Material appearance modeling \& rendering

3DV Tutorial:
Methods for photographic radiometry, modelling of light transport and material appearance

Jeppe Revall Frisvad

September 2018

Building blocks of realistic rendering

- Think of the experiment: "taking a picture".
- What do we need to model it?
- Camera (light sensor).
- Light (light transport).
- Objects (scene geometry).
- Luminaires (light sources).
- Materials (light scattering and absorption).
- To render an image, we need mathematical models for these elements.
- We can use very simple models:
- Pinhole camera (perspective, lines from a point).
- Ray optics (light propagates along straight lines).
- Mathematical primitives (planes, spheres, triangles).
- Practical lights (point, directional, spot).
- Lambertian materials (constant reflectance).
- If we desire a high level of realism, more complicated models are required.

Camera (light sensor)

- Basic camera components: light sensitive area, processing unit, digital storage.
- The simplest camera model is a rectangle, which models the light sensitive area (the chip/film), placed in front of an eye point where light is gathered.

- We can use this modified pinhole camera model in two ways:
- Follow rays from the eye point through the rectangle and onwards (ray tracing).
- Project the geometry on the image plane and find the geometry that ends up in the rectangle (rasterization).

Ray tracing motivation

- 74 minutes in the original ray tracing paper of Turner Whitted [1980].
- More than 300 frames per second using GPU ray tracing in 2012.
- That's a 6 orders of magnitude speed-up! (Beats Moore's law.)

$$
\begin{aligned}
& 74 \cdot 60 /(1 / 300)=1,332,000 \\
& 2^{(2012-1980) / 2}=2^{16}=65,536
\end{aligned}
$$

- Ray tracing is now widely spread in production rendering.
- Latest GPUs support this with dedicated ray tracing cores!

References

- Whitted, T. An improved illumination model for shaded display. Communications of the ACM 23(6), pp. 343-349, June 1980.
- Parker, S. G., Bigler, J., Dietrich, A., Friedrich, H., Hoberock, J., Luebke, D., McAllister, D., McGuire, M., Morley, K., Robison, A., and Stich, M. OptiX: a general purpose ray tracing engine. ACM Transactions on Graphics 29(4), pp. 66:1-66:13, July 2010.

Light (light transport)

- Visible light is electromagnetic waves of wavelengths (λ) from 380 nm to 780 nm .

- Electromagnetic waves propagate as rays of light for $\lambda \rightarrow 0$.
- Rays of light follow the path of least time (Fermat): straight line segments.
- The parametrisation of a straight line in 3D is therefore a good, simple model for light transport: $\quad \boldsymbol{r}(t)=\boldsymbol{o}+t \vec{\omega}, \quad t \in\left[t_{\min }, t_{\max }\right], \quad t_{\max }>t_{\min }>0$.

The light sensitive Charge-Coupled Device (CCD) chip

- A CCD chip is an array of light sensitive cavities.
- A digital camera therefore has a resolution $W \times H$ measured in number of pixels.
- A pixel corresponds to a small area on the chip.
- Several light sensitive cavities contribute to each pixel because the light measurement is divided into red, green, and blue.
- Conversion from this colour pattern to an RGB image is called demosaicing.

Ray generation

- Camera description:

Extrinsic parameters		Intrinsic parameters	
\boldsymbol{e}	Eye point	ϕ	Vertical field of view
\boldsymbol{p}	View point	d	Camera constant
\vec{u}	Up direction	W,H	Camera resolution

- Sketch of ray generation:

- Given pixel index (i, j), we find the direction $\vec{\omega}$ of a ray through that pixel.

Objects (scene geometry)

- Surface geometry is often modelled by a collection of triangles, where some of them share edges (a triangle mesh).
- Triangles provide a discrete representation of an arbitrary surface.

Teapot example:

wireframe

faces

shaded

- Triangles are useful as they are defined by only three vertices.

And ray-triangle intersection is simple.

Ray-triangle intersection

- Ray: $\boldsymbol{r}(t)=\boldsymbol{o}+t \vec{\omega}, t \in\left[t_{\text {min }}, t_{\max }\right]$.
- Triangle: $\boldsymbol{v}_{0}, \boldsymbol{v}_{1}, \boldsymbol{v}_{2}$.
- Edges and normal:

$$
\boldsymbol{e}_{0}=\boldsymbol{v}_{1}-\boldsymbol{v}_{0}, \boldsymbol{e}_{1}=\boldsymbol{v}_{0}-\boldsymbol{v}_{2}, \boldsymbol{n}=\boldsymbol{e}_{0} \times \boldsymbol{e}_{1} .
$$

- Barycentric coordinates:

$$
\begin{aligned}
\boldsymbol{r}(u, v, w) & =u \boldsymbol{v}_{0}+v \boldsymbol{v}_{1}+w \boldsymbol{v}_{\mathbf{2}}=(1-v-w) \boldsymbol{v}_{0}+v \boldsymbol{v}_{1}+w \boldsymbol{v}_{\mathbf{2}} \\
& =\boldsymbol{v}_{0}+v \boldsymbol{e}_{0}-w \boldsymbol{e}_{1}
\end{aligned}
$$

- The ray intersects the triangle's plane at $t^{\prime}=\frac{\left(\boldsymbol{v}_{0}-\boldsymbol{o}\right) \cdot \boldsymbol{n}}{\vec{\omega} \cdot \boldsymbol{n}}$.
- Find $\boldsymbol{r}\left(t^{\prime}\right)-\boldsymbol{v}_{0}$ and decompose it into portions along the edges \boldsymbol{e}_{0} and \boldsymbol{e}_{1} to get v and w. Then check

$$
v \geq 0 \quad, \quad w \geq 0 \quad, \quad v+w \leq 1
$$

Spatial subdivision

- To model arbitrary geometry with triangles, we need many triangles.
- A million triangles and a million pixels are common numbers.
- Testing all triangles for all pixels requires 10^{12} ray-triangle intersection tests.
- If we do a million tests per millisecond, it will still take more than 15 minutes.
- This is prohibitive. We need to find the relevant triangles.
- Spatial data structures offer logarithmic complexity instead of linear.
- A million tests become twenty operations $\left(\log _{2} 10^{6} \approx 20\right)$.
- 15 minutes become 20 milliseconds.

