Eon and Irving 2011].

2. Require precomputation:
I Precomputed BSSRDF [Donner et al. 2009, Yan et al. 2012].

3. Rely on numerical integration:
I Photon diffusion [Donner and Jensen 2007, Habel et al. 2013].

I Using ray source diffusion, we can get rid of those problems.
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Results (marble Bunnies)
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Results (Simple Scene)

I Path traced single scattering
was added to the existing
models but not to ours.

I Faded bars show quality
measurements when single
scattering is not added.

I The four leftmost materials
scatter light isotropically.
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Results (2D plots, 30◦ Oblique Incidence)

quantized ours

I Our model is significantly different
I when the angle of incidence changes
I when the direction toward the point of emergence changes.



Results (2D plots, 45◦ Oblique Incidence)

quantized ours

I Our model is significantly different
I when the angle of incidence changes
I when the direction toward the point of emergence changes.



Results (2D plots, 60◦ Oblique Incidence)

quantized ours

I Our model is significantly different
I when the angle of incidence changes
I when the direction toward the point of emergence changes.



Results (Diffuse Reflectance Curves)
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I Our model comes closer than the existing analytical models to
measured and simulated diffuse reflectance curves.



Results (Image Based Lighting)

quantized ours



The 3Shape Buddha! (scanned with a TRIOS Scanner)
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Conclusion

I First BSSRDF which. . .
I Considers the direction of the incident light.
I Requires no precomputation.
I Provides a fully analytical solution.

I Much more accurate than previous models.

I Incorporates single scattering in the analytical model.

I Future work:
I Consider the direction of the emergent light.
I Real-time approximations.
I Directional multipole and quadpole extensions.
I Directional photon diffusion.
I Anisotropic media (skewed dipole).


