02564 Real-Time Graphics Skylight and irradiance environment maps

Jeppe Revall Frisvad

March 2016

Quote from Lord Rayleigh [On the light from the sky, its polarization and colour. *Philosophical Magazine 41*, pp. 107–120, 274–279, 1871]:

If I represent the intensity of the primary light after traversing a thickness x of the turbid medium, we have

 $dI = -kI\lambda^{-4} dx$,

where k is a constant independent of λ . On integration,

 $I = I_0 e^{-k\lambda^{-4}x} ,$

if I_0 correspond to x = 0, —a law altogether similar to that of absorption, and showing how the light tends to become yellow and finally red as the thickness of the medium increases.

The atmosphere

Reference

 Belém, A. L. Modeling Physical and Biological Processes in Antarctic Sea Ice. PhD Thesis, Fachbereich Biologie/Chemie der Universität Bremen, February 2002.

Solar radiation

[Source: http://en.wikipedia.org/wiki/Sunlight]

where \mathscr{V} is the interval of visible wavelengths and $C(\lambda)$ is the spectrum that we want to transform to RGB.

Gamut mapping

- Gamut mapping is mapping one tristimulus color space to another.
- Gamut mapping is a linear transformation. Example:

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} 0.4124 & 0.3576 & 0.1805 \\ 0.2126 & 0.7152 & 0.0722 \\ 0.0193 & 0.1192 & 0.9505 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}.$$
$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} 3.2405 & -1.5371 & -0.4985 \\ -0.9693 & 1.8760 & 0.0416 \\ 0.0556 & -0.2040 & 1.0572 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

- > Y in the XYZ color space is called *luminance*.
- Luminance is a measure of how bright a scene appears.
- From the linear transformation above, we have

$$Y = 0.2126 R + 0.7152 G + 0.0722 B$$

Dynamic range

Ambient luminance levels for some common lighting environments:

Condition	Illumination (cd/m ²)
Starlight	10 ⁻³
Moonlight	10^{-1}
Indoor lighting	10 ²
Sunlight	10 ⁵
Maximum intensity of common monitors	10 ²

Reference

 Reinhard, E., Ward, G., Pattanaik, S., Debevec, P., Heidrich, W., and Myszkowski, K. High Dynamic Range Imaging: Acquisition, Display and Image-Based Lighting, second edition, Morgan Kaufmann/Elsevier, 2010.

Tone mapping

► Simplistic tone mapping: scale and gamma correct:

 $(\mathsf{R}',\mathsf{G}',\mathsf{B}')=\left((\mathsf{s}\mathsf{R})^{1/\gamma},(\mathsf{s}\mathsf{G})^{1/\gamma},(\mathsf{s}\mathsf{B})^{1/\gamma}
ight)\,,$

where ${\it s}$ and γ are user-defined parameters.

- The framework uses s = 0.025 (and $\gamma = 1$) for the sun and sky.
- Another tone mapping operator (Ferschin's exponential mapping):

$$(R',G',B')=\left((1-e^{-R})^{1/\gamma},(1-e^{-G})^{1/\gamma},(1-e^{-B})^{1/\gamma}
ight)$$

- This is useful for avoiding overexposed pixels.
- Other tone mapping operators use sigmoid functions based on the luminance levels in the scene [Reinhard et al. 2010].

Analytical sky models [Preetham et al. 1999] (input parameters)

Solar position:

$$\begin{array}{ll} \theta_s &=& \displaystyle\frac{\pi}{2} - \arcsin\left(\sin\ell\sin\delta - \cos\ell\cos\delta\cos\frac{\pi t}{12}\right) \\ \phi_s &=& \displaystyle\arctan\left(\frac{-\cos\delta\sin\frac{\pi t}{12}}{\cos\ell\sin\delta - \sin\ell\cos\delta\cos\frac{\pi t}{12}}\right) \end{array}, \end{array}$$

where $J \in [1, 365]$ is Julian day, t is solar time, and ℓ is latitude.

Direct sunlight

- Assume the Sun is a diffuse emitter of total power $\Phi = 3.91 \cdot 10^{26}$ W and surface area $A = 6.07 \cdot 10^{18}$ m².
- ► Radiance from the Sun to the Earth: $L = \frac{\Phi}{\pi A} \approx 2.05 \cdot 10^7 \frac{W}{m^2 \text{ sr}}$.
- Assume the Sun is in zenith and at a distance to the Earth of $r = 1.5 \cdot 10^{11}$ m.
- ► The solid angle subtended by the Sun as seen from Earth: $\omega = \frac{A_s}{r^2} = \frac{A}{4r^2} \approx 6.74 \cdot 10^{-5} \text{ sr.}$
- Energy received in a $1 \times 1 \text{ m}^2$ patch of Earth atmosphere: $E = L\omega \approx 1383 \frac{W}{m^2}$.
- A directional source with its color set to the solar irradiance at Earth will deliver the same energy in a square meter.