Luminaires (light sources)

- A light source is described by a spectrum of light $L_{e, \lambda}\left(\boldsymbol{x}, \vec{\omega}_{o}\right)$ which is emitted from each point on the emissive object.
- A simple model is a light source that from each point emits the same amount of light in all directions and at all wavelengths, $L_{e, \lambda}=$ const.
- The spectrum of heat-based light sources can be estimated using Planck's law of radiation. Examples:

- The surface geometry of light sources is modelled in the same way as other geometry in the scene.

Colorimetry (spectrum to RGB)

CIE color matching functions

The chromaticity diagram

$$
R=\int_{\mathscr{V}} C(\lambda) \bar{r}(\lambda) \mathrm{d} \lambda \quad, \quad G=\int_{\mathscr{V}} C(\lambda) \bar{g}(\lambda) \mathrm{d} \lambda \quad, \quad B=\int_{\mathscr{V}} C(\lambda) \bar{b}(\lambda) \mathrm{d} \lambda
$$

where \mathscr{V} is the interval of visible wavelengths and $C(\lambda)$ is the spectrum that we want to transform to RGB.

Materials (light scattering and absorption)

- Optical properties (index of refraction, $n(\lambda)=n^{\prime}(\lambda)+i n^{\prime \prime}(\lambda)$).
- Reflectance distribution functions, $S\left(\boldsymbol{x}_{i}, \vec{\omega}_{i} ; \boldsymbol{x}_{o}, \vec{\omega}_{o}\right)$.

Subsurface scattering

- Behind light reflecting from surfaces [Nicodemus et al. 1977]:

$$
\frac{\mathrm{d} L_{r}\left(\boldsymbol{x}_{o}, \vec{\omega}_{o}\right)}{\mathrm{d} \Phi_{i}\left(\boldsymbol{x}_{i}, \vec{\omega}_{i}\right)}=S\left(\boldsymbol{x}_{i}, \vec{\omega}_{i} ; \boldsymbol{x}_{o}, \vec{\omega}_{o}\right)
$$

- $\mathrm{d} L_{r}$ is an element of reflected radiance.
- $\mathrm{d} \Phi_{i}$ is an element of incident flux.
- S (the BSSRDF) is the factor of proportionality.

- Using the definition of radiance $L=\frac{d^{2} \Phi}{\cos \theta d A d \omega}$, we have

$$
L_{r}\left(\boldsymbol{x}_{o}, \vec{\omega}_{o}\right)=\int_{A} \int_{2 \pi} S\left(\boldsymbol{x}_{i}, \vec{\omega}_{i} ; \boldsymbol{x}_{o}, \vec{\omega}_{o}\right) L_{i}\left(\boldsymbol{x}_{i}, \vec{\omega}_{i}\right) \cos \theta_{i} \mathrm{~d} \omega_{i} \mathrm{~d} A_{i}
$$

The rendering equation

- When rendering surfaces, the equation we evaluate is [Kajiya 1986, Jensen et al. 2001]

$$
L_{o}\left(\boldsymbol{x}_{o}, \vec{\omega}_{o}\right)=L_{e}\left(\boldsymbol{x}_{o}, \vec{\omega}_{o}\right)+\int_{A} \int_{2 \pi} S\left(\boldsymbol{x}_{i}, \vec{\omega}_{i} ; \boldsymbol{x}_{o}, \vec{\omega}_{o}\right) L_{i}\left(\boldsymbol{x}_{i}, \vec{\omega}_{i}\right) \cos \theta_{i} \mathrm{~d} \omega_{i} \mathrm{~d} A_{i},
$$

where
L_{0} is outgoing radiance,
L_{e} is emitted radiance,
L_{i} is incoming radiance, x_{i}, x_{o} are the surface positions where light is incoming and outgoing,
$\vec{\omega}_{0}$ is the direction of the outgoing radiance,
$\vec{\omega}_{j}$ is the direction toward the light source,
S is the bidirectional scattering-surface reflectance distribution function (BSSRDF),
d ω_{i} is an element of solid angle,
θ_{i} is the angle between $\vec{\omega}_{i}$ and the surface normal \vec{n} at \boldsymbol{x}_{i}, such that $\cos \theta_{i}=\vec{\omega}_{i} \cdot \vec{n}$.

- Kajiya, J. The Rendering Equation. Computer Graphics (Proceedings of ACM SIGGRAPH 86) 20(4), pp. 143-150, 1986.
- Jensen, H. W., Marschner, S., Levoy, M., and Hanrahan, P. A practical model for subsurface light transport. In Proceedings of ACM SIGGRAPH 2001, pp. 511-518, 2001.

Monte Carlo integration

- The law of large numbers:

$$
\operatorname{Pr}\left\{\frac{1}{N} \sum_{i=1}^{N} f\left(X_{i}\right) \rightarrow E\{f(X)\}\right\}=1 \quad \text { for } \quad N \rightarrow \infty
$$

"It is certain that the estimator goes to the expected value as the number of samples goes to infinity."

