02564 Real-Time Graphics

Skylight and irradiance environment maps

Jeppe Revall Frisvad

March 2016

Rayleigh scattering

- Quote from Lord Rayleigh [On the light from the sky, its polarization and colour. Philosophical Magazine 41, pp. 107-120, 274-279, 1871]

If I represent the intensity of the primary light after traversing a thickness x of the turbid medium, we have

$$
d l=-k l \lambda^{-4} d x
$$

where k is a constant independent of λ. On integration,

$$
I=1_{0} e^{-k \lambda-\lambda^{-4}}
$$

if 10 correspond to $x=0$, - law altogether similar to that of absorption, and showing how the light tends to become yellow and finally red as the thickness of the medium increases.

Solar radiation

Solar Radiation Spectrum

[Source: http://en.wikipedia.org/wiki/Sunlight]

Gamut mapping

- Gamut mapping is mapping one tristimulus color space to another.
- Gamut mapping is a linear transformation. Example:

$$
\begin{aligned}
& {\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]=\left[\begin{array}{lrr}
0.4124 & 0.3576 & 0.1805 \\
0.2126 & 0.7152 & 0.0722 \\
0.0193 & 0.1192 & 0.9505
\end{array}\right]\left[\begin{array}{l}
R \\
G \\
B
\end{array}\right] .} \\
& {\left[\begin{array}{l}
R \\
G \\
B
\end{array}\right]=\left[\begin{array}{rrr}
3.2405 & -1.5371 & -0.4985 \\
-0.9693 & 1.8760 & 0.0416 \\
0.0556 & -0.2040 & 1.0572
\end{array}\right]\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]}
\end{aligned}
$$

- Y in the $X Y Z$ color space is called luminance.
- Luminance is a measure of how bright a scene appears.
- From the linear transformation above, we have

$$
Y=0.2126 R+0.7152 G+0.0722 B
$$

Colorimetry

CIE color matching functions

The chromaticity diagram

$$
\begin{aligned}
R & =\int_{\mathscr{V}} C(\lambda) \bar{r}(\lambda) \mathrm{d} \lambda \\
G & =\int_{\mathscr{V}} C(\lambda) \bar{g}(\lambda) \mathrm{d} \lambda \\
B & =\int_{\mathscr{V}} C(\lambda) \bar{b}(\lambda) \mathrm{d} \lambda
\end{aligned}
$$

where \mathscr{V} is the interval of visible wavelengths and $C(\lambda)$ is the spectrum that we want to transform to RGB.

Dynamic range

- Ambient luminance levels for some common lighting environments:

Condition	Illumination $\left.\mathbf{(c d} / \mathbf{m}^{\mathbf{2}}\right)$
Starlight	10^{-3}
Moonlight	10^{-1}
Indoor lighting	10^{2}
Sunlight	10^{5}
Maximum intensity of common monitors	10^{2}

[^0]Reinhard, E., Ward, G., Pattanaik, S., Debevec, P., Heidrich, W., and Myszkowski, K. High Dynamic Range Imaging: Acquisition, Display and Image-Based Lighting, second edition, Morgan Kaufmann/Elsevier, 2010.

Tone mapping

- Simplistic tone mapping: scale and gamma correct:

$$
\left(R^{\prime}, G^{\prime}, B^{\prime}\right)=\left((s R)^{1 / \gamma},(s G)^{1 / \gamma},(s B)^{1 / \gamma}\right)
$$

where s and γ are user-defined parameters.

- The framework uses $s=0.025$ (and $\gamma=1$) for the sun and sky.
- Another tone mapping operator (Ferschin's exponential mapping):

$$
\left(R^{\prime}, G^{\prime}, B^{\prime}\right)=\left(\left(1-e^{-R}\right)^{1 / \gamma},\left(1-e^{-G}\right)^{1 / \gamma},\left(1-e^{-B}\right)^{1 / \gamma}\right)
$$

- This is useful for avoiding overexposed pixels.
- Other tone mapping operators use sigmoid functions based on the luminance levels in the scene [Reinhard et al. 2010].