Skylight

Environment mapping:

Map an omnidirectional image onto everything surrounding the scene.

Cube mapping:

Use a direction to perform look-ups into an omnidirectional image consisting of six texture images (square resolution, 90° field of view).

- We use Preetham's analytical model to precompute a sky cube map.

Precomputing a cube map

$$ec{v}_{ijk} = ec{a}_k + ec{u}_k \left(2rac{i}{\mathsf{res}} - 1
ight) + ec{b}_k \left(2rac{j}{\mathsf{res}} - 1
ight)$$

where the faces are numbered from 0 to 5 and ordered as follows: left, right, top, bottom, front, back

- \vec{a}_k is the major axis direction of face k,
- \blacktriangleright \vec{u}_k is the up direction of face k, and
- \vec{b}_k is the right direction of face k.

Environment mapping

Reflective environment mapping:

$$\vec{i} = \frac{\boldsymbol{p}_e}{\|\boldsymbol{p}_e\|}$$
, $\vec{r} = \vec{i} - 2\left(\vec{n}\cdot\vec{i}\right)\vec{n}$

▶ We need world space directions when looking up in a cube map.

$$\vec{r}_w = \left(\boldsymbol{V}^{-1}
ight)^{3 imes 3} \vec{r}$$

where \boldsymbol{V} is the view matrix and $\boldsymbol{A}^{3\times 3}$ takes the upper left 3 \times 3 part of \boldsymbol{A} .

Environment mapping - filling the background

Given window space pixel coordinates x_p, y_p find the direction from the eye to the corresponding point on the image plane.

$$\vec{I}_{w} = \begin{bmatrix} (\boldsymbol{V}^{-1})^{3\times3} & 0 \\ 0 & 0 & 0 \end{bmatrix} \boldsymbol{P}^{-1} \boldsymbol{p}_{n} \quad , \quad \boldsymbol{p}_{n} = \begin{bmatrix} 2\frac{x_{p}}{W} - 1 \\ 2\frac{y_{p}}{H} - 1 \\ 0 \\ 1 \end{bmatrix} .$$

• Note that depth is unimportant as \vec{i}_w is the direction of an eye ray.

The Rendering Equation

▶ When rendering surfaces, the equation we try to evaluate is [Kajiya 1986]

$$L_o(\mathbf{x}, ec{\omega}) = L_e(\mathbf{x}, ec{\omega}) + \int_{2\pi} f_r(\mathbf{x}, ec{\omega}', ec{\omega}) L_i(\mathbf{x}, ec{\omega}') \cos heta \, \mathrm{d} \omega'$$

- where
 - Lo is outgoing radiance,
 - L_e is emitted radiance,
 - L_i is incoming radiance,
 - $\boldsymbol{x}~$ is a surface position,
 - $ec{\omega}$ is the direction of the light,
 - $\vec{\omega}'$ is the direction toward the light source,
 - f_r is the bidirectional reflectance distribution function (BRDF),
 - $\mathrm{d}\omega'\,$ is an element of solid angle,
 - θ is the angle between $\vec{\omega}'$ and the surface normal \vec{n} at \mathbf{x} , such that $\cos \theta = \vec{\omega}' \cdot \vec{n}$.

References

- Kajiya, J. The Rendering Equation. Computer Graphics (Proceedings of ACM SIGGRAPH 86) 20(4), pp. 143-150, 1986.

Splitting the evaluation

- Distinguishing between:
 - Direct illumination L_{direct}.
 - Light reaching a surface directly from the source.
 - Indirect illumination L_{indirect}.
 - Light reaching a surface after at least one bounce.
- The rendering equation is then

$$L = L_e + L_{direct} + L_{indirect}$$

- \blacktriangleright *L_e* is emission.
- L_{direct} is sampling of lights.
- Lindirect is sampling of the BRDF excluding lights.
- In a real-time skylight setting:
 - L_{direct} is direct sunlight (using the Phong illumination model without ambient).
 - L_{indirect} is integrated skylight and specular reflection of the sky.

Sky irradiance E_{sky} and ambient occlusion A

 \blacktriangleright Excluding direct sunlight from L_i , we have

$$\begin{split} L_{\text{indirect}}(\mathbf{x}, \vec{\omega}_o) &= \int_{2\pi} f_r(\mathbf{x}, \vec{\omega}', \vec{\omega}) L_i(\mathbf{x}, \vec{\omega}_i) (\vec{n} \cdot \vec{\omega}_i) \, d\omega_i \\ &= \frac{\rho_d}{\pi} \int_{2\pi} V(\mathbf{x}, \vec{\omega}_i) L_{\text{sky}}(\vec{\omega}_i) (\vec{n} \cdot \vec{\omega}_i) \, d\omega_i + \rho_s V(\mathbf{x}, \vec{r}) L_{\text{sky}}(\vec{r}_w) \,, \end{split}$$