- Approximating an arbitrary integral by stochastic sampling:

$$
F=\int_{A} f(x) \mathrm{d} x=\int_{A} \frac{f(x)}{\operatorname{pdf}(x)} \operatorname{pdf}(x) \mathrm{d} x=E\left\{\frac{f(X)}{\operatorname{pdf}(X)}\right\}
$$

Using the law of large numbers, we have the Nth estimator

$$
F_{N}=\frac{1}{N} \sum_{i=1}^{N} \frac{f\left(X_{i}\right)}{\operatorname{pdf}\left(X_{i}\right)}
$$

where X_{i} are sampled on A and $\operatorname{pdf}(x)>0$ for all $x \in A$.

An estimator for rendering

- The equation for reflected radiance:

$$
L_{r}\left(\boldsymbol{x}_{o}, \vec{\omega}_{o}\right)=\int_{A} \int_{2 \pi} S\left(\boldsymbol{x}_{i}, \vec{\omega}_{i} ; \boldsymbol{x}_{o}, \vec{\omega}_{o}\right) L_{i}\left(\boldsymbol{x}_{i}, \vec{\omega}_{i}\right) \cos \theta_{i} \mathrm{~d} \omega_{i} \mathrm{~d} A_{i}
$$

- The Monte Carlo estimator:

$$
L_{r, N, M}\left(\boldsymbol{x}_{o}, \vec{\omega}_{o}\right)=\frac{1}{N M} \sum_{p=1}^{M} \sum_{q=1}^{N} \frac{S\left(\boldsymbol{x}_{i, p}, \vec{\omega}_{i, q} ; \boldsymbol{x}_{o}, \vec{\omega}_{o}\right) L_{i}\left(\boldsymbol{x}_{i, p}, \vec{\omega}_{i, q}\right) \cos \theta_{i}}{\operatorname{pdf}\left(\boldsymbol{x}_{i, p}\right) \operatorname{pdf}\left(\vec{\omega}_{i, q}\right)}
$$

- Common direction sampling pdf (cosine-weighted hemisphere):

$$
\operatorname{pdf}\left(\vec{\omega}_{i, q}\right)=\frac{\vec{\omega}_{i, q} \cdot \vec{n}_{i}}{\pi}=\frac{\cos \theta_{i}}{\pi}
$$

- Common area sampling pdf (triangle mesh):

$$
\operatorname{pdf}\left(\boldsymbol{x}_{i, p}\right)=\operatorname{pdf}(\triangle) \operatorname{pdf}\left(\boldsymbol{x}_{i, p, \triangle}\right)=\frac{A_{\triangle}}{A_{\ell}} \frac{1}{A_{\triangle}}=\frac{1}{A_{\ell}}
$$

Tracing rays through a scene

Fig. 5. Some light rays (like A and E) never reach the image plane at all. Others follow simple or complicated routes.

Progressive unidirectional path tracing

1. Generate rays from the eye through pixel positions
2. Trace the rays and evaluate the rendering equation for each ray.
3. Randomize the position within the pixel area to Monte Carlo integrate (measure) the radiance arriving in a pixel.

- Path tracing is the idea of using $N=1$ in the Monte Carlo estimators for the reflected radiance to generate a path instead of a tree.
- Noise is reduced by progressive updates of the measurement.
- Update the rendering result in a pixel L_{j} after rendering a new frame with result $L_{\text {new }}$ using

$$
L_{j+1}=\frac{L_{\text {new }}+j L_{j}}{j+1}
$$

- Progressive (stop and go) rendering is convenient for several reasons:
- No need to start over.
- Result can be stored and refined later if need be.
- Convergence can be inspected during progressive updates.

Sampling a cosine-weighted hemisphere (ambient occlusion)

- Material:

$$
S\left(x_{i}, \vec{\omega}_{i} ; x_{o}, \vec{\omega}_{o}\right)=\frac{\rho_{d}\left(x_{o}\right)}{\pi} \delta\left(x_{o}-x_{i}\right) .
$$

- Sampler:

$$
\operatorname{pdf}\left(\vec{\omega}_{i, q}\right)=\frac{\vec{\omega}_{i, q} \cdot \vec{n}_{i}}{\pi}=\frac{\cos \theta_{i}}{\pi} .
$$

- Estimator:

$$
\begin{aligned}
& L_{r, N}\left(\boldsymbol{x}_{o}, \vec{\omega}_{o}\right) \\
& =\frac{1}{N} \sum_{q=1}^{N} \frac{\rho_{d}\left(\boldsymbol{x}_{o}\right)}{\pi} \frac{L_{i}\left(\boldsymbol{x}_{o}, \vec{\omega}_{i, q}\right) \cos \theta_{i}}{\operatorname{pdf}\left(\vec{\omega}_{i, q}\right)} \\
& =\rho_{d}\left(\boldsymbol{x}_{o}\right) \frac{1}{N} \sum_{q=1}^{M} L_{i}\left(\boldsymbol{x}_{o}, \vec{\omega}_{i, q}\right) .
\end{aligned}
$$

Sampling a triangle mesh (area lights, soft shadows)

- Material:

$$
S\left(\boldsymbol{x}_{i}, \vec{\omega}_{i} ; \boldsymbol{x}_{o}, \vec{\omega}_{o}\right)=\frac{\rho_{d}\left(\boldsymbol{x}_{o}\right)}{\pi} \delta\left(\boldsymbol{x}_{o}-\boldsymbol{x}_{i}\right) .
$$