Direct sunlight

- Assume the Sun is a diffuse emitter of total power $\Phi=3.91 \cdot 10^{26} \mathrm{~W}$ and surface area $A=6.07 \cdot 10^{18} \mathrm{~m}^{2}$.
- Radiance from the Sun to the Earth: $L=\frac{\Phi}{\pi A} \approx 2.05 \cdot 10^{7} \frac{\mathrm{~W}}{\mathrm{~m}^{2} \mathrm{sr}}$
- Assume the Sun is in zenith and at a distance to the Earth of $r=1.5 \cdot 10^{11} \mathrm{~m}$.
- The solid angle subtended by the Sun as seen from Earth: $\omega=\frac{A_{s}}{r^{2}}=\frac{A}{4 r^{2}} \approx 6.74 \cdot 10^{-5} \mathrm{sr}$.
- Energy received in a $1 \times 1 \mathrm{~m}^{2}$ patch of Earth atmosphere: $E=L \omega \approx 1383 \frac{\mathrm{~W}}{\mathrm{~m}^{2}}$.
- A directional source with its color set to the solar irradiance at Earth will deliver the same energy in a square meter.

Analytical sky models [Preetham et al. 1999] (input parameters)

- Solar declination angle:

$$
\delta=0.4093 \sin \left(\frac{2 \pi(J-81)}{368}\right)
$$

- Solar position:

$$
\begin{aligned}
& \theta_{s}=\frac{\pi}{2}-\arcsin \left(\sin \ell \sin \delta-\cos \ell \cos \delta \cos \frac{\pi t}{12}\right) \\
& \phi_{s}=\arctan \left(\frac{-\cos \delta \sin \frac{\pi t}{12}}{\cos \ell \sin \delta-\sin \ell \cos \delta \cos \frac{\pi t}{12}}\right),
\end{aligned}
$$

where $J \in[1,365]$ is Julian day, t is solar time, and ℓ is latitude.

Skylight

- Environment mapping:

Map an omnidirectional image onto everything surrounding the scene.

- Cube mapping:

Use a direction to perform look-ups into an omnidirectional image consisting of six texture images (square resolution, 90° field of view).

- We use Preetham's analytical model to precompute a sky cube map.
- Look-ups then return the radiance $L_{\text {sky }}(\vec{\omega})$ received from the sky when looking in the direction $\vec{\omega}$.

Precomputing a cube map

We precompute by storing $L_{\text {sky }}\left(\vec{v}_{i j k}\right)$ in the texel at index i, j of face k.
$\vec{v}_{i j k}=\vec{a}_{k}+\vec{u}_{k}\left(2 \frac{i}{\text { res }}-1\right)+\vec{b}_{k}\left(2 \frac{j}{\text { res }}-1\right)$,
where the faces are numbered from 0 to 5 and ordered as follows: left, right, top, bottom, front, back

- \vec{a}_{k} is the major axis direction of face k,
- \vec{u}_{k} is the up direction of face k, and
- \vec{b}_{k} is the right direction of face k.

Environment mapping - filling the background

- Given window space pixel coordinates x_{p}, y_{p} find the direction from the eye to the corresponding point on the image plane.

$$
\vec{i}_{w}=\left[\begin{array}{lll}
& \left(\boldsymbol{V}^{-1}\right)^{3 \times 3} & 0 \\
0 & 0 & 0 \\
0
\end{array}\right] \boldsymbol{P}^{-1} \boldsymbol{p}_{n} \quad, \quad \boldsymbol{p}_{n}=\left[\begin{array}{c}
2 \frac{x_{p}}{W}-1 \\
2 \frac{y_{p}}{H}-1 \\
0 \\
1
\end{array}\right] .
$$

- Note that depth is unimportant as \vec{i}_{w} is the direction of an eye ray.

Environment mapping

- Reflective environment mapping:

$$
\vec{i}=\frac{\boldsymbol{p}_{e}}{\left\|\boldsymbol{p}_{e}\right\|} \quad, \quad \vec{r}=\vec{i}-2(\vec{n} \cdot \vec{i}) \vec{n}
$$

- We need world space directions when looking up in a cube map.

$$
\vec{r}_{w}=\left(\boldsymbol{V}^{-1}\right)^{3 \times 3} \vec{r}
$$

where \boldsymbol{V} is the view matrix and $\boldsymbol{A}^{3 \times 3}$ takes the upper left 3×3 part of \boldsymbol{A}.