where

- $L_i(\mathbf{x}, \vec{\omega}_i) = V(\mathbf{x}, \vec{\omega}_i) L_{sky}(\vec{\omega}_i)$ is incident skylight,
- $f_r(\mathbf{x}, \vec{\omega}', \vec{\omega}) = \rho_d/\pi$ is the BRDF of perfectly diffuse (Lambertian) materials,
- \triangleright ρ_d is the diffuse reflectance (diffuse color), and
- ρ_s is the specular reflectance.
- ▶ The remaining integral is called the *irradiance* E, and

$$\begin{split} E(\mathbf{x}, \vec{n}) &= \int_{2\pi} V(\mathbf{x}, \vec{\omega}_i) L_{\mathsf{sky}}(\vec{\omega}_i) (\vec{n} \cdot \vec{\omega}_i) \, d\omega_i \\ &\approx \frac{1}{\pi} \int_{2\pi} V(\mathbf{x}, \vec{\omega}_i) (\vec{n} \cdot \vec{\omega}_i) \, d\omega_i \int_{\Omega} L_{\mathsf{sky}}(\vec{\omega}_i) (\vec{n} \cdot \vec{\omega}_i) \, d\omega_i \\ &= A(\mathbf{x}) E_{\mathsf{sky}}(\vec{n}) \, . \end{split}$$

Integrating skylight

The sky irradiance integral (neglecting visibility):

$$E_{\mathrm{sky}}(\vec{n}) = \int_{2\pi} L_{\mathrm{sky}}(\vec{\omega}_i) (\vec{n} \cdot \vec{\omega}_i) \, d\omega_i.$$

Monte Carlo estimator:

$$E_{\text{sky},N}(\vec{n}) = \frac{1}{N} \sum_{j=1}^{N} \frac{L_{\text{sky}}(\vec{\omega}_{i,j})(\vec{n} \cdot \vec{\omega}_{i,j})}{\text{pdf}(\vec{\omega}_{i,j})}$$

- A good choice of pdf would be $pdf(\vec{\omega}_{i,j}) = \frac{\vec{n} \cdot \vec{\omega}_{i,j}}{\pi}$.
- ▶ We sample $\vec{\omega}_{i,j}$ on a cosine-weighted hemisphere using

$$\begin{array}{lll} (\theta_i, \phi_i) &=& (\cos^{-1}\sqrt{1-\xi_1}, 2\pi\xi_2) &, \quad \xi_1, \xi_2 \in [0,1) \quad (\text{random numbers}) \\ (x, y, z) &=& (\cos\phi_i \sin\theta_i, \sin\phi_i \sin\theta_i, \cos\theta_i) \\ \\ \vec{\omega}_{i,j} &=& \left(x \begin{bmatrix} 1-n_x^2/(1+n_z) \\ -n_x n_y/(1+n_z) \\ -n_x \end{bmatrix} + y \begin{bmatrix} -n_x n_y/(1+n_z) \\ 1-n_y^2/(1+n_z) \\ -n_y \end{bmatrix} + z \begin{bmatrix} n_x \\ n_y \\ n_z \end{bmatrix} \right).$$

Irradiance environment map

- ▶ Precompute cube map on the GPU using layered rendering and sampling.
- ► In the geometry shader (integrator.geom):
 - emit triangle vertices to each cube map face using a loop and gl_Layer.
- In the fragment shader (integrator.frag):
 - implement the cosine-weighted sampling of the skylight with $\vec{n} = \vec{v}_{ijk}$ (use rnd(t) to get a random number).
- > The framework progressively improves the sky irradiance map using these shaders.

Illumination model for skylight

$$L_r = \frac{\rho_d}{\pi} \left((\vec{n} \cdot \vec{l}) V L_{\text{sun}} + A E_{\text{sky}}(\vec{n}_w) \right) + \rho_s \left((\vec{r} \cdot \vec{l})^p V L_{\text{sun}} + L_{\text{sky}}(\vec{r}_w) \right),$$

where

- ► L_{sun} is the radiance (color) of the directional light,
- L_{sky} is a look-up into the skylight environment map,
- E_{sky} is a look-up into the sky irradiance map,
- V is the visibility term obtained from shadow mapping,
- ► A is the factor from screen-space ambient occlusion (SSAO),
- \blacktriangleright \vec{n} is the normal,
- \blacktriangleright \vec{l} is the direction toward the sun,
- \vec{r} is the reflection of the view vector around the normal,
- ▶ \vec{n}_w is the normal in world coordinates,
- \vec{r}_w is the reflected vector in world coordinates,
- ρ_d is a diffuse reflectance,
- $\blacktriangleright \rho_{s}$ is a specular reflectance, and
- ▶ *p* is a shininess.