- Sampler:

$$
\begin{aligned}
& \vec{\omega}_{i, q}=\frac{\boldsymbol{x}_{\ell, q}-\boldsymbol{x}_{i}}{\left\|\boldsymbol{x}_{\ell, q}-\boldsymbol{x}_{i}\right\|} \\
& \operatorname{pdf}\left(\boldsymbol{x}_{\ell, q}\right)=\operatorname{pdf}(\triangle) \operatorname{pdf}\left(\boldsymbol{x}_{\ell, q, \Delta}\right)=\frac{A_{\triangle}}{A_{\ell}} \frac{1}{A_{\triangle}} .
\end{aligned}
$$

- Estimator:

$$
\begin{aligned}
& L_{r, N}\left(\boldsymbol{x}_{o}, \vec{\omega}_{o}\right) \\
& =\frac{\rho_{d}\left(\boldsymbol{x}_{o}\right)}{\pi} \frac{1}{N} \sum_{q=1}^{N} L_{e}\left(\boldsymbol{x}_{\ell, q},-\vec{\omega}_{i, q}\right) V\left(\boldsymbol{x}_{\ell, q}, \boldsymbol{x}_{o}\right) \frac{\cos \theta_{i} \cos \theta_{\ell}}{\left\|\boldsymbol{x}_{\ell, q}-\boldsymbol{x}_{i}\right\|^{2}} A_{\ell} .
\end{aligned}
$$

Sampling for subsurface scattering

- Material:

$$
S\left(\boldsymbol{x}_{i}, \vec{\omega}_{i} ; \boldsymbol{x}_{o}, \vec{\omega}_{o}\right)=\ldots
$$

- Sampler:

$$
\begin{aligned}
\operatorname{pdf}\left(\vec{\omega}_{i, q}\right) & =\frac{\vec{\omega}_{i, q} \cdot \vec{n}_{i}}{\pi}=\frac{\cos \theta_{i}}{\pi} . \\
\operatorname{pdf}\left(\boldsymbol{x}_{i, p}\right) & =\operatorname{pdf}(\triangle) \operatorname{pdf}\left(\boldsymbol{x}_{i, p, \Delta}\right) \\
& =\frac{A_{\triangle}}{A_{\ell}} \frac{1}{A_{\triangle}}=\frac{1}{A_{\ell}} .
\end{aligned}
$$

References

- Frisvad, J. R., Hachisuka, T., and Kjeldsen, T. K. Directional dipole model for subsurface scattering. ACM Transactions on Graphics 34(1), pp. 5:1-5:12, November 2014. Presented at SIGGRAPH 2015.
- Dal Corso, A., and Frisvad, J. R. Point cloud method for rendering BSSRDFs. Technical Report, Technical University of Denmark, 2018.

Analytical models for subsurface scattering

standard dipole

directional dipole

$$
\begin{array}{ll}
S\left(\boldsymbol{x}_{i}, \vec{\omega}_{i} ; \boldsymbol{x}_{o}, \vec{\omega}_{o}\right) & S\left(\boldsymbol{x}_{i}, \vec{\omega}_{i} ; \boldsymbol{x}_{o}, \vec{\omega}_{o}\right) \\
=T_{12}\left(\vec{\omega}_{i}\right)\left(S_{1}+S_{d}\left(\left\|\boldsymbol{x}_{o}-\boldsymbol{x}_{i}\right\|\right)\right) T_{21}\left(\vec{\omega}_{o}\right) . & =T_{12}\left(\vec{\omega}_{i}\right)\left(S_{\delta E}+S_{d}\left(\boldsymbol{x}_{i}, \vec{\omega}_{i} ; \boldsymbol{x}_{o}\right)\right) T_{21}\left(\vec{\omega}_{o}\right) .
\end{array}
$$

- Directions $\left(\vec{\omega}_{i}, \vec{\omega}_{o}\right)$ also require surface normals $\left(\vec{n}_{i}, \vec{n}_{o}\right)$ to get angles $\left(\theta_{i}, \theta_{o}\right)$.
- T_{12} and T_{21} are Fresnel transmittances.
- S_{1} and $S_{\delta E}$ are fully directional (depend on $\boldsymbol{x}_{i}, \vec{\omega}_{i}, \boldsymbol{x}_{o}, \vec{\omega}_{o}$, and normals).

Diffusive part of the standard dipole

$$
S_{d}(r)=\frac{\alpha^{\prime}}{4 \pi^{2}}\left(\frac{\left(z_{r}\left(1+\sigma_{\mathrm{tr}} d_{r}\right) e^{-\sigma_{\mathrm{tr}} d_{r}}\right.}{d_{r}^{3}}+\frac{z_{v}\left(1+\sigma_{\mathrm{tr}} d_{v}\right) e^{-\sigma_{\mathrm{tr}} d_{v}}}{d_{v}^{3}}\right)
$$

- Distances:
- $z_{r}=\Lambda$.
- $z_{v}=\Lambda+4 A D$.
- $d_{r}(r)=\sqrt{r^{2}+z_{r}^{2}}$.
- $d_{v}(r)=\sqrt{r^{2}+z_{v}^{2}}$.
- Optical properties $\left(\eta=n_{2} / n_{1}, \sigma_{s}, \sigma_{a}, g\right)$:
- Reduced scattering coefficient: $\sigma_{s}^{\prime}=\sigma_{s}(1-g)$.
- Reduced extinction coefficient: $\sigma_{t}^{\prime}=\sigma_{s}^{\prime}+\sigma_{a}$.
- Reduced scattering albedo: $\alpha^{\prime}=\sigma_{s}^{\prime} / \sigma_{t}^{\prime}$.
- Transport mean free path: $\Lambda=1 / \sigma_{t}^{\prime}$.