The Rendering Equation

- When rendering surfaces, the equation we try to evaluate is [Kajiya 1986]

$$
L_{o}(\boldsymbol{x}, \vec{\omega})=L_{e}(\boldsymbol{x}, \vec{\omega})+\int_{2 \pi} f_{r}\left(\boldsymbol{x}, \vec{\omega}^{\prime}, \vec{\omega}\right) L_{i}\left(\boldsymbol{x}, \vec{\omega}^{\prime}\right) \cos \theta \mathrm{d} \omega^{\prime}
$$

- where
L_{0} is outgoing radiance,
L_{e} is emitted radiance,
L_{i} is incoming radiance,
x is a surface position,
$\vec{\omega}$ is the direction of the light,
$\vec{\omega}^{\prime}$ is the direction toward the light source,
f_{r} is the bidirectional reflectance distribution function (BRDF),
$d \omega^{\prime}$ is an element of solid angle,
θ is the angle between $\vec{\omega}^{\prime}$ and the surface normal \vec{n} at \boldsymbol{x}, such that $\cos \theta=\vec{\omega}^{\prime} \cdot \vec{n}$. References

Kajiya, J. The Rendering Equation. Computer Graphics (Proceedings of ACM SIGGRAPH 86) 20(4), pp. 143-150, 1986

Splitting the evaluation

- Distinguishing between:
- Direct illumination $L_{\text {direct }}$.
- Light reaching a surface directly from the source.
- Indirect illumination $L_{\text {indirect }}$.
- Light reaching a surface after at least one bounce.
- The rendering equation is then

$$
L=L_{e}+L_{\text {direct }}+L_{\text {indirect }}
$$

- L_{e} is emission.
- $L_{\text {direct }}$ is sampling of lights.
- $L_{\text {indirect }}$ is sampling of the BRDF excluding lights.
- In a real-time skylight setting:
- $L_{\text {direct }}$ is direct sunlight (using the Phong illumination model without ambient).
- $L_{\text {indirect }}$ is integrated skylight and specular reflection of the sky.

Integrating skylight

- The sky irradiance integral (neglecting visibility):

$$
E_{\mathrm{sky}}(\vec{n})=\int_{2 \pi} L_{\mathrm{sky}}\left(\vec{\omega}_{i}\right)\left(\vec{n} \cdot \vec{\omega}_{i}\right) d \omega_{i}
$$

- Monte Carlo estimator:

$$
E_{\text {sky }, N}(\vec{n})=\frac{1}{N} \sum_{j=1}^{N} \frac{L_{\text {sky }}\left(\vec{\omega}_{i, j}\right)\left(\vec{n} \cdot \vec{\omega}_{i, j}\right)}{\operatorname{pdf}\left(\vec{\omega}_{i, j}\right)}
$$

- A good choice of pdf would be $\operatorname{pdf}\left(\vec{\omega}_{i, j}\right)=\frac{\vec{n} \cdot \vec{\omega}_{i, j}}{\pi}$.
- We sample $\vec{\omega}_{i, j}$ on a cosine-weighted hemisphere using

$$
\begin{aligned}
\left(\theta_{i}, \phi_{i}\right) & =\left(\cos ^{-1} \sqrt{1-\xi_{1}}, 2 \pi \xi_{2}\right) \quad, \quad \xi_{1}, \xi_{2} \in[0,1) \quad \text { (random numbers) } \\
(x, y, z) & =\left(\cos \phi_{i} \sin \theta_{i}, \sin \phi_{i} \sin \theta_{i}, \cos \theta_{i}\right) \\
\vec{\omega}_{i, j}= & \left(x\left[\begin{array}{c}
1-n_{x}^{2} /\left(1+n_{z}\right) \\
-n_{x} n_{y} /\left(1+n_{z}\right) \\
-n_{x}
\end{array}\right]+y\left[\begin{array}{c}
-n_{x} n_{y} /\left(1+n_{z}\right) \\
1-n_{y}^{2} /\left(1+n_{z}\right) \\
-n_{y}
\end{array}\right]+z\left[\begin{array}{l}
n_{x} \\
n_{y} \\
n_{z}
\end{array}\right]\right) .
\end{aligned}
$$