- Diffusion coefficient: $D=\Lambda / 3$.
- Transport coefficient: $\sigma_{\mathrm{tr}}=\sqrt{\sigma_{a} / D}$.
- Reflection parameter: $A(\eta)$ (ratio of polynomial fits).

Diffusive part of the directional dipole

$$
S_{d}\left(\boldsymbol{x}_{i}, \vec{\omega}_{i} ; \boldsymbol{x}_{o}\right)=S_{d}^{\prime}\left(\boldsymbol{x}_{o}-\boldsymbol{x}_{i}, \vec{\omega}_{12}, d_{r}\right)-S_{d}^{\prime}\left(\boldsymbol{x}_{o}-\boldsymbol{x}_{v}, \vec{\omega}_{v}, d_{v}\right)
$$

- Real source:
$-\vec{\omega}_{12}=\eta^{-1}\left(\left(\vec{\omega}_{i} \cdot \vec{n}_{i}\right) \vec{n}_{i}-\vec{\omega}_{i}\right)-\vec{n}_{i} \sqrt{1-\eta^{-2}\left(1-\left(\vec{\omega}_{i} \cdot \vec{n}_{i}\right)^{2}\right)}$.
- $d_{r}^{2}= \begin{cases}\left\|\boldsymbol{x}_{o}-\boldsymbol{x}_{i}\right\|^{2}+D \mu_{0}\left(D \mu_{0}-2 d_{e} \cos \beta\right) & \text { for } \mu_{0}>0 \\ \left\|\boldsymbol{x}_{o}-\boldsymbol{x}_{i}\right\|^{2}+1 /\left(3 \sigma_{t}\right)^{2} & \text { otherwise },\end{cases}$
with $\mu_{0}=\cos \theta_{0}=-\vec{n}_{o} \cdot \vec{\omega}_{12}$
and $\cos \beta=-\sqrt{\frac{r^{2}-\left(\boldsymbol{x} \cdot \omega_{12}\right)^{2}}{r^{2}+d_{e}^{2}}}$.
- Virtual source:
- Modified normal:

$$
\vec{n}_{i}^{*}=\frac{x_{o}-x_{i}}{\left\|x_{o}-x_{i}\right\|} \times \frac{\vec{n}_{i} \times\left(x_{o}-x_{i}\right)}{\left\|\vec{n}_{i} \times\left(x_{o}-x_{i}\right)\right\|},
$$

$$
\text { or } \vec{n}_{i}^{*}=\vec{n}_{i} \text { if } \boldsymbol{x}_{o}=\boldsymbol{x}_{i}
$$

$>x_{v}=x_{i}+2 A d_{e} \vec{n}_{i}^{*}, \quad d_{v}=\left|x_{v}-x_{i}\right|, \quad \vec{\omega}_{v}=\vec{\omega}_{12}-2\left(\vec{\omega}_{12} \cdot \vec{n}_{i}^{*}\right) \vec{n}_{i}^{*}$.

Directional subsurface scattering when disregarding the boundary

$$
\begin{aligned}
& S_{d}^{\prime}\left(\boldsymbol{x}, \vec{\omega}_{12}, r\right)=\frac{1}{4 C_{\phi}(1 / \eta)} \frac{1}{4 \pi^{2}} \frac{e^{-\sigma_{\mathrm{tr} r}}}{r^{3}}\left[C_{\phi}(\eta)\left(\frac{r^{2}}{D}+3\left(1+\sigma_{\mathrm{tr}} r\right) \boldsymbol{x} \cdot \vec{\omega}_{12}\right)\right. \\
& \left.-C_{\boldsymbol{E}}(\eta)\left(3 D\left(1+\sigma_{\mathrm{tr}} r\right) \vec{\omega}_{12} \cdot \vec{n}_{o}-\left(\left(1+\sigma_{\mathrm{tr}} r\right)+3 D \frac{3\left(1+\sigma_{\mathrm{tr}} r\right)+\left(\sigma_{\mathrm{tr}} r\right)^{2}}{r^{2}} \boldsymbol{x} \cdot \vec{\omega}_{12}\right) \boldsymbol{x} \cdot \vec{n}_{o}\right)\right]
\end{aligned}
$$

where $C_{\phi}(\eta)$ and $C_{E}(\eta)$ are polynomial fits.

- Additional dependencies:
- Normal: \vec{n}_{0}.
- Optical properites: $\eta, D, \sigma_{\mathrm{tr}}$.
- Note the exponential term: $e^{-\sigma_{\mathrm{tr}} r}$.
- Normal incidence: $\vec{\omega}_{12} \cdot \vec{n}_{O}= \pm 1$.
- Plane (half-space): $\boldsymbol{x} \cdot \vec{n}_{o} \approx 0$.
- normal incidence on plane: $\boldsymbol{x} \cdot \vec{\omega}_{12} \approx 0$.

- $r \rightarrow\left\|x_{o}-x_{i}\right\|$ for $\left\|x_{o}-x_{i}\right\| \rightarrow \infty$.

Rejection control

- The exponential attenuation $e^{-\sigma_{\mathrm{tr}} d}$ appears in all analytical BSSRDFs and $d \rightarrow\left\|x_{o}-x_{i}\right\|$ for $\left\|x_{o}-x_{i}\right\| \rightarrow \infty$.
- We should exploit this.
- Russian roulette:
sample $\xi \in[0,1]$ uniformly; if $\left(\xi<P_{1}\right)$
call event 1 ;
divide by p_{1};
else if $\left(\xi<P_{2}\right)$
call event 2;
divide by p_{2};
else if $\left(\xi<P_{3}\right)$
else if $\left(\xi<P_{4}\right)$

- When sampling \boldsymbol{x}_{i}, use Russian roulette with $p_{1}\left(\boldsymbol{x}_{i}\right)=P_{1}\left(\boldsymbol{x}_{i}\right)=e^{-\sigma_{\mathrm{tr}}\left\|\boldsymbol{x}_{o}-\boldsymbol{x}_{i}\right\|}$ to accept or reject a sample.

Progressive rendering of subsurface scattering

- The equation for reflected radiance:

$$
L_{r}\left(\boldsymbol{x}_{o}, \vec{\omega}_{o}\right)=\int_{A} \int_{2 \pi} S\left(\boldsymbol{x}_{i}, \vec{\omega}_{i} ; \boldsymbol{x}_{o}, \vec{\omega}_{o}\right) L_{i}\left(\boldsymbol{x}_{i}, \vec{\omega}_{i}\right) \cos \theta_{i} \mathrm{~d} \omega_{i} \mathrm{~d} A_{i}
$$

- Initialize a frame by storing samples of transmitted light.
- For each sample:
- Sample a point ($\boldsymbol{x}_{i, p}$) on the surface of the scattering material by sampling a random triangle and then a random point in the triangle: $\operatorname{pdf}\left(\boldsymbol{x}_{i, p}\right)=1 / A_{\ell}$.
- Sample a ray direction $\vec{\omega}_{i, q}$ using a cosine-weighted hemisphere and trace they ray to collect incident light $L_{i}: \operatorname{pdf}\left(\vec{\omega}_{i, q}\right)=\cos \theta_{i} / \pi$.
- Use $\vec{\omega}_{i, q}$ to find the direction of the transmitted/refracted ray and the Fresnel transmittance T_{12}.
- Store the transmitted radiance: $L_{t}=\frac{T_{12} L_{i} \cos \theta_{i}}{\operatorname{pdf}\left(\boldsymbol{x}_{i, p}\right) \operatorname{pdf}\left(\vec{\omega}_{i, q}\right)}=T_{12} L_{i} \pi A_{\ell}$.

Progressive rendering of subsurface scattering

- The equation for reflected radiance:

$$
L_{r}\left(\boldsymbol{x}_{o}, \vec{\omega}_{o}\right)=\int_{A} \int_{2 \pi} S\left(\boldsymbol{x}_{i}, \vec{\omega}_{i} ; \boldsymbol{x}_{o}, \vec{\omega}_{o}\right) L_{i}\left(\boldsymbol{x}_{i}, \vec{\omega}_{i}\right) \cos \theta_{i} \mathrm{~d} \omega_{i} \mathrm{~d} A_{i} .
$$

- For a ray hitting x_{o} with direction $-\vec{\omega}_{0}$:
- Compute Fresnel transmittance T_{21} of the ray refracting from inside to $\vec{\omega}_{0}$.
- Loop through the NM samples using exponential distance attenuation as the probability of acceptance in a Russian roulette (rejection control).
- Use L_{t} of accepted samples and T_{21} together with the analytical expression for S to Monte Carlo integrate the rendering equation.
- The Monte Carlo estimator for the diffusive part is (we use $N=1$):

$$
\begin{aligned}
L_{d, N, M}\left(\boldsymbol{x}_{o}, \vec{\omega}_{o}\right) & =\frac{1}{N M} \sum_{p=1}^{M} \sum_{q=1}^{N} \frac{S\left(\boldsymbol{x}_{i, p}, \vec{\omega}_{i, q} ; \boldsymbol{x}_{o}, \vec{\omega}_{o}\right) L_{i}\left(\boldsymbol{x}_{i, p}, \vec{\omega}_{i, q}\right) \cos \theta_{i}}{\operatorname{pdf}\left(\boldsymbol{x}_{i, p}\right) \operatorname{pdf}\left(\vec{\omega}_{i, q}\right)} \\
& =\frac{T_{21}}{N M} \sum_{p=1}^{M} \sum_{q=1}^{N} \frac{S_{d}\left(\boldsymbol{x}_{i, p}, \vec{\omega}_{i, q} ; \boldsymbol{x}_{o}, \vec{\omega}_{o}\right) T_{12} L_{i}\left(\boldsymbol{x}_{i, p}, \vec{\omega}_{i, q}\right) \pi A_{\ell}}{e^{-\sigma_{\mathrm{tr}}\left\|\boldsymbol{x}_{o}-\boldsymbol{x}_{i, p}\right\|}}\left[\xi<e^{-\sigma_{\mathrm{tr}}\left\|\boldsymbol{x}_{o}-\boldsymbol{x}_{i, p}\right\|}\right] .
\end{aligned}
$$

The input challenge

- Light transport simulation has come a long way, but renderings can only be as realistic/accurate as the input parameters permit.
- How do we get plausible input parameters?
- Modelling (example: light scattering by particles).
- Measuring (example: diffuse reflectance spectroscopy).
- Suppose we would like to go beyond visual comparison.
- How do we assess the appearance produced by a given set of input parameters?
- Full digitization of a scene.
- Reference photographs from known camera positions.
- Pixelwise comparison of renderings with photographs.