Sky irradiance $E_{\text {sky }}$ and ambient occlusion A

- Excluding direct sunlight from L_{i}, we have

$$
\begin{aligned}
L_{\text {indirect }}\left(\boldsymbol{x}, \vec{\omega}_{o}\right) & =\int_{2 \pi} f_{r}\left(\boldsymbol{x}, \vec{\omega}^{\prime}, \vec{\omega}\right) L_{i}\left(\boldsymbol{x}, \vec{\omega}_{i}\right)\left(\vec{n} \cdot \vec{\omega}_{i}\right) d \omega_{i} \\
& =\frac{\rho_{d}}{\pi} \int_{2 \pi} V\left(\boldsymbol{x}, \vec{\omega}_{i}\right) L_{\text {sky }}\left(\vec{\omega}_{i}\right)\left(\vec{n} \cdot \vec{\omega}_{i}\right) d \omega_{i}+\rho_{s} V(\boldsymbol{x}, \vec{r}) L_{\text {sky }}\left(\vec{r}_{w}\right)
\end{aligned}
$$

where

- $L_{i}\left(\boldsymbol{x}, \vec{\omega}_{i}\right)=V\left(\boldsymbol{x}, \vec{\omega}_{i}\right) L_{\text {sky }}\left(\vec{\omega}_{i}\right)$ is incident skylight,
- $f_{r}\left(\boldsymbol{x}, \vec{\omega}^{\prime}, \vec{\omega}\right)=\rho_{d} / \pi$ is the BRDF of perfectly diffuse (Lambertian) materials,
- ρ_{d} is the diffuse reflectance (diffuse color), and
- ρ_{s} is the specular reflectance.
- The remaining integral is called the irradiance E, and

$$
\begin{aligned}
E(\boldsymbol{x}, \vec{n}) & =\int_{2 \pi} V\left(\boldsymbol{x}, \vec{\omega}_{i}\right) L_{\text {sky }}\left(\vec{\omega}_{i}\right)\left(\vec{n} \cdot \vec{\omega}_{i}\right) d \omega_{i} \\
& \approx \frac{1}{\pi} \int_{2 \pi} V\left(\boldsymbol{x}, \vec{\omega}_{i}\right)\left(\vec{n} \cdot \vec{\omega}_{i}\right) d \omega_{i} \int_{\Omega} L_{\text {sky }}\left(\vec{\omega}_{i}\right)\left(\vec{n} \cdot \vec{\omega}_{i}\right) d \omega_{i} \\
& =A(\boldsymbol{x}) E_{\text {sky }}(\vec{n}) .
\end{aligned}
$$

Irradiance environment map

- Precompute cube map on the GPU using layered rendering and sampling.
- In the geometry shader (integrator.geom):
- emit triangle vertices to each cube map face using a loop and gl_Layer.
- In the fragment shader (integrator.frag):
- implement the cosine-weighted sampling of the skylight with $\vec{n}=\vec{v}_{i j k}$ (use rnd (t) to get a random number).
- The framework progressively improves the sky irradiance map using these shaders.

Illumination model for skylight

$$
L_{r}=\frac{\rho_{d}}{\pi}\left((\vec{n} \cdot \vec{l}) V L_{\text {sun }}+A E_{\text {sky }}\left(\vec{n}_{w}\right)\right)+\rho_{s}\left((\vec{r} \cdot \vec{l})^{p} V L_{\text {sun }}+L_{\text {sky }}\left(\vec{r}_{w}\right)\right),
$$

where

- $L_{\text {sun }}$ is the radiance (color) of the directional light,
- $L_{\text {sky }}$ is a look-up into the skylight environment map,
- $E_{\text {sky }}$ is a look-up into the sky irradiance map,
- V is the visibility term obtained from shadow mapping,
- A is the factor from screen-space ambient occlusion (SSAO),
- \vec{n} is the normal,
$-\vec{l}$ is the direction toward the sun,
- \vec{r} is the reflection of the view vector around the normal,
- \vec{n}_{w} is the normal in world coordinates,
- \vec{r}_{w} is the reflected vector in world coordinates,
- ρ_{d} is a diffuse reflectance,
- ρ_{s} is a specular reflectance, and
- p is a shininess.

[^0]: Reference