Light-material interaction in a volume

- Events as we move along a ray traveling through a translucent material:
- Some light is absorbed.
- Some light scatters away (out-scattering).
- Some light scatters back into the line of sight (in-scattering). (absorption + out-scattering $=$ extinction)
- The optical properties of such a medium are
n index of refraction ($n=n^{\prime}+i n^{\prime \prime}$): speed of light (n^{\prime}) and absorption ($n^{\prime \prime}$).
σ_{s} scattering coefficient $\left[\mathrm{m}^{-1}\right]$: amount of scattering as we move along a ray.
p phase function $\left[\mathrm{sr}^{-1}\right.$]: directional distribution of the scattered light.
ε emission properties [$\mathrm{W} \mathrm{sr}^{-1} \mathrm{~m}^{-3}$] (radiance per meter).
- And then surface roughness. Other properties are derived quantities. For example:
σ_{a} absorption coefficient $\left[\mathrm{m}^{-1}\right]: \sigma_{a}=4 \pi n^{\prime \prime} / \lambda$.
σ_{t} extinction coefficient [m^{-1}]: $\sigma_{t}=\sigma_{a}+\sigma_{s}$.
g asymmetry parameter: $g=\int_{4 \pi} p\left(\vec{\omega}_{i}, \vec{\omega}_{o}\right)\left(\vec{\omega}_{i} \cdot \vec{\omega}_{o}\right) \mathrm{d} \omega_{i}$.
- How to compute scattering properties from the particle composition of a material?

Modelling appearance using light scattering by particles

References
Lorenz, L. Lysbevægelser i og uden for en af plane Lysbølger belyst Kugle. Det kongelige danske Videnskabernes Selskabs Skrifter. 6. Række, naturvidenskabelig og mathematisk Afdeling VI. pp. 1-62, 1890.

- Mie, G. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Annalen der Physik 25(3), pp. 377-445. IV. Folge. 1908.

Scattering by spherical particles

- The Lorenz-Mie theory:

$$
\begin{aligned}
p(\theta) & =\frac{\left|S_{1}(\theta)\right|^{2}+\left|S_{2}(\theta)\right|^{2}}{2|k|^{2} C_{s}} \\
S_{1}(\theta) & =\sum_{n=1}^{\infty} \frac{2 n+1}{n(n+1)}\left(a_{n} \pi_{n}(\cos \theta)+b_{n} \tau_{n}(\cos \theta)\right) \\
S_{2}(\theta) & =\sum_{n=1}^{\infty} \frac{2 n+1}{n(n+1)}\left(a_{n} \tau_{n}(\cos \theta)+b_{n} \pi_{n}(\cos \theta)\right) .
\end{aligned}
$$

- a_{n} and b_{n} are Lorenz-Mie coefficients (of particle size, refractive indices, and wavelength).
- π_{n} and τ_{n} are spherical functions associated with the Legendre polynomials.

Quantity of scattering

- Lorenz-Mie theory continued:

The scattering and extinction cross sections of a particle:

$$
\begin{aligned}
& C_{s}=\frac{\lambda^{2}}{2 \pi\left|n_{\mathrm{med}}\right|^{2}} \sum_{n=1}^{\infty}(2 n+1)\left(\left|a_{n}\right|^{2}+\left|b_{n}\right|^{2}\right) \\
& C_{t}=\frac{\lambda^{2}}{2 \pi} \sum_{n=1}^{\infty}(2 n+1) \operatorname{Re}\left(\frac{a_{n}+b_{n}}{n_{\mathrm{med}}{ }^{2}}\right)
\end{aligned}
$$

Bulk optical properties of a material

- Input is the desired volume fraction of a component v and a representative number density distribution \hat{N}. We have

$$
\hat{v}=\frac{4 \pi}{3} \int_{r_{\min }}^{r_{\max }} r^{3} \hat{N}(r) \mathrm{d} r,
$$

and then the desired distribution is $N=\hat{N} v / \hat{v}$.

- Use this to find the bulk properties σ_{s} (and σ_{t} likewise)

$$
\sigma_{s}=\int_{r_{\text {min }}}^{r_{\text {max }}} C_{s}(r) N(r) \mathrm{d} r .
$$

Computing scattering properties

- Input needed for computing scattering properties:
- Particle composition (volume fractions, particle shapes).
- Refractive index for host medium $n_{\text {med }}$.
- Refractive index for each particle type n_{p}.
- Size distribution for each particle type (N).
- Lorenz-Mie theory uses a series expansion. How many terms should we include?
- Number of terms to sum $M=\left\lceil|x|+p|x|^{1 / 3}+1\right\rceil$.
- Empirically justified [Wiscombe 1980, Mackowski et al. 1990].
- Theoretically justified [Cachorro and Salcedo 1991].
- For a maximum error of 10^{-8}, use $p=4.3$.
- Code for evaluating the expansions in the Lorenz-Mie theory is available online [Frisvad et al. 2007]: http://people.compute.dtu.dk/jerf/code/

References

- Frisvad, J. R., Christensen, N. J., and Jensen, H. W. Computing the scattering properties of participating media using Lorenz-Mie theory. ACM Transactions on Graphics 26(3), pp. 60:1-60:10, July 2007.

Case study: milk

- Refractive index of host: water + dissolved vitamin B2.
- Fat and protein contents: user input in wt.- $\%$.
- Refractive index of milk fat and casein: measured spectra.
- Shape of fat globules and casein micelles: spheres and a volume to surface area ratio.
- Size distributions: log-normal with mean depending on fat content and homogenization pressure.

Measurements used for the milk model

- Refractive indices:

- Particle size distributions:

Predicting appearance based on a content declaration

- Vitamin B2 content: $0.17 \mathrm{mg} / 100 \mathrm{~g}$
- Protein content: $3 \mathrm{~g} / 100 \mathrm{~g}$
- Fat content: 0.1 g (skimmed), 1.5 g (low fat), 3.5 g (whole) / 100 g
- Homogenization pressure: 0 MPa (model: [0,50] MPa)

References
Frisvad, J. R., Christensen, N. J., and Jensen, H. W. Computing the scattering properties of participating media using Lorenz-Mie theory. ACM Transactions on Graphics 26(3), pp. 60:1-60:10, July 2007.

Predicting appearance

Scene

Light: Bowens BW3370 100W Unilite (6400K)

Backdrop: white cardboard

rendering photograph

- Digital scene modeled by hand to match physical scene (as best we could)

Simplistic model validation

- Camera
- Tripod
- Laser pointer
- Cup (use black cup)

Laser in skimmed milk - photo
Laser in skimmed milk - computed

Diffuse reflectance: photo (blue), computed (green)

Diffuse reflectance: photo (blue), computed (green)

Amount of scattering as a function of milk fat content

Measuring scattering properties using diffuse reflectance spectroscopy

References

- Abildgaard, O. H. A., Kamran, F., Dahl, A. B., Skytte, J. L., Nielsen, F. D., Thomsen, C. L., Andersen, P. E., Larsen, R., and Frisvad, J. R. Non-invasive assessment of dairy products using spatially resolved diffuse reflectance spectroscopy. Applied Spectroscopy 69(9), pp. 1096-1105, September 2015.

Using measured scattering properties for product analysis

inferring milk fermentation (apparent particle size distribution)

References

- Abildgaard, O. H. A., Frisvad, J. R., Falster, V., Parker, A., Christensen, N. J., Dahl, A. B., and Larsen, R. Noninvasive particle sizing using camera-based diffuse reflectance spectroscopy. Applied Optics 55(14), pp. 3840-3846, May 2016.

Multimodal digitization pipeline

- Data available at http://eco3d.compute.dtu.dk/pages/transparency

References

[^0]
Acquisition \longrightarrow Reconstruction \longrightarrow Reassembly \longrightarrow Rendering

Acknowledgement
Thanks to Jonthan Dyssel Stets for letting me use his "Geometry \& Appearance Digitization" slides.

Sphere

Bowl

Teapot

Instruments

- Robot repeatability
- Illumination control
- Stereo camera setup
- Structured light scanner

Scene

- Checkered backdrop
- Table with cloth
- Glass object

 thon

II
IIII NㅐI

Standard Gray code
Posdamer et al [1982]
Geng [2011]

Geometry \& Appearance Digitization

Geometry \& Appearance Digitization

Micropolygon labeling for assigning BRDFs

White checker

Grey checker

White cloth

Micropolygon labeling for assigning BRDFs

White checker

Grey checker

White cloth

Micropolygon labeling for assigning BRDFs

Micropolygon labeling for assigning BRDFs

Edge Detection + Watershed

Micropolygon labeling for assigning BRDFs

Backprojection using NN Search

Edge Detection + Watershed

Micropolygon labeling for assigning BRDFs

Original

One subdivision

Two subdivisions

A cross modality marker-based placement approach

A cross modality marker-based placement approach

Geometry \& Appearance Digitization

A cross modality marker-based placement approach

Size Invariant Circular Hough Transform for marker detection
[Atherton et al 1999]

A cross modality marker-based placement approach

Rendering

Rendering

Rendering

Geometry \& Appearance Digitization

Renderings

Photos

Pixelwise error

Geometry \& Appearance Digitization

Analysis by Synthesis

Rendered Image
Reference Image

Geometry \& Appearance Digitization

Analysis by Synthesis

Rendered Image
Reference Image

Geometry \& Appearance Digitization

Analysis by Synthesis

Rendered Image
Reference Image

Geometry \& Appearance Digitization

Thank you for your attention

Thanks to Otto Abildgaard, Alessandro Dal Corso, and Jonathan Dyssel Stets.
render
photo
[Frisvad et al. 2005]
algae in sea ice

[Frisvad 2008]
[Dal Corso et al. 2016]
organic low fat milk

photo
[Andersen et al. 2016]

[Stets et al. 2017]
unfiltered apple juice

Related work

An Experimental Evaluation of Computer Graphics Imagery, Meyer et al (1986)

Comparing Real and Synthetic Images: Some Ideas About Metrics, Rushmeier et al (1995)

A Concept for Evaluating the Accuracy of Computer Generated Images, Karner et al (1996)

Meyer et al (1986)

Accurate simulation of light and human perceptual comparison.

Techniques for comparing real and synthetic luminance images.

Mathematical comparison of computer simulated images of a real scene.

Geometry \& Appearance Digitization

Applications

- Cultural heritage preservation
- Industrial inspection
- Virtual product placement
- Additive manufacturing
- Agile production
- Estimation of radiometric properties

[^0]: Stets, J. D., Dal Corso, A., Nielsen, J. B., Lyngby, R. A., Jensen, S. H. N., Wilm, J., Doest, M. B., Gundlach, C., Eiriksson, E. R., Conradsen, K., Dahl, A. B., Brentzen, J. A., Frisvad, J. R., and Aans, H. Scene reassembly after multimodal digitization and pipeline evaluation using photorealistic rendering. Applied Optics 56(27), pp. 7679-7690, September 2017.

